

VOLUME 23(1), 2024 61

Date of publication MAR-31, 2024, date of current version JUL-20, 2023.
www.computingonline.net / computing@computingonline.net

Print ISSN 1727-6209
Online ISSN 2312-5381
DOI 10.47839/ijc.23.1.3436

SA-Based QoS Aware Workflow
Scheduling of Collaborative Tasks in Grid

Computing
MOHEB R. GIRGIS1, TAREK M. MAHMOUD 2, HAGAR M. AZZAM1

1 Department of Computer Science, Faculty of Science, Minia University, El-Minia, Egypt
2 Faculty of Computers and Artificial Intelligence, University Of Sadat City, Cairo, Egypt

Corresponding author: Moheb R. Girgis (e-mail: moheb.girgis@mu.edu.eg).

 ABSTRACT Scheduling workflow tasks in grid computing is a complex process, especially if it is
associated with satisfying the user's requirements to complete tasks within a specified time, with lowest possible
cost. This paper presents a proposed Simulated Annealing (SA) based Grid Workflow Tasks Scheduling
Approach (SA-GWTSA) that takes into account users’ QoS (quality of service) constraints in terms of cost and
time. For a given set of inter-dependent workflow tasks, it generates an optimal schedule, which minimizes the
execution time and cost, such that the optimized time is within the time constraints (deadline) imposed by the
user. In SA-GWTSA, the workflow tasks, which are modeled as a DAG, are divided into task divisions, each of
which consists of a set of sequential tasks. Then, the optimal sub-schedules of all task divisions are computed
applying SA algorithm, and used to obtain the execution schedule of the entire workflow. In the proposed
algorithm, the sub-schedule of each branch division is represented by a vector, in which each element holds the
ID of the service provider chosen from a list of service providers capable of executing the corresponding task in
the branch. The algorithm uses a fitness function that is formulated as a multi-objective function of time and
cost, which gives users the ability to determine their requirements of time against cost, by changing the
weighting coefficients in the objective function. The paper also exhibits the experimental results of assessing the
performance of SA-GWTSA with workflows samples of different sizes, compared to different scheduling
algorithms: Greedy-Time, Greedy-Cost, and Modified Greedy-Cost.

 KEYWORDS grid computing; workflow tasks scheduling; simulated annealing algorithm; quality of service
constraints.

I. INTRODUCTION
RID computing has emerged as an efficient approach to
solve extensive problems in business, engineering and

science. In Grid computing, several processing resources are
integrated and connected to work together as one huge
computing power to accomplish a common goal. These
resources could be geographically distributed over the world,
and they could have significantly different capabilities and
specifications. To benefit from the grid computing
capabilities, effectual scheduling algorithms are primarily
essential. Grid scheduling is an activity that assigns and
manages the execution of related tasks on distributed
resources. The main challenge in grid scheduling is how to
distribute collaborative tasks to the available resources, taking
into account the quality of service (QoS), time and cost
available to the user. For workflow processing systems, time
denotes the overall time needed for completing the workflow

execution; while cost denotes the cost linked to the workflows
execution incorporating Grid resources usage charge for
processing workflow tasks and the workflow systems
management cost. The algorithms of scheduling collaborative
tasks utilize DAGs (Directed Acyclic Graphs) to model tasks
dependency.

Grid scheduling is an NP-complete problem as the
computational Grid comprises resources that are
heterogeneous and reside in different administrative regions,
which employ distinctive management rules. SA (Simulated
Annealing Algorithm) [1] is one of the efficient heuristic
algorithms, which have been successfully applied to deal with
NP-complete problems.

This paper presents a proposed SA-based Grid Workflow
Tasks Scheduling Approach (SA-GWTSA) that takes into
account users’ QoS (quality of service) constraints in terms of
cost and time. The input to SA-GWTSA is a set of workflow

G

 Moheb R. Girgis et al. / International Journal of Computing, 23(1) 2024, 61-71

62 VOLUME 23(1), 2024

tasks, the dependencies between them, and the time limit
(deadline) stated by the user for the execution of the
workflow. The output of SA-GWTSA is an optimal schedule
for all workflow tasks that minimizes the execution time and
cost, such that the scheduled time is within the deadline
imposed by the user. In this algorithm, a DAG is used to
represent the dependency between the workflow tasks. The
DAG is divided, and then the optimal sub-schedules of all
task divisions are computed and used to obtain the execution
schedule of the entire workflow. In SA-GWTSA, the SA
technique is used to compute the optimal execution sub-
schedule for each branch division that consists of a set of
sequential tasks. In this technique, the sub-schedule of each
branch division is represented by a vector, in which each
element holds the ID of the service provider chosen to execute
the corresponding task in the branch, and the fitness function
is formulated as a multi-objective function of time and cost.

The next sections of this paper are as follows: The 2nd
section presents related work; the 3rd section presents the
problem description; the 4th section describes the proposed
QoS-based grid workflow tasks scheduling algorithm, SA-
GWTSA; the 5th section presents a case study to illustrate the
working of SA-GWTSA; the 6th section exhibits the
experimental results; and the 7th section presents the
conclusion and future work.

II. RELATED WORK
Several research studies were proposed, in which heuristic
and metaheuristic algorithms were used to address the
problem of scheduling tasks in computational grids. This
section gives a review of examples of such studies.

A. METAHEURISTICS-BASED APPROACHES
Aggarwal et al. [2] presented a scheduler based on a GA for
computational grids. It minimizes make-span, the available
resources idle time, and turn-around time, while satisfying the
deadlines specified by users. Yu and Buyya [3] proposed a
GA-based workflow scheduling approach with budget
constraint. It aims to minimize execution time while satisfying
a specified processing budget. Yu and Buyya [4] presented a
GA-based workflow scheduling approach with two QoS
constraints, deadline and budget. Zhang et al. [5] proposed an
approach based on PSO (particle swarm optimization) for
solving task scheduling problem in grid environment, which
aims to generate an optimal schedule that minimizes the
completion time of the tasks. Chen et al. [6] proposed a grid
scheduling approach that combines a discrete PSO with the
SA (simulated annealing) method, aimed at minimizing the
grid cost, which comprises communication and computing
costs. Kant et al. [7] proposed a framework for grid
scheduling using dynamic information and an ant colony
optimization (ACO) algorithm to minimize the maximal total
tardiness time of dynamic job scheduling in grid computing,
while optimizing the resource utilization. Bouali et al. [8]
proposed a hybrid approach between the Heterogeneous
Earliest Finish Time (HEFT) heuristic and PSO, to minimize
the overall completion time of all tasks in the DAG. Jiang and
Chen [9] presented TSGA genetic algorithm for task
scheduling that divides the search space into random patterns
to check out the search space to minimize the execution time.
Gabaldon et al. [10] proposed a PSO-based approach for
scheduling parallel jobs containing cooperating tasks aimed to
minimize energy consumption. Gabaldon et al. [11] proposed
a hybrid PSO-GA meta-heuristic approach for solving the

resource matching and scheduling parallel tasks including
collaborative ones in heterogeneous multi-cluster systems,
which aimed to minimize both makespan and energy
consumption. Younis and Yang [12] proposed two hybrid
meta-heuristic schedulers. The first scheduler combines Ant
Colony Optimization and Variable Neighborhood Search
(VNS), while the second one merges the GA with VNS to
minimize the makespan. Ghosh et al. [13] presented a hybrid
GA-PSO algorithm for Grid job scheduling, which aimed to
reduce the schedule makespan and flowtime. Chhabra et al.
[14] proposed a multi-objective hybrid scheduling algorithm
that combines Cuckoo Search and Firefly algorithm for
scheduling offline workload of parallel jobs with collaborative
tasks in High-Performance Computing Grid systems to
optimize both energy-efficiency and QoS-aware performance
expectations. Abdulal et al [15] presented a Mutation Based
Simulated Annealing Algorithm (MSA), which uses simulated
annealing selection, single change mutation, and a new
random minimum completion time (Random-MCT). Also it
maintains two solutions simultaneously.

B. HEURISTICS-BASED APPROACHES
Yu et al. [16] proposed an algorithm for QoS-based workflow
scheduling, which minimizes the execution cost while
satisfying the deadline. This algorithm utilizes an approach
based on Markov Decision Process to schedule the execution
of sequential workflow tasks. Benedict and Vasudevan [17]
proposed a grid scheduling approach that uses Tabu Search
method, for obtaining better computational Grid schedules,
with two objectives: maximizing job completion ratio and
minimizing the Grid scheduler overhead to choose the precise
workflow sequence. Meddeber and Yagoubi [18] presented a
dependent task allocation approach for Grids, which divides a
given task graph into a set of linked components to decrease,
if possible, the average execution time of submitted tasks, and
to reduce communication costs, while respecting the
dependency between tasks constraints. Bahnasawy et al. [19]
presented an algorithm for scheduling distributed
heterogeneous computing systems. The algorithm divides the
given DAG into levels based on the precedency relationships,
and sorts the tasks of each layer in descending order according
to their computation sizes, then the tasks are selected from
that layer in order. Bidgoli and Nezad [20] proposed a
scheduling algorithm, GCDM, for grid computing to
minimize the final cost of implementation tasks, taking into
account the data transfer cost between different tasks and their
inter-dependencies that are modeled as a DAG. Goel et al.
[21] presented a scheduling algorithm that combines three
scheduling algorithms: Shortest Job First, First Come First
Serve, and Round Robin, considering the dependencies
between tasks in grid environments and aiming to minimize
the time required for executing all tasks. Hossam et al. [22]
proposed the algorithm WS-GCDM (WorkStealing-Grid Cost
Dependency Matrix), which is an enhancement of GCDM
[20]. It balances task scheduling among the available grid
resources, while GCDM utilizes certain number of grid
resources irrespectively of the number of available resources.
Rahman et al. [23] presented a dynamic and adaptive
workflow scheduling algorithm based on critical path (CP) for
grid computing, which dynamically and efficiently maps tasks
of the workflow to grid resources via determining, at every
step, the CP in the workflow graph. They, also, outlined a
hybrid heuristic that merges the presented adaptive scheduling
technique features with metaheuristics to obtain optimal

Moheb R. Girgis et al. / International Journal of Computing, 23(1) 2024, 61-71

VOLUME 23(1), 2024 63

execution time and cost while satisfying the users'
requirements. Chauhan and Nitin [24] proposed a
decentralized P2P algorithm for grid scheduling that
schedules sub-tasks of DAG tasks, taking into account three
factors: subtasks computation and communication costs, and
the subtask waiting time caused by predecessors and
precedence constraints. Garg and Singh [25] proposed an
adaptive approach based on a rescheduling method for
scheduling workflow dependent tasks on the dynamic grid
resources. It initially performs static scheduling, followed by
resource monitoring, and then rescheduling to minimize the
execution time for workflow application.

The proposed QoS-based scheduling approach differs
from the above mentioned approaches in the following points:
 The problem of scheduling workflow tasks on Grid is

formulated as a problem of multi-objective
optimization, where the execution time and cost are
minimized, such that the optimized time is within the
deadline imposed by the user.

 It employs a SA-based technique to compute the
optimal execution sub-schedule for each set of
sequential tasks, represented by a branch division in
the workflow DAG.

 This technique uses a novel representation for the
candidate solution (sub-schedule) of each branch
division as a vector, in which each element holds the
ID of the service provider, chosen from a list of service
providers capable of executing the corresponding task
in the branch; and the fitness function is formulated as
a multi-objective function of time and cost.

 The optimal sub-schedules of all task divisions are
used to obtain the execution schedule of the entire
workflow.

III. PROBLEM DESCRIPTION
Workflow application tasks in grid computing system can be
modeled as a DAG, which is represented with two sets (T, E),
where T = {Ti, i = 1 . . . n} denotes a set of n tasks, while E
denotes the set of directed edges between tasks, where an
edge (Ti, Tk) represents the dependency of task Tk on task Ti,
which means task Ti must be completed before scheduling
task Tk. Task Ti is referred to as task Tk’s parent and task Tk is
referred to as task Ti’s child. Assuming D is the user’s
provided deadline (time constraint) for the workflow
execution, then the workflow application can be expressed as
G (T, E, D). In the DAG, an entry task is a task that has no
parent tasks and referred to as Tentry, and an exit task is a task
that has no child tasks, and referred to as Texit.

In a grid computing system, there is a set of service types,
where diverse service providers can support each service type.
Let m be the number of available services. Each task Ti has a
set of services 𝑆௜

௝ (1 ≤ i ≤ n, 1 ≤ j ≤ mi, mi ≤ m) that can
execute this task, but only one of these services is chosen to
execute the task. The processing capabilities of services vary
and are provided at different prices. In general, there is an
inverse proportion between the service price and the
processing time [14]. The service price and time for executing
task Ti on service 𝑆௜

௝ are denoted by 𝑐௜
௝
and 𝑡௜

௝, respectively.
The scheduling problem is to assign every task Ti to a

service 𝑆௜
௝ to minimize the execution time and cost, such that

the execution of the workflow is completed within the user’s
provided deadline, while taking into account the task
precedence constraints.

IV. THE PROPOSED QOS-BASED GRID WORKFLOW
TASKS SCHEDULING APPROACH
In this work, the following steps are performed to solve the
scheduling problem:
Step1: Detect available services, and choose available

service providers for each task according to the QoS
parameters of services specified by the user.

Step2: Cluster tasks of the workflow into task divisions.
Step3: Distribute the user’s provided deadline (referred to as

specified deadline) on task divisions.
Step4: Compute optimal sub-schedules for individual task

divisions by using a SA-based strategy, and then use
these sub-schedules to generate an optimal schedule
for the entire workflow.

The following subsections provide detailed description of
these steps.

A. SERVICE DETECTION AND QOS REQUEST
Providing details of QoS for every available service is
important for efficient workflow tasks scheduling. As Figure
1 illustrates, the WMS (Workflow Management System) first
sends a query to the GIS (Grid Information Service), which
has knowledge of all registered Grid service providers, to
detect services, which are suitable for processing every task of
the workflow user. Each query specifies parameters of the
task, estimated execution time, and workflow user. The GIS,
in turn, replies with the available list of services for every
task. Then, the WMS sends a QoS request to these services to
obtain their processing price and time for providing the
service with the required QoS level.

Figure 1. Service Detection and QoS Request

B. WORKFLOW TASK PARTITIONING
Workflow DAG dividing process starts by categorizing
workflow tasks in G into a simple task or a synchronization
task [14]. A synchronization task is a one that has many
parent tasks and/or child tasks, while a simple task is a one
which has at most one child and/or parent task. For example,
in Figure 2(a), the 1st, 10th, and 14th tasks are synchronization
tasks, while the remaining tasks are simple tasks. Then, the
workflow tasks in G are divided into independent branches B
and synchronization tasks Y, which leads to minimizing the
size of G making it simpler and thus, containing less number
of nodes. Let P be a set of nodes representing a set of task
divisions Pi, 1 ≤ i ≤ nY+nB, where nY and nB are the total
numbers of synchronization tasks and workflow branches,
respectively. Assume E' is the set of directed edges, where
each edge takes the form (Pi, Pj) with Pi is a parent of Pj.
Then, the divided graph can be described as G'(P, E', D).
Figure 2(b) shows the DAG of Figure 2(a) after dividing. For
example, in this figure, the sequence of tasks T2, T3, and T4
forms a branch division. A simple path in G' is a task division

Processing Time & Price

GIS
Service_Detection(Task T)

Grid
Service

Service List

WMS
QoS_Request(Task T) .

.

.

Grid
Service

 Moheb R. Girgis et al. / International Journal of Computing, 23(1) 2024, 61-71

64 VOLUME 23(1), 2024

sequence that includes a directed edge from each task division
in it to its successor, where the path task divisions are not
repeated. The DAG_Dividing algorithm is shown in Figure 3.

Each task division Pi has 4 attributes: deadline (dl[Pi]),
expected execution time (eet[Pi]), start time (start_time[Pi]),
and minimum execution time (met[Pi]). If Pi is a branch, then
its earliest start time is the earliest start time of the 1st task in
it, and is calculated according to the deadlines of its parent
divisions as follows:

𝑠𝑡𝑎𝑟𝑡_𝑡𝑖𝑚𝑒[𝑃௜] = max
௉ೕ∈௉௉೔

𝑑𝑙ൣ𝑃௝൧, (1)

where PPi is the set of Pi’s parent task divisions. The Pi’s
minimum execution time is calculated as follows:

𝑚𝑒𝑡[𝑃௜] = ∑ min
ଵஸ௬ஸ௠ೣ

𝑡௫
௬

்ೣ ∈௉೔
 . (2)

Expected execution time of Pi is calculated as follows:

eet[Pi] = dl[Pi] – start_time[Pi]. (3)

Figure 2. An example workflow DAG partitioning [7]

Algorithm 1: DAG_Dividing
Input: Original task graph G
Output: Divided task graph G'
Begin

1. Initialize: Divisions counter DivsNo=0,
List of divisions DivisionList = []

2. For each task t in G
// Determine the task type, either synchronization (Y)
or simple task (T)

3. If (no. of parent tasks of t = 1 && no. of child tasks
of t = 1) ||

(no. of parent tasks of t = 1 && no. of child tasks
of t = 0) ||
(no. of parent tasks of t = 0 && no. of child tasks
of t =1) then

4. task t is T
5. Else
6. task t is Y
7. End If
8. If (t is Y) then
9. DivsNo++;
10. DivisionList[DivsNo].add(t)
11. Else If (t is T) then
12. If (parent task A of t is Y) then
13. DivsNo++;
14. DivisionList[DivsNo].add(t)
15. Else if (parent task A of t is T) then
16. Index = index of division that includes

A;
17. DivisionList[Index].add(t)
18. End If
19. End If
20. End For

End

Figure 3. DAG Dividing Algorithm

C. DEADLINE ASSIGNMENT
Having divided the workflow graph G, the specified deadline,
D, is distributed on the G’ task divisions, such that the
deadline dl[Pi] allocated to each task division Pi is a sub-
deadline of D.

Following are the deadline distribution rules [14]:
R1: The total sub-deadline of any path from a

synchronization task Yi to another synchronization task
Yj must be the same.

R2: Any path from Pi to Pj, where Tentry  Pi and Texit  Pj,
has a total sub-deadline, which is equal to D.

R3: A sub-deadline allocated to any task division Pi must be
greater than or equal to met(Pi) .

R4: The specified deadline, D, is distributed over task
divisions in proportion to their met.

These deadline distribution rules are implemented on the
task division graph by using BFS (Breadth-First Search)
algorithm and DFS (Depth-First Search) algorithm to
calculate, for each task division, start time and sub-deadline.
The deadline distribution algorithm is shown in Figure 4.

Algorithm 2: Deadline_Distributing
Input: Divided task graph G', and Overall Deadline D
Output: Deadline of each division Pi, dl[Pi]
Begin

1. Get all start nodes //breadth traversing
2. Get all possible paths PTH from each start node to exit

node //depth traversing
3. Get met for each division Pj in G', using Eq. (2)
4. For each path pthi in PTH
5. dl(pthi) = D; // Apply R2
6. met(pthi) = ∑ 𝑚𝑒𝑡(𝑃௝)௉ೕ∈ ௣௧௛೔

;

7. For each division Pj in path pthi
8. dl(Pj) = (met(Pj) / met(pthi)) * dl(pthi); //

Apply Rule R4
9. End For
10. End For

End

Figure 4. Deadline Distribution Algorithm

D. GENERATION OF AN OPTIMAL SCHEDULE
Once the sub-deadline of a task division is determined, an
optimal sub-schedule for this task division can be obtained. If
the obtained optimal sub-schedules for all task divisions
ensure that the execution of these task divisions can be
completed within their sub-deadlines, the entire workflow
execution will be finished within the specified deadline. Also,
minimizing the costs for all task divisions leads to reaching an
optimal cost for the whole workflow. Thus, by combining all
optimal sub-schedules, an optimized workflow schedule can
be easily obtained. The scheduling solutions for the two task
division types: synchronization task and branch division, as
well as the overall grid workflow tasks scheduling algorithm
(SA-GWTSA), are described below.

D.1. Scheduling Synchronization Task
The synchronization task scheduling (STS) is a single task
scheduling problem. The optimal solution for such a problem
can be simply obtained by selecting the service with the
lowest cost which is able to execute the synchronization task
within its allocated sub-deadline. Thus, for scheduling a
synchronization task Yi, the objective function is as follows:

Moheb R. Girgis et al. / International Journal of Computing, 23(1) 2024, 61-71

VOLUME 23(1), 2024 65

min 𝑐௜
௞ , where 1 ≤ 𝑘 ≤ 𝑚௜, and 𝑡௜

௞ ≤ 𝑒𝑒𝑡(𝑌௜) (4)

D.2. Branch Division Scheduling
If a branch division contains only one simple task, the
solution for the branch division scheduling (BDS) is the same
as STS. But, if a branch contains multiple tasks, the SA
algorithm is used to get an optimal solution according to the
evaluation of an objective function. Here, the optimal solution
is to minimize the branch execution time and cost, with the
condition that the optimized time is within its allocated sub-
deadline. Thus, the objective function to be minimized to
obtain an optimal sub-schedule for branch Bj can be
represented as a weighted sum that combines the following
two objectives:

min cost(Bj) and min time(Bj), such that time(Bj) ≤ eet(Bj),

where

cost(Bj) = ∑ 𝑐௜
௞

்೔∈஻ೕ
, (5)

time(Bj) = ∑ 𝑡௜
௞

்೔∈஻ೕ
, (6)

and 1≤ 𝑘 ≤ 𝑚௜.

That is the objective function is formulated as follows:

F(Bj) = w1 cost(Bj) + w2 time(Bj), (7)

where w1 and w2 are weighting coefficients, which satisfy the
condition w1 + w2 = 1. This objective function F will be used
by the proposed SA as a fitness function to evaluate the
candidate sub-schedules.

E. THE PROPOSED SA-BASED BRANCH DIVISION TASK
SCHEDULING (BDSSA) ALGORITHM
SA developed by Metropolis et al. [1] is a powerful
optimization algorithm that can be used for task scheduling in
the grid. By defining an appropriate objective/fitness function,
neighborhood function, initial temperature and annealing
schedule, we can efficiently allocate tasks to grid resources
while minimizing the branch execution time and cost, with the
condition that the optimized time is within its allocated sub-
deadline.

The basic idea behind SA is to start with an initial
solution, and iteratively improve it by making small changes
to it. At each iteration, the algorithm evaluates the new
solution and decides whether to accept or reject it based on a
probability function. The probability function is designed to
allow the algorithm to escape local optima and explore the
solution space.

The main steps of the SA algorithm are as follows:
1. Initialize the temperature and the current solution.
2. While the temperature is above a minimum threshold:
 Generate a new solution by applying the neighborhood

function to the current solution.
 Evaluate the new solution using the objective function.
 Calculate the change in the objective function between

the current solution and the new solution.
 If the change in the objective function is negative,

accept the new solution.
 If the change in the objective function is positive,

accept the new solution with a probability determined

by the current temperature and the change in the
objective function.

 Update (decrease) the temperature.
3. Return the best solution found.

Solving the BDS problem by using SA requires the
determination of the solution (sub-schedule) representation,
the annealing schedule, the neighborhood function to generate
a new solution from the current solution, and a suitable
objective function. The proposed SA’s components are
presented below.

E.1. BDS Problem Representation and Initial Solution
In the proposed SA-based branch division scheduling
(BDSSA) algorithm, for each branch in G', we build a data
structure that represents a possible solution to a branch
division scheduling on available service providers that satisfy
the QoS constraints and specified deadline.

Each branch consists of a number of tasks, and each task
has its own service providers. So, the proposed branch data
structure representation is a vector, called bds_vector,
consisting of a number of elements corresponding to the
branch tasks, and each task Ti in the branch is accompanied
by a list of service providers, spli, capable of executing this
task. An element gi that corresponds to a task Ti in the
bds_vector holds the ID of a service provider, chosen from
spli, to execute this task. Figure 5 shows an encoding for a
branch B that consists of r tasks, T1, T2, …, Tk, …, Tr, where
gk ∈ [1, mk], and mk is the number of services capable of
executing task Tk.

T1 T2 T3 … Tk … Tr

g1 g2 gk=2 gr

QoS attributes of services of

different providers for executing kth
task in branch B

Service
id

Processing
time

Cost

1 𝑡௞
ଵ 𝑐௞

ଵ

2 𝑡௞
ଶ 𝑐௞

ଶ

… … …

mk 𝑡௞
௠ೖ 𝑐௞

௠ೖ

splk
Figure 5. bds_vector representation of branch B

For example, the following bds_vector represents the
branch that consists of tasks T2, T3, and T4, in Figure 1, and
indicates that these tasks will be executed on services with ids
1, 3, and 2, respectively.

T2 T3 T4

1 3 2

Each vector for each branch consists of a random set of
providers that are capable of executing each task in the
branch. The bds_vector representing branch B must satisfy the
condition:

∑ 𝑡௜
௞

்೔∈஻ ≤ 𝑒𝑒𝑡(𝐵) (8)

According to the fitness evaluation for a bds_vector, a new
neighborhood solution is generated, then the neighborhood’s

 Moheb R. Girgis et al. / International Journal of Computing, 23(1) 2024, 61-71

66 VOLUME 23(1), 2024

fitness is evaluated, and the algorithm decides whether to
accept it or not. This process is repeated until the specified
minimum threshold of the SA temperature is reached. The
best schedule for each branch division in G' is kept. Then,
these best schedules, with the best schedules of
synchronization tasks, are used by the proposed SA-GWTSA
to obtain the best schedule for the whole DAG (workflow
tasks).

E.2. The Fitness Function
Based on the considered optimization objective, a fitness
function is utilized to assess the quality of the solution
(bds_vector). The scheduling goal here is to optimize the grid
system performance in terms of cost and time for each
division, as explained above. Therefore, in BDSSA, the
fitness function is the multi-objective function defined by Eq.
(7).

E.3. The Initial Temperature and Annealing Schedule
The initial temperature for the search is provided as a
parameter and gradually decreases with the progress of the
search. The annealing schedule is used to control the
probability of accepting a worse solution, as it is implemented
as a function of the current temperature.

E.4. The Neighborhood Function
This function is used to generate a new solution by making
small changes to the current solution. In BDSSA, a mutation
operator is used as a neighborhood function. Mutation is
performed by randomly choosing an element in the
bds_vector with certain mutation rate (Mr), then replacing the
id value in it with another id value from the remaining
providers' ids that can execute the corresponding task. An
example illustrating the mutation operation is shown in Fig. 6.

T1 T2 T3 T4
 T1 T2 T3 T4

4 3 5 3 4 1 2 3

Before mutation After mutation

Figure 6. An example illustrating the mutation operation

Algorithm 3: BDSSA, A SA-based branch division scheduling
algorithm
Input: Branch B {T1, T2, …, Tr};

Service Providers Lists SPL {spl1, spl2, …, splr}, where
spli is the list of service providers of task Ti in B;
dl(B) (Deadline of B);
Mr (Mutation Rate);
Maximum no. of iterations Max_N;
Initial temperature Init_Temper>0;
The cooling rate CR;
Weights (w1 and w2) of the fitness function;

Output: Best Schedule for branch B
Begin

1. Generate an initial solution Sc at random from spli of
each task Ti in B;

2. Evaluate Sc (calculate F(Sc) using Eq. (7))
3. Apply SA(Sc)
4. Begin
5. Temper= Init_Temper
6. Repeat
7. For n = 1 To Max_N Do
8. Generate a new valid solution Sn, a random
 neighbor of Sc, using mutation operator;
9. Calculate F(Sn), using Eq. (7);
 // Compare the change in objective function

10. Set ∆𝐹 = F(Sn) – F(Sc)
 // if the new solution is better, accept it
11. If ΔF ≤ 0 Then
12. Sc ← Sn // Sn replaces Sc
 // if the new solution is worse, accept it with a
 // probability
13. Else if random(0,1) < e- ΔF/Temper Then
14. Sc ← Sn
15. End For
16. Temper = Temper × CR; // decrement temperature
17. Until stopping criterion is true;
18. End
19. Return the Best Schedule;

End

Figure 7. The proposed SA-based branch task division
scheduling algorithm (BDSSA)

E.5. Overall BDSSA Algorithm
The BDSSA algorithm is given in Figure 7. The input to
BDSSA is presented by a branch B, the list of service
providers spli of each task Ti in B (see Figure 5), the dl(B)
(deadline of branch B), initial temperature Init_Temper, the
cooling rate CR, the max number of iterations Max_N, Mr
(mutation rate), and the weights w1 and w2 of the fitness
function. In steps 1-2, BDSSA generates an initial solution
(bds_vector), Sc, for branch B, where the elements in Sc are
populated by the service providers' IDs randomly selected
from the list of service providers of the corresponding tasks,
and evaluates its fitness using Eq. (7). The fitness evaluation
is done by calculating the schedule (time and cost) for Sc,
according to providers' IDs placed in its elements, using the
procedure ComputeBranchSchedule(), shown in Figure 8,
then the obtained time and cost are substituted in Eq. (7).
Next, steps 3-18 include the main steps of the SA algorithm.
In step 5, the current temperature Temper is set to the initial
temperature Init_Temper. Steps 6-17 include the outer loop of
the SA algorithm, which repeatedly decreases the temperature
by the cooling rate CR, until the stopping criterion is reached.
For each temperature, an inner loop (Steps 7-15) is executed
Max_N iterations. In each iteration, a neighboring solution Sn
is generated by applying the mutation operator. Sn is accepted
as the new current solution, if the difference ∆𝐹 = F(Sn) –
F(Sc) is greater than zero, i.e., the new solution is better. If ΔF
≤ 0, i.e., the new solution is worse, then accept it with a
probability, which is a function of Tempr, e-ΔF/Temper. This
probabilistic acceptance is achieved by generating a random
number in [0, 1), and if it is less than e-ΔF/Temper, then replace
the current solution by the new one. Finally, the best
bds_vector (best schedule for branch B) is returned in step 19.

E.6. Decoding
After obtaining the best bds_vector, Sc, which represents the
best schedule for the given branch B, it is decoded in order to
set the start and end time for each task composing B. This
decoding process is performed by applying the procedure
ComputeBranchSchedule(), shown in Figure 8. It uses the
provider's ID placed in each element in Sc to get the time and
price set by this provider for the corresponding task. Next, the
procedure calculates the best execution cost and time for the
whole branch by summing prices and times of all tasks in B,
using Eq. (5) and Eq. (6), respectively.

Moheb R. Girgis et al. / International Journal of Computing, 23(1) 2024, 61-71

VOLUME 23(1), 2024 67

Procedure ComputeBranchSchedule(Sc, SPL)
// Compute time schedule and cost of tasks in Sc according to
// providers ids placed in its elements using Eqs. (5) and (6)
Begin

1. time  0;
2. cost  0;
3. For element gk in bds_vector Sc
4. Get service provider id stored in gk (say s)
5. Get processing time 𝑡௞

௦ for task Tk from its splk
6. Get processing cost 𝑐௞

௦ for task Tk from its splk
7. time  time + 𝑡௞

௦
8. cost  cost + 𝑐௞

௦
9. End For
10. Return (time, cost)

End

Figure 8. The proposed procedure for computing a branch
schedule

F. OVERALL SA-BASED GRID WORKFLOW TASKS
SCHEDULING ALGORITHM (SA-GWTSA)
This section describes the proposed SA-based Grid Workflow
Tasks scheduling Algorithm (SA-GWTSA). It schedules the
tasks of a workflow on Grid services based on users’ QoS
constraints. Figure 9 shows the flowchart of the proposed SA-
GWTSA and Figure 10 shows its procedural details.

Figure 9. Flowchart of the proposed SA-GWTSA

As shown in Figure 10, the input to SA-GWTSA is the
workflow graph G (T, E, D), where T = {Ti, i = 1 . . . n}
denotes the workflow tasks set, E denotes the set of edges
connecting tasks, and D denotes the user’s provided deadline
for the execution of workflow. The output of SA-GWTSA is

an optimal schedule for all workflow tasks, which minimizes
both time and cost of workflow execution, such that the
optimized time is within the specified deadline. The algorithm
starts by requesting processing times and prices from
available Grid services for all workflow tasks. Then, it divides
workflow tasks into independent branches (sequences of
simple tasks) and synchronization tasks, by using the
DAG_Dividing algorithm, shown in Figure 3, generating a
reduced graph G'(P, E', D), where P denotes the divisions
(branches and synchronization tasks) set, and E' denotes the
set of directed edges between divisions in G'. Then, it uses the
deadline assignment algorithm, Deadline_Distributing, shown
in Figure 4, to distribute the overall deadline D over each
division. Finally, SA-GWTSA generates the execution
schedule for the entire workflow by using the optimal sub-
schedules of task divisions. If a task division is a branch, its
optimal schedule is obtained using BDSSA, as described in
Sec. E., otherwise STS is used, as described in Sec. D.1. If a
task division has one or more child divisions, then the
procedure HandleChildDivision() is called to compute their
schedules.

Algorithm 4: SA-GWTSA, a SA-based grid workflow tasks
scheduling algorithm
Input : G(T, E, D) (a workflow graph)
Output: An optimal workflow schedule
Begin

1. From available services, get processing price and time
∀ 𝑇𝑖 ∈ 𝑇

2. Call DAG_Dividing; // Transform G into
reduced graph G'(P, E', D)

3. Call Deadline_Distributing; // Distribute deadline
𝐷 ∀ 𝑃௜ ∈ 𝑃

4. Queue Q  []
5. For each 𝑃௜ ∈ 𝑃 do
6. scheduled[Pi]  false;
7. End For
8. EP  all entry divisions (divisions that has no parents)
9. For each Pi  EP do
10. If Pi is a synchronization task Then
11. Obtain an optimal sub-schedule for Pi via STS
12. Else // Pi is a branch division
13. Obtain an optimal sub-schedule for Pi via BDSSA
14. End IF
15. scheduled[Pi]  true;
16. HandleChildDivision(Pi);
17. End For
18. While Q is not empty do
19. B  remove top element of Q;
20. PB  all parent divisions of B;
21. If (scheduledൣP௝൧ = true ∀ P௝ ∈ PB) Then

22. start_time[B]  max୔ೕ∈୔୆ dl[Pj];

23. scheduled[B]  true;
24. Else
25. If B is not on top of Q Then add B to Q;
26. If B has child divisions Then
27. HandleChildDivision(B);
28. End If
29. End If
30. End While

End

Procedure HandleChildDivision(B)

Start

Read workflow graph G (T, E, D)

Request processing times and prices from
available Grid services for all workflow
tasks T based on users’ QoS constraints

Divide workflow tasks into independent
branches and synchronization tasks

Distribute overall deadline D over each
division

Obtain optimal sub-schedules of task divisions
(considering dependencies between them)

For synchronization tasks
Use STS

For branch divisions
Use BDSSA

Generate execution schedule for entire workflow by
using the optimal sub-schedules of task divisions

Stop

 Moheb R. Girgis et al. / International Journal of Computing, 23(1) 2024, 61-71

68 VOLUME 23(1), 2024

Begin
1. dl[B]  expected completion time of B;
2. If B has child divisions Then CP  child task divisions

of B;
3. For each Pj  CP do
4. If Pj is a branch division Then
5. start_time[Pj]  dl[B];
6. Obtain an optimal sub-schedule for Pj via

BDSSA;
7. scheduled[Pj]  true;
8. Pk child task division of Pj;
9. If Pk is not on top of Q Then add Pk to Q;
10. Else
11. If Pj is not on top of Q Then add Pj to Q;
12. End If
13. End For

End
Figure 10. The proposed SA-GWTSA

V. CASE STUDY
To illustrate the working of the proposed Grid scheduling
algorithm, SA-GWTSA, it has been applied to the workflow
modeled by the DAG given in Figure 2 (adapted from [13]),
which consists of 14 tasks. So, 14 service types have been
simulated, with a number of diverse service providers
supporting each service type. Table 1 shows, for each task, the
QoS attributes of providers that will provide the same service
type needed for processing this task. These attributes are:
provider id ID, processing time (sec), and cost ($). The
required deadline (DL) is assumed to be 350 sec.

The input to SA-GWTSA includes:
- the specified deadline D;
- SA parameters: Max_N, Mr, Init_Temper, CR, w1, and

w2;
- a file containing the edges of the DAG of the example

workflow: 1-2, 1-5, 1-7, 1-8, 2-3, 3-4, 4-14, 5-6, 6-14, 7-
10, 10-11, 11-14, 10-12, 12-13, 13-14, 8-9, 9-10; and

- a file containing the service providers’ information shown
in Table 1.

The output produced by SA-GWTSA consists of:
- a file containing the divisions of the example workflow

DAG, with their types, as shown in Table 2;
- a file containing the scheduled start and end times for each

task with its service provider id, as shown in Table 3. Note
that each provider id is prefixed with the corresponding
task number to differentiate between providers of different
tasks that have same id, for example, 3:1 refers to provider
with id 1 of task 3, and 5:1 refers to provider with id 1 of
task 5;

- a file containing the scheduled start and end times for each
division, as shown in Table 4;

- resultant best schedule time: 150 sec and best cost: $ 221.

Table 1. QoS attributes (provider id, processing time in
sec, and cost in $) of services of different providers for

executing the tasks of the example workflow
Task QoS Attributes Task QoS Attributes

T1

PID 0 1 2

T8

PID 0 1 2 3 4
Time 20 10 30 Time 10 20 30 40 25

Cost 20 30 10 Cost 60 40 20 10 35

T2
PID 0 1 2 3

T9
PID 0 1

Time 40 25 10 5 Time 6 18

Cost 10 25 40 45 Cost 15 5

T3

PID 0 1 2

T10

PID 0 1 2
Time 25 10 15 Time 20 10 30

Cost 10 20 16 Cost 20 30 10

T4

PID 0 1

T11

PID 0 1 2 3
Time 6 18 Time 40 25 10 30

Cost 15 5 Cost 10 25 40 20

T5

PID 0 1 2

T12

PID 0 1 2

Time 8 4 19 Time 8 4 19

Cost 10 15 5 Cost 10 15 5

T6

PID 0 1 2

T13

PID 0 1 2 3
Time 20 10 30 Time 10 5 15 17

Cost 20 30 10 Cost 10 15 5 3

T7

PID 0 1 2 3

T14

PID 0 1 2
Time 7 10 15 35 Time 40 25 10

Cost 25 20 15 7 Cost 10 25 40

Table 2. The divisions of the example workflow DAG, with
their types (Y: Synchronization, B: Branch)

Partition Type Tasks
P1 Y T1
P2 B T2, T3, T4
P3 B T5, T6
P4 B T7
P5 B T8, T9
P6 Y T10
P7 B T11
P8 B T12, T13
P9 Y T14

VI. EXPERIMENTAL RESULTS
Experiments have been carried out to assess SA-GWTSA
performance. Three workflows of 11, 14, and 25 tasks have
been used. For each task in each workflow, a different service
type with diverse service providers has been simulated.

Table 3. The scheduled start and end times for each task
with its service provider ID
Task Start End PID
T1 0 30 1:2
T2 30 70 2:0
T3 70 95 3:0
T4 95 101 4:0
T5 30 38 5:0
T6 38 68 6:2
T7 30 65 7:3
T8 30 40 8:0
T9 40 85 9:1
T10 65 95 10:2
T11 95 125 11:3
T12 95 103 12:0
T13 103 113 13:0
T14 125 150 14:1

Table 4. The scheduled start and end times for each

division
Partition Start End

P1 0 30
P2 30 101
P3 30 68
P4 30 65
P5 30 58
P6 65 95
P7 95 125
P8 95 113
P9 125 150

Moheb R. Girgis et al. / International Journal of Computing, 23(1) 2024, 61-71

VOLUME 23(1), 2024 69

SA-GWTSA has been applied to the three workflows,
with different deadlines, and the results are compared with 3
other scheduling algorithms, namely, Greedy-Time (GT) [13],
Greedy-Cost (GC) [13], and Modified Greedy-Cost (MGC).
For processing each task, GC chooses the lowest-cost service,
whereas GT chooses the quickest service. MGC searches for
the lowest-cost service for processing each task within the
required deadline. The evaluation criteria were the execution
cost and time constraint. The first criterion shows the
workflow tasks scheduling costs on the utilized service Grid,
while the second one shows whether the scheduling algorithm
has generated a schedule that satisfies the specified deadline.
For each deadline value, SA-GWTSA was run ten times and
the average of the best time and cost values generated were
calculated. The SA parameters used were: Max_N = 20, Mr =
0.05, CR=0.5, Init_Temper =0.9, and w1 = w2 = 0.5. The
algorithms were implemented using C#, and run on
TOSHIBA-Lap Intel(R) Core™ i5-2430M CPU, 2.4 GHz, 4
GB RAM.

Figures 12, 13 and 14 show comparisons of the results of
applying the 4 scheduling algorithms for the 3 workflows in
terms of the execution time and costs. Figures 12(a), 13(a) and
14(a) show that the expected execution time for the 3
workflows using SA-GWTSA and MGC increases as the
deadline is relaxed. For the 3 workflows, the expected
execution time using SA-GWTSA is less than MGC with
most deadlines. The workflows execution time using the GC
algorithm is higher and cannot meet the required deadline
when it is low. The GT provides lower execution time than
the other three algorithms.

As shown in Figures 11(b), 12(b) and 13(b), for the 3
workflows, the execution cost using the GT algorithm is
higher, but when using SA-GWTSA and MGC, it is reduced
as the deadline is relaxed. For the 3 workflows, the execution
cost using MGC is lower than SA-GWTSA. The GC provides
lower execution cost than the other three algorithms.

As can be seen from these results, SA-GWTSA tries to
optimize both the execution time and cost, the MGC
algorithm tries to minimize the cost while keeping the
execution time within the required deadline, whereas the GT
and GC algorithms try to minimize the execution time and
cost, respectively.

(a)

(b)

Figure 11. Expected execution time (a) and cost (b) for the
workflow of 11 tasks using the four scheduling algorithms

(a)

(b)

Figure 12. Expected execution time (a) and cost (b) for the
workflow of 14 tasks using the four scheduling algorithms

0
20
40
60
80

100
120
140
160
180

100 130 200 260 300 350 400E
xp

ec
te

d
ex

ec
u

ti
on

 ti
m

e
(s

ec
.)

Deadline

Workflow of 11 Tasks

SA GC GT MGC

0

100

200

300

400

100 130 200 260 300 350 400E
xp

ec
te

d
ex

ec
ut

io
n

co
st

 (
$)

Deadline

Workflow of 11 Tasks

SA GC GT MGC

0
20
40
60
80

100
120
140
160
180
200
220

150 200 260 300 350 400 1000E
xp

ec
te

d
ex

ec
ut

io
n

ti
m

e
(s

ec
.)

Deadline

Workflow of 14 Tasks

SA GC GT MGC

0
50

100
150
200
250
300
350
400
450

150 200 260 300 350 400 1000E
xp

ec
te

d
ex

ec
u

ti
on

 c
os

t (
$)

Deadline

Workflow of 14 Tasks

SA GC GT MGC

 Moheb R. Girgis et al. / International Journal of Computing, 23(1) 2024, 61-71

70 VOLUME 23(1), 2024

(a)

(b)

Figure 13. Expected execution time (a) and cost (b) for the
workflow of 25 tasks using the four scheduling algorithms

VII. CONCLUSION
This paper presents a proposed SA-based approach, SA-
GWTSA for scheduling workflow tasks on Grid services
based on users’ QoS constraints in terms of time and cost. For
a given collaborative set of workflow tasks, SA-GWTSA
generates an optimal schedule, which minimizes the execution
time and cost, such that the optimized time is within the
deadline imposed by the user. In this approach, a DAG is used
to represent the dependency between the workflow tasks. The
DAG is divided, and then the optimal sub-schedules of task
divisions are computed and utilized to generate the schedule
for executing the entire workflow. SA is employed in SA-
GWTSA to compute the optimal execution sub-schedule for
each branch division, which consists of a set of sequential
tasks.

Experiments have been carried out to assess SA-
GWTSA’s performance. The results are compared with three
other scheduling algorithms: GC, GT and MGC. The results
indicate that SA-GWTSA tries to optimize both the execution
time and cost; the MGC algorithm tries to minimize the cost
while keeping the execution time within the required deadline;
whereas the GT and GC algorithms try to minimize the
execution time and cost, respectively.

In the future work, we intend to modify the proposed
workflow scheduler SA-GWTSA to consider resource
dynamics, such that the schedule is adapted and updated
during scheduling according to these dynamics. We also
intend to augment BDSSA with a metaheuristic algorithm,
such as GA, in order to improve the optimal execution
schedule it produces for each branch division.

References

[1] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, E. Teller,
“Equation of state calculations by fast computing machines,” Journal of
Chemical Physics, vol. 21, issue 6, pp. 1087–1092, 1953.

[2] M. Aggarwal, R. D. Kent and A. Ngom, “Genetic algorithm based
scheduler for computational grids,” Proceedings of the 19th
International Symposium on High Performance Computing Systems and
Applications (HPCS’05), Guelph, ON, Canada, 15-18 May 2005, pp.
209-215.

[3] J. Yu and R. Buyya, “A budget constrained scheduling of workflow
applications on utility grids using genetic algorithms,” Proceedings of
the 15th IEEE International Symposium on High Performance
Distributed Computing (HPDC’06), Paris, France, 19-23 June 2006, pp.
1-10.

[4] J. Yu and R. Buyya, “Scheduling scientific workflow applications with
deadline and budget constraints using genetic algorithms,” Scientific
Programming, vol. 14, pp. 217–230, 2006.

[5] L. Zhang, Y. Chen, R. Sun, S. Jing and B. Yang, “A task scheduling
algorithm based on PSO for grid computing,” International Journal of
Computational Intelligence Research, vol. 4, issue 1, pp. 37–43, 2008.

[6] R. Chen, D. Shiau, S. H. Andlo, “Combined discrete particle swarm
optimization and simulated annealing for grid computing scheduling
problem,” Lecture Notes in Computer Science, vol. 57, Springer, Berlin,
pp. 242–251, 2009.

[7] A. Kant, A. Sharma, S. Agarwal, and S. Chandra, “An ACO approach to
job scheduling in grid environment,” In: B. K. Panigrahi, S. Das, P. N.
Suganthan and S. S. Dash (eds), Swarm, Evolutionary, and Memetic
Computing, SEMCCO 2010, Lecture Notes in Computer Science, vol.
6466, Springer, Berlin, Heidelberg, 2010.

[8] Y. Jiang, M. Chen, “Task scheduling for grid computing systems using
a genetic algorithm,” The Journal of Supercomputing, vol. 71, issue 4,
pp. 1357–1377, 2015.

[9] L. Bouali, K. Oukfif, S. Bouzefrane, F. B. Oulebsir, “A hybrid
algorithm for DAG application scheduling on computational grids,”
International Conference on Mobile, Secure and Programmable
Networking (MSPN’2015), Paris, France, June 2015, pp. 63-77.

[10] E. Gabaldon, F. Guirado, J. L. Lerida, J. Planes, “Particle swarm
optimization scheduling for energy saving in cluster computing
heterogeneous environments,” Proceedings of the 2016 IEEE 4th
International Conference on Future Internet of Things and Cloud
Workshops (FiCloudW), Vienna, Austria, August 2016, pp. 321–325.

[11] E. Gabaldon, S. Vila, F. Guirado, J. L. Lerida, J. Planes, “Energy
efficient scheduling on heterogeneous federated clusters using a fuzzy
multi-objective meta-heuristics,” Proceedings of the IEEE International
Conference on Fuzzy Systems (FUZZ-IEEE), Naples, Italy, 2017, pp. 1-
6.

[12] M. T. Younis, S. Yang, “Hybrid meta-heuristic algorithms for
independent job scheduling in grid computing,” Applied Soft
Computing, vol. 72, pp. 498-517, 2018.

[13] T. K. Ghosh, S. Das, N. Ghoshal, “Job scheduling in computational grid
using a hybrid algorithm based on genetic algorithm and particle swarm
optimization,” O. Castillo, D. Jana, D. Giri, A. Ahmed (eds), Recent
Advances in Intelligent Information Systems and Applied Mathematics,
ICITAM, Studies in Computational Intelligence, vol. 863, Springer,
2019.

[14] A. Chhabra, G. Singh, and K. S. Kahlon, “Performance‑aware
energy‑efficient parallel job scheduling in HPC grid using
nature‑inspired hybrid meta‑heuristics,” Journal of Ambient Intelligence
and Humanized Computing, vol. 12, pp. 1801–1835, 2021.

[15] W. Abdulal, O. A. Jadaan, A. Jabas, and S. Ramachandram, “Mutation
based simulated annealing algorithm for minimizing makespan in grid
computing systems,” Proceedings of the IEEE International Conference
on Network and Computer Science (ICNCS’2011), Kanyakumari, India,
April 2011, pp. V6-90-V6-94.

[16] J. Yu, R. Buyya and C. K. Tham, “QoS-based scheduling of workflow
applications on service grids,” Proceedings of the 1st IEEE
International Conference on e-Science and Grid Computing (e-
Science’05), Melbourne, Australia, December 2005, pp. 1-8.

0
50

100
150
200
250
300
350
400
450

260 400 500 600 700 800 900 1100

E
xp

ec
te

d
ex

ec
ut

io
n

ti
m

e
(s

ec
.)

Deadline

Workflow of 25 Tasks

SA GC GT MGC

0
100
200
300
400
500
600
700
800

260 400 500 600 700 800 900 1100

E
xp

ec
te

d
ex

ec
ut

io
n

co
st

 (
$)

Deadline

Workflow of 25 Tasks

SA GC GT MGC

Moheb R. Girgis et al. / International Journal of Computing, 23(1) 2024, 61-71

VOLUME 23(1), 2024 71

[17] S. H. Benedict and V. Vasudevan, “Improving scheduling of scientific
workflows using tabu search for computational grids,” Information
Technology Journal, vol. 7, issue 1, pp. 91–97, 2008.

[18] M. Meddeber and B. Yagoubi, “Tasks assignment for Grid computing,”
International Journal of Web and Grid Services, Inderscience
Enterprises Ltd., pp. 427-443, 2011.

[19] N. A. Bahnasawy, M. A. Koutb, M. Mosa and F. Omara, “A new
algorithm for static task scheduling for heterogeneous distributed
computing systems,” African Journal of Mathematics and Computer
Science Research, vol. 4, issue 6, pp. 221-234, 2011.

[20] A. M Bidgoli and Z. M. Nezad, “A new scheduling algorithm design for
grid computing tasks,” Proceedings of the 5th Symposium on Advances
in Science and Technology, Khavaran Higher-education Institute,
Mashhad, Iran, 2011, pp. 12-14.

[21] R. Goel, D. Singh, and Minakshi, “Scheduling algorithm design for grid
computing,” International Journal of Innovations in Engineering and
Technology (IJIET), vol. 3, issue 1, October 2013.

[22] H. S. Hossam, H. Abdel-Galil, and M. Belal, “WorkStealing algorithm
for load balancing in grid computing,” International Journal of
Advanced Computer Science and Applications, vol. 12, issue 7, pp. 98-
104, 2021.

[23] M. Rahman, R. Hassan, R. Ranjan, and R. Buyya, “Adaptive workflow
scheduling for dynamic grid and cloud computing environment,”
Concurrency and Computation: Practice and Experience, vol. 25, pp.
1816–1842, 2013.

[24] P. Chauhan and Nitin, “Decentralized scheduling algorithm for DAG
based tasks on P2P grid,” Hindawi Publishing Corporation Journal of
Engineering, vol. 2014, Article ID 202843, pp. 1-14, 2014.

[25] R. Garg and A. K. Singh, “Adaptive workflow scheduling in grid
computing based on dynamic resource availability,” Engineering
Science and Technology, an International Journal, vol. 18, pp. 256-269,
2015.

MOHEB R. GIRGIS received his B.Sc.
degree from Mansoura University,
Egypt, in 1974, M.Sc. degree from
Assuit University, Egypt, in 1980, and
Ph.D. degree from the University of
Liverpool, England, in 1986. He is a
professor of computer science at
Minia University, Egypt. His research
interests include software engine-
ering, software testing, information
retrieval, evolutionary algorithms,
image processing, computer net-

works, and bioinformatics.

TAREK M. MAHMOUD received his
B.Sc. degree from Minia University,
Egypt, in 1984, M.Sc. degree from
Assuit University, Egypt, in 1991, and
Ph.D. degree from Berman University,
German, in 1997. Currently, he is a
professor of computer science at
faculty of computers and artificial
intelligence, University of Sadat City,

Egypt. His research interests include computer networks,
pattern recognition, social networks, analytics, web and text
mining and artificial intelligence.

HAGAR M. AZZAM received her B.Sc.
degree from Minia University, Egypt,
in 2005, M.Sc. degree from Minia
University, Egypt, in 2016, and she is
a Ph.D. student in Minia University,
Egypt. she is an assistant lecturer of
computer science at Minia University,
Egypt. Her research interests include
parallel computing, grid computing,
cloud computing.

