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 ABSTRACT The article discusses the method of identifying parameters for interval nonlinear models of static 
systems. The method is based on solving an optimization problem with a smooth objective function. Additional 
coefficients are added to the objective function's variables to solve the optimization problem, complicating the 
computational procedures. The computational complexity of quasi-Newton methods used to solve the optimization 
problem is analyzed. Excessive computational complexity is caused by many iterations when transforming the 
value of the objective function to zero. To address this, the article proposes using the optimization stop criterion 
based on the determination of the model's adequacy at the current iteration of the computational optimization 
procedure. Numerical experiments were conducted to identify nonlinear models of depending the pH of the 
environment in the fermenter of the biogas plant on influencing factors. It was established that the proposed 
criterion reduced the number of iterations by 4.5 times, which is proportional to the same reduction in the number 
of calculations of the objective function. Gotten results are also important for reducing the computational 
complexity of algorithms of structural identification of these models. 
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I.  INTRODUCTION 
HE problem of parametric identification of mathematical 
models of static systems is formulated as an optimization 

problem [1]. As is known [2], the complexity of this problem 
depends on the form of the equation that describes the model 
(whether linear or nonlinear), the number of model parameters, 
and also on the way of representing the inaccuracy in the 
experimental data. If the measurement errors of the devices are 
taken into account in the data, then in this case the results of 
observations are presented in interval form [3, 4]. In this case, 
the obtained interval model of the static system has 
"guaranteed" prognostic properties, but the computational 
scheme for identifying the parameters of such a model is quite 
complex [5]. This is especially observed in the case of 
nonlinearity of the algebraic equation that describes the 
mathematical model [1, 6]. 

Currently, the identification methods of linear interval 
models of static systems, which are based on computing 

schemes of linear programming, have been sufficiently 
developed [7]. In cases where the equation that describes the 
mathematical model is nonlinear in the procedures for 
identifying model parameters under the conditions of interval 
data analysis, metaheuristic algorithms are used, in particular, 
artificial bee colony algorithms [8-10], since optimization 
problems, in this case, are complex with nonlinear multi 
extremal discrete objective functions [11]. 

In recent years, instead of these problems, a problem with 
smooth objective functions has been formulated and solved. In 
this case, the objective function minimizes the squared error 
between the values selected on the intervals of the experimental 
data and the values predicted on the same intervals by one 
model, which is selected from the corridor of interval models. 
So, this approach makes it possible to use a smooth objective 
function in the problem of parametric identification, which is 
an optimization problem [1]. At the same time, this leads to an 
increase in the dimension of the optimization problem by N 
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unknown parameters of the solution, which corresponds to the 
number of constraints on the objective function [1]. Under 
these conditions, there is a need to find additional conditions 
for the completion of the optimization problem of parameter 
identification to avoid an increase in its computational 
complexity due to dimensionality. This task is the subject of 
research in this article. 

II. MATERIAL AND METHODS  

A. STATEMENT OF THE TASK 
In many cases, the relationships between the observed 
properties of complex objects and factors reflecting the 
influence of the external environment on them are presented in 
the form of nonlinear algebraic equations. Static systems, in 
such cases, describe the functional dependencies between the 
input values of the factors affecting the system and the output 
values of the characteristics in the form of an expression [2]: 
 

𝑦൫𝛽, �⃗�൯ = 𝑓ଵ൫𝛽, �⃗�൯+. . . +𝑓൫𝛽, �⃗�൯,  (1) 
 
where 𝑦(𝛽, �⃗�) is the simulated value of the characteristic of the 

static system; 𝛽 is a vector of model parameters (parameters 
in the model have no physical meaning and are unknown 
coefficients); 𝑓ଵ(𝛽, �⃗�)+. . . +𝑓(𝛽, �⃗�) is a set of basis 
functions both from the vector of input variables �⃗� and the 
vector of parameters 𝛽 of the model. 

The results of the experiment, which are necessary to 
identify the parameters of the nonlinear (in general form) 
model (2), are presented in the following form [1]: 
 

�⃗� → [𝑦
ି; 𝑦

ା],  𝑖 = 1, . . . , 𝑁, (2) 
 
where [𝑦

ି; 𝑦
ା] is the lower and upper limit of the interval 

values of the system characteristics for the given i-th 
measurement conditions, which are determined by the vector 
�⃗�, for each of the 𝑖 = 1, … , 𝑁 measurements. In this case, the 
task of identifying the model in the form of expression (1) is to 

calculate the estimates of �̑⃗� parameters. In the case when these 
estimates are calculated the mathematical model takes the 
following form: 
 

�̑�(�̑⃗�, �⃗�) = 𝑓ଵ(�̑⃗�, �⃗�)+. . . +𝑓(�̑⃗�, �⃗�), (3) 
 

where �̑�(�̑⃗�, �⃗�) is the simulated value of the system 
characteristic. 

Based on the condition that the simulated values of the 
characteristics of the static system should belong to numerical 
intervals obtained experimentally [1]: 
 

�̑�(�̑⃗�, �⃗�) ∈ [𝑦
ି; 𝑦

ା], 𝑖 = 1, . . , 𝑁, (4) 
 

we get a mathematical problem for calculating estimates �̑⃗� of 
the parameters vector 𝛽 [1]: 
 

𝑦
ି ≤ 𝑓ଵ ቀ�̑⃗�, �⃗�ቁ + ⋯ + 𝑓 ቀ�̑⃗�, �⃗�ቁ ≤ 𝑦

ା, (5) 

𝑖 = 1, … , 𝑁. 
 

The resulting system (5) is an interval system of nonlinear 
algebraic equations (ISNAE) for unknown interval estimates of 

the parameter vector ቂ�̑⃗�ቃ [1]. The set of ISNAE solutions Ω 

determines the vector of estimates of model parameters. Taking 
into account the high (combinatorial) computational 
complexity of solving this ISNAE, in practice, only point 

estimates of parameters �̑⃗�. are calculated. In this case, to 
estimate the parameters, the optimization problem of the 
following form is solved [1]: 
 

𝛿 ቀ�̑⃗�ቁ
 ఉ̑ሬሬ⃗ ,ఈෝ 
ሱ⎯⎯⎯⎯ሮ 𝑚𝑖𝑛, (6) 

�̑⃗� ∈ [�̑⃗�௪ ; �̑⃗�௨], (7) 
𝛼ො ∈ [0,1], 𝑖 = 1, … , 𝑁, (8) 

 
where 𝛼ො are coefficients of linear combinations that define the 
points within the limits of the experimental data[𝑦

ି; 𝑦
ା]. 

In expression (6), the objective function 𝛿(�̑⃗�) is formed 
based on taking into account the restrictions established by the 
interval system of nonlinear algebraic equations (5). This 
objective function is a criterion for minimizing the quadratic 
error [1]: 
 

𝛿 ቀ�̑⃗�ቁ =  ቀ𝑦ො(�̑⃗�, �⃗�) − 𝑃([𝑦
ି; 𝑦

ା], 𝛼ቁ
ଶ

=

ே

ୀଵ

 

= ∑ ൭
𝑓ଵ ቀ�̑⃗�, �⃗�ቁ + ⋯ + 𝑓 ቀ�̑⃗�, �⃗�ቁ −

(𝛼 ⋅ 𝑦
ି + (1 − 𝛼) ⋅ 𝑦

ା)
൱

ଶ

.ே
ୀଵ  (9) 

 
In cases where the nonlinearity of the parameters 

complicates the objective function, stochastic optimization 
methods [12, 13], evolutionary [14-16] and metaheuristic 
algorithms, [17-19] are used. In particular, we can single out a 
method based on the application of the swarm intelligence 
algorithm of a colony of honey bees [11]. 

It is also worth noting that in the general case, the solution 
of the optimization problem (6)-(8) ensures the transformation 
of the value of the objective function to the zero value, i.e 

𝛿(�̑⃗�) = 0. In this case, such a condition, taking into account 
the expansion of the parameter space of the solution vector by 
N, leads to a significant increase in the computational 
complexity of the parametric identification problem and 
requires additional research.  

B.  ADDITIONAL STOP-CRITERION FOR THE 
CALCULATION PROCEDURE OF OPTIMIZATION IN THE 
PROBLEM OF IDENTIFYING THE PARAMETERS OF 
INTERVAL MODELS 
The MATLAB software libraries for optimization contain 
several quasi-Newton algorithms for solving both 
unconstrained and constrained nonlinear optimization 
problems [20-22]. In particular, the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) algorithm belongs to quasi-Newton 
methods and is an iterative method for solving nonlinear 
optimization problems without constraints. BFGS determines 
the descent direction by pre-estimating the curvature based on 
the gradient. The estimation is performed by gradually 
improving the approximation to the Hessian matrix of the loss 
function obtained only from the gradient estimates (or 
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approximate gradient estimates) using the generalized secant 
method. 

The complexity of each iteration for the BFGS method is 
O(m2) with the addition of a component for the cost of 
calculating the value of the function and the gradient [23, 24]. 
This algorithm is a component of the interior point method, 
which generally determines its asymptotic computational 
complexity for the problem of parameter identification, which 
is described by the following dependence: 
 

𝑂(𝑘, 𝑚, 𝑁) = 𝑂(𝑘 ∙ (𝑁 + 𝑚) ∙ 𝑚ଶ), (10) 
 
where k is the number of iterations during optimization. 

The peculiarity of the problem (6) is that the objective 
function is built based on the convolution of constraints in the 
form of ISNAE (5). This feature of the problem statement 
increases the efficiency of the application of nonlinear 
optimization methods, as it eliminates nonlinear restrictions 
(there are restrictions on the values of the coefficients 𝛼 , 𝑖 =
1, … , 𝑁), due to the addition of the parameter space with the 
coefficients 𝛼).  

In this case, for the above method, we get the asymptotic 
computational complexity of the algorithm: 
 

𝑂(𝑘, 𝑚, 𝑁) = 𝑂(𝑘 ∙ (𝑚 + 𝑁)ଶ). (11) 
 

As a rule, the number of executed iterations is determined 
by the stopping criteria, which are checked at the end of each 
iteration. For the interior point method in MATLAB R2023b 
Update 6, it is possible to limit the number of iterations 
(MaxIterations) and the number of target function calculations 
(MaxFunctionEvaluations), which does not guarantee 
obtaining the optimal value [25, 26]. Also, optimality 
tolerances (OptimalityTolerance), objective function growth 
(FunctionTolerance), and step size (StepTolerance) are used as 
optimization stopping criteria. The graphic interpretation of 
these criteria is shown in Fig. 1. 

 

 

Figure 1. Criteria for terminating iterations in the interior 
point method [26]. 

In reference [1] it's stated that the minimization of the 
objective function to zero guarantees the optimality of the 
solution, that is, the adequacy of the model (6). Based on the 
basic assumptions on which the interval data analysis method 
is based, a set (corridor) of interval point nonlinear models is 
built based on the results of identifying model parameters, each 
of which adequately reflects the properties of a static system 
[3]. Accordingly, it can be assumed, that the solution to the 
problem (7), which is close to the optimal one, will ensure the 

construction of an adequate model, and conditions (4) will be 
satisfied for this model. 

It is also worth noting that when the objective function is 
close to the minimum in the optimization procedure of the 
methods mentioned above, the number of iterations increases 
significantly. Accordingly, expression (4) can be used as a 
criterion for stopping the optimization procedure, which will 
allow to reduce the number of iterations.  

Taking into account the above considerations, we obtain the 
asymptotic computational complexity of the method of 
identifying the parameters of nonlinear interval models of static 
systems in the following form: 
 

𝑂(𝑘, 𝑚, 𝑁) = 𝑂(𝑘 ∙ ((𝑁 + 𝑚)ଶ + 𝑁)). (12) 
 

The resulting expression (11) is due to the need to check 
condition (4) based on data of dimension N at each iteration. 

In Fig. 2 shows graphs of the dependence of the 
computational complexity of the parameter identification 
method on the dimension of the optimization problem. 

 

 
(а) 

 
(b) 

Figure 2. Graphs of the dependence of the computational 
complexity of the parameter identification method on the 

dimension of the optimization problem (7) 

Fig. 2(a) shows the quadratic polynomial computational 
complexity based on the number of measurement data of the 
initial characteristics of the static system N and the number of 
model parameters m, which is explained by the inclusion of a 
linear combination coefficient for each measurement 
(observation) in the optimization parameter space. At the same 
time, when the number of iterations k increases, the 
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computational complexity increases linearly (Fig. 2(b)). 
Therefore, one of the ways to reduce the computational 
complexity of the method is to reduce the number of iterations 
due to the use of the criterion for stopping the optimization of 
interval model parameters in the form of conditions (4). 

III. RESULTS AND DISCUSSION 
To investigate the effectiveness of using the proposed stop 
criterion for optimizing the parameters of interval nonlinear 
models, a series of computational experiments was conducted 
using procedures for identifying nonlinear interval models. In 
the course of numerical experiments, there were studies of the 
change in the number of iterations and, accordingly, the 
number of calculations of the value of the objective function 

𝛿(�̑⃗�). 
Let us consider the effectiveness of the method based on the 

use of the proposed stopping criterion in the example of 
identifying a model that describes the pH dependence of the 
environment in the fermenter of a biogas plant [27]: 
 

𝑦(𝛽, �⃗�) = 𝛽 + ൬
𝛽ଵ · 𝑥ଶ

1 + 𝛽ଶ · 𝑥ଵ + 𝛽ଷ · 𝑥ଷ + 𝛽ସ · 𝑥ସ

൰
ఉఱ

 

 
+𝛽 · 𝑥ହ

ఉళ + 𝛽଼ · 𝑥
ఉవ ,  (13) 

 
where 𝑥ଵ – is the volume in м3 of the post-alcohol bard loaded 
in the corresponding period (in the current day); 𝑥ଶ is the 
weight in 1000 kg of sugar beet pulp loaded in the 
corresponding period (in the current day); 𝑥ଷ is the volume in 
м3 of the gravel loaded in the corresponding period (in the 
current day); 𝑥ସ is the volume in м3 of molasses loaded in the 
corresponding period (in the current day); 𝑥ହ is the humidity in 
%; 𝑥 is the temperature in ̊C of the fermentation environment. 

The results of pH measurements in the interval form, which 
is due to the device measurement error of 1%, and the values 
of the influencing factors 𝑥 , 𝑗 = 1, … ,6, are given in Table 1.  

Table 1. Results of experimental measurements 

i 𝒙𝒊,𝟏 𝒙𝒊,𝟐 𝒙𝒊,𝟑 𝒙𝒊,𝟒 𝒙𝒊,𝟓 𝒙𝒊,𝟔 𝒚𝒊
ି 𝒚𝒊

ା 

1 130 129 0 0 96.2 44.6 8.062 8.258 

2 70 159 0 0 96.3 44.3 8.062 8.258 

3 80 147 0 14.4 96.1 43.8 8.1318 8.329 

4 130 120 39.4 10 96.782 43.3 8.102 8.298 

5 200 101 0 0 96.8 42.9 7.933 8.126 

6 150 97.5 16.5 0 96.737 42.8 8.102 8.298 

7 30 102 14.4 10 97 42.5 8.24 8.44 

8 110 112.5 14.4 15 96.8 42.3 8.013 8.207 

9 320 69 0 5 97 42.1 8.102 8.298 

10 120 100 14.4 0 96.9 42.2 8.052 8.248 

11 130 0 0 0 96.3 41.6 7.973 8.167 

12 210 37.5 14.4 0 96.2 40.6 8.082 8.278 

13 220 51 14.4 0 96.7 39.6 7.963 8.157 

14 40 33 0 11 96.2 38.7 8.072 8.268 

15 220 137.5 14.4 10 96.8 38.2 7.934 8.126 

Accordingly, the dimension of the optimization problem is 
𝑚 = 10, 𝑁 = 15. The MATLAB R2023b Update 6 
environment was used for numerical experiments. The 
optimization was carried out based on the interior point 
algorithm (fmincon Global Optimization Toolbox function) 
[26]. The following settings of the criteria for stopping the 
optimization iterations were used for the experiments:  

− 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑇𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 = 1 ∙ 10ି, 
− 𝑆𝑡𝑒𝑝𝑇𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 = 1 ∙ 10ି, 
− 𝑂𝑝𝑡𝑖𝑚𝑎𝑙𝑖𝑡𝑦𝑇𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 = 1 ∙ 10ି,  
− 𝑀𝑎𝑥𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛𝑠 = 𝐼𝑛𝑓, 
− 𝑀𝑎𝑥𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 = 𝐼𝑛𝑓. 
For all models, parameters were identified without using 

the proposed stopping criterion and with the criterion in the 
form of (4). In both cases, the optimization was successful. 
Optimization results for both cases in the form of a vector of 

parameter estimates �̑⃗� of the nonlinear model (13), a vector of 
coefficient estimates α̑ሬሬ⃗ , and the value of the objective function 
𝛿(𝛽): 

− without using criterion (4): 
 

𝛽መ⃗ = (8.1100, 3.6311, 36.8214, −11.4062, 1.7083, 
−4.5979, 9.9481, −3.1739, 9.8767, −5.2053), 

𝛼ො⃗ = (0.3427, 0.6412, 0.2031, 0.1449, 0.9460, 0.0922, 
 0.4590, 0.6130, 0.0499, 0.3719, 0.7066, 0.1488, 0.7669,  

0.2686, 0.9616), 
𝛿(𝛽) = 6.7824 ∙ 10ିଵ, 

 

− using criterion (4): 
 

𝛽መ⃗ = (8.0890, 1.4325, 16.8102, 10.3792, 1.1376, 10.3597, 
9.9824, −1.8025, 9.9621, −2.4172), 

𝛼ො⃗ = (0.4523, 0.9213, 0.2996, 0.1801, 0.9481, 0.1460,  
0.0566, 0.6606, 0.0395, 0.4357, 0.6355, 0.1024, 0.7166,  

0.3123, 0.9588), 
𝛿(𝛽) = 2.0645 ∙ 10ିସ. 

 

Let's analyze the optimization results from the point of view 
of the number of iterations. Fig. 3 shows the number of 
calculations of the objective function value at each iteration 
during the optimization and their total number. As we can see 
from Figure 3, the number of iterations and calculations of the 
value of the objective function during the optimization based on 
the standard stop criteria was k=635 (Fig. 3(a)), and based on 
the additional proposed stop criterion – k=96 (Fig. 3(b)). 

 

 
(а) 
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(b) 

Figure 3. Number of iterations and calculations of the 
objective function value during optimization: (a) – based on 
standard stop criteria (k=635), (b) – using the proposed stop 

criterion (k=96). 

Therefore, using the proposed stopping criterion made it 
possible to reduce the number of iterations during optimization 
by 6.6 times. From the point of view of evaluating the 
complexity in the form of the number of calculations of the 
objective function, the same ratio of 16660/2532 = 6.58 
reduction of computational complexity is observed. 

It is also worth noting that in both cases, the obtained 
interval models have "guaranteed" prognostic properties and 
reflect the properties of the static system with a specified 
accuracy. The models are adequate because the simulated 
values belong to the numerical intervals which obtained 
experimentally. It is illustrated in Fig. 4. 

 

 
(а) 

 
(b) 

Figure 4. Graphs of model-based values and interval values of 
measurements: (a) – based on standard stop criteria, (b) – 

using the proposed stop criterion 

In general, based on the conducted experiments, it was 
established that using the proposed criterion made it possible to 
reduce the number of iterations by 4.5 times, which is 
proportional to the same reduction in the number of 
calculations of the objective function (Table 2).  

Table 2. Results of numerical experiments 

Experi-
ments 

number 

The 
optimization 

problem 
dimension 

Average iterations 
number 

Efficiency, 
𝒌𝒔𝒕_𝒄𝒓

𝒌𝒏𝒆𝒘_𝒄𝒓

 
Standard 

stop 
criteria, 

𝒌𝒔𝒕_𝒄𝒓 

Using the 
proposed 

stop 
criterion, 

𝒌𝒏𝒆𝒘_𝒄𝒓 m N 

50 10 15 16342 2302 7,1 
50 10 50 25784 4159 6,2 
50 10 100 37632 6969 5,4 
50 20 50 28743 6387 4,5 
50 20 100 41674 10967 3,8 
50 30 50 31738 15113 2,1 
50 30 100 48287 20120 2,4 

Efficiency in general 4,5 

 
Taking into account the experimentally obtained results, it 

can be asserted that using the proposed criterion based on 
expression (4) in the optimization problem (6)-(8) provides a 
reduction of the computational complexity of the parametric 
identification method. Asymptotic estimates of the complexity 
of the parametric identification method, taking into account the 
experimentally confirmed efficiency, are shown in Fig. 5. 

 

Figure 5. Asymptotic evaluations of the computational 
complexity of the parametric identification method based on 

the proposed stopping criterion 

It should also be noted that the obtained results are 
important for the problems of structural identification of 
interval nonlinear models, where the selection of the model 
structure is based on the evaluation of the parameters of 
candidate models [11]. 

IV. CONCLUSIONS 
The paper analyzed the computational complexity of the 
parametric identification method for interval nonlinear models 
of static systems based on the expansion of the parameter 
space. The method is based on the solution of an optimization 
problem with a smooth objective function in the form of a 
convolution of interval constraints by nonlinear optimization 
methods, in particular, the interior point method. In practice, it 
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was found that the optimization has excessive complexity, 
which is caused by a large number of iterations when 

approaching the optimal value 𝛿(�̑⃗�) = 0 of the objective 
function. 

Taking into account the considerations of the interval 
approach, it is proposed to use the optimization stop criterion 
based on the determination of model adequacy at the current 
iteration of the parameter identification method. The use of the 
proposed criterion provided a reduction in the number of 
iterations by 4.5 times, which is proportional to the same 
reduction in the number of calculations of the objective 
function. At the same time, the obtained nonlinear models have 
guaranteed prognostic properties and reflect the properties of 
the static system with a specified accuracy. It is worth noting 
that the considered optimization method can be applied only in 
the case of a smooth objective function. 

The obtained results are important for the problems of 
structural identification of interval nonlinear models of static 
systems, where the selection of the model structure is based on 
the evaluation of the parameters of candidate models.  
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