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 ABSTRACT The South African Education Management Information Systems (EMIS) hosts longitudinal data 
on school inventory, learners, and educators. One of the most prevailing and yet ignored phases in machine 
learning is Feature Selection (FS). Neglecting this phase can adversely impact the outcome of the machine-learning 
exercise. This study seeks to explore informative features from the EMIS system which can predict the possibility 
of learners prematurely transitioning to alternative learning spaces in the Limpopo education system. The 
Ravenstein migration theory was used to assemble the initial features which were then subjected to Boruta, 
RPART, Adaboost.M1, and J48 algorithms. The feature subsets generated by the FS algorithms were compared 
with filter-based statistical methods such as Spearman Correlation and Mutual Information to aid in the final 
selection of the best feature subset for the study. All machine learning FS methods performed well. Feature subset 
generated by  Boruta was considered optimal due to relatively low importance score variance among the selected 
features compared to RPART, J48, and Adaboost.M1. It is believed that the low variance in the feature set will 
improve the model's stability and its ability to generalize with previously unseen data. 
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I. INTRODUCTION 
UMAN migration has been studied extensively in the past 
three decades to understand the patterns and associated 

causes. Work in this area has progressed and has been used to 
understand, among other things, complex social and economic 
systems to ensure the future survival of humanity [1]. The study 
of migration is not specific to humans, it is a widespread 
phenomenon among various taxa and encompasses various 
research areas in both humans and animals such as 
anthropology, sociology, economics, and ethology [1, 2]. What 
all these migrations have in common is the importance of 
maximizing the use of resources and different fitness 
advantages such as growth, reproduction and protection [2].In 
developing countries, this is a topic of central importance, since 
teaching and learning resources are meagre [3]. In addition, 
learners often migrate or displace from one school to another 
due to various factors and intervening obstacles. This raises 
concern especially on budget and resource allocation in the 
receiving schools, mainly because resources are generally 
allocated at the beginning of the year and do not follow learner 
movements throughout the academic year. Furthermore, the 
arrival of learners puts more pressure on receiving schools on 

issues related to gaps in curriculum coverage and related 
imperatives that need to be addressed to improve learner 
achievement. This is worse when learner migration is high, 
increasing pressure on education authorities to place learners 
and disrupting teaching and learning. The systematic review by 
[4] examined several studies exploring different factors that 
contribute to student migration in South African schools and 
ways to mitigate their negative effects. This review found that 
the migration of learners from one school to another is 
influenced by several factors, including legal frameworks in the 
education system, school management and leadership practices 
of schools, school efficiency, infrastructure, and socio-
economic factors, among others. Conceptually, the work by [5] 
made similar observations. Botha and Neluvhola [4] 
acknowledged resource deficiencies in planning, management, 
and resource allocation caused by learner migration and 
recommended the development of policies that will enable 
school leaders to effectively deal with learner migration. 
Simelani [5] raised concerns about the reduction in human 
capital in rural schools, the increasing number of non-viable 
schools with multi-grade classes in primary schools, and the 
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reduction in subject streams in secondary schools due to learner 
migration. 

The study by  [6] highlighted the limitations of the school 
legal framework in South Africa, which gives learners the right 
to be admitted to a school of their choice.  Hettie [6] argued that 
the current learner admission policy created an ongoing exodus 
of learners moving from traditionally black schools to the 
former Model C schools (former white schools post-apartheid 
education). The study further argued that social class and the 
language of the school also play an important role in guiding 
learners in their school choices, with English being the most 
preferred language for learning and teaching [6]. There is a 
consensus among researchers [4, 6] that more orderly and 
governed schools where teachers are motivated, dedicated 
principals, organized parental involvement, school 
infrastructure, school socioeconomic status, and performance- 
are the most important drivers of learner migration.  

The phenomenon of learner migration is not isolated to the 
South African education system. It spans across various 
countries. What is common in learner migration studies, is the 
growing need for access to quality education and to maximize 
life opportunities [7–9]. In recent years there has been a 
growing interest in researching the use of data mining 
techniques to solve problems in educational settings under the 
umbrella term Education Data Mining (EDM) [10]. One such 
study was conducted by [11] using cloud computing and data 
mining methods to assess the mental health of immigrant 
students moving to Chinese cities. To select the best features 
for the study, the data collected via the survey was first 
classified and fed into the feature selection function of the 
LTSM time-series neural network. Data from the selected 
features was further clustered using K-Means to reveal 
underlying patterns to help answer the research question. It was 
found that migrant learners suffer from mental health problems 
ranging from anxiety, hostility, and fatigue compared to non-
migrant learners. 

One prospective study in human migration predicting 
migration destinations argued that the traditional migration 
models such as gravity and radiation, which are based on 
population and distance variables, are limited, and cannot deal 
with complicated migration dynamics [12]. The study used 
survey data and developed a simple decision tree and random 
forest model to predict the successful migration outcome. The 
simple decision tree provided better classification accuracy 
than the random forest. In a similar study conducted by [13], 
XGBoost (Extreme gradient boosting) and ANN (Artificial 
neural network) were used to model human migration. The 
study made similar observations where the XGBoost and ANN 
models outperformed traditional human models on a variety of 
assessment metrics. Robinson and Dilkina [13] argued that the 
traditional models have a fixed form and function and can only 
be used where a large amount of prior ground truth mobility 
data is unavailable. 

The importance of quality education and the detrimental 
impact of learner migration on pedagogy and education 
administration cannot be overstated. Educational planners need 
to have the upper hand in understanding learner 
migration/mobility patterns and the underlying causes to 
inform planning and monitoring; and device sound policies to 

reduce uncertainties and negative impacts of learner migration. 
Although various qualitative and machine learning research has 
been conducted to understand factors contributing to learner 
migration, there is still a significant gap in the use of data 
mining techniques to assess learner migration and find 
optimum feature subsets more suited to modelling the 
phenomena.  

The focus of this study is to find the most optimal feature 
subset to predict learner migration cases and related causes. 
This paper provides in-depth insights into the factors 
influencing learner migration, to improve educational 
planning, and promote the use of data analysis and machine 
learning to support data-driven decisions in the education 
system. The outline of the paper includes a literature review, 
theoretical framework, methods and materials, experiment 
design and execution. Furthermore, it presents the findings and 
discusses their implications and future work. 
 
II. THEORETICAL FRAMEWORK 
A. RAVENSTEIN MIGRATION THEORY 
The information systems (IS) domain is the aspect of 
computing that focuses on the social context of technology 
[14]. Historically, most information systems research and data 
analysis have been conducted using an interpretive approach. 
The interpretive approach is not motivated by specific 
perspectives and has no logical boundaries, and the arguments 
are mainly based on the researchers' opinions and 
interpretations [14]. To avoid this, the study was anchored on 
the Ravenstein migration theory to guide the research and 
improve epistemological bases for confirming the validity and 
generalization of the results. In 1889, Ernest Ravenstein, 
widely known as one of the earliest theorists of migration, used 
census data from England and Wales to develop the laws of 
migration, which later became widely accepted among scholars 
[15]. The Ravenstein migration theory is determined by push-
pull factors. The theory refers to push factors as unfavorable 
conditions from the point of origin, while pull factors are 
favorable conditions at the destination. The Ravenstein 
migration laws can be reformulated as outlined in Table 1: 

Table 1. Ravenstein laws of migration [15] 

The Ravenstein laws of migration 
o Most migrations are over short distances. 
o Migration happens in stages and as distance increases, the volume of 

migration decreases. 
o In general, long-range migrants move into urban areas. 
o Each migration produces a reverse movement, although not 

necessarily in the same volume. 
o Rural inhabitants are more migratory than urban inhabitants, 
o Women are more migratory than men within their own country, but 

males are more migratory over long distances. 
o Migrants are mostly adults. Families seldom migrate from their 

country of birth. 
o Large towns grow more through migration than through natural 

growth. 
o Migration increases with economic development. 

o Migration is mostly due to economic causes 
 

Ravenstein's work has been widely accepted among 
academics and serves as the basis for many theories. One of 
these theories is that of Everett Lee, who extended Ravenstein's 
theory to give more emphasis to the push-pull factors. Lee [16] 
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argues that a migration decision is influenced by factors related 
to place of origin, destination, intervening obstacles, as well as 
personal factors. Fig. 1 shows the Lee’s migration model. 
 

 
Figure 1. Lee’s model of migration [16] 

Lee further asserts that the migration process is selective for 
differentials such as gender, age, education, and social class; 
and they influence how one responds to push-pull factors, and 
the ability to overcome intervening obstacles. The research 
undertaken by [4, 5] in relation to the factors influencing 
learner migration aligns with Ravenstein's migration theory. 
These findings offer empirical evidence that supports the 
ongoing significance of Ravenstein's migration theory in 
understanding learner migration dynamics. 
 
B. FEATURE SELECTION 
Feature selection is a dimension-reduction technique that aims 
to reduce the input variable into a machine-learning model by 
removing irrelevant variables unrelated to the response variable  
[17–19]. Feature selection reduces the number of parameters in 
the model, the training time, and overfitting by improving 
generalization, and helps to avoid the curse of dimensionality 
[17]. Irrelevant variables consume processing capacities such 
as memory, time, cost, and other computational resources 
which negatively contribute to the outcome of the machine-
learning exercise of some algorithms [17]. One needs to 
consider the fact that a feature that might be useful in one 
machine learning algorithm may be underrepresented or 
unused by another. In addition, it is still possible that a variable 
which shows little evidence of contributing to the explanation 
of the response variable may prove significantly useful in the 
presence of other variables [20]. The study used four widely 
accepted feature selection algorithms: J48, Boruta, 
Adaboost.M1, and RPART. These algorithms were chosen for 
their effectiveness in identifying informative features in 
various studies. The choice of algorithms used reflects a broad 
strategy in handling different aspects of the learner migration 
phenomenon. Their comparative analysis can lead to a 
comprehensive understanding of factors that influence learner 
migration. Boruta, as proposed by [21] is effective in 
identifying relevant features in a dataset with potentially many 
attributes. 

Boruta has been successfully deployed in similar 
educational settings to predict student academic performance 
[22]. The study used features from students' demographic 
information, academic records, technological resources, social 
attitudes, family background, and socio-economic status which 
were subjected to feature selection. Boruta's performance was 
comparatively analyzed alongside Information Gain, ReliefF, 
and Recursive Feature Elimination. Performance metrics such 
as accuracy, kappa statistic, and f-measure were employed as a 
benchmark for the analysis. The findings demonstrated the 
effectiveness of the Boruta algorithm in reducing feature 

dimensionality, as it consistently outperformed other 
algorithms. RPART and J48 as discussed by [23, 24]  are 
capable of providing insights into decision rules and patterns. 
Adaboost.M1 is effective, particularly in imbalanced datasets 
[25].  

The present body of knowledge is not strong enough to 
trace the use of RPART, Adaboost.M1 and J48 in educational 
settings.  One intriguing study is that of  [26] in performing a 
comparative analysis of J48 and Adaboost.M1 (using J48 as a 
base classifier) FS techniques using WEKA (Waikato 
Environment for Knowledge Analysis)  and open WEKA 
datasets (supermarket.arff, labor.arff, soybean.arff, and 
segment.arff). The study used several class labels in the dataset, 
accuracy, amount and length of the generated rules, error rate 
and standard deviation as the basis to assess performance. 
Multiple experiments were conducted, and the findings 
indicated that AdaBoost.M1 outperforms the J48 algorithm in 
terms of accuracy when the dataset contains exactly two class 
labels. On the other hand, the J48 demonstrates faster rule 
generation compared to AdaBoost.M1. However, when the 
dataset contains more than two class labels, the J48 algorithm 
performs better than AdaBoost.M1. There is a paucity of 
research where RPART is used for feature selection. A notable 
instance of where RPART was used is found in the work of  
[27] where the study comparatively analyzed the performance 
of C5.0, random forest, RPART, KNN, SVM and Boruta 
algorithms for feature selection in a cervical cancer prediction. 
[27] used Accuracy and AUC (Area Under Curve) metrics to 
assess the performance of the algorithms. The study favoured 
C5.0 and random forest classifiers as reasonably performing in 
identifying women exhibiting clinical signs of cervical cancer 
compared to other algorithms including RPART and Boruta.  

This presents a novel opportunity for us to evaluate the 
performance of both Boruta and RPART in the educational 
setting. In addition, to assess multicollinearity and validate the 
importance scores obtained from the four algorithms, we used 
mutual information and Spearman correlation. These 
techniques provided insight into the relationships between the 
selected features and helped confirm the robustness of the 
feature importance rankings. To evaluate the performance of 
the four FS algorithms, we used Cohen's kappa, accuracy, and 
standard deviation. These metrics allowed us to assess the 
reliability and stability of the feature selection process  [22, 27] 

C. BORUTA 
Boruta is a feature selection algorithm that acts as a wrapper 
for a random forest classifier [28]. Boruta derives its name from 
a demon in Slavic mythology that lived in pine forests [29]. The 
random forest as an ensemble in Boruta is often used in 
classification or regression problems and can handle high-
dimensionality feature selection problems [17, 30, 31]. The 
random forest builds decision trees on different samples of the 
data and uses the majority vote for classification and average 
in case of regression problems [28, 30]. During the feature 
selection process, Boruta adds randomness to the given data set 
by creating mixed copies of all features (referred to as shadow 
features). It then trains a random forest classifier on the 
extended data set and applies a feature importance measure (the 
default is Mean Decrease Accuracy) to rank the importance of 
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each feature. The higher mean decrease in accuracy suggests 
the relevance of the feature. At each iteration, it checks whether 
a true feature has higher importance than the best of its shadow 
features (i.e., whether the feature has a z-score higher than the 
maximum z-score of its shadow features) and continuously 
removes features that are deemed unimportant. The algorithm 
will stop when all features are confirmed or rejected, or it 
reaches a certain limit of random forest runs [21]. 

D. RPART 
Recursive Partitioning (RPART) is an open-source 
implementation of CART [24]. The RPART is a decision tree 
that constructs classification or regression models on a general 
structure using a two-phased process. In phase one, the single 
variable that best separates the data into two groups is found. 
The data is separated, and this process is applied recursively to 
each subgroup separately until a predetermined termination 
criterion is met [24, 32]. At each step, the split is based on the 
predictor variable that resulted in the largest possible reduction 
in heterogeneity of the response variable. Splitting rules can be 
built in many various ways, all of which are based on the 
concept of impurity which is a measure of the degree of 
heterogeneity of the tree leaf nodes. In phase two, the algorithm 
uses cross-validation to trim back the full tree, compute risks in 
all the sub-trees constructed, and finally choose the one with 
the lowest estimate of risk. The RPART uses the GINI Index 
and Entropy as possible parameters to quantify the impurity of 
the leaf nodes [33]. 

E. ADABOOST 
AdaBoost (Adaptive Boosting) is an ensemble or meta-
algorithm used to improve the classification performance of 
weak classifiers [25]. It first creates a set of poor 
learners/baseline classifiers where all features in the training 
data are weighted equally. Then the weight of incorrectly 
classified features is increased while the weight of correctly 
classified features is decreased. This process runs until 
complete classifier sets are created. It will then initiate a voting 
process, with each weak classifier giving a weighted vote to 
make a classification decision [25, 34]. 

F. J48 
The J48 algorithm is the most used and works accurately for 
many classification problems, both for categorical and 
continuous data  [23]. J48 is a decision tree classifier that works 
hierarchically, with each level representing a feature. It uses a 
C4.5 that uses information gain to select features at each stage 
[23, 25]. The algorithm first selects the function to partition the 
training data into a class using information gain. The tree either 
immediately classifies the data or moves it to the next level of 
the tree depending on the value of that feature. The process is 
repeated iteratively until all training data is classified. The 
performance of the final tree is then evaluated against test data 
[23, 25]. 

G. SPEARMAN CORRELATION 
Spearman's correlation is a non-parametric bivariate test that 
measures the strength of the association between two variables 
[35]. In contrast to Pearson, who measures a linear relationship, 

Spearman measures a monotonic relationship between two 
variables  [36, 37]. The relationship is said to be monotonic 
when the variables move together in the same direction, but not 
necessarily at a constant rate as in linear relationships [36]. The 
Spearman correlation gives a correlation coefficient that varies 
between “+1” and “-1”. Correlation coefficients of “+1” or “-
1” indicate a perfect degree of association between the two 
variables [36]. When the value of the correlation coefficient 
approaches 0, the relationship between the two variables is said 
to be weaker [35, 36]. The direction of the relationship is 
indicated by the sign of the coefficient, with the “+” sign 
indicating a positive relationship and the “-” sign indicating a 
negative relationship. Spearman can be calculated 
mathematically as follows [36]: 
 

𝜌 = 1 −
6 ∑ 𝑑ଶ

𝑛(𝑛ଶ − 1)
,                       (1) 

 
where n – number of pairs and d – difference in number of pairs 

Spearman generates a p-value (probability value) that 
indicates how likely it is that the results of the relationship 
(correlation coefficient) arose by chance [38]. The p-value is 
mainly used to either accept or reject the null hypothesis; The 
smaller the p-value, the stronger the evidence to reject the null 
hypothesis (there is no relationship) and to accept the 
hypothesis (there is a relationship). Statistically, the p-value < 
0.05 is accepted to reject the null hypothesis [38]. Although 
there is no consensus in the literature [35, 36] to assess the 
strength of the relationship based on the correlation coefficient, 
the following division is generally accepted. A general guide to 
interpreting the strength of a relationship based on the 
correlation coefficient is presented in Table 2 [35] 

Table 2. Correlation strength scale 

Absolute Value of Coefficient Strength of Relationship 

r < 0.3 None or very weak 

0.3 < r <0.5 Weak 

0.5 < r < 0.7 Moderate 

r > 0.7 Strong 

 

H. MUTUAL INFORMATION 
Mutual information (MI) provides an alternative to calculate 
the association between two variables  [39, 40]. In contrast to 
Spearman correlation analysis, which provides a quantitative 
means of measuring the strength and direction of the 
association, mutual information calculates the amount of 
knowledge about one variable that can be obtained simply from 
knowing the value of another variable [41]. Mutual information 
takes a value between “0” and “1”. A large reduction in 
uncertainty is indicated by high mutual information and vice-
versa. When the variables are independent their value is likely 
to be zero [39, 40]. It is safe to point out that when variables 
share any large amount of data, the mutual information can 
sometimes have an upper bound greater than 1. This is high 
levels of disorder and entropy (low levels of purity) [41] which 
increases the uncertainty of a random variable [41, 42]. The 
formula for calculating mutual information is illustrated below: 
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where MI=0 when x and y are statistically independent. The MI 
is related linearly to entropies of the variables through the 
following formula. 
 
𝐼(𝑥: 𝑦)

= ቐ 

𝐻(𝑥) − 𝐻(𝑥|𝑦)     𝑖𝑓 𝑥 𝑎𝑛𝑑 𝑦 𝑎𝑟𝑒 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡      

𝐻(𝑦) − 𝐻(𝑦|𝑥)  𝑖𝑓 𝑦 𝑎𝑛𝑑 𝑥 𝑎𝑟𝑒 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡    , (3)

𝐻(𝑥) + 𝐻(𝑦) − 𝐻(𝑥, 𝑦)    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                              

 

 
where (x; y) is the mutual information for x and y; H(x) is the 
entropy for x; H(y) is the entropy for y; H (x|y) is the 
conditional entropy for x given y and H (y|x) is the conditional 
entropy for y given x. 

Although there is no consensus in the literature to assess the 
strength of the relationship based on the information value, the 
following split (Table 3) is more generally accepted. 

 

Table 3. Mutual information strength scale 

Information Value Predictive power 

<0.02 Useless 

0.02 to 0.1 Weak predictors 

0.1 to 0.3 Medium Predictors 

0.3 to 0.5 Strong predictors 

>0.5 Suspicious 

III. METHODS AND MATERIALS 
In this study, a conventional data mining technique, commonly 
referred to as Knowledge Discovery in Databases (KDD), was 
used. The process includes several important steps. Initially, 
data was assembled and preprocessed/cleaned to ensure the 
quality and relevance of the dataset. We then conducted 
exploratory data analysis to gain a preliminary understanding 
of the underlying structure of the data. The data was then 
transformed into relevant variables ready for the machine 
learning exercise. Machine learning feature selection 
algorithms were used to create predictive models and feature 
importance scores. The models were then evaluated using an 
assortment of model performance metrics to ensure their 
accuracy and reliability. Finally, the results were discussed and 
used to draw meaningful conclusions that contributed to a 
deeper understanding of the research objective [43]. 
 

A. DATA ASSEMBLY 

The EMIS database consists of over 400 tables and thousands 
of attributes describing learners, educators, and school 
inventory. The Ravenstein migration theory was used to guide 
the initial data assembly for the study. Features that broadly 
conform to the principles in the Ravenstein migration theory 
were selected and are outlined in Table 4. 

Table 4. Features selected for study. 

Code Feature Description 

f01 learner_age_at_entry 
Learner age at the time of first 
admission 

f02 learner_age_at_exit 
Learner age when leaving the 
school  

f03 school_boarding_facilities 
Identifies if a learner is in a 
school hostel or not 

f04 learner_deceased_parent 
Identifies if a learner has 
deceased parents 

f05 learner_gender Learner Gender 
f06 learner_current_grade Grade of a learner 

f07 learner_years_in_school 
Number of years a learner is 
admitted to the school 

f08 school_exit_grade The  last grade of the schools 

f09 learner_grade_years 
Number of years a learner was 
in a grade 

f10 learner_home_language The home language of a learner 

f11 school_instruction_language 
School language of learning and 
teaching 

f12 learner_lsen_status 
Identifies if a learner has a 
disability or not 

f13 learner_phase_years Number of years in a phase 

f14 learner_preferred_language 
Language a learner prefers to be 
taught with 

f15 learner_progressed 

Identifies if a learner was 
progressed/condoned to a grade 
or not 

f16 school_psnp 

Identifies if a learner is 
benefitting from the school 
nutrition programme 

f17 learner_race Race of a learner 

f18 learner_transport 
Type of the transport a learner is 
using to school 

f19 school_district 
District of the school a learner is 
enrolling 

f20 school_type 
Type of the school a learner is 
enrolling 

f21 school_sector 
A sector of the school a learner 
is enrolling 

f22 school_quintile 
Poverty ranking of the school a 
learner is enrolling 

f23 school_promotion_rate Average school performance  
f24 learner_displacement_count Frequency of displacement  

c25 movement_indicator 

response class  to assess the 
possibility of learner 
displacement  (1= 
“displacement”. 2= “no 
displacement”) 

 
B. DATA PREPARATION   
Equally important, data preparation is another important phase 
of the machine learning exercise. It is always difficult to get the 
data ready for mining. Therefore, a lot of time has been devoted 
to this exercise, being careful not to tamper with the underlying 
knowledge and structure of the data. Most categorical variables 
contained non-standard attributes, some of which have been 
fixed and others removed. Records of learners that we could 
not positively identify when transitioning through the system 
were removed. Several attributes for example, f01, f02, f07, and 
f24 were not part of the original data but were derived from 
other features contained in the data set. Feature like f23 resulted 
from merging with other learner performance-related features 
to reduce attribute complexity. Duplicate records in the data 
were also identified and removed. 
 
C. SAMPLING METHOD 
A sample of 10% (12849 observations and 25 features) was 
extracted from the cleansed data using a simple random 
sampling technique. This sample represents the operational 
school data between 2011 and 2016 in atomic format. The 
sampling method used is considered a basic method of 
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sampling, where each member of a population has the same 
chance of being included in the sample. Machine learning 
algorithms are sensitive to data with an imbalance distribution 
of response class as they are forced to create classifiers that are 
biased toward the majority class and lead to increased 
generalization error [44]. Having said that, the response class 
was tested for sensitivity to assess if there were any problems 
in the distribution of the class and the performance of the 
sample. The data was partitioned into train and test data using 
70% train and 30% test split respectively. The random Forest 
classifier was used to predict the response class in the test data 
and the following performance information was generated. 

Table 5. Sample performance metrics 

Confusion matrix Other performance metrics 
##                   Reference 
## Prediction           1        2 
##                      1 1896     0 
##                      2    0    1920          
##Accuracy: 1         
##95% CI: (0.999, 1) 
##No Information Rate: 0.5031    
##P-Value [Acc > NIR]: < 2.2e-16  
## Kappa: 1          

##Sensitivity: 1.000    
##Specificity: 1.000    
##Pos Pred Value: 1.000    
##Neg Pred Value: 1.000    
##Prevalence: 0.497    
##Detection Rate: 0.497    
##Detection Prevalence: 0.497     
##Balanced Accuracy: 1.000 

 
The model correctly recognized all observations. The 

accuracy, kappa, and sensitivity of the model were optimal, 
which suggested that the model can recognize all classes 
equally [45] This further suggested that the sample would 
perform well in the experiment. The findings are interesting 
and imply that there is a promise in using a random forest to 
address the objectives of the study. 

D. EXPERIMENT DESIGN 
The sampled data was processed using the caret package in 
RStudio. The data was subjected to Boruta ( a wrapper for 
random forest), RPART, J48, and Adaboost machine learning 
algorithms using cross-validation techniques (10-fold cross-

validation) to assess features that have the potential to predict 
a response class (c25≈ movement indicator). We then subjected 
the same sample data to Spearman's correlation, and mutual 
information to generate a relationship matrix and associated p-
values for further analysis.  

IV. RESULTS 
A. OPTIMUM VARIABLES 
This section illustrates the results of the feature selection (FS) 
methods. The performance of features varied across different 
algorithms (Fig. 2 & Table 6). In general, there is a significant 
degree of agreement among the algorithms in ranking the 
features.  

 

Figure 2. Importance Ranking  

While there are partial inconsistencies in the subsets of 
variables used between different feature selection methods, 
features such as f06, f07, f09, and f24 have relatively high 
rankings and appear in the top 5 across all feature selection 
algorithms (Table 6).  

Table 6. Variable importance scores and ranking 

  Machine Learning Statistical Calculated Ranking 
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f24 102.68 100.00 100.00 100.00 0.69 0.97 0.00 1 1 1 1 1 1 
f07 27.76 41.12 56.20 56.20 0.27 -0.50 0.00 2 2 2 2 2 2 
f09 21.90 19.59 43.47 43.47 0.10 0.43 0.00 3 3 4 4 4 4 
f04 19.70 0.00 23.33 23.33 0.03 0.23 0.00 4 0 7 7 8 7 
f06 14.63 15.80 49.57 49.57 0.11 -0.46 0.00 5 4 3 3 3 3 
f13 14.13 0.00 37.65 37.65 0.07 -0.34 0.00 6 0 5 5 5 5 
f16 14.03 0.00 6.27 6.27 0.01 -0.10 0.00 7 0 11 11 10 9 
f02 12.96 10.86 33.73 33.73 0.07 -0.30 0.00 8 5 6 6 6 6 
f01 12.47 0.00 9.31 9.31 0.01 0.08 0.00 9 0 10 10 9 11 
f23 11.05 0.00 10.34 10.34 0.03 0.10 0.00 10 0 9 9 7 10 
f22 7.48 0.00 4.52 4.52 0.00 0.04 0.00 11 0 12 12 14 13 
f19 7.35 0.00 1.46 1.46 0.00 0.01 0.14 12 0 14 14 13 20 
f05 6.89 0.00 12.69 12.69 0.01 0.13 0.00 13 0 8 8 11 8 
f10 6.40 0.00 2.50 2.50 0.00 0.02 0.01 14 0 13 13 16 15 
f15 5.83 0.00 1.02 1.02 0.00 -0.01 0.19 15 0 15 15 20 22 
f18 5.62 0.00 0.33 0.33 0.00 0.00 0.71 16 0 20 20 12 24 
f03 5.55 0.00 1.00 1.00 0.00 0.05 0.00 17 0 16 16 15 12 
f21 4.74 0.00 0.67 0.67 0.00 0.02 0.02 18 0 17 17 17 16 
f14 4.36 0.00 0.42 0.42 0.00 -0.01 0.14 19 0 18 18 21 19 
f08 2.75 0.00 0.33 0.33 0.00 -0.04 0.00 20 0 19 19 24 14 
f12 2.62 0.00 0.12 0.12 0.00 -0.02 0.08 21 0 22 22 22 17 
f11 1.97 0.00 0.13 0.13 0.00 -0.02 0.08 22 0 21 21 19 18 
f17 1.39 0.00 0.01 0.01 0.00 0.00 0.68 23 0 23 23 23 23 
f20 0.69 0.00 0.00 0.00 0.00 -0.01 0.15 24 0 24 24 18 21 
 std 19.85 21.39 24.60 24.60 Standard Deviation   
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This suggests that these features are strongly correlated or 

associated with the target variable (c25). Similarly, f02, f04, 
f013, and f23 consistently appear in between the 5th and 10th 

position across all algorithms except for RPART which only 
selected five features. Learner Gender (f05) has notably 
different rankings, with J48, Adaboost, and Spearman placing 
it in the 8th position, while MutualInfo and Boruta ranked it 
relatively lower at the 11th and 13th position respectively. 
Learner age at entry (f01), f16 (school nutrition project or 
PSNP) and f22 (school quintile) have relatively inconsistent 
rankings across the algorithms, showing variations between the 
7th -14th position. Interestingly, the results and variable 
importance scores for Adaboost and J48 are identical (Table 6). 
Boruta rejected two features, f17 (learner race) and f20 (school 
type). The Learner race (f20) was also confirmed unimportant 
by Adaboost and J48. 

B. FILTER-BASED METHOD (STATISTICAL METHODS) 
The relationship of the 24 predictor variables with the response 
variable was further explored using statistical methods. 
Spearman’s correlation coefficients ranged between “0” to 
“0.97” indicating diversity, variability, and consistency in the 
identification of the priority variables. Table 6 illustrates the 
importance scores and derived rankings of the features. 

It is interesting that features (f06, f07, f09, f24) which 
appear in the top 5 of J48, Adaboost, Boruta, and RPART also 
appear in the top 5 of both spearmen and mutual information, 
with a correlation coefficient above “0.3” and information 
value above “0.02” respectively (Table 6).  Fig. 3 illustrates 
the variable importance scores of the four machine learning 
algorithms against the Spearman and mutual information. 
 

Figure 3. Feature importance scores of Boruta, J48, RPART, 
and Adaboost.M1 against the spearman and mutual 

information 

The p-values for the four features are “0”, giving us some 
confidence in the stability of their predictive ability. Another 
observation is that when there are large disparities among the 
variable importance of the machine learning FS methods, the 
Spearman p-values increase. Similarly, most features that were 
ranked lower by the machine-learning FS methods were also 
ranked lower by the statistical methods, and the Spearman p-
values are also above the acceptable critical value threshold of 
0.05 (Table 6). The Spearman p-value increases above the 
acceptable critical value when the importance score of J48 and 
Adaboost drops below 1.5 except for f03 and f08.  

C. CLUSTERS, CORRELATIONS & MULTICOLLINEARITY 
The matrix in Fig. 4 shows all Spearman correlation 
coefficients above 0.49. From the correlation matrix, we can 
rule out the problem of multicollinearity. Multicollinearity 
happens when two or more predictor variables are linearly 
related.  
 

 

Figure 4. Spearman Correlation Matrix (correlation 
coefficient >0.49 ≈ very weak to a strong relationship. Refer 

to Table 2 for strength interpretation) 

In general, an absolute correlation coefficient > 0.7 between 
two or more predictors signifies the existence of 
multicollinearity. Multicollinearity is always a concern in 
classification or regression problems since it has the potential 
to undermine the statistical significance of the response 
variables. 

Furthermore, we have evaluated whether there exist any 
associations among data points of distinct. The associations can 
either be in the form of clusters or correlations. This can assist 
in gaining insights into the underlying relationships or 
similarities between the features. Clustering occurs when a 
collection of data points closely aligns while being relatively 
distant from data points residing in other clusters. When the 
data points form a cluster, it means that those data points share 
similar values or characteristics, and therefore suggest that 
there might be a correlation, association, or similarity between 
the values of those features. Data points are correlated when 
there exists a linear relationship or dependence between their 
values. Fig. 5 shows possible clustering, correlations, or 
associations of the distinct features. 
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Figure 5. Variable importance scores and ranking. We have compared the rankings of the algorithms as depicted in Fig. 2 and the 
correlations presented in Table 6, and this provides empirical evidence that the algorithms assume a shared understanding of the 

data structure. 

 
D. Model Evaluation Metrics 
The feature selection methods were configured to use 10-fold 
cross-validation repeated 10 times. There are several points to 
note concerning the results. According to the model 
performance metrics, both Adaboost, J48, and RPART 
performed well (Table 7). The results show that the RPART 
model started with a simpler tree with cp=1.0, accuracy, and 
kappa of “0.5068” and “0” respectively. The RPART added 
complexity to the model by reducing the cp and resolved the 
model with Mallow's cp=0.5 (complexity parameter), accuracy 
=1, and Cohen’s Kappa=1 which shows high classification 
accuracy.  Similarly, the performance of the J48 model was 
resolved with c=0.01(pruning confidence), m=1(minimum 
instances), accuracy =1, and Cohen’s Kappa=1. It is interesting 
that the Adaboost was switched between two base classifiers 
(Adaboost.M1 and Real Adaboost) while trying to increase the 
number of iterations (nIter). However, the performance of the 
model did not change. The model’s performance was resolved 
using Adaboost.M1 with nIter=50, accuracy =1, and Cohen’s 
kappa=1. 
 

Table 7. Model Performance Metrics 

## C4.5-like Trees  
## 12849 samples, 24 predictors 
## 2 classes: '1', '2'  
## No pre-processing 
## Resampling: Cross-Validated (10-fold, repeated 10 times)  
## Summary of sample sizes: 11564, 11564, 11564, 11564, 11564, 
1565, ... 
## Resampling results across tuning parameters: 

C M Accuracy Kappa 

0.010 1 1 1 
0.010 2 1 1 
0.010 3 1 1 
0.255 1 1 1 
0.255 2 1 1 
0.255 3 1 1 
0.500 1 1 1 
0.500 2 1 1 
0.500 3 1 1 

 
*Accuracy was used to select the optimal model using the largest 
value. The final values used for the model were C = 0.01 and M = 1. 
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## CART (RPART) 
## 12849 samples, 24 predictors 
## 2 classes: '1', '2'  
## No pre-processing 
## Resampling: Cross-Validated (10-fold, repeated 10 times)  
## Summary of sample sizes: 11564, 11564, 11564, 11564, 11564, 
11565, ... 
## Resampling results across tuning parameters: 

cp Accuracy Kappa 
0.0 1.0000 1 
0.5 1.0000 1 
1.0 0.5076 0 

 
Accuracy was used to select the optimal model using the largest 
value. The final value used for the model was cp = 0.5. 
 
#AdaBoost Classification Trees  
## 12849 samples, 24 predictors 
## 2 classes: '1', '2'  
## No pre-processing 
## Resampling: Cross-Validated (10-fold, repeated 10 times) 
## Summary of sample sizes: 11564, 11564, 11564, 11564, 11564, 
11565, ... 
## Resampling results across tuning parameters: 

nIter Method Accuracy Kappa 
50 Adaboost.M1 1 1 
50 Real Adaboost 1 1 
100 Adaboost.M1 1 1 
100 Real Adaboost 1 1 
150 Adaboost.M1 1 1 
150 Real Adaboost 1 1 

 
*Accuracy was used to select the optimal model using the largest 
value. The final values used for the model were nIter = 50 and 
method = Adaboost.M1 
 

V. DISCUSSION 

The feature selection methods presented in this work are 
general and applied in many feature selection exercise. In this 
section, we present an overview of the literature related to the 
presented work to support the selection of the optimal feature 
subset. The three FS methods returned accuracy =1 and 
Cohen’s kappa =1 respectively. The literature [46, 47] 
describes the accuracy metric as a measure of how generally 
the model has performed across all the classes. It provides a 
percentage of correctly classified instances from all instances 
[47]. On the other hand, Cohen’s kappa measures agreement 
between interrater on the ground truth labels versus model 
predictions. It accounts for the imbalance in the class 
distribution as opposed to calculating the overall accuracy 
percentage. It represents the extent to which the data used 
correctly represent the measured variables. Both accuracy and 
Cohen's kappa range from 0 to 1, with 1 = 100% indicating 
excellent model performance [47]. The accuracy metric has 
limitations especially when working on data with an imbalance 
class distribution [46]. It was therefore not considered a reliable 
measure of performance for the models being studied.  The 
literature [48] argues that kappa is more useful than accuracy 
especially when dealing with class imbalance data. Cohen 
kappa can be interpreted as follows (Table 8): 
 
 
 

Table 8: Kappa Interpretation 

kappa Predictive power 

≤ 0 no agreement 

0.01–0.20 none to slight 

0.21–0.40  fair 

0.41– 0.60 Moderate 

0.61–0.80 substantial 

0.81–1.00 almost perfect agreement.  

 
From the results, we can therefore deduce that three FS 

methods (J48, RPART, and Adaboost.M1) have so far 
performed well with sufficient accuracy and reliability. We will 
then proceed and interpret what parameters say about model 
performance. 

The three models (Adaboost, J48, and RPART) run with 
different parameters to maximize classification accuracy. An 
interesting parameter is that of RPART, called the complexity 
parameter (cp). RPART uses cp to avoid overfitting the model 
and save computation time [49, 50]. The cp is used to trigger 
the model's stopping rules such that the relative error reduction 
resulting from the best split falls below the cp. The larger cp 
values result in a higher penalty and produce a smaller tree with 
missing predictor variables. When the latter happens, the model 
finds a cross-validated error with the cp value, which can offer 
an optimal tradeoff between minimizing the misclassification 
error and the complexity of the tree depth. RPART implements 
a minimal optimal approach. On the other hand, the J48 uses 
pruning confidence (c) and minimum instances (m) parameters 
to maximize model accuracy and create simpler trees [51]. The 
confidence factor/pruning confidence provides a threshold of 
allowable inherent error in the data while pruning the decision 
tree. The lower threshold increases pruning and consequently 
generates more general models (models with high classification 
performance). To get simpler models, the minimum instances 
can be adjusted, where a lower number means a simpler model 
[51]. This better explains why J48 chose c = 0.01 (pruning 
confidence) and m = 1 (minimum instances) to resolve the 
model accuracy (Table 7). 

Boruta works differently from J48, Adaboost, and RPART. 
It implements a novel feature selection algorithm to find all 
relevant variables proved important by the statistical tests  [21, 
28]. In Boruta, features do not compete among themselves like 
in J48, Adaboost, and RPART, but with a randomized version 
of themselves [52]. Though the classification accuracy of J48, 
Adaboost, and RPART are high, the literature [52] asserts that 
one cannot rely on classification accuracy or Cohen’s kappa as 
a criterion for selecting features as important or rejecting as 
unimportant. It argues that the reduction of classification 
accuracy upon removal of the feature is sufficient to declare the 
variable important, but the absence of this effect is not enough 
to consider the feature unimportant [52].  

Spearman correlation and mutual information are non-
parametric (distribution-free) tests that provide a simple 
approach to feature selection. These methods enabled the 
process of ruling out multicollinearity among predictor 
variables, which has the potential to undermine the statistical 
significance of the response variables. In addition, the 
statistical methods assisted in confirming the results of 
machine learning algorithms. However, they have their share 
of limitations. Since they are assessing the relationship of two 
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variables at a time, they lack enough proof that the feature 
cannot be important in conjunction with other features [52]. In 
addition, Spearman correlation and mutual information can 
detect linear or monotonic relationships accurately but fail to 
detect quadratic relationships if present in the variable space. 

It is common practice in feature selection to subject all 
available features to various FS algorithms before deciding on 
the optimal feature subset. However, it is safe to point out that 
different FS learn the relationship between the predictor and the 
response variables differently. In principle, the variables most 
used by various FS algorithms are considered the most 
important [20]. Given the latter, it is tempting to choose the 
RPART feature subset as optimal since it meets all accuracy 
requirements discussed and supported by the literature and its 
minimalist approach. What will be the cost of such a decision? 

VI. FUTURE WORK 

The performance of the sample was tested using a random 
forest classifier. It’s worth noting that Boruta also functions as 
a wrapper around the random forest classifier [28]. This 
inherent relationship could potentially impact the ultimate 
findings of the study. Further study is needed to assess the 
influence of this relationship. The results of Adaboost.M1 and 
J48 provided a very interesting outcome due to the similarity in 
importance scores for all features. One possible explanation for 
this incident is that the Adaboost.M1 algorithm utilized in R 
Studio is an upgraded variant that employs the j48 algorithm as 
its underlying classifier [53]. The research by Eibl and Pfeiffer 
[54] discovered that Adaboost.M1 does not work with too weak 
classifiers and recommended a few changes to the algorithm to 
produce a variation called Adaboost.M1W. More research is 
needed to understand these results. 

VII. CONCLUSION 

In this paper, we mainly compared four types of machine 
learning FS methods (J48, Adaboost.M1, RPART, and Boruta) 
in finding optimal feature set to predict learner 
movement/displacement possibilities in the Limpopo education 
system. In addition, the two statistical tests (Mutual 
Information and Spearman Correlation) were used to validate 
the results of the FS algorithms and rule out multicollinearity 
among predictor variables. The results demonstrated that all the 
machine learning FS methods used different variables, and all 
performed well in terms of accuracy, Cohen’s kappa, 
specificity, and sensitivity. RPART used a minimal optimal 
approach, and this makes it a more attractive choice. However, 
it excluded most of the variables confirmed by literature [4–6] 
and the theoretical framework [14–16] as core drivers for the 
migration phenomenon. The phenomenon of human migration 
is inherently complex, and one would need to understand all 
the contributing variables related to learner migration. J48, 
Adaboost.M1, and Boruta provide alternative choices due to 
their performance. Table 6 shows the standard deviations of 
feature sets per algorithm.  

The literature asserts that lower standard deviation or 
variance is an important factor in feature selection methods. 
When the standard deviation of a feature subset is small, it 
indicates that the selected features have relatively low 
variability or spread, which suggests that the chosen features 
will be more consistent and stable across different samples. 

This can lead to a simpler and more interpretable model, as it 
focuses on the most stable and reliable features, which can 
mitigate the risk of overfitting and enhance the model's 
performance [55]. Given the latter, Boruta with 22 confirmed 
features, and a relatively lower standard deviation of 19.85 
becomes the ultimate feature selection for this study. In 
addition, the feature sets in Boruta are in line with traits that 
have been supported by the literature [4–6] and the Ravenstein 
theory of migration [14–16] which underpins this study. 
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