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 ABSTRACT Academic institutions, which often publish papers and journals, are ideal testing grounds for the 
efficacy of counterfeit detection methods. Plagiarism occurs when someone uses the words of another writer 
without giving that writer proper credit. The proliferation of freeware text editors and the increasing availability 
of scientific materials online have made the detection of plagiarism a pressing concern; however, the detection of 
plagiarism in the source code presents a particularly difficult problem. Plagiarism detection algorithms for 
identification systems and software source code have been the subject of numerous academic investigations. The 
proposed method combines TF-IDF transformations with K-means clustering to achieve a 99.2% accuracy rate 
when detecting instances of plagiarism in the source code. This is because it groups similar lines of code together. 
On the other hand, in comparison to the outcomes produced by the random forest algorithm, the ones that it 
generates are significantly better. The performance of the MOSS system that was already in place was inferior to 
that of the system that was used for 90% and 80% of the training set. When contrasting the results, some parameters 
for evaluation that are considered include precision, recall, and F-measure. The proposed system is implemented 
in Jupyter Notebook 7 and Python. Also, graphic user interface is designed and implemented to give user friendly 
experience to the users.  
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I. INTRODUCTION 
ARTINS states that plagiarism occurs when one use 
someone else’s work without giving it credit [36]. 

Because so much information is available online, plagiarism 
becomes the major problem for research community. 
Academic papers frequently consist of essays, reports, and 
scientific articles, making textual plagiarism at the textual level 
one of the most common forms of copyright infringement. 
According to the recent study, most among 16 out of 100 
published original articles are redundant. On the other hand, 
plagiarism is when one use someone else’s words or code in a 
way that is not right [1]. Plagiarism in assignments of source 
code is another major issue when someone tries to copy 
someone else’s source code as their own without giving credit 
to the original author. Programming assignments in academia 
frequently feature plagiarized source code. To obtain good 
grades students try to copy source code assignments from their 
peers. New admitted students, who submit plagiarized code in 
their first course, will then do so in their subsequent courses. 
That is the reason, it is highly important to stop this unlawful 

conduct immediately [2]. It is possible for a teacher to obtain 
inaccurate information about the difficulty level and students’ 
progress in a class. Therefore, identifying instances of 
plagiarism in academic work is a crucial endeavor. When there 
are many students in a class, it can take considerable 
computation time and effort to go through each solution and 
determine whether it is original or copied from another 
student [3]. When compared with automated systems, manual 
inspection takes too long and produces too few reliable results 
to be practical. To pair submissions that are similar to one 
another, teacher could use source code comparison tools, which 
can find such plagiarism, JPlag and Measure of Software 
Similarity (MOSS) were reported in [4]. For the most part, the 
syntactic aspects of the assignments are used in many 
algorithms to detect its plagiarism. However, code obfuscation 
renders both approaches ineffective at automatically detecting 
instances of software plagiarism. To hide the code and avoid 
detection, students frequently resort to dishonest methods [5]. 
Section III proposes k-means clustering, a machine learning 
based approach to examine this type of dishonest conduct. 

M
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Section IV elaborates the methodology, and Section V reports 
the experimental work done and the results. 

II. RELATED WORK 
Plagiarism in previous work was detected using program 
similarity metrics such as MOSS, JPlag, and others. The 
methods based on the assignment properties or text-based 
methods are used at a syntactic level to find plagiarism [6].  

MOSS is based on the local fingerprinting strategy of the 
winnowing property of syntactic assignments. The fingerprint 
selection mechanism used by MOSS is not particularly precise; 
it simply chooses the fingerprint with the lowest value within a 
given time window. In addition to this fingerprint, a lookup is 
performed for the longest common sequence [7]. JPlag is 
another widely used plagiarism detection tool that uses greedy 
string tiling to find the longest, most common sequences in the 
tokenized form of the source code based on each pair of 
submissions. The way JPlag works is similar to the way MOSS 
works. JPlag, on the other hand, only looks for common 
tokenized structural blocks when comparing the code. 
Therefore, it misses important aspects such as formatting and 
style. There have been other attempts to find plagiarized 
content, such as analyzing dependency graphs in computer 
programs [8]. 

The authors [9] introduced GPlag, a novel method for 
detecting plagiarism by mining program dependency graphs 
(PDGs). A PDG is a graphical representation of the data and 
control flow in a process. Because PDGs do not change much 
during the plagiarism process, GPlag is more effective at 
detecting plagiarized work than PDGs. 

A representation of pairs in the source code considers 
lexical, stylistic and structural aspects, comments and 
programmer text. Character sequences can convey lexical and 
n-gram information and comments. These traits are not meant 
to help one determine the programing language someone are 
using. Instead, they help to spot the bits of everyday language 
that programmers always leave behind [10]. 

Academics have developed a way to compare assignments 
that teachers can use to judge their students’ work. They 
offered 12 features, such as comment and white-space 
matching and the MOSS similarity score [11]. However, both 
MOSS and JPlag exclude these details from their assessments. 
Their primary function is to serve as a signal for identifying 
instances of plagiarism. This system employs neural network 
algorithms to determine the weight to be given to each criterion 
in the evaluation. More specifically, they care most about 
finding duplicate issues within a single set. Conversely, the 
proposed solution is independent of the problem at hand [12]. 
Fig. 1. Shows a typical block diagram for source code 
plagiarism detection model. 

 

Figure 1. Typical source code plagiarism detection model 

Such systems can be used for many purposes, such as 
finding plagiarism in student’s work [13]. 

 Criminal Prosecution: Tracking the Malware Creator 
 Corporate Litigation – If an employee breaches a non-

compete clause in a contract, determine who wrote the 
code. 

 Plagiarism detection: Tracing the original author in 
instances of copied work. 

Plagiarized snippets are those that have taken large parts of 
other snippets and changed only a few small things. There are 
different types of situations in which plagiarism can occur: 

 If the due date for the project is near, the students’ 
openness to sharing the code with one another will be 
increased. 

 When students work together on a project, the resulting 
programs may be identical in every way except for the 
names and structures the authors choose to give them.  

  There is a risk of assignment theft when using shared 
resources such as printers and computers. 

 The previous semester’s software can be used without 
modification because only the requirements change 
from one semester to the next. 

Many students independently offer the same design for 
short assignments, so it may look like there was plagiarism 
[14]. 

III. PROPOSED APPROACH 
Here are the measures that make up the proposed system [15]: 

 Browse the C++ project source code files. 
 This means that we need to collect and preprocess the 

source codes. 
 Turn each file into a list of tokens, save these as token 

files, join these token files together, and then create a 
list of terms and files. This method is the same as that 
used to determine the TF-IDF files. 

 Examine the C++ file in which the query was written. 
 It is time to return to the third stage. 
 Remember to return to Step 4. 
 Apply the random forest classifier to all files in the 

query to determine which files are similar. 
 If the level of similarity is sufficiently high, the file is 

considered malicious; otherwise, it is considered safe. 
 A report must be made if any instances of plagiarism are 

found. If that does not work, go back to the beginning. 
Fig. 2 depicts the proposed model. 

 

Figure 2. Proposed model for finding copied source code, 
where features were taken from files that had been requested 

using TFIDF tokens and then trained using random forest 
classifier. 
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A.  CODE METRICS  
When the source codes are sent to the proposed system, it pulls 
the characteristics from the files sent in. As parts of the 
proposed model, the TFIDF code metrics are chosen [16]. Code 
metrics are a collection of tokens taken from the source code 
files, such as students’ assignments. Tokens like these help 
evaluate how a programmer’s code works, how it looks, how 
much it costs, how reliable it is, how flexible it is, and how it is 
structured. Several tools and methods were proposed for 
obtaining these code metrics [17]: 

 N-grams are a group of n objects from a text corpus, 
such as words and letters. Using this method, documents 
are broken up into a list of substrings of length n and the 
number of times they appear in the document. This 
concept was introduced using natural processing 
language. For instance, one United Kingdom is equal to 
two grams [18]. 

 Term Frequency-Inverse Document (TF-IDF) – It stands 
for "frequency." It gives words in document scores that 
show how important they are based on where they are in 
the corpus. Information extraction and text mining are 
two of its primary applications.  

 ANTLR is a parser generator that helps read and process 
programing languages. Vocabulary and syntax are also 
taken out, which helps us understand how the code is put 
together [19]. 

Many students who plagiarize make substantial revisions to 
their work to conceal it. Several examples of the many ways in 
which modifications to source code can manifest themselves 
are provided below: 

 Modifying the format entails only making editorial 
changes, such as adding or removing comments and 
blanks [20, 21]. 

 Another common thing is to change the names of 
identifiers to steal someone else’s work that does not 
harm the code’s integrity [22]. 

 Statements that do not rely on one another in a sequential 
fashion, such as declarations, can be easily moved by 
rearranging them [23]. 

 Control Substitution: Programming languages offer 
various alternatives to common coding structures, such 
as loops and if/else expressions. 

 Code Insertion: Codes that do not change the program’s 
original logic can be added to hide plagiarism [24]. 

The proposed model cannot handle these transformations. 
The retrieved features were trained using a supervised classifier 
from the machine learning toolkit, that is the random forest 
classifier [24, 26]. 

B. MACHINE LEARNING PHENOMENA 
Algorithms that can learn from data and make predictions are 
the focus of machine learning research. These algorithms create 
a model that uses sample inputs rather than static program 
instructions to produce data-based predictions or judgments. It 
is used for various computing tasks when the cost of designing 
and implementing explicit algorithms is prohibitive [25]. 
Machine learning is used in a wide variety of everyday 
activities, including searching the web, filtering content on 
social media, and making product recommendations on online 
retailers’ websites. We use machine learning every day without 

realizing it. Machine learning provides accurate speech 
recognition, speedy web searches, driverless vehicles, and a 
greater understanding of the human genome [25]. There are 
typically three types of machine learning tasks that are 
distinguished by the nature of the feedback given to the 
learning system. Machine learning techniques can be used to 
investigate claims of code duplication [27]. 
Here are the specifics: 

 In supervised learning, a teacher shows a student how to 
use the computer by showing them some inputs and 
results. The objective is to develop a generalized rule or 
function that maps inputs to desired outcomes. 
Classification and regression fall under this umbrella 
[21].  

 When the learning algorithm is not given labels, it is up 
to it to determine how the data is organized (known as 
unsupervised learning). The algorithms in this category 
can be used to perform clustering [28]. 

 The goal of reinforcement learning is to teach a 
computer to perform a task in an uncertain environment, 
such as when playing a game against a human, without 
providing any feedback about the outcome of the task. 
As the program moves through its problem space, 
feedback is provided in the form of rewards and 
penalties [23]. 

IV. ALGORITHM OF K-MEANS CLUSTERING 
In the fields of data science and machine learning, k-means 
clustering is used to address issues related to grouping similar 
data points together [21-24]. 

A. ALGORITHM FOR LEARNING WITHOUT SUPERVISION 
K-MEANS  
This unlabeled dataset can be organized using clustering. The 
parameter K dictates the minimum number of clusters that must 
be created before proceeding with the procedure; for example, 
if K=2, only two clusters will be created [30]. 

This allows us to classify information and provides a 
straightforward method for identifying the classes of 
individuals in a dataset that has not been labeled [31]. 

Because it is a centroid-based method, each cluster has its 
own centroid. Reducing the total distances between data points 
and the clusters, which they belong to, is the primary focus of 
this method [32]. 

The process begins with an unlabeled dataset, divides it into 
k clusters, and iteratively refines the clusters until no 
improvements can be made. The parameter k in this algorithm 
must be set in advance [33]. 

The k-means clustering algorithm accomplishes two goals:  
1) it iteratively determines the best value for the K center 

points or centroids; 
2) it assigns the data point to the k-center that is 

geographically closest to that data point. Clusters of data points 
are formed when they share a common k-center. 

As a result, the data points that make up each cluster share 
certain characteristics while remaining distinguishable from 
one another [34]. 

The k-means clustering algorithm is shown in Fig. 3 below 
[34]: 
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Figure 3. Working of K-means clustering algorithm 

V. EXPERIMENTAL RESULTS AND PERFORMANCE 
EVALUATION 
The proposed model is evaluated using multiple metrics. The 
following sections describe the metrics that should be tracked 
for each system and iteration: recall, accurate response rate, 
cross-value score, F1 score, precision and other confusion 
matrices [2, 4, 24, 31]. 

A. CORRECTLY CLASSIFYING DATA 
In the context of assessing classification tasks, it is by far the 
most popular metric to use. Accuracy is the ratio of correct to 
total predictions [32]. 

 
Precision = True Predictions / Total Guesses.  (1) 

 
With binary classification, the accuracy formula is [31]: 
 

Accuracy = (TN+TP) / (FP + FN + TP + TN). (2) 
 
In this definition, TP refers to a true positive result, TN to a 

true negative result, FP to a false positive result, and FN to a 
false negative result [4]. 

In a scenario with unequally distributed classes, it is not a 
fair measure to optimize for because it may be relatively high, 
thus helping the majority while neglecting the minority. 
Therefore, it is not a fair measure to optimize for [6]. 

B. CONFUSION MATRIX 
The performance of a classification model can be measured by 
calculating the confusion matrix, which is an N-by-N matrix 
where N is the number of target classes. The matrix evaluates 
the machine learning model’s predictions against the actual 
goal values [24]. 

C. F-MEASURE 
F-Measure uses a combined measure of precision and recall 
that determines the accuracy of the test data. As shown in 
Fig. 3, the system operates on the basis of true positives (TP), 
true negatives (TN), false positives (FP), and false negatives 
(FN). Precision is defined as the proportion of correct 
predictions to all correct predictions [22-25]. 

p = TP / (TP + FP).   (3) 

However, recall is calculated by dividing the number of 
accurate predictions by the total number of true positives [7]. 

A simple formula:  

r = TP / TP + FN.   (4) 

For the F-Score, a weighted average of the recall and 
accuracy values is used. 

It can be written as: 

F = 2*((precision * recall)/(precision + recall). (5) 

The formula for determining the F1 score, also known as 
the F-value, is:  

F1-score=Harmonic mean (precision, recall). (6) 

The proposed system is tested on a dataset consisting of 
Python solutions to homework problems from a beginner C++ 
programing competition. There are 44 separate entries, each of 
which covers 10 unique problems. Each student is permitted to 
submit 20 total pieces of work, which may include drawings 
and final drawings. Approximately 880 entries have led us to 
this point. Some representative examples of the dataset code 
are as follows [6]: 

The code for a C++ application is displayed in its entirety 
in Fig. 4, which is taken from the original file. 

 

 

Figure 4. Example of the program file's original source code, 
which has not been plagiarized 

The generated characteristics for the sample program are 
shown in Fig. 5. It represents TF-IDF tokens for the selected 
file. 



 Raddam Sami Mehsen et al. / International Journal of Computing, 23(1) 2024, 78-84 

82 VOLUME 23(1), 2024 

 

Figure 5. A tokenized TF-IDF file for a file that has not been 
copied. 

The respective original source code file also has plagiarized 
file. It is shown in Fig. 6. 

 

Figure 6. Plagiarized program 1 source code 

The TF-IDF output of the plagiarized sample code shown 
in Fig. 6, is displayed in Fig. 7 shown below: 

 

Figure 7. Tokenized TF-IDF file of the plagiarized file 
example program 1 

Table 1 summarizes the information regarding the source 
files used in the experiments. 

Table 1. Details of Database 

Dataset 
Problem 

Sets 
Submission Language 

Average 
LOC 

Programming 
Contest 

10 880 C++ 1207 

 
The evaluation metrics were calculated and compared 

following the generation of the confusion matrix. In 90% and 
80% of the training sets, the proposed system was found to be 
more accurate than the current MOSS system by a margin of 
99.2%. We re-compared the proposed model using various 
assessment criteria (given in Table 2) and found that it is 
superior to the existing techniques, which have not been 
reported to have a satisfactory level of accuracy. 

Table 2. Evaluation of the proposed system 

 
Random 
Forest 

Algorithm 

K-means 
Clustering 

Moss 
(90%) 

Moss 
(80%) 

Accuracy 0.935 0.992 - - 
Precision 0.960 0.009 1.000 0.920 

Recall 0.906 0.054 0.631 0.819 
F1 Score 0.931 0.016 0.773 0.866 

 
Fig. 8 displays learning curve where the relationship 

between training samples and score is been depicted. The 
output window is shown Fig. 9. 

 

Figure 8. The relationship between the score and the number 
of training instances (Score Vs Training Examples) 

 

Figure 9. Resultant snippet of the python code 

This research also implemented GUI based application in 
python, where the source code files can be tested for the 
performance check. The following figures show the interface 
designed and implemented. The first screen shows a Text Input 
where user can select a source code file from his/her computer 
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and it is displayed in the Text Input. When the user / trainer 
clicks on the “check plagiarism” button, the written python 
code evaluates whether the input source code is plagiarized and 
which source is from the trained model. If it matches with the 
source plagiarized in the next window it shows the details of 
the input source file such as total number of characters, words, 
lines, spaces, etc. Also, it shows in the graph format, how much 
this source is plagiarized. It also shows the list of files whose 
source code has been plagiarized. The GUI also has the 
“Download Report” button. By clicking it, the user can 
generate the report in PDF format, which has been downloaded 
onto his local computer. Figure (s) 10-14 shows the output 
windows of the GUI designed. 

 

Figure 10. GUI Design (Screen 1) 

 

 

Figure 11. Source code is uploaded in Text Input (Screen 2) 

 

 

Figure 12. GUI Screen with the report (Screen 3) 

 

 

Figure 13. Sample PDF Report Generated 

 

 

Figure 14. Graph result displayed in the report. 

VI. CONCLUSION 
When it comes to identifying instances of plagiarism in the 
source code, the k-means clustering technique has the highest 
accuracy rate of 99.2 %. On the other hand, the results it 
generates are superior to those generated by the random forest 
algorithm. For 90% and 80% of the training sets, respectively, 
the proposed system performed better than the MOSS system 
that was already in place. When comparing the findings, some 
evaluation criteria that are taken into consideration include 
precision, recall, and F-measure. The proposed model shows 
good results as compared to the reported results. This has also 
been experienced with the GUI implementation of the system. 
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