

78 VOLUME 23(1), 2024

Date of publication MAR-31, 2024, date of current version JAN-31, 2024.
www.computingonline.net / computing@computingonline.net

Print ISSN 1727-6209
Online ISSN 2312-5381
DOI 10.47839/ijc.23.1.3438

Detection of Source Code Plagiarism
Utilizing an Approach Based on Machine

Learning
RADDAM SAMI MEHSEN1,2, HIREN D. JOSHI1

1Department of Computer Science, Gujarat University Ahmadabad, Gujarat, India
2Middle Technical University, Baghdad, Iraq

Corresponding author: Raddam Sami Mehsen (e-mail: raddamsami@gujaratuniversity.ac.in).

 ABSTRACT Academic institutions, which often publish papers and journals, are ideal testing grounds for the
efficacy of counterfeit detection methods. Plagiarism occurs when someone uses the words of another writer
without giving that writer proper credit. The proliferation of freeware text editors and the increasing availability
of scientific materials online have made the detection of plagiarism a pressing concern; however, the detection of
plagiarism in the source code presents a particularly difficult problem. Plagiarism detection algorithms for
identification systems and software source code have been the subject of numerous academic investigations. The
proposed method combines TF-IDF transformations with K-means clustering to achieve a 99.2% accuracy rate
when detecting instances of plagiarism in the source code. This is because it groups similar lines of code together.
On the other hand, in comparison to the outcomes produced by the random forest algorithm, the ones that it
generates are significantly better. The performance of the MOSS system that was already in place was inferior to
that of the system that was used for 90% and 80% of the training set. When contrasting the results, some parameters
for evaluation that are considered include precision, recall, and F-measure. The proposed system is implemented
in Jupyter Notebook 7 and Python. Also, graphic user interface is designed and implemented to give user friendly
experience to the users.

 KEYWORDS Source code; plagiarism; machine learning; C++; python; programming assignments

I. INTRODUCTION
ARTINS states that plagiarism occurs when one use
someone else’s work without giving it credit [36].

Because so much information is available online, plagiarism
becomes the major problem for research community.
Academic papers frequently consist of essays, reports, and
scientific articles, making textual plagiarism at the textual level
one of the most common forms of copyright infringement.
According to the recent study, most among 16 out of 100
published original articles are redundant. On the other hand,
plagiarism is when one use someone else’s words or code in a
way that is not right [1]. Plagiarism in assignments of source
code is another major issue when someone tries to copy
someone else’s source code as their own without giving credit
to the original author. Programming assignments in academia
frequently feature plagiarized source code. To obtain good
grades students try to copy source code assignments from their
peers. New admitted students, who submit plagiarized code in
their first course, will then do so in their subsequent courses.
That is the reason, it is highly important to stop this unlawful

conduct immediately [2]. It is possible for a teacher to obtain
inaccurate information about the difficulty level and students’
progress in a class. Therefore, identifying instances of
plagiarism in academic work is a crucial endeavor. When there
are many students in a class, it can take considerable
computation time and effort to go through each solution and
determine whether it is original or copied from another
student [3]. When compared with automated systems, manual
inspection takes too long and produces too few reliable results
to be practical. To pair submissions that are similar to one
another, teacher could use source code comparison tools, which
can find such plagiarism, JPlag and Measure of Software
Similarity (MOSS) were reported in [4]. For the most part, the
syntactic aspects of the assignments are used in many
algorithms to detect its plagiarism. However, code obfuscation
renders both approaches ineffective at automatically detecting
instances of software plagiarism. To hide the code and avoid
detection, students frequently resort to dishonest methods [5].
Section III proposes k-means clustering, a machine learning
based approach to examine this type of dishonest conduct.

M

Raddam Sami Mehsen et al. / International Journal of Computing, 23(1) 2024, 78-84

VOLUME 23(1), 2024 79

Section IV elaborates the methodology, and Section V reports
the experimental work done and the results.

II. RELATED WORK
Plagiarism in previous work was detected using program
similarity metrics such as MOSS, JPlag, and others. The
methods based on the assignment properties or text-based
methods are used at a syntactic level to find plagiarism [6].

MOSS is based on the local fingerprinting strategy of the
winnowing property of syntactic assignments. The fingerprint
selection mechanism used by MOSS is not particularly precise;
it simply chooses the fingerprint with the lowest value within a
given time window. In addition to this fingerprint, a lookup is
performed for the longest common sequence [7]. JPlag is
another widely used plagiarism detection tool that uses greedy
string tiling to find the longest, most common sequences in the
tokenized form of the source code based on each pair of
submissions. The way JPlag works is similar to the way MOSS
works. JPlag, on the other hand, only looks for common
tokenized structural blocks when comparing the code.
Therefore, it misses important aspects such as formatting and
style. There have been other attempts to find plagiarized
content, such as analyzing dependency graphs in computer
programs [8].

The authors [9] introduced GPlag, a novel method for
detecting plagiarism by mining program dependency graphs
(PDGs). A PDG is a graphical representation of the data and
control flow in a process. Because PDGs do not change much
during the plagiarism process, GPlag is more effective at
detecting plagiarized work than PDGs.

A representation of pairs in the source code considers
lexical, stylistic and structural aspects, comments and
programmer text. Character sequences can convey lexical and
n-gram information and comments. These traits are not meant
to help one determine the programing language someone are
using. Instead, they help to spot the bits of everyday language
that programmers always leave behind [10].

Academics have developed a way to compare assignments
that teachers can use to judge their students’ work. They
offered 12 features, such as comment and white-space
matching and the MOSS similarity score [11]. However, both
MOSS and JPlag exclude these details from their assessments.
Their primary function is to serve as a signal for identifying
instances of plagiarism. This system employs neural network
algorithms to determine the weight to be given to each criterion
in the evaluation. More specifically, they care most about
finding duplicate issues within a single set. Conversely, the
proposed solution is independent of the problem at hand [12].
Fig. 1. Shows a typical block diagram for source code
plagiarism detection model.

Figure 1. Typical source code plagiarism detection model

Such systems can be used for many purposes, such as
finding plagiarism in student’s work [13].

 Criminal Prosecution: Tracking the Malware Creator
 Corporate Litigation – If an employee breaches a non-

compete clause in a contract, determine who wrote the
code.

 Plagiarism detection: Tracing the original author in
instances of copied work.

Plagiarized snippets are those that have taken large parts of
other snippets and changed only a few small things. There are
different types of situations in which plagiarism can occur:

 If the due date for the project is near, the students’
openness to sharing the code with one another will be
increased.

 When students work together on a project, the resulting
programs may be identical in every way except for the
names and structures the authors choose to give them.

 There is a risk of assignment theft when using shared
resources such as printers and computers.

 The previous semester’s software can be used without
modification because only the requirements change
from one semester to the next.

Many students independently offer the same design for
short assignments, so it may look like there was plagiarism
[14].

III. PROPOSED APPROACH
Here are the measures that make up the proposed system [15]:

 Browse the C++ project source code files.
 This means that we need to collect and preprocess the

source codes.
 Turn each file into a list of tokens, save these as token

files, join these token files together, and then create a
list of terms and files. This method is the same as that
used to determine the TF-IDF files.

 Examine the C++ file in which the query was written.
 It is time to return to the third stage.
 Remember to return to Step 4.
 Apply the random forest classifier to all files in the

query to determine which files are similar.
 If the level of similarity is sufficiently high, the file is

considered malicious; otherwise, it is considered safe.
 A report must be made if any instances of plagiarism are

found. If that does not work, go back to the beginning.
Fig. 2 depicts the proposed model.

Figure 2. Proposed model for finding copied source code,
where features were taken from files that had been requested

using TFIDF tokens and then trained using random forest
classifier.

 Raddam Sami Mehsen et al. / International Journal of Computing, 23(1) 2024, 78-84

80 VOLUME 23(1), 2024

A. CODE METRICS
When the source codes are sent to the proposed system, it pulls
the characteristics from the files sent in. As parts of the
proposed model, the TFIDF code metrics are chosen [16]. Code
metrics are a collection of tokens taken from the source code
files, such as students’ assignments. Tokens like these help
evaluate how a programmer’s code works, how it looks, how
much it costs, how reliable it is, how flexible it is, and how it is
structured. Several tools and methods were proposed for
obtaining these code metrics [17]:

 N-grams are a group of n objects from a text corpus,
such as words and letters. Using this method, documents
are broken up into a list of substrings of length n and the
number of times they appear in the document. This
concept was introduced using natural processing
language. For instance, one United Kingdom is equal to
two grams [18].

 Term Frequency-Inverse Document (TF-IDF) – It stands
for "frequency." It gives words in document scores that
show how important they are based on where they are in
the corpus. Information extraction and text mining are
two of its primary applications.

 ANTLR is a parser generator that helps read and process
programing languages. Vocabulary and syntax are also
taken out, which helps us understand how the code is put
together [19].

Many students who plagiarize make substantial revisions to
their work to conceal it. Several examples of the many ways in
which modifications to source code can manifest themselves
are provided below:

 Modifying the format entails only making editorial
changes, such as adding or removing comments and
blanks [20, 21].

 Another common thing is to change the names of
identifiers to steal someone else’s work that does not
harm the code’s integrity [22].

 Statements that do not rely on one another in a sequential
fashion, such as declarations, can be easily moved by
rearranging them [23].

 Control Substitution: Programming languages offer
various alternatives to common coding structures, such
as loops and if/else expressions.

 Code Insertion: Codes that do not change the program’s
original logic can be added to hide plagiarism [24].

The proposed model cannot handle these transformations.
The retrieved features were trained using a supervised classifier
from the machine learning toolkit, that is the random forest
classifier [24, 26].

B. MACHINE LEARNING PHENOMENA
Algorithms that can learn from data and make predictions are
the focus of machine learning research. These algorithms create
a model that uses sample inputs rather than static program
instructions to produce data-based predictions or judgments. It
is used for various computing tasks when the cost of designing
and implementing explicit algorithms is prohibitive [25].
Machine learning is used in a wide variety of everyday
activities, including searching the web, filtering content on
social media, and making product recommendations on online
retailers’ websites. We use machine learning every day without

realizing it. Machine learning provides accurate speech
recognition, speedy web searches, driverless vehicles, and a
greater understanding of the human genome [25]. There are
typically three types of machine learning tasks that are
distinguished by the nature of the feedback given to the
learning system. Machine learning techniques can be used to
investigate claims of code duplication [27].
Here are the specifics:

 In supervised learning, a teacher shows a student how to
use the computer by showing them some inputs and
results. The objective is to develop a generalized rule or
function that maps inputs to desired outcomes.
Classification and regression fall under this umbrella
[21].

 When the learning algorithm is not given labels, it is up
to it to determine how the data is organized (known as
unsupervised learning). The algorithms in this category
can be used to perform clustering [28].

 The goal of reinforcement learning is to teach a
computer to perform a task in an uncertain environment,
such as when playing a game against a human, without
providing any feedback about the outcome of the task.
As the program moves through its problem space,
feedback is provided in the form of rewards and
penalties [23].

IV. ALGORITHM OF K-MEANS CLUSTERING
In the fields of data science and machine learning, k-means
clustering is used to address issues related to grouping similar
data points together [21-24].

A. ALGORITHM FOR LEARNING WITHOUT SUPERVISION
K-MEANS
This unlabeled dataset can be organized using clustering. The
parameter K dictates the minimum number of clusters that must
be created before proceeding with the procedure; for example,
if K=2, only two clusters will be created [30].

This allows us to classify information and provides a
straightforward method for identifying the classes of
individuals in a dataset that has not been labeled [31].

Because it is a centroid-based method, each cluster has its
own centroid. Reducing the total distances between data points
and the clusters, which they belong to, is the primary focus of
this method [32].

The process begins with an unlabeled dataset, divides it into
k clusters, and iteratively refines the clusters until no
improvements can be made. The parameter k in this algorithm
must be set in advance [33].

The k-means clustering algorithm accomplishes two goals:
1) it iteratively determines the best value for the K center

points or centroids;
2) it assigns the data point to the k-center that is

geographically closest to that data point. Clusters of data points
are formed when they share a common k-center.

As a result, the data points that make up each cluster share
certain characteristics while remaining distinguishable from
one another [34].

The k-means clustering algorithm is shown in Fig. 3 below
[34]:

Raddam Sami Mehsen et al. / International Journal of Computing, 23(1) 2024, 78-84

VOLUME 23(1), 2024 81

Figure 3. Working of K-means clustering algorithm

V. EXPERIMENTAL RESULTS AND PERFORMANCE
EVALUATION
The proposed model is evaluated using multiple metrics. The
following sections describe the metrics that should be tracked
for each system and iteration: recall, accurate response rate,
cross-value score, F1 score, precision and other confusion
matrices [2, 4, 24, 31].

A. CORRECTLY CLASSIFYING DATA
In the context of assessing classification tasks, it is by far the
most popular metric to use. Accuracy is the ratio of correct to
total predictions [32].

Precision = True Predictions / Total Guesses. (1)

With binary classification, the accuracy formula is [31]:

Accuracy = (TN+TP) / (FP + FN + TP + TN). (2)

In this definition, TP refers to a true positive result, TN to a

true negative result, FP to a false positive result, and FN to a
false negative result [4].

In a scenario with unequally distributed classes, it is not a
fair measure to optimize for because it may be relatively high,
thus helping the majority while neglecting the minority.
Therefore, it is not a fair measure to optimize for [6].

B. CONFUSION MATRIX
The performance of a classification model can be measured by
calculating the confusion matrix, which is an N-by-N matrix
where N is the number of target classes. The matrix evaluates
the machine learning model’s predictions against the actual
goal values [24].

C. F-MEASURE
F-Measure uses a combined measure of precision and recall
that determines the accuracy of the test data. As shown in
Fig. 3, the system operates on the basis of true positives (TP),
true negatives (TN), false positives (FP), and false negatives
(FN). Precision is defined as the proportion of correct
predictions to all correct predictions [22-25].

p = TP / (TP + FP). (3)

However, recall is calculated by dividing the number of
accurate predictions by the total number of true positives [7].

A simple formula:

r = TP / TP + FN. (4)

For the F-Score, a weighted average of the recall and
accuracy values is used.

It can be written as:

F = 2*((precision * recall)/(precision + recall). (5)

The formula for determining the F1 score, also known as
the F-value, is:

F1-score=Harmonic mean (precision, recall). (6)

The proposed system is tested on a dataset consisting of
Python solutions to homework problems from a beginner C++
programing competition. There are 44 separate entries, each of
which covers 10 unique problems. Each student is permitted to
submit 20 total pieces of work, which may include drawings
and final drawings. Approximately 880 entries have led us to
this point. Some representative examples of the dataset code
are as follows [6]:

The code for a C++ application is displayed in its entirety
in Fig. 4, which is taken from the original file.

Figure 4. Example of the program file's original source code,
which has not been plagiarized

The generated characteristics for the sample program are
shown in Fig. 5. It represents TF-IDF tokens for the selected
file.

 Raddam Sami Mehsen et al. / International Journal of Computing, 23(1) 2024, 78-84

82 VOLUME 23(1), 2024

Figure 5. A tokenized TF-IDF file for a file that has not been
copied.

The respective original source code file also has plagiarized
file. It is shown in Fig. 6.

Figure 6. Plagiarized program 1 source code

The TF-IDF output of the plagiarized sample code shown
in Fig. 6, is displayed in Fig. 7 shown below:

Figure 7. Tokenized TF-IDF file of the plagiarized file
example program 1

Table 1 summarizes the information regarding the source
files used in the experiments.

Table 1. Details of Database

Dataset
Problem

Sets
Submission Language

Average
LOC

Programming
Contest

10 880 C++ 1207

The evaluation metrics were calculated and compared

following the generation of the confusion matrix. In 90% and
80% of the training sets, the proposed system was found to be
more accurate than the current MOSS system by a margin of
99.2%. We re-compared the proposed model using various
assessment criteria (given in Table 2) and found that it is
superior to the existing techniques, which have not been
reported to have a satisfactory level of accuracy.

Table 2. Evaluation of the proposed system

Random
Forest

Algorithm

K-means
Clustering

Moss
(90%)

Moss
(80%)

Accuracy 0.935 0.992 - -
Precision 0.960 0.009 1.000 0.920

Recall 0.906 0.054 0.631 0.819
F1 Score 0.931 0.016 0.773 0.866

Fig. 8 displays learning curve where the relationship

between training samples and score is been depicted. The
output window is shown Fig. 9.

Figure 8. The relationship between the score and the number
of training instances (Score Vs Training Examples)

Figure 9. Resultant snippet of the python code

This research also implemented GUI based application in
python, where the source code files can be tested for the
performance check. The following figures show the interface
designed and implemented. The first screen shows a Text Input
where user can select a source code file from his/her computer

Raddam Sami Mehsen et al. / International Journal of Computing, 23(1) 2024, 78-84

VOLUME 23(1), 2024 83

and it is displayed in the Text Input. When the user / trainer
clicks on the “check plagiarism” button, the written python
code evaluates whether the input source code is plagiarized and
which source is from the trained model. If it matches with the
source plagiarized in the next window it shows the details of
the input source file such as total number of characters, words,
lines, spaces, etc. Also, it shows in the graph format, how much
this source is plagiarized. It also shows the list of files whose
source code has been plagiarized. The GUI also has the
“Download Report” button. By clicking it, the user can
generate the report in PDF format, which has been downloaded
onto his local computer. Figure (s) 10-14 shows the output
windows of the GUI designed.

Figure 10. GUI Design (Screen 1)

Figure 11. Source code is uploaded in Text Input (Screen 2)

Figure 12. GUI Screen with the report (Screen 3)

Figure 13. Sample PDF Report Generated

Figure 14. Graph result displayed in the report.

VI. CONCLUSION
When it comes to identifying instances of plagiarism in the
source code, the k-means clustering technique has the highest
accuracy rate of 99.2 %. On the other hand, the results it
generates are superior to those generated by the random forest
algorithm. For 90% and 80% of the training sets, respectively,
the proposed system performed better than the MOSS system
that was already in place. When comparing the findings, some
evaluation criteria that are taken into consideration include
precision, recall, and F-measure. The proposed model shows
good results as compared to the reported results. This has also
been experienced with the GUI implementation of the system.

References

[1] A. Ramírez-de-la-Cruz, G. Ramírez-de-la-Rosa, C. Sánchez-Sánchez, H.
Jiménez-Salazar, C. Rodríguez-Lucatero, W. A. Luna-Ramírez, “High
level features for detecting source code plagiarism across programming
languages,” Proceedings of the FIRE Workshops, 2015, pp. 10-14.

[2] G. Acampora and G. Cosma, “A fuzzy-based approach to programming
language independent source-code plagiarism detection,” Proceedings of
the 2015 IEEE International Conference on Fuzzy Systems (FUZZ-
IEEE), 2015, pp. 1-8, https://doi.org/10.1109/FUZZ-
IEEE.2015.7337935.

[3] J. Itsarawisut, K. Kanjanawanishkul, “Neural network-based
classification of germinated hang rice using image processing,” IETE
Technical Review, vol. 36, issue 4, pp. 375-381, 2019,
https://doi.org/10.1080/02564602.2018.1487806.

[4] A. Parker and J. O. Hamblen, “Computer algorithms for plagiarism
detection,” IEEE Transactions on Education, vol. 32, issue 2, pp. 337–
343, 1989. https://doi.org/10.1109/13.28038.

[5] A. Iversen, N. K. Taylor, and K. E. Brown, “Classification and
verification through the combination of the multi-layer perceptron and
auto-association neural networks,” Proceedings of the International Joint
Conference on Neural Networks, Montreal, Canada, July 2005, pp. 1166–
1171.

[6] S. Balakrishnama, & A. Ganapathiraju, “Linear discriminant analysis –
A brief tutorial,” Institute for Signal and Information Processing, vol. 11,
pp. 1-8, 1998.

[7] C. Liu, C. Chen, J. Han, and P. S. Yu, “Gplag: detection of software
plagiarism by program dependence graph analysis,” Proceedings of the
12th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, 2006, pages 872–881.
https://doi.org/10.1145/1150402.1150522.

 Raddam Sami Mehsen et al. / International Journal of Computing, 23(1) 2024, 78-84

84 VOLUME 23(1), 2024

[8] Chris L. Evaluating ML Models: Precision, Recall, F1 and Accuracy.
2019. [Online]. Available at: https://medium.com/analytics-
vidhya/evaluating-ml-models-precision-recall-f1-and-accuracy-
f734e9fcc0d3.

[9] C. Arwin and S. M. M. Tahaghoghi, “Plagiarism detection across
programming languages,” Proceedings of the Twenty-Ninth Australasian
Computer Science Conference (ACSC2006), 2006, vol. 48, pp. 277-286.

[10] D. Heres, Source Code Plagiarism Detection using Machine Learning,
Master's thesis, Utrecht University, 2017, pp. 1-37.

[11] G. Biau, “Analysis of a random forests model,” Journal of Machine
Learning Research, vol. 13, pp. 1063–1095, 2012`.

[12] M. Ellis, et al., “Plagiarism detection in computer code,” 2005, pp. 1-10.
[Online]. Available at: http://www.rose-hulman.edu/class/csse/faculty-
staff/csse-department/seniorTheses/Matt Ellis.pdf.

[13] V. Y. Kulkarni and P. K. Sinha, “Effective learning and classification
using random forest algorithm,” International Journal of Engineering
and Innovative Technology (IJEIT), vol. 3, issue 11, pp. 267–273, 2014.

[14] C. Goutte, E. Gaussier, “A probabilistic interpretation of precision, recall
and f-score, with implication for evaluation,” In: Losada, D.E.,
Fernández-Luna, J.M. (eds) Advances in Information Retrieval. ECIR
2005. Lecture Notes in Computer Science, vol 3408. Springer, Berlin,
Heidelberg, 2005, pp. 345–359. https://doi.org/10.1007/978-3-540-
31865-1_25.

[15] G. Guo, H. Wang, D. Bell, Y. Bi, K. Greer, (2003). KNN Model-Based
Approach in Classification. In: Meersman, R., Tari, Z., Schmidt, D.C.
(eds) On The Move to Meaningful Internet Systems 2003: CoopIS, DOA,
and ODBASE. OTM 2003. Lecture Notes in Computer Science, vol
2888. Springer, Berlin, Heidelberg, 2003, pp. 986–996.
https://doi.org/10.1007/978-3-540-39964-3_62.

[16] J. A. W. Faidhi and S. K. Robimox, “An empirical approach for detecting
program similarity and plagiarism within a university programming
environment,” Pergamon Journals Ltd, vol. 11, issue 1, pp. 11–19, 1987.
ttps://doi.org/10.1016/0360-1315(87)90042-X.

[17] J. Hage, P. Rademaker, and N. van Vugt, “A comparison of plagiarism
detection tools,” Utrecht University. Utrecht, The Netherlands, no. 28,
pp. 1-26, 2010.

[18] J. Ming, F. Zhang, D. Wu, P. Liu, and S. Zhu, “Deviation-based
obfuscation-resilient program equivalence checking with application to
software plagiarism detection,” IEEE Transactions on Reliability, vol.
65, issue 4, pp. 1647–1664, 2016.
https://doi.org/10.1109/TR.2016.2570554.

[19] J.-H. Ji, G. Woo, and H.-G. Cho, “A source code linearization technique
for detecting plagiarized programs,” Proceedings of the ITiCSE’07,
Dundee, Scotland, United Kingdom, June 2007, pp. 73–77.
https://doi.org/10.1145/1269900.1268807.

[20] K. S. Kim et al., “Comparison of k-nearest neighbor, quadratic
discriminant and linear discriminant analysis in classification of
electromyogram signals based on the wrist-motion directions,” Current
Applied Physics, vol. 11, issue 3, pp. 740–745, 2011.
https://doi.org/10.1016/j.cap.2010.11.051.

[21] K. J. Ottenstein, “An algorithmic approach to the detection and
prevention of plagiarism,” Purdue University, Department of Computer
Science Technical Reports, Report number 76-200, August 1976, 16 p.

[22] L. Prechelt, G. Malpohl, and M. Philippsen, “Finding plagiarisms among
a set of programs with jplag,” Journal of Universal Computer Science,
vol. 8, no. 11, pp. 1016-1038, 2002.

[23] M. Schein and R. Paladugu, “Redundant surgical publications: tip of the
iceberg?,” Surgery, vol. 129, issue 6, pp. 655–661, 2001.
https://doi.org/10.1067/msy.2001.114549.

[24] C. Manliguez, “Generalized confusion matrix for multiple classes,” pp.
1-2, 2016, https://doi.org/10.13140/RG.2.2.31150.51523.

[25] M. Novak, M. Joy, and D. Kermek, “Source-code similarity detection and
detection tools used in academia: A systematic review,” ACM Trans.
Comput. Educ., vol. 19, issue 3, Article 27, pp. 1-37, 2019.
https://doi.org/10.1145/3313290.

[26] M. Ďuračíka, E. Kršáka, and P. Hrkúta, “Current trends in source code
analysis, plagiarism detection and issues of analysis big datasets,”
Proceedings of the International Scientific Conference on Sustainable,
Modern and Safe Transport, 2017, pp. 136–141.
https://doi.org/10.1016/j.proeng.2017.06.024.

[27] P. Flach, J. Hernández-Orallo, C. Ferri, “A coherent interpretation of
AUC as a measure of aggregated classification performance,”
Proceedings of the 28th International Conference on Machine Learning,
2011, pp. 657-664.

[28] R. C. Lange and S. Mancoridis, “Using code metric histograms and
genetic algorithms to perform author identification for software
forensics,” Proceedings of the 9th ACM Annual Conference on Genetic
and Evolutionary Computation (GECCO’07), New York, NY, USA,
2007, pp. 2082–2089. https://doi.org/10.1145/1276958.1277364.

[29] S. Engels, V. Lakshmanan, and M. Craig, “Plagiarism detection using
feature-based neural networks,” ACM SIGCSE Bulletin, vol. 39, pp. 34–
38, 2007. https://doi.org/10.1145/1227504.1227324.

[30] S. Schleimer, D. S. Wilkerson, and A. Aiken, “Winnowing: local
algorithms for document fingerprinting,” Proceedings of the 2003 ACM
SIGMOD International Conference on Management of Data, 2003, pp.
76–85. https://doi.org/10.1145/872757.872770.

[31] U. Bandara and G. Wijayarathna, “A machine learning based tool for
source code plagiarism detection,” International Journal of Machine
Learning and Computing, vol. 1, issue 4, pp. 337–343, 2011.
https://doi.org/10.7763/IJMLC.2011.V1.50.

[32] A. L. Samuel, Arthur L (1959), “Some studies in machine learning using
the game of checkers,” IBM Journal of Research and Development, vol.
44, no. 1-2, pp. 210–229, 1959. https://doi.org/10.1147/rd.33.0210.

[33] H. Han & U. Chong, “Neural network based detection of drowsiness with
eyes open using AR modelling,” IETE Technical Review, vol. 33, issue
5, pp. 518-524, 2016. https://doi.org/10.1080/02564602.2015.1118362.

[34] K. Deergha Rao & D. C. Reddy, “Transputer implementation of the EKF-
based learning algorithm for multilayered neural networks used in
classification of EEG signals,” IETE Technical Review, vol. 14, issue 3,
pp. 177-182, 1997. https://doi.org/10.1080/02564602.1997.11416668.

[35] S. Koco and C. Capponi, “On multi-class classication through the
minimization of the confusion matrix norm,” JMLR: Workshop and
Conference Proceedings, 2013, pp. 277–292.

[36] B. Martin, “Plagiarism: a misplaced emphasis,” Journal of Information
Ethics, vol. 3, issue 2, pp. 36-47, 1994.

RADDAM SAMI MEHSEN working for his
doctoral research from Gujarat
University, Gujarat. Graduated Middle
Technical University, Technical Institute
of Baqubah. Received bachelor from al
Mustansiriyah University, and Master
degree of Computer science, 2011, Dr.
Babasaheb Ambedkar Marathwada
University, Aurangabad, MH, India.

Specialist in computer science, expert in many
programming languages HTML, PHP, JavaScript, C ++, Visual
Basic. Experience in project management and client relations.
He has a good experience in designing programs and databases
for people and institutions, correcting their mistakes, and
making modification operations.

HIREN D. JOSHI Professor in Computer
Science, Gujarat University, Gujarat. He
is life member of CSI, Member of ACM
and ISTE. His research interests are IoT,
Machine Learning, NLP, Artificial
Intelligence and Image Processing. He
has published more than 30 research
articles in various International Journals
and presented various research themes
in conferences. He is editorial member

for various international journals and conferences.

