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 ABSTRACT Scheduling workflow tasks in grid computing is a complex process, especially if it is 
associated with satisfying the user's requirements to complete tasks within a specified time, with lowest possible 
cost. This paper presents a proposed Simulated Annealing (SA) based Grid Workflow Tasks Scheduling 
Approach (SA-GWTSA) that takes into account users’ QoS (quality of service) constraints in terms of cost and 
time. For a given set of inter-dependent workflow tasks, it generates an optimal schedule, which minimizes the 
execution time and cost, such that the optimized time is within the time constraints (deadline) imposed by the 
user. In SA-GWTSA, the workflow tasks, which are modeled as a DAG, are divided into task divisions, each of 
which consists of a set of sequential tasks. Then, the optimal sub-schedules of all task divisions are computed 
applying SA algorithm, and used to obtain the execution schedule of the entire workflow. In the proposed 
algorithm, the sub-schedule of each branch division is represented by a vector, in which each element holds the 
ID of the service provider chosen from a list of service  providers capable of executing the corresponding task in 
the branch.  The algorithm uses a fitness function that is formulated as a multi-objective function of time and 
cost, which gives users the ability to determine their requirements of time against cost, by changing the 
weighting coefficients in the objective function. The paper also exhibits the experimental results of assessing the 
performance of SA-GWTSA with workflows samples of different sizes, compared to different scheduling 
algorithms: Greedy-Time, Greedy-Cost, and Modified Greedy-Cost. 
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I. INTRODUCTION 
RID computing has emerged as an efficient approach to 
solve extensive problems in business, engineering and 

science. In Grid computing, several processing resources are 
integrated and connected to work together as one huge 
computing power to accomplish a common goal. These 
resources could be geographically distributed over the world, 
and they could have significantly different capabilities and 
specifications. To benefit from the grid computing 
capabilities, effectual scheduling algorithms are primarily 
essential. Grid scheduling is an activity that assigns and 
manages the execution of related tasks on distributed 
resources. The main challenge in grid scheduling is how to 
distribute collaborative tasks to the available resources, taking 
into account the quality of service (QoS), time and cost 
available to the user. For workflow processing systems, time 
denotes the overall time needed for completing the workflow 

execution; while cost denotes the cost linked to the workflows 
execution incorporating Grid resources usage charge for 
processing workflow tasks and the workflow systems 
management cost. The algorithms of scheduling collaborative 
tasks utilize DAGs (Directed Acyclic Graphs) to model tasks 
dependency. 

Grid scheduling is an NP-complete problem as the 
computational Grid comprises resources that are 
heterogeneous and reside in different administrative regions, 
which employ distinctive management rules. SA (Simulated 
Annealing Algorithm) [1] is one of the efficient heuristic 
algorithms, which have been successfully applied to deal with 
NP-complete problems. 

This paper presents a proposed SA-based Grid Workflow 
Tasks Scheduling Approach (SA-GWTSA) that takes into 
account users’ QoS (quality of service) constraints in terms of 
cost and time. The input to SA-GWTSA is a set of workflow 
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tasks, the dependencies between them, and the time limit 
(deadline) stated by the user for the execution of the 
workflow. The output of SA-GWTSA is an optimal schedule 
for all workflow tasks that minimizes the execution time and 
cost, such that the scheduled time is within the deadline 
imposed by the user. In this algorithm, a DAG is used to 
represent the dependency between the workflow tasks. The 
DAG is divided, and then the optimal sub-schedules of all 
task divisions are computed and used to obtain the execution 
schedule of the entire workflow. In SA-GWTSA, the SA 
technique is used to compute the optimal execution sub-
schedule for each branch division that consists of a set of 
sequential tasks. In this technique, the sub-schedule of each 
branch division is represented by a vector, in which each 
element holds the ID of the service provider chosen to execute 
the corresponding task in the branch, and the fitness function 
is formulated as a multi-objective function of time and cost. 

The next sections of this paper are as follows: The 2nd 
section presents related work; the 3rd section presents the 
problem description; the 4th section describes the proposed 
QoS-based grid workflow tasks scheduling algorithm, SA-
GWTSA; the 5th section presents a case study to illustrate the 
working of SA-GWTSA; the 6th section exhibits the 
experimental results; and the 7th section presents the 
conclusion and future work. 

II. RELATED WORK 
Several research studies were proposed, in which heuristic 
and metaheuristic algorithms were used to address the 
problem of scheduling tasks in computational grids. This 
section gives a review of examples of such studies. 

A. METAHEURISTICS-BASED APPROACHES 
Aggarwal et al. [2] presented a scheduler based on a GA for 
computational grids. It minimizes make-span, the available 
resources idle time, and turn-around time, while satisfying the 
deadlines specified by users. Yu and Buyya [3] proposed a 
GA-based workflow scheduling approach with budget 
constraint. It aims to minimize execution time while satisfying 
a specified processing budget. Yu and Buyya [4] presented a 
GA-based workflow scheduling approach with two QoS 
constraints, deadline and budget. Zhang et al. [5] proposed an 
approach based on PSO (particle swarm optimization) for 
solving task scheduling problem in grid environment, which 
aims to generate an optimal schedule that minimizes the 
completion time of the tasks. Chen et al. [6] proposed a grid 
scheduling approach that combines a discrete PSO with the 
SA (simulated annealing) method, aimed at minimizing the 
grid cost, which comprises communication and computing 
costs. Kant et al. [7] proposed a framework for grid 
scheduling using dynamic information and an ant colony 
optimization (ACO) algorithm to minimize the maximal total 
tardiness time of dynamic job scheduling in grid computing, 
while optimizing the resource utilization. Bouali et al. [8] 
proposed a hybrid approach between the Heterogeneous 
Earliest Finish Time (HEFT) heuristic and PSO, to minimize 
the overall completion time of all tasks in the DAG. Jiang and 
Chen [9] presented TSGA genetic algorithm for task 
scheduling that divides the search space into random patterns 
to check out the search space to minimize the execution time. 
Gabaldon et al. [10] proposed a PSO-based approach for 
scheduling parallel jobs containing cooperating tasks aimed to 
minimize energy consumption. Gabaldon et al. [11] proposed 
a hybrid PSO-GA meta-heuristic approach for solving the 

resource matching and scheduling parallel tasks including 
collaborative ones in heterogeneous multi-cluster systems, 
which aimed to minimize both makespan and energy 
consumption. Younis and Yang [12] proposed two hybrid 
meta-heuristic schedulers. The first scheduler combines Ant 
Colony Optimization and Variable Neighborhood Search 
(VNS), while the second one merges the GA with VNS to 
minimize the makespan. Ghosh et al. [13] presented a hybrid 
GA-PSO algorithm for Grid job scheduling, which aimed to 
reduce the schedule makespan and flowtime.  Chhabra et al. 
[14] proposed a multi-objective hybrid scheduling algorithm 
that combines Cuckoo Search and Firefly algorithm for 
scheduling offline workload of parallel jobs with collaborative 
tasks in High-Performance Computing Grid systems to 
optimize both energy-efficiency and QoS-aware performance 
expectations. Abdulal et al [15] presented a Mutation Based 
Simulated Annealing Algorithm (MSA), which uses simulated 
annealing selection, single change mutation, and a new 
random minimum completion time (Random-MCT). Also it 
maintains two solutions simultaneously.  

B. HEURISTICS-BASED APPROACHES 
Yu et al. [16] proposed an algorithm for QoS-based workflow 
scheduling, which minimizes the execution cost while 
satisfying the deadline. This algorithm utilizes an approach 
based on Markov Decision Process to schedule the execution 
of sequential workflow tasks. Benedict and Vasudevan [17] 
proposed a grid scheduling approach that uses Tabu Search 
method, for obtaining better computational Grid schedules, 
with two objectives: maximizing job completion ratio and 
minimizing the Grid scheduler overhead to choose the precise 
workflow sequence. Meddeber and Yagoubi [18]  presented a 
dependent task allocation approach for Grids, which divides a 
given task graph into a set of linked components to decrease, 
if possible, the average execution time of submitted tasks, and 
to reduce communication costs, while respecting the 
dependency between tasks constraints. Bahnasawy et al. [19] 
presented an algorithm for scheduling distributed 
heterogeneous computing systems. The algorithm divides the 
given DAG into levels based on the precedency relationships, 
and sorts the tasks of each layer in descending order according 
to their computation sizes, then the tasks are selected from 
that layer in order. Bidgoli and Nezad [20] proposed a 
scheduling algorithm, GCDM, for grid computing to 
minimize the final cost of implementation tasks, taking into 
account the data transfer cost between different tasks and their 
inter-dependencies that are modeled as a DAG. Goel et al. 
[21] presented a scheduling algorithm that combines three 
scheduling algorithms: Shortest Job First, First Come First 
Serve, and Round Robin, considering the dependencies 
between tasks in grid environments and aiming to minimize 
the time required for executing all tasks. Hossam et al. [22] 
proposed the algorithm WS-GCDM (WorkStealing-Grid Cost 
Dependency Matrix), which is an enhancement of GCDM 
[20]. It balances task scheduling among the available grid 
resources, while GCDM utilizes certain number of grid 
resources irrespectively of the number of available resources. 
Rahman et al. [23] presented a dynamic and adaptive 
workflow scheduling algorithm based on critical path (CP) for 
grid computing, which dynamically and efficiently maps tasks 
of the workflow to grid resources via determining, at every 
step, the CP in the workflow graph. They, also, outlined a 
hybrid heuristic that merges the presented adaptive scheduling 
technique features with metaheuristics to obtain optimal 
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execution time and cost while satisfying the users' 
requirements. Chauhan and Nitin [24] proposed a 
decentralized P2P algorithm for grid scheduling that 
schedules sub-tasks of DAG tasks, taking into account three 
factors: subtasks computation and communication costs, and 
the subtask waiting time caused by predecessors and 
precedence constraints. Garg and Singh [25] proposed an 
adaptive approach based on a rescheduling method for 
scheduling workflow dependent tasks on the dynamic grid 
resources. It initially performs static scheduling, followed by 
resource monitoring, and then rescheduling to minimize the 
execution time for workflow application. 

The proposed QoS-based scheduling approach differs 
from the above mentioned approaches in the following points: 
 The problem of scheduling workflow tasks on Grid is 

formulated as a problem of multi-objective 
optimization, where the execution time and cost are 
minimized, such that the optimized time is within the 
deadline imposed by the user.  

 It employs a SA-based technique to compute the 
optimal execution sub-schedule for each set of 
sequential tasks, represented by a branch division in 
the workflow DAG.  

 This technique uses a novel representation for the 
candidate solution (sub-schedule) of each branch 
division as a vector, in which each element holds the 
ID of the service provider, chosen from a list of service  
providers capable of executing the corresponding task 
in the branch; and the fitness function is formulated as 
a multi-objective function of time and cost. 

 The optimal sub-schedules of all task divisions are 
used to obtain the execution schedule of the entire 
workflow. 

III. PROBLEM DESCRIPTION 
Workflow application tasks in grid computing system can be 
modeled as a DAG, which is represented with two sets (T, E), 
where T = {Ti, i = 1 . . . n} denotes a set of n tasks, while E 
denotes the set of directed edges between tasks, where an 
edge (Ti, Tk) represents the dependency of task Tk on task Ti, 
which means task Ti must be completed before scheduling 
task Tk. Task Ti is referred to as task Tk’s parent and task Tk is 
referred to as task Ti’s child. Assuming D is the user’s 
provided deadline (time constraint) for the workflow 
execution, then the workflow application can be expressed as 
G (T, E, D). In the DAG, an entry task is a task that has no 
parent tasks and referred to as Tentry, and an exit task is a task 
that has no child tasks, and referred to as Texit. 

In a grid computing system, there is a set of service types, 
where diverse service providers can support each service type. 
Let m be the number of available services. Each task Ti has a 
set of services 𝑆௜

௝ (1 ≤ i ≤ n, 1 ≤ j ≤ mi, mi ≤ m) that can 
execute this task, but only one of these services is chosen to 
execute the task. The processing capabilities of services vary 
and are provided at different prices. In general, there is an 
inverse proportion between the service price and the 
processing time [14]. The service price and time for executing 
task Ti on service 𝑆௜

௝ are denoted by 𝑐௜
௝
and 𝑡௜

௝, respectively.  
The scheduling problem is to assign every task Ti to a 

service 𝑆௜
௝ to minimize the execution time and cost, such that 

the execution of the workflow is completed within the user’s 
provided deadline, while taking into account the task 
precedence constraints.  

IV. THE PROPOSED QOS-BASED GRID WORKFLOW 
TASKS SCHEDULING APPROACH 
In this work, the following steps are performed to solve the 
scheduling problem: 
Step1: Detect available services, and choose available 

service providers for each task according to the QoS 
parameters of services specified by the user. 

Step2: Cluster tasks of the workflow into task divisions.  
Step3: Distribute the user’s provided deadline (referred to as 

specified deadline) on task divisions. 
Step4: Compute optimal sub-schedules for individual task 

divisions by using a SA-based strategy, and then use 
these sub-schedules to generate an optimal schedule 
for the entire workflow. 

The following subsections provide detailed description of 
these steps. 

A.  SERVICE DETECTION AND QOS REQUEST 
Providing details of QoS for every available service is 
important for efficient workflow tasks scheduling. As Figure 
1 illustrates, the WMS (Workflow Management System) first 
sends a query to the GIS (Grid Information Service), which 
has knowledge of all registered Grid service providers, to 
detect services, which are suitable for processing every task of 
the workflow user. Each query specifies parameters of the 
task, estimated execution time, and workflow user. The GIS, 
in turn, replies with the available list of services for every 
task. Then, the WMS sends a QoS request to these services to 
obtain their processing price and time for providing the 
service with the required QoS level. 
 

 

Figure 1. Service Detection and QoS Request 

B.  WORKFLOW TASK PARTITIONING 
Workflow DAG dividing process starts by categorizing 
workflow tasks in G into a simple task or a synchronization 
task [14]. A synchronization task is a one that has many 
parent tasks and/or child tasks, while a simple task is a one 
which has at most one child and/or parent task. For example, 
in Figure 2(a), the 1st, 10th, and 14th tasks are synchronization 
tasks, while the remaining tasks are simple tasks. Then, the 
workflow tasks in G are divided into independent branches B 
and synchronization tasks Y, which leads to minimizing the 
size of G making it simpler and thus, containing less number 
of nodes. Let P be a set of nodes representing a set of task 
divisions Pi, 1 ≤ i ≤ nY+nB, where nY and nB are the total 
numbers of synchronization tasks and workflow branches, 
respectively. Assume E' is the set of directed edges, where 
each edge takes the form (Pi, Pj) with Pi is a parent of Pj. 
Then, the divided graph can be described as G'(P, E', D). 
Figure 2(b) shows the DAG of Figure 2(a) after dividing. For 
example, in this figure, the sequence of tasks T2, T3, and T4 
forms a branch division. A simple path in G' is a task division 
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sequence that includes a directed edge from each task division 
in it to its successor, where the path task divisions are not 
repeated. The DAG_Dividing algorithm is shown in Figure 3.  

Each task division Pi has 4 attributes: deadline (dl[Pi]), 
expected execution time (eet[Pi]), start time (start_time[Pi]), 
and minimum execution time (met[Pi]). If Pi is a branch, then 
its earliest start time is the earliest start time of the 1st task in 
it, and is calculated according to the deadlines of its parent 
divisions as follows: 

 

𝑠𝑡𝑎𝑟𝑡_𝑡𝑖𝑚𝑒[𝑃௜] = max
௉ೕ∈௉௉೔

𝑑𝑙ൣ𝑃௝൧,                            (1) 

 

where PPi is the set of Pi’s parent task divisions. The Pi’s 
minimum execution time is calculated as follows: 
 

𝑚𝑒𝑡[𝑃௜] = ∑ min
ଵஸ௬ஸ௠ೣ

𝑡௫
௬

்ೣ ∈௉೔
 .                                    (2) 

 

Expected execution time of Pi is calculated as follows: 
 

eet[Pi] = dl[Pi] – start_time[Pi].                                 (3) 
 

 

Figure 2. An example workflow DAG partitioning [7] 

Algorithm 1: DAG_Dividing  
Input: Original task graph G   
Output: Divided task graph G'  
Begin 

1. Initialize:   Divisions counter DivsNo=0,  
List of divisions  DivisionList = [] 

2. For each task t in G 
// Determine the task type, either synchronization (Y) 
or simple task (T) 

3. If (no. of parent tasks of t = 1 && no. of child tasks 
of t = 1) || 

(no. of parent tasks of t = 1 && no. of child tasks 
of t = 0)  || 
(no. of parent tasks of t = 0 && no. of child tasks 
of t =1)  then 

4. task t is T  
5. Else  
6. task t is Y  
7. End If 
8. If (t  is Y) then 
9. DivsNo++; 
10. DivisionList[DivsNo].add(t) 
11. Else If (t is T) then 
12. If (parent task A of t is Y) then 
13. DivsNo++; 
14. DivisionList[DivsNo].add(t) 
15. Else if (parent task A of t is T) then 
16. Index = index of division that includes 

A; 
17. DivisionList[Index].add(t) 
18. End If 
19. End If 
20. End For 

End 

Figure 3. DAG Dividing Algorithm 

C.  DEADLINE ASSIGNMENT 
Having divided the workflow graph G, the specified deadline, 
D, is distributed on the G’ task divisions, such that the 
deadline dl[Pi] allocated to each task division Pi is a sub-
deadline of D.  

Following are the deadline distribution rules [14]: 
R1: The total sub-deadline of any path from a 

synchronization task Yi to another synchronization task 
Yj must be the same. 

R2: Any path from Pi to Pj, where Tentry  Pi and Texit  Pj, 
has a total sub-deadline, which is equal to D. 

R3: A sub-deadline allocated to any task division Pi must be 
greater than or equal to met(Pi) . 

R4: The specified deadline, D, is distributed over task 
divisions in proportion to their met. 

These deadline distribution rules are implemented on the 
task division graph by using BFS (Breadth-First Search) 
algorithm and DFS (Depth-First Search) algorithm to 
calculate, for each task division, start time and sub-deadline. 
The deadline distribution algorithm is shown in Figure 4.   

 
Algorithm 2: Deadline_Distributing  
Input:   Divided task graph G', and Overall Deadline D  
Output: Deadline of each division Pi, dl[Pi]  
Begin 

1. Get all start nodes  //breadth traversing 
2. Get all possible paths PTH from each start node to exit 

node  //depth traversing 
3. Get met for each division Pj in G', using Eq. (2) 
4. For each path pthi in PTH 
5. dl(pthi) = D;   // Apply R2 
6. met(pthi) = ∑ 𝑚𝑒𝑡(𝑃௝)௉ೕ∈ ௣௧௛೔

; 

7. For each division Pj in path pthi 
8. dl(Pj) = (met(Pj) / met(pthi)) * dl(pthi);  // 

Apply Rule R4 
9. End For 
10. End For  

End 

Figure 4. Deadline Distribution Algorithm 

D.  GENERATION OF AN OPTIMAL SCHEDULE 
Once the sub-deadline of a task division is determined, an 
optimal sub-schedule for this task division can be obtained. If 
the obtained optimal sub-schedules for all task divisions 
ensure that the execution of these task divisions can be 
completed within their sub-deadlines, the entire workflow 
execution will be finished within the specified deadline. Also, 
minimizing the costs for all task divisions leads to reaching an 
optimal cost for the whole workflow. Thus, by combining all 
optimal sub-schedules, an optimized workflow schedule can 
be easily obtained. The scheduling solutions for the two task 
division types: synchronization task and branch division, as 
well as the overall grid workflow tasks scheduling algorithm 
(SA-GWTSA), are described below. 

D.1. Scheduling Synchronization Task 
The synchronization task scheduling (STS) is a single task 
scheduling problem. The optimal solution for such a problem 
can be simply obtained by selecting the service with the 
lowest cost which is able to execute the synchronization task 
within its allocated sub-deadline. Thus, for scheduling a 
synchronization task Yi, the objective function is as follows: 
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min 𝑐௜
௞ , where 1 ≤ 𝑘 ≤  𝑚௜, and 𝑡௜

௞ ≤  𝑒𝑒𝑡(𝑌௜)     (4) 

D.2. Branch Division Scheduling 
If a branch division contains only one simple task, the 
solution for the branch division scheduling (BDS) is the same 
as STS. But, if a branch contains multiple tasks, the SA 
algorithm is used to get an optimal solution according to the 
evaluation of an objective function. Here, the optimal solution 
is to minimize the branch execution time and cost, with the 
condition that the optimized time is within its allocated sub-
deadline. Thus, the objective function to be minimized to 
obtain an optimal sub-schedule for branch Bj can be 
represented as a weighted sum that combines the following 
two objectives: 
 

min cost(Bj) and min time(Bj), such that time(Bj) ≤ eet(Bj), 
 
where 
 

cost(Bj) = ∑ 𝑐௜
௞

்೔∈஻ೕ
,                                        (5) 

time(Bj) = ∑ 𝑡௜
௞

்೔∈஻ೕ
,                                       (6) 

 
and 1≤ 𝑘 ≤  𝑚௜. 

That is the objective function is formulated as follows: 
 

F(Bj) = w1 cost(Bj) + w2 time(Bj),                  (7) 
 
where w1 and w2 are weighting coefficients, which satisfy the 
condition w1 + w2 = 1. This objective function F will be used 
by the proposed SA as a fitness function to evaluate the 
candidate sub-schedules. 

E. THE PROPOSED SA-BASED BRANCH DIVISION TASK 
SCHEDULING (BDSSA) ALGORITHM 
SA developed  by Metropolis et al. [1] is a powerful 
optimization algorithm that can be used for task scheduling in 
the grid. By defining an appropriate objective/fitness function, 
neighborhood function, initial temperature and annealing 
schedule, we can efficiently allocate tasks to grid resources 
while minimizing the branch execution time and cost, with the 
condition that the optimized time is within its allocated sub-
deadline. 

The basic idea behind SA is to start with an initial 
solution, and iteratively improve it by making small changes 
to it. At each iteration, the algorithm evaluates the new 
solution and decides whether to accept or reject it based on a 
probability function. The probability function is designed to 
allow the algorithm to escape local optima and explore the 
solution space. 

The main steps of the SA algorithm are as follows: 
1. Initialize the temperature and the current solution. 
2. While the temperature is above a minimum threshold: 
 Generate a new solution by applying the neighborhood 

function to the current solution. 
 Evaluate the new solution using the objective function. 
 Calculate the change in the objective function between 

the current solution and the new solution. 
 If the change in the objective function is negative, 

accept the new solution. 
 If the change in the objective function is positive, 

accept the new solution with a probability determined 

by the current temperature and the change in the 
objective function. 

 Update (decrease) the temperature. 
3. Return the best solution found. 

Solving the BDS problem by using SA requires the 
determination of the solution (sub-schedule) representation, 
the annealing schedule, the neighborhood function to generate 
a new solution from the current solution, and a suitable 
objective function. The proposed SA’s components are 
presented below. 

E.1. BDS Problem Representation and Initial Solution 
In the proposed SA-based branch division scheduling 
(BDSSA) algorithm, for each branch in G', we build a data 
structure that represents a possible solution to a branch 
division scheduling on available service providers that satisfy 
the QoS constraints and specified deadline.  

Each branch consists of a number of tasks, and each task 
has its own service providers. So, the proposed branch data 
structure representation is a vector, called bds_vector, 
consisting of a number of elements corresponding to the 
branch tasks, and each task Ti in the branch is accompanied 
by a list of service  providers, spli, capable of executing this 
task. An element gi that corresponds to a task Ti in the 
bds_vector holds the ID of a service provider, chosen from 
spli, to execute this task. Figure 5 shows an encoding for a 
branch B that consists of r tasks, T1, T2, …, Tk, …, Tr, where 
gk ∈ [1, mk], and mk is the number of services capable of 
executing task Tk. 

T1 T2  T3 … Tk … Tr 

g1 g2    gk=2  gr 

 
QoS  attributes of services of 

different  providers for executing  kth 
task in branch B 

Service 
id 

Processing 
time 

Cost 

1 𝑡௞
ଵ 𝑐௞

ଵ 

2 𝑡௞
ଶ 𝑐௞

ଶ 

… … … 

mk 𝑡௞
௠ೖ  𝑐௞

௠ೖ  

splk 
Figure 5. bds_vector representation of branch B 

For example, the following bds_vector represents the 
branch that consists of tasks T2, T3, and T4, in Figure 1, and 
indicates that these tasks will be executed on services with ids 
1, 3, and 2, respectively. 

T2 T3 T4 

1 3 2 

Each vector for each branch consists of a random set of 
providers that are capable of executing each task in the 
branch. The bds_vector representing branch B must satisfy the 
condition: 
 

∑ 𝑡௜
௞

்೔∈஻ ≤ 𝑒𝑒𝑡(𝐵)            (8) 
 

According to the fitness evaluation for a bds_vector, a new 
neighborhood solution is generated, then the neighborhood’s 
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fitness is evaluated, and the algorithm decides whether to 
accept it or not. This process is repeated until the specified 
minimum threshold of the SA temperature is reached. The 
best schedule for each branch division in G' is kept. Then, 
these best schedules, with the best schedules of 
synchronization tasks, are used by the proposed SA-GWTSA 
to obtain the best schedule for the whole DAG (workflow 
tasks). 

E.2. The Fitness Function 
Based on the considered optimization objective, a fitness 
function is utilized to assess the quality of the solution 
(bds_vector). The scheduling goal here is to optimize the grid 
system performance in terms of cost and time for each 
division, as explained above. Therefore, in BDSSA, the 
fitness function is the multi-objective function defined by Eq. 
(7). 

E.3. The Initial Temperature and Annealing Schedule 
The initial temperature for the search is provided as a 
parameter and gradually decreases with the progress of the 
search. The annealing schedule is used to control the 
probability of accepting a worse solution, as it is implemented 
as a function of the current temperature. 

E.4. The Neighborhood Function 
This function is used to generate a new solution by making 
small changes to the current solution. In BDSSA, a mutation 
operator is used as a neighborhood function. Mutation is 
performed by randomly choosing an element in the 
bds_vector with certain mutation rate (Mr), then replacing the 
id value in it with another id value from the remaining 
providers' ids that can execute the corresponding task. An 
example illustrating the mutation operation is shown in Fig. 6. 

T1 T2 T3 T4 
 T1 T2 T3 T4 

4 3 5 3  4 1 2 3 

Before mutation  After mutation 

Figure 6. An example illustrating the mutation operation 

Algorithm 3: BDSSA,  A SA-based branch division scheduling 
algorithm 
Input:   Branch B {T1, T2, …, Tr};  

Service Providers Lists SPL {spl1, spl2, …, splr}, where 
spli is the list of service providers of  task Ti in B;  
dl(B) (Deadline of B);    
Mr (Mutation Rate);   
Maximum no. of  iterations Max_N;  
Initial temperature Init_Temper>0;  
The cooling rate CR;   
Weights (w1 and w2) of the fitness function; 

Output: Best Schedule for branch B  
Begin 

1. Generate an initial solution Sc at random from spli of 
each task Ti in B;  

2. Evaluate Sc (calculate F(Sc) using Eq. (7))  
3. Apply SA(Sc)  
4. Begin 
5.    Temper= Init_Temper 
6.    Repeat 
7.         For n = 1 To Max_N Do  
8.             Generate a new valid solution Sn, a random    
                    neighbor of Sc, using mutation operator; 
9.             Calculate F(Sn), using Eq. (7); 
                    // Compare the change in objective function 

10.             Set ∆𝐹 = F(Sn) – F(Sc) 
                    // if the new solution is better, accept it  
11.             If ΔF ≤ 0 Then 
12.                  Sc ← Sn    // Sn replaces Sc 
                    // if the new solution is worse, accept it with a  
                    // probability 
13.             Else if random(0,1) < e- ΔF/Temper Then  
14.                  Sc ← Sn 
15.         End For 
16.         Temper = Temper × CR; // decrement temperature 
17.    Until stopping criterion is true; 
18. End 
19. Return the Best Schedule; 

End 

Figure 7. The proposed SA-based branch task division 
scheduling algorithm (BDSSA) 

E.5. Overall BDSSA Algorithm  
The BDSSA algorithm is given in Figure 7. The input to 
BDSSA is presented by a branch B, the list of service 
providers spli of each task Ti in B (see Figure 5), the dl(B) 
(deadline of branch B), initial temperature Init_Temper, the 
cooling rate CR, the max number of iterations Max_N,  Mr 
(mutation rate), and the weights w1 and w2 of the fitness 
function. In steps 1-2, BDSSA generates an initial solution 
(bds_vector), Sc, for branch B, where the elements in Sc are 
populated by the service providers' IDs randomly selected 
from the list of service providers of the corresponding tasks, 
and evaluates its fitness using Eq. (7). The fitness evaluation 
is done by calculating the schedule (time and cost) for Sc, 
according to providers' IDs placed in its elements, using the 
procedure ComputeBranchSchedule(), shown in Figure 8, 
then the obtained time and cost are substituted in Eq. (7). 
Next, steps 3-18 include the main steps of the SA algorithm.  
In step 5, the current temperature Temper is set to the initial 
temperature Init_Temper. Steps 6-17 include the outer loop of 
the SA algorithm, which repeatedly decreases the temperature 
by the cooling rate CR, until the stopping criterion is reached. 
For each temperature, an inner loop (Steps 7-15) is executed 
Max_N iterations. In each iteration, a neighboring solution Sn 
is generated by applying the mutation operator. Sn is accepted 
as the new current solution, if the difference ∆𝐹 = F(Sn) – 
F(Sc) is greater than zero, i.e., the new solution is better. If ΔF 
≤ 0, i.e., the new solution is worse, then accept it with a 
probability, which is a function of Tempr, e-ΔF/Temper. This 
probabilistic acceptance is achieved by generating a random 
number in [0, 1), and if it is less than e-ΔF/Temper, then replace 
the current solution by the new one. Finally, the best 
bds_vector (best schedule for branch B) is returned in step 19.   

E.6. Decoding  
After obtaining the best bds_vector, Sc, which represents the 
best schedule for the given branch B, it is decoded in order to 
set the start and end time for each task composing B. This 
decoding process is performed by applying the procedure 
ComputeBranchSchedule(), shown in Figure 8. It uses the 
provider's ID placed in each element in Sc to get the time and 
price set by this provider for the corresponding task. Next, the 
procedure calculates the best execution cost and time for the 
whole branch by summing prices and times of all tasks in B, 
using Eq. (5) and Eq. (6), respectively. 
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Procedure ComputeBranchSchedule(Sc, SPL) 
// Compute time schedule and cost of tasks in Sc according to  
// providers ids placed in its elements using Eqs. (5) and (6) 
Begin 

1. time  0; 
2. cost  0; 
3. For element gk in bds_vector Sc  
4. Get service provider id stored in gk (say s) 
5. Get processing time 𝑡௞

௦  for task Tk from its splk  
6. Get processing cost 𝑐௞

௦ for task Tk from its splk 
7. time  time +  𝑡௞

௦    
8. cost  cost + 𝑐௞

௦ 
9. End For  
10. Return (time, cost) 

End 

Figure 8.  The proposed procedure for computing a branch 
schedule 

F. OVERALL SA-BASED GRID WORKFLOW TASKS 
SCHEDULING ALGORITHM (SA-GWTSA)  
This section describes the proposed SA-based Grid Workflow 
Tasks scheduling Algorithm (SA-GWTSA). It schedules the 
tasks of a workflow on Grid services based on users’ QoS 
constraints. Figure 9 shows the flowchart of the proposed SA-
GWTSA and Figure 10 shows its procedural details.   
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 9. Flowchart of the proposed SA-GWTSA 

As shown in Figure 10, the input to SA-GWTSA is the 
workflow graph G (T, E, D), where T = {Ti, i = 1 . . . n} 
denotes the workflow tasks set, E denotes the set of edges 
connecting tasks, and D denotes the user’s provided deadline 
for the execution of workflow. The output of SA-GWTSA is 

an optimal schedule for all workflow tasks, which minimizes 
both time and cost of workflow execution, such that the 
optimized time is within the specified deadline. The algorithm 
starts by requesting processing times and prices from 
available Grid services for all workflow tasks. Then, it divides 
workflow tasks into independent branches (sequences of 
simple tasks) and synchronization tasks, by using the 
DAG_Dividing algorithm, shown in Figure 3, generating a 
reduced graph G'(P, E', D), where P denotes the divisions 
(branches and synchronization tasks) set, and E' denotes the 
set of directed edges between divisions in G'. Then, it uses the 
deadline assignment algorithm, Deadline_Distributing, shown 
in Figure 4, to distribute the overall deadline D over each 
division. Finally, SA-GWTSA generates the execution 
schedule for the entire workflow by using the optimal sub-
schedules of task divisions. If a task division is a branch, its 
optimal schedule is obtained using BDSSA, as described in 
Sec. E., otherwise STS is used, as described in Sec. D.1. If a 
task division has one or more child divisions, then the 
procedure HandleChildDivision() is called to compute their 
schedules. 

 
Algorithm 4: SA-GWTSA, a SA-based grid workflow tasks 
scheduling algorithm 
Input : G(T, E, D) (a workflow graph)  
Output: An optimal workflow schedule 
Begin 

1. From available services, get processing price and time 
∀ 𝑇𝑖 ∈ 𝑇  

2. Call DAG_Dividing;               // Transform G into 
reduced graph G'(P, E', D) 

3. Call Deadline_Distributing;     // Distribute deadline 
𝐷  ∀ 𝑃௜ ∈ 𝑃 

4. Queue Q  [] 
5. For each  𝑃௜ ∈ 𝑃 do  
6. scheduled[Pi]  false; 
7. End For 
8. EP  all entry divisions (divisions that has no parents) 
9. For each  Pi  EP do 
10. If Pi is a synchronization task Then 
11. Obtain an optimal sub-schedule for Pi  via STS 
12. Else // Pi is a branch division 
13. Obtain an optimal sub-schedule for  Pi via BDSSA 
14. End IF 
15. scheduled[Pi]  true; 
16. HandleChildDivision(Pi); 
17. End For 
18. While Q is not empty do 
19. B  remove top element of Q; 
20. PB  all parent divisions of B; 
21. If (scheduledൣP௝൧ =  true  ∀ P௝ ∈ PB)  Then  

22. start_time[B]  max୔ೕ∈୔୆ dl[Pj];  

23. scheduled[B]  true;    
24. Else  
25. If B is not on top of Q Then add B to Q;  
26. If B has child divisions Then      
27.     HandleChildDivision(B); 
28. End If 
29. End If 
30. End While 

End 
 
Procedure HandleChildDivision(B) 

Start 

Read workflow graph G (T, E, D) 

Request processing times and prices from 
available Grid services for all workflow 
tasks T based on users’ QoS constraints 

Divide workflow tasks into independent 
branches and synchronization tasks 

Distribute overall deadline D over each 
division 

Obtain optimal sub-schedules of task divisions 
(considering dependencies between them) 

For synchronization tasks 
Use STS 

For branch divisions 
Use BDSSA 

Generate execution schedule for entire workflow by 
using the optimal sub-schedules of task divisions 

Stop 
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Begin 
1. dl[B]  expected completion time of  B; 
2. If B has child divisions Then CP  child task divisions 

of B; 
3. For each Pj  CP do 
4. If Pj is a branch division Then 
5. start_time[Pj]  dl[B]; 
6. Obtain an optimal sub-schedule for Pj via 

BDSSA; 
7. scheduled[Pj]  true; 
8. Pk child task division of Pj; 
9. If Pk is not on top of Q Then add Pk to Q; 
10. Else  
11. If Pj is not on top of Q Then add Pj to Q;  
12. End If 
13. End For 

End 
Figure 10. The proposed SA-GWTSA 

V. CASE STUDY 
To illustrate the working of the proposed Grid scheduling 
algorithm, SA-GWTSA, it has been applied to the workflow 
modeled by the DAG given in Figure 2 (adapted from [13]), 
which consists of 14 tasks. So, 14 service types have been 
simulated, with a number of diverse service providers 
supporting each service type. Table 1 shows, for each task, the 
QoS attributes of providers that will provide the same service 
type needed for processing this task. These attributes are: 
provider id ID, processing time (sec), and cost ($). The 
required deadline (DL) is assumed to be 350 sec. 

The input to SA-GWTSA includes: 
- the specified deadline D;  
- SA parameters: Max_N, Mr, Init_Temper, CR, w1, and 

w2; 
- a file containing the edges of the DAG of the example 

workflow: 1-2, 1-5, 1-7, 1-8, 2-3, 3-4, 4-14, 5-6, 6-14, 7-
10, 10-11, 11-14, 10-12, 12-13, 13-14, 8-9, 9-10; and 

- a file containing the service providers’ information shown 
in Table 1. 

The output produced by SA-GWTSA consists of: 
- a file containing the divisions of the example workflow 

DAG, with their types, as shown in Table 2; 
- a file containing the scheduled start and end times for each 

task with its service provider id, as shown in Table 3. Note 
that each provider id is prefixed with the corresponding 
task number to differentiate between providers of different 
tasks that have same id, for example, 3:1 refers to provider 
with id 1 of task 3, and 5:1 refers to provider with id 1 of 
task 5; 

- a file containing the scheduled start and end times for each 
division, as shown in Table 4; 

- resultant best schedule time: 150 sec and best cost: $ 221. 

Table 1. QoS attributes (provider id, processing time in 
sec, and cost in $) of services of different providers for 

executing the tasks of the example workflow 
Task QoS Attributes  Task QoS Attributes 

T1 

PID 0 1 2   

T8 

PID 0 1 2 3 4 
Time 20 10 30   Time 10 20 30 40 25 

Cost 20 30 10   Cost 60 40 20 10 35 

T2 
PID 0 1 2 3  

T9 
PID 0 1    

Time 40 25 10 5  Time 6 18    

Cost 10 25 40 45  Cost 15 5    

T3 

PID 0 1 2   

T10 

PID 0 1 2   
Time 25 10 15   Time 20 10 30   

Cost 10 20 16   Cost 20 30 10   

T4 

PID 0 1    

T11 

PID 0 1 2 3  
Time 6 18    Time 40 25 10 30  

Cost 15 5    Cost 10 25 40 20 
 

T5 

PID 0 1 2   

T12 

PID 0 1 2  

Time 8 4 19   Time 8 4 19   

Cost 10 15 5   Cost 10 15 5   

T6 

PID 0 1 2   

T13 

PID 0 1 2 3  
Time 20 10 30   Time 10 5 15 17  

Cost 20 30 10   Cost 10 15 5 3  

T7 

PID 0 1 2 3  

T14 

PID 0 1 2   
Time 7 10 15 35  Time 40 25 10   

Cost 25 20 15 7  Cost 10 25 40   

Table 2. The divisions of the example workflow DAG, with 
their types (Y: Synchronization, B: Branch) 

Partition Type Tasks 
P1 Y T1 
P2 B T2, T3, T4 
P3 B T5, T6 
P4 B T7 
P5 B T8, T9 
P6 Y T10 
P7 B T11 
P8 B T12, T13 
P9 Y T14 

VI. EXPERIMENTAL RESULTS 
Experiments have been carried out to assess SA-GWTSA 
performance. Three workflows of 11, 14, and 25 tasks have 
been used. For each task in each workflow, a different service 
type with diverse service providers has been simulated.  

Table 3. The scheduled start and end times for each task 
with its service provider ID 
Task Start End PID 
T1 0 30 1:2 
T2 30 70 2:0 
T3 70 95 3:0 
T4 95 101 4:0 
T5 30 38 5:0 
T6 38 68 6:2 
T7 30 65 7:3 
T8 30 40 8:0 
T9 40 85 9:1 
T10 65 95 10:2 
T11 95 125 11:3 
T12 95 103 12:0 
T13 103 113 13:0 
T14 125 150 14:1 

 
Table 4. The scheduled start and end times for each 

division 
Partition Start End 

P1 0 30 
P2 30 101 
P3 30 68 
P4 30 65 
P5 30 58 
P6 65 95 
P7 95 125 
P8 95 113 
P9 125 150 
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SA-GWTSA has been applied to the three workflows, 
with different deadlines, and the results are compared with 3 
other scheduling algorithms, namely, Greedy-Time (GT) [13], 
Greedy-Cost (GC) [13], and Modified Greedy-Cost (MGC). 
For processing each task, GC chooses the lowest-cost service, 
whereas GT chooses the quickest service. MGC searches for 
the lowest-cost service for processing each task within the 
required deadline. The evaluation criteria were the execution 
cost and time constraint. The first criterion shows the 
workflow tasks scheduling costs on the utilized service Grid, 
while the second one shows whether the scheduling algorithm 
has generated a schedule that satisfies the specified deadline. 
For each deadline value, SA-GWTSA was run ten times and 
the average of the best time and cost values generated were 
calculated. The SA parameters used were: Max_N = 20, Mr = 
0.05, CR=0.5, Init_Temper =0.9, and w1 = w2 = 0.5.   The 
algorithms were implemented using C#, and run on 
TOSHIBA-Lap Intel(R) Core™ i5-2430M CPU, 2.4 GHz, 4 
GB RAM. 

Figures 12, 13 and 14 show comparisons of the results of 
applying the 4 scheduling algorithms for the 3 workflows in 
terms of the execution time and costs. Figures 12(a), 13(a) and 
14(a) show that the expected execution time for the 3 
workflows using SA-GWTSA and MGC increases as the 
deadline is relaxed. For the 3 workflows, the expected 
execution time using SA-GWTSA is less than MGC with 
most deadlines. The workflows execution time using the GC 
algorithm is higher and cannot meet the required deadline 
when it is low. The GT provides lower execution time than 
the other three algorithms.  

As shown in Figures 11(b), 12(b) and 13(b), for the 3 
workflows, the execution cost using the GT algorithm is 
higher, but when using SA-GWTSA and MGC, it is reduced 
as the deadline is relaxed. For the 3 workflows, the execution 
cost using MGC is lower than SA-GWTSA. The GC provides 
lower execution cost than the other three algorithms. 

As can be seen from these results, SA-GWTSA tries to 
optimize both the execution time and cost, the MGC 
algorithm tries to minimize the cost while keeping the 
execution time within the required deadline, whereas the GT 
and GC algorithms try to minimize the execution time and 
cost, respectively.  

 

 
(a) 

 
(b) 

Figure 11. Expected execution time (a) and cost (b) for the 
workflow of 11 tasks using the four scheduling algorithms 

 

 
(a) 

 

 
(b) 

Figure 12. Expected execution time (a) and cost (b) for the 
workflow of 14 tasks using the four scheduling algorithms 
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(a) 

 
(b) 

Figure 13. Expected execution time (a) and cost (b) for the 
workflow of 25 tasks using the four scheduling algorithms 

VII. CONCLUSION 
This paper presents a proposed SA-based approach, SA-
GWTSA for scheduling workflow tasks on Grid services 
based on users’ QoS constraints in terms of time and cost. For 
a given collaborative set of workflow tasks, SA-GWTSA 
generates an optimal schedule, which minimizes the execution 
time and cost, such that the optimized time is within the 
deadline imposed by the user. In this approach, a DAG is used 
to represent the dependency between the workflow tasks.  The 
DAG is divided, and then the optimal sub-schedules of task 
divisions are computed and utilized to generate the schedule 
for executing the entire workflow.  SA is employed in SA-
GWTSA to compute the optimal execution sub-schedule for 
each branch division, which consists of a set of sequential 
tasks.  

Experiments have been carried out to assess SA-
GWTSA’s performance. The results are compared with three 
other scheduling algorithms: GC, GT and MGC. The results 
indicate that SA-GWTSA tries to optimize both the execution 
time and cost; the MGC algorithm tries to minimize the cost 
while keeping the execution time within the required deadline; 
whereas the GT and GC algorithms try to minimize the 
execution time and cost, respectively.  

In the future work, we intend to modify the proposed 
workflow scheduler SA-GWTSA to consider resource 
dynamics, such that the schedule is adapted and updated 
during scheduling according to these dynamics. We also 
intend to augment BDSSA with a metaheuristic algorithm, 
such as GA, in order to improve the optimal execution 
schedule it produces for each branch division. 
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