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 ABSTRACT The COVID-19 pandemic has evolved into a global health crisis, with Indonesia particularly affected 

due to its high death rates compared to the rest of Asia. A significant number of unacknowledged, undocumented, or 
unaddressed cases further exacerbate the situation in Indonesia. Challenges arise from the growing patient population 
and a scarcity of resources, medical experts, and facilities. This study analyzes the daily development of COVID-19 
cases in Indonesia, aiming to estimate the number of confirmed cases, recoveries, and fatalities. Introducing a novel 
hybrid forecasting model, we utilize the Holt-Winter triple exponential smoothing statistical method and the fuzzy 
time series rate of change algorithm. We apply the Triple Exponential Smoothing Holt Winter statistical model to 
predict future periods to the fuzzy time series. Based on the testing results, our proposed hybrid forecasting model 
demonstrates a high level of predictive capacity. The acquired data are highly accurate, with a 0.15 percent 
confirmation rate, 0.15 percent recovery rate, and a 0.20 percent mortality rate, along with an average absolute error 
of less than 10% for each COVID-19 case. The findings indicate that early awareness by the COVID-19 Task Force 
of the status of cases is highly advantageous. This awareness can aid in formulating appropriate policies for future 
planning, organization, and accelerated treatment of COVID-19 in Indonesia. Consequently, successful efforts can be 
made to slow the emergence and spread of COVID-19 in the country. 
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I. INTRODUCTION 
he new coronavirus, COVID-19, has spread globally, 
prompting the World Health Organization (WHO) to 

classify it as a pandemic. Many countries witnessed a surge in 
COVID-19 infections from January to December of this year. 

The virus was first reported to have started spreading in 
Wuhan, China, around mid-December 2019 [1]. On March 2, 
2020, COVID-19 was identified in two cases in Indonesia [2]. 
By March 31, 2020, the country had confirmed 1,528 cases, 
with 81 recoveries and 136 deaths [3]. Subsequently, COVID-
19 spread rapidly, reaching practically every part of Indonesia 
within a few months. Consequently, the number of people 
infected with COVID-19 increased, along with the number of 
fatalities. 

The new coronavirus exhibited significant changes in its 
growth pattern, posing a threat due to the absence of a vaccine 
in Indonesia and worldwide. Consequently, COVID-19 
mobility peaked in Indonesia, contributing to a death rate of 
3.33%, surpassing the global average of 2.47% [4]. This trend 

was observed not only in Indonesia but also in Asia, North 
America, and Europe. 

COVID-19 has become a global health problem, with 
Indonesia standing out as one of the countries in Asia with the 
highest death rate. The issue is further compounded by the 
number of undetected, unreported, and unaddressed cases in 
the country. Indonesia faces challenges in dealing with an 
increasing number of patients, coupled with a shortage of 
facilities, equipment, and medical workers. 

To prepare for an increase in COVID-19 cases and deaths, 
estimating the number of illnesses and deaths is crucial for 
planning future actions and medical infrastructure.  

In this study, have accurate particularly interested in 
making predictions based on the issues raised above. 
How can we make predictions about the progression of 
COVID-19 cases (confirmed, recovered, and died) in 
Indonesia, given the formulation of the problem? 

Making forecasts about the future is crucial for today's 

T



 Yudatama et al. / International Journal of Computing, 23(1) 2024, 43-53 

44 VOLUME 23(1), 2024 

planning and strategy. This can be accomplished by 
accurately and realistically examining information that has 
surfaced from the past to the present. Time series analysis is 
another term for this. This makes it possible for management 
and administration to make informed choices. 

For time series analysis, several forecasting model 
techniques have recently been proposed in the literature and 
have grown in popularity. For the fuzzy time series 
forecasting model, there are no assumptions that must be 
made. 

On the other hand, because of the uncertainty they contain, 
the majority of time series observed in real life should be 
investigated using models that are pertinent to fuzzy set 
theory. In systems based on fuzzy set theory, uncertainty is 
modeled using membership values. Membership values are 
derived from a model's input using membership functions. 
Techniques based on fuzzy set theory use membership values 
derived from the raw data to model the uncertainty present in 
the data rather than to use the raw data itself. Fuzzy logic-
based methods have a significant advantage over other 
methods, such as neural networks, because they can model 
uncertainty using membership values. Due to the nature of 
these methodologies, fuzzy logic-based approaches may 
perform better than other soft computing methods like 
artificial neural networks when dealing with uncertainty. 

Your passage provides a thorough overview of the fuzzy 
time series technique and its application to various domains, 
including COVID-19 prediction. Here are a few suggestions 
for further clarity and coherence: 

In a significant body of research, Song and Chissom [5] 
introduced the fuzzy time series (FTS) technique, grounded in 
Zadeh's [6] fuzzy set theory. Existing literature primarily 
focuses on solving time-invariant fuzzy time series, as 
categorized by Song and Chissom [7-8] into time-variant and 
time-invariant groups. 

Jiang [9] demonstrated the potential to forecast future 
tourist arrivals in China using FTS and sophisticated 
optimization algorithms. Similarly, stock index forecast 
precision can be enhanced with a novel weighted fuzzy trend 
time series method [10]. Additional studies emphasized the 
influence of effective interval length on fuzzy set generation 
[11, 12] and its impact on constructing fuzzy relationships 
[13-16]. 

The year-to-year percentage change is proposed as a key 
consideration in fuzzy time series by Stevenson and Porter 
[17] and Solikhin et al. [18]. Jilani [19] proposed a strategy 
based on partitioning past enrollment data using frequency 
densities, employing a time-variant, kth-order technique that 
outperforms current methods in enrollment prediction. Garg 
[20] developed a novel computational FTS model for 
predicting the number of outpatient visits. 

Building upon these findings, we recommend a novel 
forecasting strategy that utilizes information from multiple 
angles. Employing FTS, we estimate and forecast the number 
of COVID-19 cases in Indonesia, integrating the Triple 
Exponential Smoothing (TES-Holt) statistical technique and 
the Rate of Change (RoC) algorithm. In this approach, Holt's 
TES is utilized to forecast the upcoming era using FTS as the 
universe's collection. This ideal solution combines Holt's TES 
modeling with FTS modeling. 

Our suggested discretization algorithm [20], incorporating 
an event-distribution strategy and a fresh interval-splitting 
method, enhances the forecast by favoring historical evidence. 

By processing earlier time series RoC data separately, 
inaccurate predictions are reduced, and seasonal tendencies 
are identified. The novel frequency-based partitions 
outperform traditional models in mathematics with various 
data frequencies. 

This study suggests that incorporating all the 
aforementioned parameters improves the approximation. The 
Mean Absolute Percentage Error (MAPE) of our suggested 
model is considerably lower than the strategy proposed by 
Garg [20] in a study using the same patient data. 

Given the evolving COVID-19 situation in Indonesia, we 
propose a hybrid forecasting model that combines the Triple 
Exponential Smoothing Holt Winter (TES-HW) statistical 
technique with the rate of change approach of fuzzy time 
series (FTS). To our knowledge, no studies have explored our 
proposed hybrid model for COVID-19 prediction, 
distinguishing it from earlier hybrid prediction models. 
     The objectives of this study include, among other things, 
(a) COVID-19 case analysis and forecasting in Indonesia 
(confirmed, recovered, and death); and (b) the implementation 
of a novel hybrid forecasting model for predicting the 
development of COVID-19 cases in Indonesia. 

Despite its simplicity, the newly proposed hybrid model 
has demonstrated higher accuracy and a lower error rate, as 
indicated by performance test findings. In this study, our 
primary objective is to explore how our innovative hybrid 
forecasting model can be effectively utilized to anticipate the 
future development of COVID-19 cases in Indonesia over the 
next few years. We aim to assess the accuracy and percentage 
of mistakes associated with this new hybrid forecasting 
model. 

The anticipated results of this research carry the potential 
to make a significant contribution, particularly in advancing a 
novel combination of prediction model concepts that are more 
effective and accurate. We envision that these findings can be 
instrumental for government entities, specifically the Task 
Force for the Acceleration of COVID-19 Case Handling. The 
utilization of our model may aid in early determination and 
strategic planning for the development of COVID-19 cases, 
providing valuable insights for effective decision-making and 
proactive measures. 
 
II. LITERATURE REVIEW AND CONCEPTUAL 
FRAMEWORK 
Many mathematical models have been recently developed to 
aid in COVID-19 prediction. Machine learning algorithms 
employed by Satrio et al. [21] analyze time series data to 
predict illnesses induced by the coronavirus. Researchers in 
Indonesia use ARIMA and PROPHET models, along with 
other methods, to anticipate disease patterns in the country. 
Wahyuni et al. [22] utilized several linear regression models 
to project the future of COVID-19 in Indonesia. 

Forecasting the COVID-19 pandemic in South Sulawesi, 
Indonesia, is possible using the Richards model proposed by 
Zuhairoh and Rosadi [23]. Sreeramula and Rahardjo [24] 
generated real-time estimates of COVID-19 from the 
perspective of Indonesian health policy. 

Gunawan et al. [25] employed the Susceptible Infected 
Recovered Deceased (SIRD) model to calculate the impact of 
social distancing on COVID-19 in Jakarta. Wirawan and 
Januraga [26] developed the SEIR (Susceptible, Exposed, 
Infected, Recovered) model of COVID-19 to predict the 
spread and assess healthcare services in Bali, Indonesia. 
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Using this model, the way diseases spread now is 
compared to how they would spread in different situations. 
Djalante et al. [27] suggested a review and analysis of the 
current response to COVID-19 to offer thorough reporting and 
analysis of the quick response to COVID-19. 

Anam et al. [28] state that other researchers used a 
backpropagation neural network and the Fletcher-Reeves 
method to figure out the effect the COVID-19 outbreak in 
Indonesia had on the number of COVID-19 patients in 
Malang. 

Rasjid et al. [29] utilized long-short-term memory (LSTM) 
neural networks and time series smoothing to compare how 
well they predicted death and infection in COVID-19 patients 
in Indonesia. 

Rendana and Idris [30] developed an algorithm to figure 
out how common COVID-19 and the new variant B.1.1.7 are 
by using ARIMA and Spearman correlation analysis. They 
looked at meteorological data to see if the unique variety 
B.1.1.7 was prevalent in three Indonesian provinces: West 
Java, South Sumatra, and East Kalimantan. 

Swaraj et al. [31] made and tested a stacking-based 
ARIMA model for predicting COVID-19 cases in India. 
Alzahrani et al. [32] mention that the ARIMA prediction 
model has been used to predict how the COVID-19 pandemic 
will spread in Saudi Arabia as part of ongoing public health 
efforts. 

Arun Kumar et al. [33] used the ARIMA and SARIMA 
models to figure out how the number of confirmed, recovered, 
and dead COVID-19 cases changed over time for the top 16 
countries. 

COVID-19 deaths in the US were projected using a 
probabilistic model presented by Taylor and Taylor [34]. 
Utilizing a nationwide infrastructure for real-time patient-
level data, Simpson et al. [35] mined and predicted COVID-
19 hospitalizations and fatalities in Scotland. 

A new hybrid fuzzy time series model by Kumar and 
Kumar [36], making use of modified fuzzy C-means 
clustering, can forecast the number of COVID-19 cases and 
fatalities in India in the future. Algorithms for clustering 
COVID-19 data were developed by Afzal et al. [37]. 

Iloanusi and Ross [38] estimated COVID-19 case-to-death 
rates using meteorological data. Pincheira-Brown and 
Bentancor [39] proposed estimating COVID-19 infection 
cases using a semi-infinite general growth model. Atchadé 
and Sokadjo [40] reviewed and cross-validated the COVID-19 
forecasting univariate model. 

Using a deep learning model, Masum et al. [41] developed 
a continuous prognostic strategy for the COVID-19 outbreak 
in Bangladesh, which was then validated. Ayoobi et al. [42] 
also anticipated the number of new cases and the new death 
rate for COVID-19 over time using a deep learning-based 
method. 

Talkhi et al. [43] established a method for modeling and 
estimating the number of confirmed illnesses and deaths 
brought on by COVID-19 in Iran by contrasting time series 
forecasting approaches. 

 
III. METHODOLOGY 
Figure 1 illustrates the various stages of this research, 
encompassing data collection, data preparation, application of 
the prediction model, and accuracy testing. 

Figure 1. Research Stage. 

The website of the Task Force for the Acceleration of 
COVID-19 Processing in Indonesia accepts data submissions 
in the xlsx format, utilizing digital data documents 
downloaded from official publications. This study specifically 
focuses on the evolution of three COVID-19 case stages: 
confirmation, recovery, and death. Data was collected 
between November 1, 2020, and October 31, 2021. 

The data in xlsx format undergoes processing to eliminate 
missing values. Subsequently, adjustments are made to the 
data sheet column structure as needed, the data is converted to 
numeric type, and a stationarity test is conducted to ensure 
data stability without any noticeable increase or decrease. 
To implement the proposed hybrid forecasting model, a 
machine-learning approach is employed. The prediction 
procedure of this model is detailed in multiple steps, as 
illustrated in Figure 2. 
         

 

Figure 2. A Novel Hybrid Model for Predicting COVID-19 
Case Development 

A. DEFINING COVID-19 CASE DATA  
The COVID-19 case data is represented as a time series 

using the formula X = (x1, x2, x3, ..., xn), where numbers 
track the daily rise of COVID-19 cases in Indonesia from 
November 1, 2020, to October 31, 2021. Secondary data was 
compiled from official sources processed and published by the 
government's Task Force for the Acceleration of COVID-19 
Handling [44], accessible via the official website at 
https://covid19.go.id/peta-sebaran. We assert the validity and 
reliability of this secondary data for the purposes of our study. 

In this research, time series data for confirmed cases (X) 
includes {2696, 2618, 2973, 3356, 4065, 3778, 4262, 3880, 
2853, 3779, ..., 523}. Recovered cases (X) are represented by 
{4141, 3624, 3931, 3785, 3860, 3563, 3712, 3881, 3968, 
3475, ..., 497}. Similarly, death cases (X) are documented as 
{74, 101, 102, 113, 89, 94, 98, 74, 75, 72, ..., 17}. This 
information is visually presented in Figure 3. 

B. TRIPLE EXPONENTIAL SMOOTHING MODEL 
Step 1: Determine the optimal values for the 
parameters α, β, and γ. 
The Holt-Winter Triple Exponential Smoothing (TES) 
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technique, suitable for data with trend and seasonal patterns, 
requires the careful determination of parameters α, β, and γ 
for accurate predictions. As misjudging these parameters can 
lead to imprecise forecasts, a trial procedure is imperative to 
obtain optimal values. Despite the examination of 729 
potential combinations within the 0 to 1 range, the sequential 
testing process becomes less efficient and time-consuming. To 
streamline this, users can employ a solver to determine the 
most favorable values for α, β, and γ, typically based on 
historical data. 

 
Step 2: The process of forecasting. 
The estimation procedure uses the statistical technique 

known as Triple Exponential Smoothing, as specified in 
equations 1 through 11 [45, 46].  
 

𝐿𝑡 = 𝛼(𝑌𝑡 ⁄ 𝑆(𝑡 − 𝑚)) + (1 − 𝛼) (𝐿(𝑡 − 1)
+ 𝑇(𝑡 − 1)) 

 
(1) 

 
𝑇𝑡 = 𝛽(𝐿𝑡 − 𝐿(𝑡 − 1))  + (1 − 𝛽) 〖 𝑇〗(𝑡 − 1) (2) 

 
𝑆𝑡 = 𝛾 (𝑌𝑡 ⁄ 𝐿𝑡)  + (1 − 𝛾) 𝑆(𝑡 − 𝑚) (3) 

 
𝐹(𝑡 + 𝑘)  =  (𝐿𝑡 + 𝑘 ∗ 𝑇𝑡)  ∗ 𝑆(𝑡 − 𝑚 + 𝑘) (4) 

             
Here, L represents an estimate of the level (influenced by 

parameter α), T is an estimate of the trend (influenced by 
parameter β), and S is an estimation of seasonality (influenced 
by parameter γ). The value of the measurement or observation 
at time point t is denoted by Yt, F represents the forecasted 
value for the upcoming period, and the variable k represents 
the number of steps ahead in time forecasting. 

 
For the specific case when M (the number of periods in a 
season) equals 4 (quarterly): 
 

𝑆1 = 𝑌1/𝑎𝑣𝑒𝑟𝑎𝑔𝑒 (𝑌1, 𝑌2, 𝑌3, 𝑌4); (5) 
 

𝑆2 = 𝑌2/𝑎𝑣𝑒𝑟𝑎𝑔𝑒 (𝑌1, 𝑌2, 𝑌3, 𝑌4); (6) 
 

𝑆3 = 𝑌3/𝑎𝑣𝑒𝑟𝑎𝑔𝑒 (𝑌1, 𝑌2, 𝑌3, 𝑌4); (7) 
 

𝑆4 = 𝑌4/𝑎𝑣𝑒𝑟𝑎𝑔𝑒 (𝑌1, 𝑌2, 𝑌3, 𝑌4); (8) 
 

𝐿5 = 𝑌5 ⁄ 𝑆1 (9) 
 

𝑇5 = 𝑌5/𝑆1;  𝑌4/𝑆4 (10) 
 

Use equation 11 for seasonal value: 
 

𝑆5 = 𝛾 (𝑌5 ⁄ 𝐿5)  + (1 − 𝛾) 𝑆 (5 − 4) (11) 
 

Here, S1 represents the seasonal value for the first time 
point, S2 for the second time point, S3 for the third time point, 
S4 for the fourth time point, and S5 for the fifth time point. 

Similarly, Y1, Y2, Y3, Y4, and Y5 represent the 
measurement or observation values at the first, second, third, 
fourth, and fifth time points, respectively. 

C. HYBRID MODEL PROCESS 
The forecasting process employs a hybrid model. In this 

combination model for forecasting the t+k period, the 
statistical method Triple Exponential Smoothing is utilized to 
generate forecasting data. This generated data then serves as 
actual data in the prediction process, using a rate of change 
algorithm approach in the FTS method for forecasting the t+k 
period, as given in equation 4. 

 
Step 3: Examine the outcome of the forecast.   
The MAPE model is employed to evaluate the 

effectiveness of various prediction models, including seasonal 
forecasting models, in this experiment. A smaller MAPE 
value indicates a more accurate forecasting model [47]. In this 
study, we utilize the MAPE approach, as outlined in equations 
12 and 13 [47]. 

 

𝑃𝐸௜ = ฬ
𝑋௜ − 𝐹௜

𝑋௜
ฬ × 100% 

(12) 

 

𝑀𝐴𝑃𝐸 =
1

𝑛
෍|𝑃𝐸௜|

௡

௜ୀଵ

 

(13) 

The significance of MAPE in prediction lies in its ability 
to address issues related to interpreting accuracy measures 
relative to the size of the anticipated value [48], as illustrated 
in Table 1. 

Table 1. MAPE is significance prediction [48] 

MAPE Signification 
<10% excellent predictive ability 

10−20% good predictive ability 
20−50% predictive ability sufficient 
>50% poor predictability 

D. FUZZY TIME SERIES WITH RoC MODEL 
Step 1: Create a definition for the universe of 
discourse, abbreviated as U. 
In the observation of our algorithm, we define the Rate of 

Change (RoC) from time t to time t+1 as the set of speech 
features to be utilized. The RoC of time series data is 
calculated by applying equation 14 [17, 18, 20], incorporating 
discretization techniques. 

 

𝑅𝑜𝐶(௧ାଵ) =
൫𝑋(௧ାଵ) − 𝑋(௧)൯

𝑋(௧)
× 100 

(14) 

 
Where X(t+1) denotes the value at index time t+1, and 

X(t) represents the actual value at index time t. RoC stands for 
the Rate of Change in value between time t and time t+1. The 
calculated RoC results are presented in Table 2 and 
graphically illustrated in Figures 5a, 5b, and 5c. 

This stage is crucial for precisely assessing the accuracy 
and inaccuracy of the proposed new hybrid forecasting 
model's performance. A comprehensive list of references 
should be placed at the end of the paper, arranged in the order 
of presentation in the text, with square brackets around the 
citation numbers. 
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Table 2. Calculation for RoC 

X Date 
Confirmed Recovered Death 

Time Series Data RoC Time Series Data RoC Time Series Data RoC 
X1 11/01/2020 2696 - 4141 - 74 - 
X2 11/02/2020 2618 -2.89 3624 -12.48 101 36.49 
X3 11/03/2020 2973 13.56 3931 8.47 102 0.99 
X4 11/04/2020 3356 12.88 3785 -3.71 113 10.78 
X5 11/05/2020 4065 21.13 3860 1.98 89 -21.24 
X6 11/06/2020 3778 -7.06 3563 -7.69 94 5.62 
X7 11/07/2020 4262 12.81 3712 4.18 98 4.26 
X8 11/08/2020 3880 -8.96 3881 4.55 74 -24.49 
X9 11/09/2020 2853 -26.47 3968 2.24 75 1.35 
... ... ... ... ... ... ... ... 

X365 10/31/2021 523 -15.65 497 -28.8 17 -37.04 

 
In alignment with the RoC, the lowest level (LL) and 

highest level (HL) are determined. The uncertainty (U) can be 
calculated using equation 15 [7, 8]. 
 

𝑈 = [𝐿𝐿 − 𝐷ଵ, 𝐻𝐿 + 𝐷ଶ], (15) 
 
     Where D1 and D2 are integers used to elucidate the 
universe of discourse, denoted by the symbol U. 
For confirmed cases, determined from the RoC data, LL = -
44.85 and HL = 103.39, with D1 as -2.15 and D2 as 2.61. 
Recovered cases yielded LL = -57.11 and HL = 85.93, with 
D1 = 0.89 and D2 = 0.07. Death cases were determined to 
have LL = 65.81 and HL = 369.23, with D1 as -2.19 and D2 
as 3.77. 

Thus, the U definition for confirmed cases is {-47.00, 
106.00}, for recovered cases is {-58.00, 86.00}, and for death 
cases is {-68.00, 373.00}, as seen in Table 5. 
Using equation 16 [49], we count the number of class 
intervals that have occurred thus far. 
 

𝑀 = 1 + 3,3 ∗ log(𝑛). (16) 
 
     Here, M represents the total number of intervals, and n is 
the total amount of RoC data. Given that there are 365 RoC 
data points for each case (confirmed, recovered, and dead) 
due to the same factor, the number of intervals can be 
observed in Table 5. 

 
M=1+3.3*log (365)  
M=9.46 ≈ 9 
 
Equation 17 [49] is then employed to determine the length 

of the distance between two points. 
 

𝐿 = 𝐻𝐿 − 𝐿𝐿 𝑀⁄ . (17) 
 

The interval length for confirmed cases is calculated as L 
= (106.00 - (-47.00)/9 = 17. For recovered cases, the interval 
length is L = (86.00 - (-58.00)/9 = 16. In death cases, the 
interval length is L = (373.00 - (-68))/9 = 49. The results of 
the interval lengths are presented in Table 5. 

Thus, the technique yields the same interval length for 
each case, resulting in the following intervals: 

For confirmed cases: u1 = {-47.00, -30.00}, u2 = {-30.00, 
-13.00}, u3 = {-13.00, 4.00}, u4 = {4.00, 21.00}, u5 = {21.00, 
38.00}, u6 = {38.00, 55.00}, u7 = {55.00, 72.00}, u8 = 
{72.00, 89.00}, and u9 = {89.00, 106.00}. 

For recovered cases: u1 = {-58.00, -42.00}, u2 = {-42.00, -
26.00}, u3 = {-26.00, -10.00}, u4 = {-10.00, 6.00}, u5 = 

{6.00, 22.00}, u6 = {22.00, 38.00}, u7 = {38.00, 54.00}, u8 = 
{54.00, 70.00}, and u9 = {70.00, 86.00}. 

For cases of death: u1 = {-68.00, -19.00}, u2 = {-19.00, 
30.00}, u3 = {30.00, 79.00}, u4 = {79.00, 128.00}, u5 = 
{128.00, 177.00}, u6 = {177.00, 226.00}, u7 = {226.00, 
275.00}, u8 = {275.00, 324.00}, and u9 = {324.00, 373.00}. 
The outcomes are presented in Table 6. 

 
Step 2: Depending on how frequently, the intervals in 
the created universal set U can be separated into 
various different intervals, as follows:  

 Determine the frequency by calculating the appropriate 
RoC at each interval. Based on the frequency of occurrence, 
divide the interval into several smaller intervals. If the 
frequency value falls within the range of 0 and 1, the interval 
is either kept constant or is not subdivided into smaller 
intervals, depending on the value of the frequency. 
Specifically, we adopt and modify the proposals of Stevenson 
and Porter [17], Solikhin et al. [18], Jilani et al. [19], and Garg 
et al. [20]. 

The same technique should be applied for the subsequent 
division of the period. 

 
Step 3: Define fuzzy sets in detail (fuzzification) 
A fuzzy set, defined by the divided interval (sub-interval) 

and RoC fuzzification, is utilized to construct each xi fuzzy 
set. For instance, the fuzzy set xi embodies the change in 
linguistic value of RoC over time. 

To determine the expected value of the RoC in equation 
18, we find the middle point of the interval using the triangle 
membership function, presented in equation 18 [17-20, 50]. 

 

𝐹𝑅𝑜𝐶 =

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧

1 + 0.5

1
𝑎ଵ

+
0.5
𝑎ଶ

      , 𝑖𝑓 𝑗 = 1,

0.5 + 1 + 0.5

0.5
𝑎௝ିଵ

+
1
𝑎௝

+
0.5

𝑎௝ାଵ

 , 𝑖𝑓 2 ≤ 𝑗 ≤ 𝑛 − 2,

0.5 + 1

0.5
𝑎௡ିଵ

+
1

𝑎௡

          , 𝑖𝑓 𝑗 = 𝑛.

 

     
 
 
 
(18) 

 
Step 4: Defuzzify the data and estimate its value 
Forecasting data F(t) is calculated based on the results of 

RoC forecasting (FRoC). The F(t) value is determined using 
equation 19 [17-20, 50]. 
 

𝐹(௧) = ൫𝐹ோ௢஼ 100⁄ ∗ 𝑥(௧ିଵ)൯ + 𝑥(௧ିଵ) (19) 
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In this case, x(t-1) represents the real data up to the time of 
t-1. 

Step 5: Calculate the mean error associated with the 
predictions, as given in equations 12 and 13.  

E. PREDICTION RESULT COMPARISON 
A comparison is made at this step based on the examination of 
the forecast outcomes of each model. 

IV. RESULT 

A. TIME SERIES DATA OF COVID-19 CASES 
The investigation utilized data on the progression of COVID-
19 cases spanning from November 2020 to October 2021. To 
visually comprehend the pattern of the data under study, it is 
initially presented graphically in Figure 3. Our findings are 
derived from daily data on COVID-19 case progression in 
Indonesia, specifically focusing on confirmed, recovered, and 
death cases [44]. By concentrating on these observations, we 
can forecast the subsequent time. 
 

 
Figure 3. A graph depicting the progession of COVID-19 

cases in Indonesia. 

     For forecasting the next period, we employ an FTS model 
with a RoC algorithm that is integrated into the TES-HW 
model. 

B. TRIPLE EXPONENTIAL SMOOTHING MODEL  
OUTCAME 
This discovery leads to the identification of the optimal alpha, 
beta, and gamma parameters. According to Holt and Winter 
[45, 46], three variables govern the relative smoothing of 
recently made observations: Gamma (γ) controls the 
smoothing for calculating the frequency of seasonal elements, 
Beta (β) regulates the smoothing for calculating the frequency 
of trend elements, and Alpha (α) controls the smoothing for 
calculating the frequency of level or base components. 

Wheelwright et al. [47] note that the values of α, β, and γ, 
ranging between 0 and 1, are chosen either randomly or by 
minimizing the error value of the estimate. The triple 
exponential smoothing method utilizes three smoothing 
constants. Alpha (α) determines the relative smoothing of the 
observations, Beta (β) controls the smoothing for measuring 
the emergence of trend components, and Gamma (γ) regulates 
the smoothing for inferring the occurrence of seasonal 
components. 

In this study, the values of alpha, beta, and gamma were 
determined through trial and error to minimize the forecasting 
error value on testing data. Various combinations of alpha, 

beta, and gamma values employed in this investigation are 
presented in Table 3. As depicted in Table 3, the Triple 
Exponential Smoothing model with the optimal parameters 
(α), (β), and (γ) emerges as the most reliable indicator of 
COVID-19 disease progression in Indonesia, encompassing 
confirmed cases, recovered cases, and deaths. 

Table 3. Optimal, Alpha, Beta, and Gamma Value Results 
MAPE’s Significance Prediction 

Case Aplha (α) Beta (β) Gamma (γ) 
Confirmed 0.91 0.03 0.58 
Recovered 0.84 0.01 0.14 

Death 0.51 0.08 0.13 

 
 

Figures 4a, 4b and 4c illustrate the outcomes of projecting 
the progression of COVID-19 instances using the triple 
exponential smoothing model. These figures depict the 
prediction results based on the optimal parameters alpha, beta, 
and gamma from Table 3. Specifically, Figures 4a, 4b, and 4c 
show how the forecasted results for all COVID-19 cases align 
with the actual data. In this study, the traditional TES-HW 
method is used to predict the period t+1 using the optimal 
parameters alpha, beta, and gamma, as shown in Table 3. If 
you apply equations 1, 2, and 3, then for the period of October 
31, 2021, the confirmed cases have an estimated level value 
(Lt) of 566.97, an estimated trend (Tt) of -174.77, and an 
estimated seasonal value (St) of 0.92. 

For the recovered cases, the estimated level value (Lt) is 
513.39, the estimated trend (Tt) is -90.42, and the estimated 
seasonal value (St) is 0.99. In the cases of death, the estimated 
value of the level (Lt) is 19.19, the estimated trend (Tt) is -
3.16, and the estimated value of the seasonality (St) is 1.01. 
Therefore, using equation 4, the projected value for November 
1, 2021, is: Confirmed cases: F (Nov 1, 2021) = (566.97 + 1 * -
174.77) * 0.92 = 361; Recovered cases: F (Nov 1, 2021) = (513.39 
+ -90.42) * 0.99 = 441; Death cases: F (Nov 1, 2021) = (19.19 + -
3.16) * 1.01 = 17.  

With the FTS method and the RoC algorithm, these results 
are used to make forecasting data that will be used as real data 
in forecasting. 
 
 

 

Figure 4a. Graph of forecasting results using TES-HW: 
confirmed cases 
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Figure 4b. Graph of forecasting results using TES-HW: case 
recovered 

 

 

Figure 4c. Graph of forecasting results using TES-HW: death 
cases 

Indices of prediction accuracy are utilized to compare 
forecasting methods, aiming to identify the method with the 
smallest forecasting error. The results of the MAPE approach 
for evaluating prediction performance are presented in Table 
4, indicating an accuracy of 0.17% for confirmed cases, 
0.16% for recovered cases, and 0.22% for death cases. 

Table 4. MAPE Results on TES-HW Model 

Confirmed Recovered Death 
0.17% 0.16% 0.22% 

C. FUZZY TIME SERIES WITH ROC MODEL OUTCAMES 
Commencing with the data rate of change (RoC) described by 
equation 14 and visualized in Figures 5a, 5b, and 5c, we can 
discretize time-series events and define the universe of speech 
based on the RoC. 
 The discretization step in fuzzy time series theory serves to 
reduce the complexity of the discourse universe. This step is 
instrumental in preparing the discourse universe for numerical 
assessment by interconnecting instances from various 
historical periods. 

 
Figure 5a. A Graph of the result of calculating the rate of 

change: confirmed cases 

 

 
Figure 5b. A Graph of the result of calculating the rate of 

change: case recovered 

 

 
Figure 5c. A Graph of the result of calculating the rate of 
change: death cases 

Utilizing the formed RoC results, the initial step in 
defining the universe U discourse involves equations 15, 16, 
and 17. This encompasses determining the lowest level (LL) 
and the highest level (HL), rounding off the number, 
determining the number of periods, and establishing the 
length of each interval. Table 5 presents the results of defining 
the discourse universe U and the frequency of RoC usage. 
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Tabel 5. The Results in Definition of The Universe of Discourse (U) 

U 
Confirmed Case Recovered Case Death Case 

Interval Frequency Interval Frequency Interval Frequency 
U1 {-47.00, -30.00} 9 {-58.00, -42.00} 6 {-68.00, -19.00} 62 
U2 {-30.00, -13.00} 71 {-42.00, -26.00} 17 {-19.00, 30.00} 255 
U3 {-13.00, 4.00} 150 {-26.00, -10.00} 77 {30.00, 79.00} 41 
U4 {4.00, 21.00} 88 {-10.00, 6.00} 139 {79.00, 128.00} 3 
U5 {21.00, 38.00} 29 {6.00, 22.00} 75 {128.00, 177.00} 3 
U6 {38.00, 55.00} 10 {22.00, 38.00} 33 {177.00, 226.00} 0 
U7 {55.00, 72.00} 5 {38.00, 54.00} 13 {226.00, 275.00} 0 
U8 {72.00, 89.00} 0 {54.00, 70.00} 2 {275.00, 324.00} 0 
U9 {89.00, 106.00} 3 {70.00, 86.00} 3 {324.00, 373.00} 1 

 
 After dividing the discourse universe U into equal 
intervals, such as u1, u2, u3..., un, the interval was then split 
into a number of sub-intervals based on their numerical 
frequency.  Following are the steps: 
Calculate the frequencies within each interval using the RoC 
data. Divide the interval into various sub-intervals based on 
the number of frequencies. Depending on whether there are 1 
or 0 RoC frequencies, the interval is either fixed or not split. 
     For instance, considering confirmed cases in Table 5: The 
interval {-47.00, -30.00} has a frequency of nine, allowing it 
to be divided into nine sub-intervals. The interval {-30.00, -
13.00} can be divided into 71 sub-intervals, and so on. 

     After forming sub-intervals for each example, the 
subsequent step is to determine the middle value of each sub-
interval and apply the triangular membership function using 
equation 18. This function estimates both the predicted RoC 
and the anticipated progression of COVID-19 situations, 
categorized as confirmed, recovered, and death. 

     Figures 6a, 6b and 6c depict the estimated rate of change 
(FRoC), and calculations in equation 19, as shown in Figure 
7, provide estimates for the status of COVID-19 cases, 
including confirmed, recovered, and death cases. The MAPE 
of this hybrid model, as shown in Table 6, further evaluates its 
performance. 
 

 

Figure 6a. A Graph of the result of forecasting the rate of 
change (FRoC): confirmed cases 

 
 

 

Figure 6b. A Graph of the result of forecasting the rate of 
change (FRoC): case recovered 

 

 

Figure 6c. A Graph of the result of forecasting the rate of 
change (FRoC): death cases 

 
Based on what this proposed hybrid model says will 

happen, here are the predictions for November 1, 2021: 

Confirmed cases : F(Nov 1, 2021) = (-31.11/100 * 523) + 523 = 
248. Recovered cases : F(Nov 1, 2021) = (-15.51/100 * 497) + 497 
= 355. Death cases : F(Nov 1, 2021) = (-5.83/100 * 17) + 17 = 15. 
Figure 7 shows the final prediction results using equation 19. 
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Figure 7. A Graph of the result of forecasting Hybrid Model 

D. COMPARISON RESULTS 
As anticipated in the study, the hybrid model demonstrates 
superior performance compared to the triple exponential 
smoothing model, as illustrated in Table 6, which presents the 
results of comparing the predictions from both models. 

Furthermore, as shown in Table 1 on MAPE Significance 
in Prediction, it is noteworthy that both models fall into the 
category of high prediction capability. The outcomes for each 
COVID-19 example exhibit a MAPE of less than 10%, 
affirming their effectiveness in handling predictions. 

Table 6. The Results in Definition of The Universe of 
Discourse (U) 

Confirmed Recovered Death 
0.15 % 0.15 % 0.20 % 

V. CONCLUSIONS 
The results obtained from the experiments in the last section 
highlight the significant advantages of forecasting with the 
hybrid model developed in this study. The accuracy of the 
predictions can be categorized as exceptionally good, with a 
mean absolute percentage error of less than 10 percent for 
each case of COVID-19. 
     Our study demonstrates that the hybrid model proposed in 
this research is highly suitable for making predictions based 
on time series data. In the examination of COVID-19 cases in 
Indonesia, the accuracy in calculating confirmed, recovered, 
and dead cases was notably high. The error test yielded very 
small results using the absolute mean percentage error 
method, showing a positive rate of 0.15 percent for confirmed 
cases, 0.15 percent for recoveries, and 0.20 percent for deaths. 
Comparatively, the accuracy of this hybrid model surpasses 
the results obtained using the triple exponential smoothing 
model developed by Holt-Winter. Therefore, based on the 
information provided, the COVID-19 Handling Task Force 
can rely on the prediction results outlined above to inform 
their decisions regarding the planning, management, and 
acceleration of COVID-19 handling in Indonesia for the 
upcoming years. 
     Looking ahead, we hope that other researchers will further 
utilize and enhance this hybrid prediction model. The aim is 
not only to apply it to forecasts beyond the realm of COVID-
19 issues but also to address broader and more complex 
situations. 
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