

72 VOLUME 23(1), 2024

Date of publication MAR-31, 2024, date of current version NOV-13, 2023.
www.computingonline.net / computing@computingonline.net

Print ISSN 1727-6209
Online ISSN 2312-5381
DOI 10.47839/ijc.23.1.3437

A Comparative Study of Data Annotations
and Fluent Validation in .NET

VOLODYMYR SAMOTYY1,2, ULYANA DZELENDZYAK2, NAZAR MASHTALER2
1 Department of Automatic Control and Information Technology, Cracow University of Technology,

Warszawska 24, Cracow, 31155, Poland, vsamotyy@pk.edu.pl
2 Department of Computerized Automatic Systems, Lviv Polytechnic National University,

S. Bandery 12, Lviv, 79013, u.dzelendzyak@gmail.com, nazar.o.mashtaler@lpnu.ua

Corresponding author: Volodymyr Samotyy (e-mail: vsamotyy@pk.edu.pl).

 ABSTRACT This article presents a comparative study of two validation approaches in .NET – Data Annotations and Fluent
Validation – analyzing their syntax, functionality, and other factors (such as readability, maintainability, and performance).
The study begins by examining the Data Annotations approach, an in-built validation mechanism in the .NET Framework that
uses validation attributes to validate model properties. While Data Annotations offers a simple syntax and is well-known to
.NET developers, it may not be ideal for more complex validation scenarios and could become verbose and difficult to maintain.
The study then introduces the Fluent Validation approach, which utilizes a fluent syntax to define validation rules in a more
expressive, readable, and concise manner. With its flexible architecture and fluent API (application programming interface),
Fluent Validation provides greater control over the validation process, enabling better maintainability and performance. The
study concludes by highlighting the merits and drawbacks of both approaches, noting that the choice of validation approach
will depend on the specific requirements of the project at hand.

 KEYWORDS validation; NET Data Annotations; Fluent Validation; syntax; readability; maintainability;
performance; expressive syntax; flexible architecture.

I. INTRUDUCTION
ALIDATION is a crucial factor concerning web form
design in e-commerce. The Baymard Research Institute,

which specializes in usability research, conducted a study on
the use of web forms. They analyzed 37 open sources, each of
which conducted its research on web forms. The results showed
that nearly 70% of users abandoned their shopping carts, with
60% of these abandonments occurring because they were
simply exploring the product and not yet ready to make a
purchase. However, 27% of users specifically cited the web
form as the reason for abandoning the checkout, citing issues
such as complexity, length, and validation problems [1, 2].

These findings indicate that improving the web form
interface could lead to a significant increase in conversion
rates, by up to 35%. Given the size of the e-commerce market
in the US, which is 260 billion dollars, simply improving the
web form by reducing the number of fields and ensuring proper
validation could result in an additional 260 billion dollars in
annual earnings for the industry.

Validation is such a serious concept that there is even a
special ISO standard that defines validation. “Validation –
confirmation, through the provision of objective evidence, that
the requirements for a specific intended use or application have
been fulfilled” (ISO 9000:2005) [3, 4].

The purposes of validation are to obtain the correct data in

the correct format for subsequent processing, to protect the user
from all sorts of data interception, and for application
protection. We do not want hacking to be enabled through the
web form, allowing others to gain access to the user's data
entered earlier.

The most important field of client validation, without which
nothing can be processed, is validation on the server. This is
the main validation method and it is responsible for security.
Client validation primarily affects the user’s experience, also
UX. Effective validation contributes to and significantly
enhances positive user’s interactions and experiences on a
website's UI/UX [5, 6].

What makes a good validation? A study was undertaken by
Luke Wroblewski, a well-known usability expert [7, 8]. He
concluded that, firstly, the validation must be in the right place.
This refers to the form of a message about a certain error, where
the user's error message is displayed so that it is convenient for
the user to work with.

Secondly, validation must occur at the right time (inline
validation), no one wants to fill out the entire form, only to find
that, when submitting, there are some errors which means they
need to go back and start over. It would be even worse if some
data was lost.

Thirdly, the field needs to be the right color. We are used to
seeing error fields highlighted in red, but research shows that

V

Volodymyr Samotyy et al. / International Journal of Computing, 23(1) 2024, 72-77

VOLUME 23(1), 2024 73

one of the best options is still orange. It does not overwhelm
the user as much; orange is also a color that blind people can
see.

Fourthly, understandable language must be used. This is a
broad concept. We must explicitly tell the users what they did
wrong and how to fix it, and not just highlight the erroneously
filled field and leave the user to deal with it alone.

According to Luke Wroblewski, inline validation leads to
improvements in the following metrics [7, 8].

• a 22% increase in success rates;
• a 22% decrease in errors made;
• a 31% increase in satisfaction rating;
• a 42% decrease in completion times;
• a 47% decrease in the number of eye fixations.
We have reviewed why validation is important from a

user’s experience point of view and how it can help us to make
our product more user-friendly. Also, validation is important
on the back-end side. The validation of data inputs for APIs is
critical in ensuring the quality and accuracy of data being
processed and stored. It serves multiple purposes such as data
integrity, data security, and user experience.

In terms of data integrity, input validation helps to ensure
that the data being processed and stored is accurate, complete,
and consistent. Input validation ensures consistency by
checking that the data entered in a system meets specified rules,
such as format, range, and type. This helps prevent inaccurate
or incomplete information from being stored, maintaining the
integrity and reliability of the stored data. It is achieved by
checking the data for correctness and completeness before it is
processed and stored, thus reducing the likelihood of errors in
the data.

In terms of data security, input validation plays a crucial
role in protecting against malicious attacks such as cross-site
scripting (XSS) and SQL (structured query language) injection.
By validating inputs, APIs can prevent these types of attacks
by blocking malicious data inputs that contain malicious code.
This helps to protect sensitive data and prevent unauthorized
access to data and systems.

Finally, input validation also has an impact on user’s
experience. By providing clear and concise feedback to users
regarding their data inputs, APIs can improve the user’s
experience. This can result in increased user’s satisfaction,
reduced errors, and faster completion times. Furthermore, the
research by Luke Wroblewski shows that proper validation can
lead to significant improvements in completion times, error
rates, and satisfaction ratings.

Real-life examples underscore the importance of server-
side validation.

Preventing hacking attacks involves validating user’s input,
such as login credentials, to ensure it adheres to the correct
format and meets security requirements like minimum
password length. Failure to validate inputs can expose
vulnerabilities, allowing malicious users to inject harmful code
or steal sensitive information.

Enforcing business rules is exemplified by an e-commerce
API validating user’s input for a product order, confirming it
falls within specified parameters like the available stock of the
product. This validation minimizes errors and ensures the API
operates in alignment with established business rules.

Improving user’s experience through API validation of
user’s input enables the provision of clear error messages and
guidance to help user correct mistakes. For example, a weather
API might verify the validity of a city name, offering a list of

suggestions if the input is invalid.
Maintaining data integrity is crucial for an API storing data

in a database. Validation of inputs ensures data meets
constraints such as data types or length requirements,
preserving data integrity and preventing errors that could cause
the API to crash or produce incorrect results.

In conclusion, input validation is a crucial aspect of
development that should not be overlooked. Proper validation
strategies implemented in APIs ensure data quality, accuracy,
enhanced data security, and an improved user’s experience [9,
10].

II. REVIEW OF FLUENT INTERFACE APPROACH
It has been established that proper validation procedures are
crucial for the successful creation and implementation of any
product. This paper aims to examine the traditional validation
methods utilized in .Net and compare them with a proposed
alternative approach [11, 12].

Before comparing classic .Net validation to alternative
approaches, it is important to examine the Fluent Interface
approach. The Fluent Interface design pattern was first
introduced and widely recognized by Martin Fowler [13, 14], a
renowned software developer and author in the field of
software engineering. The pattern is characterized using
method chaining, where the result of each method call is passed
as an input to the subsequent method in the chain, creating a
readable, concise, and expressive syntax for complex
operations. This approach was inspired by natural language and
was intended to make code more readable and easier to
understand.

The standard Object-Oriented Programming (OOP)
approach involves creating objects, defining classes and
methods, and then using those objects to perform specific
operations. In this approach, each method typically returns a
value or updates the state of the object and is called in a separate
statement. An example is given in Code Snippet 1.

Code Snippet 1 – Standard Object-Oriented Programming

(OOP) approach

 Volodymyr Samotyy et al. / International Journal of Computing, 23(1) 2024, 72-77

74 VOLUME 23(1), 2024

The code defines a C# class called "BankAccount" with
properties representing account details such as number, holder,
balance, account type, and bank name. It includes methods for
depositing and withdrawing funds. An instance of this class is
created, representing a bank account for "John Doe" with an
initial balance of 0 in a savings account at "MyBank". The code
then simulates a deposit of 100 units and a withdrawal of 50
units from the account. In summary, the class encapsulates
basic banking functionality with properties for account details
and methods for financial transactions.

On the other hand, Fluent Interfaces provide a way to create
a more readable, expressive, and natural-language-like syntax
for using objects. Instead of using separate statements for each
method call, methods are chained together using a fluid and
readable syntax. An example is given in Code Snippet 2. In this
example, a fluent interface pattern is introduced. In the updated
"BankAccount" class, setter methods like "SetAccountNumber
"and "SetAccountHolder" are modified to return the instance of
the "BankAccount" class itself, allowing for method chaining.
This enables a more concise and expressive way to create an
account, set its properties, deposit funds, and withdraw funds
in a single chain of method calls. The fluent interface pattern is
a design choice that enhances readability and provides a more
streamlined way to interact with the "BankAccount" class,
especially when performing multiple operations in sequence.

Code Snippet 2 – Fluent Interfaces approach

The Fluent Interface approach provides more expressive

and readable code, as each method call is part of a chain, and
the code reads like a sentence in natural language. This makes
it easier to see the entire process of creating a bank account,
setting its properties, and performing transactions all in one
place, without having to switch between multiple statements.

Fluent interfaces are commonly used in domain-specific
languages (DSLs), where they can provide a more human-
readable syntax for defining complex operations. They are also
used in APIs, where they can make it easier to construct
complex object configurations or perform multiple operations
in a single chain of method calls [13, 14]. Table 1 lists the
advantages and disadvantages of the Fluent Interface approach.

Table 1. The advantages and disadvantages of the fluent
interface approach

Advantages Disadvantages
Improved code readability:

Fluent Interfaces can make the code
more readable and expressive, as they
allow developers to write code that
resembles natural language.

Increased code expressiveness:
Fluent Interfaces allow developers to
write code that is more expressive
and easier to understand, as the code
can describe complex operations
more intuitively and
straightforwardly.

Better encapsulation: Fluent
Interfaces can help encapsulate
complex logic behind a simple and
intuitive API, making it easier for
other developers to use the code.

Improved code organization:
Fluent Interfaces can help organize
code into logical blocks and separate
functionality, making it easier to
maintain and reuse.

Better type checking: Fluent
Interfaces can help enforce type
checking and prevent certain types of
errors from occurring, as the compiler
will catch errors early in the
development process.

Improved code refactoring:
Fluent Interfaces can help simplify
code refactoring, as it can make it
easier to identify and isolate code
blocks that need to be changed.

Increased complexity: Fluent
Interfaces can make the code more
complex and harder to understand,
especially for other developers who
may not be familiar with this pattern.

Overuse of method chaining:
Overuse of method chaining can lead
to unreadable and hard-to-maintain
code.

Error-prone: Fluent Interfaces
can be error-prone, especially if the
API is not designed correctly. It can
be difficult to catch errors early in the
development process.

Hard to debug: Debugging can
be difficult, as errors in the Fluent
Interface can be hard to trace back to
the source.

Limited compatibility: Fluent
Interfaces are not always compatible
with all programming languages and
may not be well supported by certain
tools and libraries.

This approach is commonly employed in different domains,

involving libraries for database access and query building,
testing frameworks like JUnit and TestNG, text processing
libraries such as Apache Commons Lang and Guava, build
tools like Gradle and Maven, and web page scraping and
parsing libraries.

The validation approach that is considered in this article is
based on the Fluent Interface method [15, 16].

III. COMPARING FLUENT VALIDATION WITH DATA
ANNOTATION
Net ecosystem already has an open-source solution that allows
us to use the Fluent Interface approach in validation. Fluent
Validation is a .NET NuGet package for implementing model
validation that is both readable and maintainable [17, 18]. It
provides a fluent API for defining validation rules for .NET
models in a way that is intuitive and expressive. Fluent
Validation is compatible with popular .NET frameworks like
ASP.NET MVC, Web API, and NancyFX.

One of the key benefits of Fluent Validation is its ability to
encapsulate all validation logic within a single class for each
model. This makes it easy to maintain and test the validation
rules and helps to ensure the separation of concerns between
the model, the view, and the controller.

Fluent Validation supports a variety of validation rules out
of the box, including:

• Required fields;
• String length constraints;
• Regular expression matching;
• Numeric ranges;
• Date and time comparisons;
• Predicate-based rules;

Volodymyr Samotyy et al. / International Journal of Computing, 23(1) 2024, 72-77

VOLUME 23(1), 2024 75

• Custom validation rules using delegate functions.
It also supports the validation of complex objects,

collections, and nested properties. Fluent Validation allows the
encapsulation of all validation logic within a single class for
each model, making it easy to maintain and test the validation
rules. It also integrates well with Dependency Injection,
making it easy to use in a variety of applications [19, 20].

The same validation logic can be implemented using the
classic Data Annotation approach and this can be compared
with the Fluent Validation approach. Code Snippet 3 shows an
example of classic Data Annotation. The code introduces a
class called Customer with three properties: Name, Email, and
Age. To enforce data integrity, each property is adorned with
specific validation attributes. For the Name property, it requires
a non-null value and imposes a maximum length of 50
characters. The Email property must be a valid email address
and is also mandatory. Lastly, the Age property is subject to
two conditions: it must have a non-null value, and its value
must be 18 or higher. These annotations act as clear and concise
rules for validating and maintaining the correctness of customer
data.

Code Snippet 3 – Classic Data Annotation validation
approach

Code Snippet 4 shows a Fluent Validation example. The

code implements the same logic as in Code Snippet 3 but uses
a different approach.

Code Snippet 4 – Fluent validation approach

In both examples, the validation rules are defined in the

Customer class. With data annotations, the rules are defined
using attributes applied to the properties. With Fluent
Validation, the rules are defined using a fluent interface in a
separate validator class.

Data annotations are attributes that can be
applied to model properties to specify
validation rules. They are part of the
‘System.ComponentModel.DataAnnotations’ namespace and
include attributes such as ‘Required’, ‘StringLength’, and
‘RegularExpression’.
Data annotations are simple to use and easy to understand but
can only provide basic validation [21].

Fluent Validation, on the other hand, is a library that
provides a more flexible and powerful way to validate objects.

It uses a fluent interface to define validation rules, which makes
it easier to read and maintain. Fluent Validation allows for
complex validation rules and can be more easily integrated into
a larger validation framework.

There are often cases when predefined validators are not
enough, and custom ones need to be created. Let us implement
a custom validator that checks if a string property is a valid
ISBN (International Standard Book Number) code.

Using the classic approach, we need to create a class that
inherits from the ‘ValidationAttribute’ class and overrides the
‘IsValid’ method. In the ‘IsValid’ method the ISBN code is
checked if it is valid using a regular expression. The details are
provided in Code Snippet 5.

Code Snippet 5 – Classic Data Annotation custom validation

This custom validation attribute can be used by applying it

to a string property in the model:

Code Snippet 6 – Data validation attribute

The ‘IsValid’ method of the custom validation attribute will

be automatically called by the validation framework to perform
the ISBN code validation. If the validation fails, a
‘ValidationResult’ with an error message will be returned.

Code Snippet 7 shows an equivalent example of ISBN
validation using Fluent Validation:

Code Snippet 7 – Fluent validation custom validation

In this example, the validation rules are defined using

Fluent Validation's fluent interface in a separate
‘BookValidator’ class. The ‘RuleFor’ method is used to specify
the validation rules for the ‘ISBN’ property. The ‘Must’
method is used to specify a custom validation method

 Volodymyr Samotyy et al. / International Journal of Computing, 23(1) 2024, 72-77

76 VOLUME 23(1), 2024

‘IsValidISBN’ that will perform the ISBN code validation that
is the same as in Code Snippet 5. If the validation fails, an error
message is returned using the ‘WithMessage’ method.

The Fluent Interface approach requires less code, and a
developer does not need to know the structure of the .Net
validation hierarchy [22].

As the final step in our overview, we create unit tests for
both variants of ISBN validation. An example of a unit test for
an ISBN validator using custom validation attributes is shown
in Code Snippet 8. This code defines a set of unit tests for
validating ISBN attributes in C#. The tests cover scenarios such
as checking if a valid ISBN returns true, an invalid ISBN
returns false, and a null ISBN returns false. The tests create
instances of an ‘ISBNAttributeTestModel’, representing a
model with an ISBN property, and use the
‘Validator.TryValidateObject’ method to perform validation
based on attributes. Assertions such as ‘Assert.IsTrue’ and
‘Assert.IsFalse’ confirm the expected validation outcomes.

Code Snippet 8 – Unit tests coverage for classic Data
Annotation custom validation

An example of a unit test for an ISBN validator using Fluent

Validation is shown in Code Snippet 9.

Code Snippet 9 – Unit tests coverage for Fluent validation

This code snippet introduces a different approach to ISBN
validation using a custom ‘ISBNValidator’ class. Instead of
relying on attribute-based validation as in the Conde Snippet 8,
it uses a separate validator class that takes an ‘ISBN’ object and
returns a validation result. The tests instantiate the
‘ISBNValidator’, call its Validate method with instances of
‘ISBN’, and then use assertions to verify the validity of the
‘ISBN’ values.

For unit testing purposes, Fluent Validation can be more
convenient, as it provides a fluent interface for defining
validation rules that can be easily unit tested. It also separates
the validation logic from the model, making it more flexible
and easier to test individual validation rules in isolation [23].

With custom validation attributes, unit testing can be a bit
more cumbersome as it requires the creation of a validation
context and the use of the ‘Validator’ class to test the validation
logic [24]. However, it is still possible to write unit tests for
custom validation attributes [25] and the tests will be generally
like those for Fluent Validation.

IV. CONCLUSION
Custom Validation Attribute in C# and Fluent Validation are
two approaches for implementing validation logic in .NET
applications. There are several key differences between these
two approaches.

First off, let us talk about encapsulation. Custom Validation
Attributes get slapped right onto your model properties, while
Fluent Validation takes a different route by bundling all
validation logic into separate classes for each model. This
makes Fluent Validation a breeze for keeping things organized
and testing them effectively.

Now, readability is a big deal. Fluent Validation comes out
on top, offering a more user-friendly and straightforward way
to lay down your validation rules. Custom Validation
Attributes, on the flip side, can get a bit wordy and might not
be as instantly clear.

Reusability is another factor. Custom Validation Attributes
win here because you can reuse them across different models
and properties. Fluent Validation, on the other hand, demands
separate validation classes for each model, which could cramp
your style when it comes to widespread use.

Flexibility matters too. Fluent Validation flexes its muscles
with a wide range of built-in rules and the ability to craft your
own using delegate functions. Custom Validation Attributes
are played by a set of predetermined rules.

Lastly, testing is crucial. Fluent Validation makes it easy by
clearly dividing rules into separate classes, simplifying targeted
testing. Testing Custom Validation Attributes might be a bit
trickier since the logic is directly embedded in model
properties.

In conclusion, the choice between Custom Validation
Attributes and Fluent Validation depends on the specific
requirements of the project. Custom Validation Attributes can
be a good choice for simple validation logic, which can be
reused across multiple models, while Fluent Validation is a
better choice for more complex validation logic, and for
projects that prioritize maintainability and testability.

References

[1] Cart & Checkout Usability Research, [Online]. Available at:
https://baymard.com/research/checkout-usability.

[2] T. Arciuolo, A. Abuzneid, “Simultaneously shop, bag, and checkout
(2SBC-Cart): A smart cart for expedited supermarket shopping,”

Volodymyr Samotyy et al. / International Journal of Computing, 23(1) 2024, 72-77

VOLUME 23(1), 2024 77

Proceedings of the 2019 International Conference on Computational
Science and Computational Intelligence (CSCI), Las Vegas, NV, USA,
05-07 December 2019, pp. 1162-1167.
https://doi.org/10.1109/CSCI49370.2019.00219.

[3] ISO 9000:2005(EN) validation, [Online]. Available at:
https://www.iso.org/obp/ui/#iso:std:iso:9000:ed-3:v1:en.

[4] R.-C. Liao, “Customers' perspectives on ISO 9001 QMS auditors'
personality traits: A preliminary investigation from Taiwan's certificated
companies,” Proceedings of the 2014 International Conference on
Service Sciences, Wuxi, China, 2-23 May 2014, , pp. 215-219.
https://doi.org/10.1109/ICSS.2014.40.

[5] The Current State of Checkout UX – 18 Common Pitfalls & Best
Practices, [Online]. Available at: https://baymard.com/blog/current-state-
of-checkout-ux.

[6] R. Helmi, A. Lee, Md G. Md Johar, A. Jamal, L.F. Sim, “Quantum
checkout: An improved smart cashier-less store checkout counter system
with object recognition,” Proceedings of the 2021 IEEE 11th IEEE
Symposium on Computer Applications & Industrial Electronics
(ISCAIE), Penang, Malaysia, 03-04 April 2021, pp. 151-156.
https://doi.org/10.1109/ISCAIE51753.2021.9431839.

[7] L. Wroblewski, Inline Validation in Web Forms, September 01, 2009,
[Online]. Available at: https://alistapart.com/article/inline-validation-in-
web-forms/.

[8] S. Yadav, S. Shukla, “Analysis of k-fold cross-validation over hold-out
validation on colossal datasets for quality classification,” Proceedings of
the 2016 IEEE 6th International Conference on Advanced Computing
(IACC), Bhimavaram, India, 27-28 February 2016, pp. 78-83.
https://doi.org/10.1109/IACC.2016.25.

[9] M. J. Price, C# 9 and .NET 5 – Modern Cross-Platform Development:
Build intelligent apps, websites, and services with Blazor, ASP.NET
Core, and Entity Framework Core using Visual Studio Code, 5th ed.,
Packt Publishing, 2020; pp. 558–563.

[10] C. Rippon, ASP.NET Core 5 and React: Full-stack web development
using .NET 5, React 17, and TypeScript 4, Packt Publishing, 2021.

[11] S. Resca, Hands-On RESTful Web Services with ASP.NET Core 3, 1st ed,
Packt Publishing, 2019, pp. 90–99.

[12] D. Damyanov, Z. Varbanov, S. Varbanova, “An improved approach of
using data storage services in ASP.NET Core,” Proceedings of the 2022
International Conference Automatics and Informatics (ICAI), Varna,
Bulgaria, 06-08 October 2022, pp. 287-291.
https://doi.org/10.1109/ICAI55857.2022.9959991.

[13] M. Fowler, Fluent Interface, December 20, 2005, [Online]. Available at:
https://martinfowler.com/bliki/FluentInterface.html.

[14] Q. Li, C. Jiao, C. Yang, Z. Zhang, L. Yang, “A feasible method of virtual
flow field simulation – Part I: An interface from fluent to RTT,”
Proceedings of the 2018 5th International Conference on Information
Science and Control Engineering (ICISCE), Zhengzhou, China, 20-22
July 2018, pp. 25-29. https://doi.org/10.1109/ICISCE.2018.00015.

[15] M. Fowler, Domain-Specific Languages, 1st ed., Addison-Wesley, 2010,
pp. 27–87.

[16] T. R. Silva, “Towards a domain-specific language for behaviour-driven
development,” Proceedings of the 2023 IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC), 03-06 October
2023, pp. 283-286. https://doi.org/10.1109/VL-HCC57772.2023.00054.

[17] K. Chowdhury, Mastering Visual Studio 2019, 2nd ed., Packt Publishing,
2019, pp. 222–244.

[18] H. Taniguchi, K. Nakasho, “Visual Studio code extension and auto-
completion for Mizar language,” Proceedings of the 2021 Ninth
International Symposium on Computing and Networking (CANDAR),
Matsue, Japan, 23-26 November 2021, pp. 182-188.
https://doi.org/10.1109/CANDAR53791.2021.00033.

[19] FluentValidation, [Online]. Available at:
https://docs.fluentvalidation.net/en/latest/index.html.

[20] R. Chatley, S. Uchitel, J. Kramer, J. Magee, “Fluent-based Web
animation: exploring goals for requirements validation,” Proceedings of
the 27th International Conference on Software Engineering, ICSE, St.

Louis, MO, USA, 15-21 May 2005, pp. 674–675.
https://doi.org/10.1145/1062455.1062603.

[21] A. Freeman, Pro ASP.NET Core 6: Develop Cloud-Ready Web
Applications Using MVC, Blazor, and Razor Pages, 9th ed., Appres,
2022, pp. 847–892. https://doi.org/10.1007/978-1-4842-7957-1_29.

[22] A. Lock, ASP.NET Core in Action, 3rd ed., Manning Publications Co.,
2023, pp. 250–261.

[23] M. Choudhari, Fluent Validation – Unit Testing the Validators.
November 25, 2022, [Online]. Available at:
https://thecodeblogger.com/2022/11/25/fluent-validation-unit-testing-
the-validators/.

[24] A. Walker, Unit Test an ASP.NET Custom Validator Part 1. May 19,
2021, [Online]. Available at: https://www.linkedin.com/pulse/unit-test-
aspnet-custom-validator-part-1-allan-walker/.

[25] R. Osherove, The Art of Unit Testing, 3rd ed., Manning Publications Co.,
2024, pp. 19–123.

VOLODYMYR SAMOTYY received an
M.S. in Automation from Lviv
Polytechnic National University,
Ukraine in 1984, a Ph.D. in 1990, and a
D.S. in computers, systems and
networks, elements and devices of
computers and control systems in 1997.
He has been a Professor since 2001. He
is currently a Full Professor at the
Department of Automation and
Information Technologies, Cracow
University of Technology, Poland, and
the Department of Computerized

Automatic Systems at Lviv Polytechnic National University,
Ukraine. His research interests include evolutionary models,
numerical methods, information security, and digital signal
processing. ORCID: 0000-0003-2344-2576

ULYANA DZELENDZYAK received an M.S.
in Applied Mathematics from Lviv
Polytechnic National University, Ukraine
in 1989, and a PhD in 2006. Since 2009 he
has been an Associate Professor of the
Department of Computerized Automatic
Systems at Lviv Polytechnic National
University, Ukraine. Her research interests
include evolutionary models, numerical
methods, and digital signal processing.
ORCID: 0000-0003-0529-8582.

NAZAR MASHTALER received an M.S. in
Computerized Management Systems and
Automation from Lviv Polytechnic
National University, Ukraine in 2014, a
Ph.D. student since 2022 at the
Department of Computerized Automatic
Systems at Lviv Polytechnic National
University, Ukraine. His research interests
include computer engineering, software
architecture, and data analysis.

