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 ABSTRACT Utilizing a data acquisition (DAQ) module and LABVIEW programming requires to develop in 
earth science/ engineering and equivalent, especially for educational purposes. This study implemented a 
geophone and an accelerometer to measure ground wave propagation with a study case of soil surface. Its 
measurement method consists of two modes. Firstly, the geophone is close to a wave source. Then, its position is 
changed by the accelerometer. The DAQ converts the detected signals from both sensors and then the 
LABVIEW interface processes and displays the outputs on the computer. The system can sense and reconstruct 
waveforms with a steady sampling frequency from 5 to 50 kHz. Also, it can automatically calculate a wave 
velocity by identifying the rising or falling edges of the wave signal and counting its arrival time within the 
distance between two sensors. As a result, it produces a better result at an interval of 0.2-0.6 m with a computed 
wave velocity of 72.531 m/s on average, even though a correction variable should be appended to the outcomes, 
amplified by two. 
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I. INTRODUCTION 
THE data acquisition (DAQ) module has been widely used 
in the industrial and medical fields as well as in education. 
For example, the DAQ could be applied in the aeronautics 
[1] and agriculture [2]. In [3, 4], real-time 
electrocardiogram (ECG) monitoring in the medical field 
was developed. It could be used as a teaching tool in a 
laboratory course for educational purposes [5]. 

On the other hand, a graphical programming language 
called LabVIEW (Laboratory Virtual Instrument 
Engineering Workbench) [6–10] was also implemented 
globally. On the education scale, it could be used for 
electronics experiment simulation [6–8]. The programming 
language would provide a decisive outcome when 
combined with a DAQ module. For example, the 
engineering students would get real experience in observing 
the input/ output signal of the sensors and controlling the 
DAQ through a LabVIEW [11]. Both applications 
(integration between DAQ and LabVIEW) could be a 
common need in the industry [12]. In [1], the system for 

aircraft implementation was developed, in which the 
graphical user interface organized the data set from the 
sensors, and [2] built the plant monitoring system that could 
give an alert or be operated remotely (for agriculture 
purposes). Then in clinical application, the authors of [3] 
created an inexpensive device to monitor the ECG signal; 
and in [4], the system for auto-detection of the signal 
abnormality related to personal health was enhanced. In 
[13], the high-speed data acquisition system with a 
sampling frequency of 200 MB/s for modern 
tests/measurements in engineering technology was 
designed. 

One of the sensors that can be connected to the 
integrated DAQ-LabVIEW is vibration/ seismic sensor. The 
application can be used for analyzing the equipment 
vibration [9, 14], or the vibration in a drilling activity [10]. 
An accelerometer is a typical sensor that can be applied as a 
vibration/ seismic sensor; it can sense ground vibration 
[15]. Some researchers utilized it for various aims, such as 
a laboratory scale measurement to calculate the physical 
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property of the materials [16], sedimentary rocks [17], or 
igneous/ metamorphic rocks [18], and in situ elastic 
properties investigation through the wave propagation in 
the geotechnical field [19, 20]. A geophone can also be 
occupied as a vibration sensor, yet, the frequency response 
is less than in an accelerometer [21]. Thus, it is commonly 
used to detect low-frequency seismic waves. In [22], a 
system that implemented a triaxial geophone to sense the 
micro-earthquake wave was built. Then, in [21], the seismic 
system that applies an accelerometer and a geophone was 
developed. The output signal of the sensors gave the same 
response to the ground vibration, although the phase was 
different. If the accelerometer output is integrated to first-
order and the geophone output is derived to first-order, too, 
each other generates a similar waveform [21]. 

In general, both sensors can be employed to study the 
ground's physical properties through wave propagation; 
wave velocity is one of them. In this study, the author  
proposes to develop an integrated system to auto-
calculation of the rate of the ground wave propagation. 
Therefore, the system requires sensors, a DAQ module, and 
LabVIEW as a graphical interface to achieve this objective. 
Then, the measurement method is adopted from [15, 19]. 
This system can assist the researchers or students in the 
activity in earth science, geotechnical, and engineering 
education fields. 

II. MATERIALS AND METHODS 
Ground wave propagation can be monitored by setting up 
vibration/ seismic sensors with a straight line on the ground 
surface [15]. The assessment can be tested by the hammer 
hitting the surface with a minimum of two sensors on two 
points aligned with the impact position [19]. The velocity 
propagation is calculated as the ratio between the distance 
of the sensors and the time interval taken by the wave to 
cover them [19]. Its formula is as follows: 
 

d
v

t



, (1) 

 
with the unit of velocity propagation ( v ) in m/s, distance        

( d ) in m, and time interval ( t ) in s. The measurement 
layout can be viewed in the following figure: 
 

 

Figure 1. The measurement layout of the ground wave 
propagation (adapted and modified from [19]). 

The system has two main parts: hardware and software 
designs. The sensors and a DAQ contribute to the hardware. 
Meanwhile, the software construction will apply LabVIEW, 
which involves: controlling the DAQ through the computer, 
data processing, and displaying the outcome on the 
computer. 

The sensors will use a geophone from a work of [21] 
and an industrial accelerometer from [23]. The difference in  
implementation of the sensors is in the voltage supply. A 
geophone does not demand an electrical supply; it is a 
passive sensor. In contrast, an accelerometer's voltage 
supply is essential because it is an active sensor. The 
accelerometer needs a +12 V DC voltage. It is built on a 
piezo ceramic element, has a sensitivity of 10 V/g, and has 
a maximum frequency response of about 500 Hz [23]. The 
piezo element type used for the accelerometer is preferable 
for field monitoring [15]. After testing the sensor, it has a 
maximum output of +10 V with an idle output voltage  
of +5 V. 

A DAQ USB-201 will be used for reading the data from 
the sensors and interfacing it with the LabVIEW; the 
module is one of the Measurement Computing DAQ 
family. The module's main features are eight single-ended 
analog inputs, 100 kS/s maximum sampling frequency, 12-
bit ADC resolution, an input voltage range of ±10 V, and it 
is powered by +5 V USB [24]. 

The following figure is the schematic diagram of the 
hardware part. The output line of a geophone is connected 
to an amplifier (because the output signal amplitude is very 
low [21]), then attached to analog input channel 0 of the 
DAQ module. At the same time, an accelerometer is 
directly connected to channel 1 of the module. The voltage 
supply of +12 V is put on the accelerometer and has the 
same grounding line as the DAQ module. It is also a supply 
to a geophone amplifier to have an equal voltage level with 
the accelerometer voltage output. 
 

 

Figure 2. The schematic diagram of the sensors and the 
DAQ module (modified from [24]). 

Figure 3 presents the interface process steps on 
LabVIEW. The programming is adopted from [25] for 
accessing the LabVIEW to the DAQ module. On the front 
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panel of the LabVIEW (Figure 4), there are:  
1. The input settings by the user, including:  

a. the sampling rate;  
b. record length (relates to the sample number in the 

designation time);  
c. trigger level (amplitude level demands to be 

detected);  
d. distance between the sensors.  

2. Output display: time series waveforms, power spectrum, 
and calculation results (time interval between two 
sensors and wave velocity). 

Since two channels of the DAQ are occupied, each channel 
has a maximum frequency sampling of 50 kHz (referring to 
[24]). The block diagram in Figure 5 shows the detailed 
programming process. In the initialization process, apart 
from the user settings, there is the fixed-variable 

adjustment:  
1. The number of analog inputs (selected channel 0 and 

channel 1).  
2. Input voltage range (the author employed the ±5 V 

because after coupling the sensor's output by the 1μF 
polar capacitor, it has the output range of about ±5 V –
to obtain the valuable data, it is possible to set the input 
range value smaller than ±5 V).  

3. Sample mode ("FiniteSample" was chosen).  
4. Trigger mode (concerning amplitude level detections of 

each sensor with the selected means in the LabVIEW 
"Basic Level Trigger Detection," including the function 
of "Time," "Falling Edge" for the accelerometer, and 
"Rising Edge" for the geophone). 

 

 

 

Figure 3. The graphical user interface flowchart on LabVIEW. 
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The read data process only applies LabVIEW's "Read" 

function [25]. Its role is to read any incoming input on the 
DAQ analog inputs with the initialization references 
arranged before. Since the incoming data are from two 
analog inputs, the data consists of 2D array waveforms. 
They are separated in the data processing part to display 
each waveform and spectral measurement to view the 
power spectrum graph. The trigger detections (amplitude 
level) will also work in this part so that the software will 
run continuously. If the specific voltage values of the 
sensors are detected (according to the trigger level setting), 

the time position from each sensor will be identified. Next, 
the time interval will be measured from the difference of 
the specified time positions; and the wave velocity can be 
calculated using Eq. (1). Simultaneously, each sensor's data 
will be saved to the computer hard drive, consisting of time 
and amplitude values (for the primary data). After saving 
the file and calculating the data outcome, the software will 
stop running (meaning the user needs to click the play 
button to run the software, and it will be stopped 
automatically if the condition has been reached). 

 

 

Figure 4. The front panel of the software construction on LabVIEW. 

 

 

Figure 5. The block diagram of the software construction on LabVIEW. 
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III. RESULTS AND DISCUSSION 
The system was tested to observe the wave propagation on 
the soil surface (Figure 6) with a maximum distance of one 
meter between two sensors. The system testing procedure 
implemented fixed and non-fixed spaces with adjustable 
sampling rates. The measurement length was arranged with 
the range of 0.2-1.0 m (increment of 0.2 m, refers to [19]), 
and the sampling frequency was set from one kHz, 5 kHz to 
50 kHz (the frequency increment of 5 kHz). Then, the 
hammer source was alternated near the geophone and 
accelerometer to ensure the same wave velocity 
measurements (shift the sensors in Figure 6(b)). 

Figure 6(a) displays the software system calibration 
sample of the time position identification. The condition of 
the sensors should be at the same point and perpendicular to 
the vibration/ seismic source. Its outcomes vary from zero 
to about 0.0007 s between an accelerometer and a 
geophone. It is reasonable because of the dimension 
difference between both. The following table presents the 
average time detection in the calibration mode.  

Table 1. The average time determination from different 
sampling frequencies (𝑭𝑺) in the calibration test. 

𝐹ௌ (kHz) average Δ𝑡 (s) 𝐹ௌ (kHz) average Δ𝑡 (s) 
1 0.001 30 0.000567 
5 0.0006 35 0.000543 

10 0.0006 40 0.000625 
15 0.0006 45 0.000667 
20 0.0007 50 0.00058 
25 0.0006   

 
Both sensors produce nearly an equal spectrum 

frequency response (Figure 7), though the accelerometer 
response delivers a more significant magnitude of over a 
hundred hertz than the geophone. It means the previous one 
is better at detecting high-frequency waves. It can be 
figured from the wave display in time domain mode. For 
the lower wave frequency, both can be implemented. 
Overall, both sense the same response at either a low 
sampling rate or the highest rate without aliasing or over-
sampled occurrence. 

 

 
 

 
(a) 

 
 

 
(b) 

Figure 6. Field testing: (a) system calibration and (b) ground wave propagation measurement. 

 

 
(a) 
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(b) 

Figure 7. The resulting example of the system calibration with disparate sampling rates: (a) 1 kHz and (b) 50 kHz. 
 

Moreover, the software successfully obtains the wave 
arrival time at both sensors in this case. Also, the result 
indicates a disparate phase between both, corresponding to 
[21]. To visualize more details, Figure 8 presents the wave 
response with several selected sampling frequencies at a 
record length of 10 ms. The image shows that a sampling 

rate of 5 kHz starts generating a sound construction of a 
wave, so the higher rate produces better wave 
reconstruction. This result confirms the statement from the 
former paragraph. Consequently, the higher the sampling 
frequency is applied, the more discrete digital data is 
required to save in a drive/ storage. 

 

 

Figure 8. The wave response sample of 10 ms at: (a) 1 kHz and 5 kHz; (b) 10 kHz, 15 kHz, and 20 kHz;   
(c) 25 kHz, 30 kHz, and 35 kHz; and (d) 40 kHz, 45 kHz, and 50 kHz. 

 
Figure 9 presents the measurement sample of wave 

propagation using the built software. There are two modes 
conducted in the measurement field. Firstly, a geophone is 
the first sensor, and an accelerometer is the second sensor, 
which means the source is near the geophone. Then, 
another mode is an alternated position of both sensors. As a 
result, arrival time detection is a disparity between both 
modes. Each mode at a distance of 0.2-0.6 m delivers 
roughly similar (Table 2 and Table 3). The auto-
computation wave velocity ranges between both modes at 
0.2 m is 62.6-67.1 m/s, at 0.4 m is 74.7-75.4 m/s, and at 0.6 

m is 76.0-79.4 m/s; its variance ranges about 1-5 m/s. 
Meanwhile, the outcomes give larger discrepancies at 

0.8-1.0 m, approximately 30 m/s. This event developed 
because the geophone was further from the seismic source 
in the second mode (Table 3). Although an analog signal 
amplifier was put in the system design, it is not enough to 
increase the signal power when sensed by the geophone. 
When a signal is weak, noise can interfere with its ground 
motion. 

If both results of the software-based are averaged for all 
distances, the velocity has a range of about 63.7-77.7 m/s; 
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or if the results are generated in the form of linear 
regression (Figure 10 and Figure 11), each mode produces 
the following formula: 

 
2 3

1 (1.0798 10 ) 1.0124 10St d     ,             (2) 
2 3

2 (2.0052 10 ) 1.9309 10St d     ,            (3) 
 
where 1St  and 2St  are the time functions in each mode (in 

the unit of s), respectively, and d  is the distance between 
the sensors (m). From those equations, the wave 
propagation can be derived as follows: 
 

21
1 92.610 m/s

(1.0798 10 )Sv  


,              (4) 

22
1 49.870 m/s

(2.0052 10 )Sv  


,            (5) 

 
where 1Sv  and 2Sv  are wave velocities (m/s) for each 

mode. The first value is generated higher than the result 
given in Table 2. Even though such outcomes are presented, 
it is still reasonable. However, the second value is 
reasonably far from the displayed data in Table 3 (it can be 
seen in Figure 11 that the data deviates more  from the 2St  

regression line). It is caused by the previous statement 
about the sensed capability of the geophone when it is far 
enough from the wave source. 

 

 

 
(a) 

 
(b) 

Figure 9. The resulting example of the system measurement at 5 kHz: (a) a geophone as a sensor one (first mode) and (b) an accelerometer 
as a sensor one (second mode). 
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Table 2. The average calculation of all sampling rates at each 
spacing from the software-based and manual correction in 

mode 1 (a geophone as the first sensor). 

automatic software-based manual correction 

𝑑 (m) ∆𝑡 (s) 𝑣 (m/s) ∆𝑡 (s) 𝑣 (m/s) 

0.2 0.002981 67.102 0.001246 161.571 

0.4 0.005314 75.386 0.002568 156.781 

0.6 0.007557 79.447 0.003994 151.454 

0.8 0.010332 77.592 0.005297 152.259 

1.0 0.011271 88.735 0.00558 179.464 
the mean velocity of all 
intervals (m/s) 

77.653  160.306 

Std. Dev. (%) 7.786  11.448 

 

Table 3. The average calculation of all sampling rates at 
each spacing from the software-based and manual 
correction in mode 2 (an accelerometer as the first 

sensor). 

automatic software-based manual correction 

𝑑 (m) ∆𝑡 (s) 𝑣 (m/s) ∆𝑡 (s) 𝑣 (m/s) 

0.2 0.003199 62.556 0.001373 150.064 

0.4 0.005373 74.690 0.002399 168.406 

0.6 0.007896 76.006 0.004208 143.301 

0.8 0.016186 49.440 0.00552 145.809 

1.0 0.017847 56.029 0.005835 171.818 
the mean velocity of all 
intervals (m/s) 

63.744  155.880 

Std. Dev. (%) 11.572  13.270 

 
 

 

Figure 10. Time-distance diagram according to Table 2 

 
 

 

Figure 11. Time-distance diagram according to Table 3 

According to [26–30], wave velocity at the near surface 
is approximately under 200 m/s. The automated outcomes 
from software correspond to the value, but those deviations 
are appropriately wide. Because of the assumption, the 
author manually calculated the wave velocity (Table 2 and 
Table 3), obtaining the velocity range for both modes 
between 143.3 m/s and 179.5 m/s of all intervals. The 
values are consistent in their content, with a variance of 
about 20%. If the velocity is calculated statistically, it 
delivers at 155.9-160.3 m/s. Even if the value is computed 
with the same method as in Eqs. (2)-(5) and its viewed 
graph in Figure 10 and Figure 11 (the parameters are 1Mt  

and 2Mt ), its value ranges from 166.1 to 175.5 m/s. Hence, 

the manual estimation gives almost similar and steady 
results regardless of  the method. 

Compared to software-based computation, manual 
calculations are practically double or trifold. In the first 
mode, the outcomes should be amplified by a factor of two. 
There are two categories for the second mode: first, the 
correction factor is twice at a distance from 0.2 m to 0.6 m; 
then, for the rest, the outcome values should be triple. 

Based on the results from the developed system, the 
automatic computation of ground wave propagation can be 
applied to any studies in the field, although the value 
disparity occurs when compared to the manual method; it 
needs to employ a correction factor in the results. Apart 
from the different occurrences, the system can detect the 
wave arrival time from any vibration sensor. It requires a 
better means to improve level trigger detection on 
LABVIEW.  

VI. CONCLUSIONS 
The system consisting of a DAQ module, and LABVIEW 
software is developed to measure the ground wave 
propagation. It has an auto-computation feature to calculate 
wave velocity and reconstruct waveforms with a steady 
sampling rate of 5-50 kHz. The essential part of the system 
is the arrival time detection on the software. Currently, the 
system can nearly consistently detect the wave arrival time 
at a distance from 0.2 m to 0.6 m with a computed wave 
velocity of 72.531 m/s on average. However, a correction 
factor should be used after acquiring the result from the 
field. 

For further development, the amplifier module should 
be implemented in the sensor output, whatever its type, 
especially if employing a geophone; it requires higher 
signal amplification. Then, the hardware must apply signal 
filtering in addition to the software. Lastly, the level of the 
trigger detection on the software should be improved. 
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