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 ABSTRACT Vision-language models (VLMs), pretrained on expansive datasets containing image-text pairs, have 
exhibited remarkable transferability across a diverse spectrum of visual tasks. The leveraging of knowledge encoded 
within these potent VLMs holds significant promise for the advancement of effective video recognition models. A 
fundamental aspect of pretrained VLMs lies in their ability to establish a crucial bridge between the visual and textual 
domains. In our pioneering work, we introduce the Attr4Vis framework, dedicated to exploring knowledge transfer 
between Video and Text modalities to bolster video recognition performance. Central to our contributions is the 
comprehensive revisitation of Text-to-Video classifier initialization, a critical step that refines the initialization process 
and streamlines the integration of our framework, particularly within existing Vision-Language Models (VLMs). 
Furthermore, we emphasize the adoption of dense attribute generation techniques, shedding light on their paramount 
importance in video analysis. By effectively encoding attribute changes over time, these techniques significantly 
enhance event representation and recognition within videos. In addition, we introduce an innovative Attribute 
Enrichment Algorithm aimed at enriching set of attributes by large language models (LLMs) like ChatGPT. Through 
the seamless integration of these components, Attr4Vis attains a state-of-the-art accuracy of 91.5% on the challenging 
Kinetics-400 dataset using the InternVideo model. 
 

 KEYWORDS computer vision; video recognition; cross-model exploration; vision-language models; lexicon 
enrichment algorithm. 
 

I.  INTRODUCTION 
N recent years, the impressive achievements in large-scale 
pretraining within the field of Natural Language Processing 

(NLP) have generated considerable interest within the 
computer vision community. Notable examples include BERT 
[1], GPT [2], ERNIE [3], and T5 [4]. These advancements have 
served as a source of inspiration for researchers, prompting 
them to explore similar techniques in the domain of computer 
vision. 

Vision-language models (VLMs) are a product of this 
exploration, harnessing extensive datasets of image-text pairs 
characterized by weak correspondence and substantial noise for 
the purpose of contrastive learning. Notable examples in this 
realm encompass CLIP [5], ALIGN [6], CoCa [7], and 
Florence [8]. These VLMs have demonstrated remarkable 
versatility, exhibiting the ability to transfer knowledge 
effectively across a wide spectrum of visual tasks. 
Naturally, this success has given rise to the notion of leveraging 
the knowledge encoded within these potent, pretrained VLMs 
as a promising avenue for the development of video recognition 

models. The current landscape of exploration in this domain 
can be categorized into several distinct research areas. As 
illustrated in Fig. 1(a), straightforward approach [9,10] adheres 
to the conventional unimodal video recognition paradigm by 
initializing the video encoder with the pretrained visual encoder 
from a VLM. Conversely, the alternative approach [11-14] 
directly incorporates the entire VLM into a video-text learning 
framework, leveraging natural language elements such as class 
names as supervisory signals, as depicted in Fig. 1(b). 

The BIKE framework [15] has brought to light the 
limitations of prior methodologies, which primarily rely on 
unidirectional Video-to-Text matching. Such constraints have 
curtailed the exploitation of the full potential of Vision-
Language Models (VLMs) in the context of video recognition. 
In response, BIKE proposed a novel approach that encourages 
bidirectional knowledge exploration across the visual and 
textual domains, as depicted in Fig. 1(c).  

The innovative framework introduced in this study pioneers 
the concepts of Video-to-Text and Text-to-Video knowledge 
mining. This entails the generation of textual information from 
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the input video, a crucial process known as attribute generation. 
Furthermore, BIKE [15] harnesses category descriptions to 
establish temporal saliency, thereby facilitating the extraction 
of valuable video-related signals. Through these mechanisms, 
BIKE [15] lays the foundation for comprehensive knowledge 
exploration across visual and textual modalities, thereby 
enhancing video understanding and recognition capabilities 
across various domains and tasks. 

 

Figure 1. Illustration of the difference between our Attr4Vis 
paradigm (d) with existing unimodal paradigm (a), cross-

modal paradigm (b) and bi-directional paradigm (c). 

In our research, we underscore the critical importance of 
unsupervised attribute predictions in enhancing video 
recognition. In alignment with this objective, our aim is to 
streamline the BIKE framework by eliminating the reliance on 
temporal saliency within the Text-to-Video branch. Instead, we 
advocate for the integration of a single classifier with Text-to-
Video pretraining transfer, following the principles of 
Text4Vis [14]. Moreover, we enhance the process of Video-to-
Text transfer by conducting attribute classification on densely 
overlapping segments of videos. This innovative approach 
allows us to encode information regarding attribute changes 
over time, thereby enhancing the representation of events 
within video data through the utilization of Large Language 
Models (LLMs). Furthermore, we underscore the significance 
of a predefined lexicon for attribute detection by VLMs. We 
demonstrate that this lexicon can be enriched through 
conversational LLMs, such as ChatGPT, which enables an 
expanded range of attribute recognition possibilities within 
video data. 

The Attr4Vis framework pioneers the exploration of 
knowledge transfer between Video and Text modalities to 
enhance video recognition performance by revisiting Text-to-
Video classifier initialization, emphasizing dense attribute 
generation techniques, and introducing an Attribute 
Enrichment Algorithm. By seamlessly integrating these 
components, Attr4Vis advances the state of the art in video 
recognition, offering promising avenues for knowledge transfer 
and improved attribute recognition capabilities.  

Our contributions in this work encompass several key 
aspects: 

• Revisiting Text-to-Video Classifier Initialization: We 

revisit the crucial aspect of initializing the Text-to-Video 
classifier, a step that allows us to remove Video Concept 
Spotting block which plays a pivotal role in streamlining the 
BIKE framework [15]. This initiative facilitates a more 
seamless integration of our proposed methodology into existing 
VLMs. 

• Emphasizing the Significance of Dense Attribute 
Generation: We underscore the paramount importance of 
dense attribute generation techniques in the context of video 
analysis. This approach allows for the effective encoding of 
attribute changes over time, contributing to enhanced event 
representation and recognition. 

• Introducing Attribute Enrichment Algorithm: We 
introduce novel algorithm aimed at enriching the set of 
attributes associated with video data. This augmentation of 
attributes offers an expanded spectrum of possibilities for 
attribute recognition within video datasets, thereby broadening 
the applicability of our framework. 

Our framework, Attr4Vis, synthesizes these contributions 
to advance the state of the art in video recognition, offering 
promising avenues for the exploration of knowledge transfer 
between visual and textual domains, as well as improved 
attribute recognition capabilities. 

II.  RELATED WORK 

A. IMAGE-LANGUAGE MODELS 
Visual recognition has conventionally relied on convolutional 
neural networks (CNNs) as the primary backbone architecture 
for image and video recognition tasks [16, 17]. However, the 
success of the Transformer architecture in Natural Language 
Processing, notably exemplified by [18], inspired the 
development of the Vision Transformer (ViT) [19], which 
directly applies the Transformer to images, yielding 
remarkable performance gains in image recognition. 
Consequently, ViT [19] has initiated a paradigm shift in image 
recognition backbones, transitioning from CNNs to 
Transformers. Subsequent studies, such as DeiT [20] and Swin 
[21], have emerged to further enhance performance. Moreover, 
the application of Transformers to video recognition has gained 
momentum with the introduction of models like TimeSFormer 
[22], ViViT [23], VideoSwin [24], and MViT [25]. 

In the domain of image-language pretraining, the CLIP 
model [5] has emerged as a benchmark for coordinated vision-
language pretraining. CLIP utilizes the image-text InfoNCE 
contrastive loss [26] and has spawned several variants [7] that 
combine various learning tasks, including image-text matching 
and masked image/language modeling. These contrastively 
learned models exhibit two noteworthy characteristics: rich 
visual feature representations and aligned textual feature 
representations. Another study [27] incorporated the 
downstream classification task into the pretraining phase, 
resulting in a significant improvement in accuracy compared to 
standard cross-entropy loss. 

In the context of video-text learning, several methods [28, 
29] have harnessed vision-language pretraining for video-text 
retrieval. Furthermore, recent approaches [11] extend the CLIP 
model [5] to train downstream video-text matching models 
using contrastive loss and subsequently employ the similarity 
between learned video and text embeddings for video 
recognition during inference. 

In contrast to the contrastive-based methods mentioned 
above, our approach investigates the efficient feature transfer 
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between visual and textual domain within the standard visual 
recognition paradigm. We directly extract both visual and 
textual knowledge from the video to enable better utilization of 
foundational models. 

B. CROSS-MODAL FOUNDATION MODELS 
Foundation models in the realm of computer vision have 
typically been tailored to specific tasks and domains, often 
requiring manual annotation of datasets for their training. 
However, recent research has introduced the concept of vision 
foundation models aimed at alleviating these constraints. 
Notably, CLIP [5] and ALIGN [6] have harnessed vast web-
scale collections of noisy image-text pairs to train dual-encoder 
models using contrastive learning. This approach yields robust 
image-text representations, enabling powerful zero-shot 
transfer capabilities. INTERN [30] extends this paradigm by 
incorporating multiple stages of self-supervised pretraining, 
leveraging a substantial quantity of image-text pairs alongside 
manually annotated images. INTERN [30] exhibits superior 
linear probe performance compared to CLIP [5] and enhances 
data efficiency in downstream image tasks. 

Florence [8] further advanced this line of research by 
integrating unified contrastive learning [31] and sophisticated 
adaptation models, thereby facilitating a wide array of vision 
tasks across diverse transfer settings. SimVLM [32] and OFA 
[33], on the other hand, pursue encoder-decoder model training 
with generative targets, delivering competitive performance 
across various multimodal tasks. Additionally, CoCa [7] 
unifies contrastive learning akin to CLIP [5] with generative 
learning akin to SimVLM [32]. Notably, Beit-3 [34] introduces 
Multiway Transformers within the framework of unified BeiT 
[35] pretraining, achieving state-of-the-art transfer results 
across multiple vision and image-language tasks. 

In the domain of video foundation models, prior models like 
those exemplified by CoCa [7] and Florence [8] have primarily 
excelled in video recognition, particularly in datasets such as 
Kinetics. However, when it comes to multimodal tasks 
involving video, models such as VIOLET [36] leverage 
masked language and masked video modeling, All-in-one [37] 
proposed unified video-language pretraining with a shared 
backbone, and LAVENDER [38] unified tasks through masked 
language modeling. While these models perform admirably in 
multimodal benchmarks, their training data often remains 
limited with regard to video-text pairs, thereby struggling when 
applied to video-only tasks, such as action recognition. 

In contrast, MERLOT Reserve [39] breaks new ground by 
amassing a vast collection of 20 million video-text-audio pairs 
for joint video representation training, employing contrastive 
span matching. Consequently, it achieves a state-of-the-art 
performance not only in video recognition but also in visual 
commonsense reasoning. It is worth noting that current video 
foundation models, when compared to their image foundation 
counterparts, exhibit limitations in their support for video and 
video-language tasks, especially in the context of fine-grained 
temporal discrimination tasks such as temporal localization. 

The paradigm of multimodal pretraining has become a 
cornerstone in the video-language domain, beginning with the 
development of image-text pretraining and evolving into large-
scale video-text pretraining with subsequent fine-tuning for 
specific downstream tasks [36, 40, 41]. Seminal methods [42, 
43] have traditionally leveraged pretrained visual and language 
encoders to extract offline video and text features. More recent 
approaches [37, 39], however, have demonstrated the 

feasibility of end-to-end training, streamlining the process. 
These methods often encompass two or three pretraining tasks, 
including masked language modeling [38], video-text matching 
[37], video-text contrastive learning [41], and video-text 
masked modeling [36], among others. 

In contrast to the previous work, InternVideo [30] stands as 
a versatile video foundation model, accompanied by its training 
regimen and intrinsic collaborative mechanisms. In terms of 
architectural design, InternVideo [30] adopts the Vision 
Transformer (ViT) [19] as its foundational structure, 
augmented by the inclusion of UniformerV2 [30] and 
additional localized spatiotemporal modeling modules. This 
amalgamation facilitates the creation of multi-level 
representations with robust interaction capabilities. 

In the realm of learning, InternVideo [30] progressively 
enhances its representation by seamlessly integrating both self-
supervised techniques, encompassing masked modeling and 
multimodal learning, alongside supervised training. Moreover, 
InternVideo [30] dynamically derives novel features from these 
two transformers through learnable interactions, thereby 
harnessing the strengths of generative and contrastive learning 
paradigms. The culmination of these efforts yields a 
remarkable outcome, as InternVideo [30] established new 
performance benchmarks across 34 datasets spanning 10 
prominent video-related tasks. 

In contrast to the cross-modal foundation models training, 
our approach focuses on utilization of these foundation models 
in a way that will yield the best performance. 

IІI.  METHODOLOGY 
An overview of our proposed Attr4Vis is shown in Fig. 2. Next, 
we will elaborate on each component in more detail. 
 

 

Figure 2. An overview of our Attr4Vis for video recognition 

A. TEXT-TO-VIDEO BRANCH: TEXTUAL EMBEDDINGS 
VECTORS 
For Text-to-Video knowledge exploration we follow textual 
embedding encoding from [30] to transfer semantic knowledge 
from text to visual model. It builds projection weights 𝑊 
composed of the embedded textual feature vectors of dataset 
labels 𝐿. Given a set of tokenized class labels 𝐿 =  {𝑙 , 𝑙 , 𝑙 ,
. . ., 𝑙  }, we have: 
 

𝑊  ~ 𝑇𝑒𝑥𝑡𝐸𝑐𝑜𝑑𝑒𝑟(𝑙 ), 𝑖 =  1,2,3, . . . , 𝑐,              (1) 
 

where 𝑊  the i-th row vector in matrix 𝑊. Hence 𝑊  is 
initialized using LLM output of textual label of the i-th class. 
As TextEncoder in our experiments we used Multilingual-E5-
large [31]. 
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B. Text-to-Video branch: Textual Embeddings Vectors 
As illustrated in Fig. 3, we leverage the zero-shot capabilities 
inherent in Vision-Language Models (VLMs), exemplified by 
InternVideo [30], to discern the most pertinent phases within a 
predefined lexicon and designate them as potential "Attributes" 
for the given video content. This process unfolds as follows: 
we commence by applying image encoder to the small chunks 
of the input video, thereby extracting frame-level features for 
each chunk, and subsequently aggregating using average 
pooling that yields a comprehensive chunk embedding. 
 

 

Figure 3. An overview of Video-to-Text branch. It generates 
Attribute sentence for given input video and predefined 

lexicon. Attribute generation happens for non-overlapping 
chunks by matching visual embeddings with textual. 

Simultaneously, we feed predefined lexicon into text 
encoder, resulting in the generation of a set of text embeddings. 
We proceed to compute the similarity between each chunk 
embedding and text embeddings, meticulously sorting the 
outcomes. Subsequently, we select the top few phrases that 
exhibit the highest degree of alignment as the designated 
"Attributes" for the chunk. 

Having successfully identified these attributes, we employ a 
straightforward fusion technique that concatenates them into a 
unified attributes sentence. To enhance interpretability and 
context, we append a manually designed prompt as a prefix to 
this sentence, typically in the form of "At the video {}, then {}, 
then {}..." This comprehensive approach ensures the creation 
of meaningful and contextually relevant auxiliary attributes for 
our video content analysis. 

C. TEXT-TO-VIDEO BRANCH: TEXTUAL EMBEDDINGS 
VECTORS 
Traditionally, video recognition datasets have been constrained 
by a limited number of categories defined by the dataset labels. 
In the context of the BIKE framework [15], the original dataset 
labels were exclusively employed for the creation of a lexicon. 
However, it is evident, as demonstrated in our ablation study 
(refer to Section 5.2), that relying solely on this original set of 
labels imposes restrictions on the capacity of Vision-Language 
Models (VLMs), exemplified by InternVideo [30], to generate 
comprehensive prompts for the Video-to-Text branch. 

To address this limitation and broaden the variability of 
available labels, we propose an innovative approach. 
Specifically, we advocate for the augmentation of the lexicon 
by harnessing conversational LLMs, with a specific focus on 
ChatGPT. Through this method, we significantly enrich the 
lexicon at the disposal of VLMs. The detailed formalization of 
our lexicon enrichment procedure is provided in Algorithm 1. 
This augmentation strategy not only enhances the descriptive 
capabilities of VLMs but also facilitates more nuanced and 

contextually relevant prompts, thus contributing to improved 
video understanding and recognition performance. 

 
Algorithm 1. Proposed algorithm for lexicon enrichment 
Inputs: Dataset 𝐷, set dataset labels 𝐿 = {𝐿 , 𝐿 , … , 𝐿 }, 
Textual Embedding model 𝑀, deduplication threshold 𝜏. 
// Generate enriched labels 

1. 𝐿  =  {} // Initialize set of enriched labels 
2. For each 𝐿  in 𝐿: 

// Preparing textual prompt for each label 
2.1. prompt = “You are a domain expert in the {𝐷} 
dataset, helping develop a labeling system. Generate 
additional labels that will enrich {𝐿 } label of {𝐷} 
dataset. Format output as comma separated labels.” 
2.2. result = ChatGPT(prompt) // Generate additional 
labels 
2.3. 𝐿 . 𝑎𝑑𝑑(𝑟𝑒𝑠𝑢𝑙𝑡) 

// Deduplicate labels by semantic meaning 
3. 𝐸  =   {𝑀(𝐿 ) 𝑓𝑜𝑟 𝐿  𝑖𝑛  𝐿 } // Generate embeddings 
for each label 
4. 𝐿  =  {} // Initialize output labels 
5. For e in 𝐸 : 

5.1. distance = cosine(e, 𝐿 ) // Calculate cosine 
distance for each pair 
5.2. if all(distance) < 𝜏:  

5.2.1. 𝐿 . 𝑎𝑑𝑑(𝑒) 

IV. EXPERIMENTS AND RESULTS 

A.  SETUP 
Our experimental investigations are conducted on Kinetics-400 
[46] dataset. 

We adopt the visual encoder component of InternVideo 
[30] as the foundation for our video encoder. Similarly, the 
textual encoder of InternVideo [30] is utilized for attributes 
encoder. To mitigate potential conflicts between these two 
branches, we employ a sequential training approach, first 
training the video encoder and subsequently addressing the 
attributes encoder. In the preparation of video inputs, we 
judiciously employ sparse sampling techniques involving a 
variable number of frames denoted as T (e.g., 8, 16, 32). In all 
our experiments we used  𝜏 =  0.85 for deduplicating enriched 
attribute lexicon. For attribute prediction branch we sampled 
each video into 8 non-overlapping temporal chucks with 16 
frames in each (section 5.1) and used prediction with the 
biggest score to represent this chunk. 

Our evaluation protocol embrace the "Multiple Views" 
strategy, a common practice in the field [6, 12, 40], which 
entails the sampling of multiple clips per video along with 
several spatial crops to achieve higher accuracy. For the 
purpose of benchmarking and comparisons with state-of-the-
art approaches, we specifically employ a configuration 
involving four clips with three crops, denoted as "4×3 Views," 
as detailed in Table 1. 

B.  RESULTS 
We present our results on Kinetics-400 in Table 1 and compare 
our approach with SOTAs trained under various pretraining 
settings. Our approach outperforms regular video recognition 
methods while requiring significantly less computation. 
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Table 1. Comparisons with state-of-the-art methods on Kinetics-
400. We report the FLOPs in inference phase. “Views” indicates 
# temporal clip × # spatial crop. The magnitudes are Giga (109) 

and Mega (106) for FLOPs and Params. 

Method Input Top-1 
(%) 

Top-5 
(%) 

Views FLOPs Pa-
rams 

NL I3D-101 [47] 128 × 
2242 

77.7 93.3 10×3 359 × 30 61.8 

MVFNet [48] 24 × 2242 79.1 93.8 10×3 188 × 30 - 
TimeSformer-L [49] 96 × 2242 80.7 94.7 1×3 2380 × 3 121 
ViViT-L/16×2 [23] 32 × 3202 81.3 94.7 4×3 3992 × 12 311 
VideoSwin-L [24] 32 × 3842 84.9 96.7 10×5 2107 × 50 200 
Methods with large-scale image pre-training 
ViViT-L/16×2 [23] 32 × 3202 83.5 95.5 4×3 3992 × 12 311 
ViViT-H/16×2 [23] 32 × 2242 84.8 95.8 4×3 8316 × 12 648 
TokenLearner-L/10 
[50] 

32 × 2242 85.4 96.3 4×3 4076 × 12 450 

MTV-H [51] 32 × 2242 85.8 96.6 4×3 3706×12 - 
CoVeR [52] 16 × 4482 87.2 - 1×3 - - 
Methods with large-scale image-language pre-training 
CoCa ViT-giant [7] 6 × 2882 88.9 - - - 2100 
VideoPrompt ViT-
B/16 [11]  

16 × 2242 76.9 93.5 - - - 

ActionCLIP ViT-
B/16 [13] 

32 × 2242 83.8 96.2 10×3 563 × 30 142 

Florence [8] 32 × 3842 86.5 97.3 4×3 - 647 
ST-Adapter ViT-
L/14 [10]  

32 × 2242 87.2 97.6 3×1 8248 - 

EVL ViT-L/14 [9] 32 × 2242 87.3 - 3×1 8088 - 
X-CLIP ViT-L/14 
[12] 

16 × 3362 87.7 97.4 4×3 3086 × 12 - 

Text4Vis ViT-L/14 
[14] 

32 × 3362 87.8 97.6 1×3 3829 × 3 230 

BIKE ViT-L/14 [15] 32 × 3362 88.6 98.3 4×3 3728 × 12 230 
InternVideo-T [30] 32 × 3362 91.1 99.0 4×3 1434 × 12 1300 
Attr4Vis (ours) 32 × 3362 91.5 99.2 4×3 1434 × 12 1300 

V. ABLATION STUDY 
In the ablation study section, our objective is threefold. Firstly, 
we aim to evaluate the impact of dense attribute prediction on 
model performance. Secondly, we aim study importance of 
lexicon enrichment algorithm. Lastly, we studied aspects of 
initializing the Text-to-Video classifier and removing Video 
Concept Spotting branch of BIKE [15]. This comparative 
analysis will provide insights into the efficacy of our approach 
and its potential to outperform the state-of-the-art technique. 
Additionally, by isolating the contribution of each change, we 
can better understand the relative importance of each 
modification and its impact on the overall performance of the 
solution. 

A. STUDY THE SIGNIFICANCE OF DENSE ATTRIBUTE 
DETECTION 
Our experiential study (Table 2) underscores the paramount 
importance of dense attribute generation techniques in the 
context of video analysis. Reasoning for such improvements is 
that approach allows for the effective encoding of attribute 
changes over time with high granularity, contributing to the 
enhanced event representation and recognition. 

Table 2. Impact of dense attribute prediction on the 
performance. “Views” indicates #non-overlapping 

temporal chunks × # frames. 

Method Views Top-1 (%) 
Without attribute prediction - 91.1% 
Sparse attribute prediction 1x16 91.3% (+0.2%) 
Dense attribute prediction 4x16 91.4% (+0.3%) 
Dense attribute prediction 8x16 91.5% (+0.4%) 
Dense attribute prediction 16x16 91.5% (+0.4%) 

B. STUDY ON IMPORTANCE OF LEXICON ENRICHMENT 
We compared our proposed algorithm for lexicon enrichment 
(section 3.3) with ImageNet and Kinetics-400 lexicons in Table 
3. 

Table 3. Impact of different lexicons on performance 

Lexicon Top-1 (%) 
Without attribute prediction 91.1% 
ImageNet-1K 90.3% (-0.8%) 
Kinetics-400 91.4% (+1.1%) 
Lexicon enrichment algorithm 91.5% (+0.1%) 

C. STUDY ON IMPORTANCE OF LEXICON ENRICHMENT 
We revisit the crucial aspect of initializing the Text-to-Video 
classifier, a step that plays a pivotal role in streamlining the 
BIKE framework [15]. This makes it possible to drop Video 
Concept Spotting branch hence streamlining integration of our 
proposed methodology into existing VLMs. The results of the 
study are available in Table 4. 

Table 4. Impact of initialization and Video Concept 
Spotting branch on the performance. 

Change Top-1 (%) 
BIKE [15] 88.6% 
+ InternVideo-T [29] 90.6% (+2.0%) 
+ Text4Vis initialization [14] 90.8% (+0.2%) 
- Video Concept Spotting branch  91.2% (+0.4%) 
+ Dense attribute prediction 91.4% (+0.2%) 
+ Lexicon enrichment 91.5% (+0.1%) 

VI. CONCLUSION 
In this study, we present an innovative framework known as 
Attr4Vis, aimed at exploring the transfer of knowledge 
between video and text modalities to enhance video 
recognition. Our contributions in this work encompass several 
significant components. Firstly, we underscore the paramount 
importance of employing dense attribute generation techniques 
within the realm of video analysis. This approach allows for the 
effective encoding of attribute changes over time, thereby 
contributing to improved event representation and recognition. 
Secondly, we introduce a novel algorithm designed to enrich 
the array of attributes associated with video data. This 
augmentation of attributes broadens the spectrum of 
possibilities for attribute recognition within video datasets, 
thereby enhancing the applicability of our framework. 
Furthermore, we revisit the critical aspect of initializing the 
Text-to-Video classifier and removing Video Concept Spotting 
branch, a pivotal step that streamlines the BIKE framework 
[15].  

Our framework, Attr4Vis, amalgamates these 
contributions, advancing the forefront of video recognition 
achieving state-of-the-art results of 91.5% Top-1 accuracy on 
Kinetics-400 dataset. It offers promising opportunities for 
exploring knowledge transfer between the visual and textual 
domains, and concurrently enhances attribute recognition 
capabilities. 
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