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 ABSTRACT For the next generation of wireless sensor networks, this research paper proposes two 
distinguished, robust space-time codes with low complexity and full diversity. The channel is constructed using 
Quasi-deterministic radio channel generation (Quadriga), which pursues a geometric stochastic model. This paper 
discusses an uplink perspective on an industrial communication system. A master node design with four distributed 
antennas is suggested. Two antennas are available on slave nodes, where the proposed space time coding can be 
used. Additionally, zero-forcing (ZF) and minimum mean squared error (MMSE)-based low-complexity decoders 
are designed. The proposed codes outperform the Alamouti code under identical circumstances, according to 
simulation data. The simulation results show that a coding gain of about 5dB in comparison to Alamouti code is 
achieved. A high coding gain is attained, which results in a more reliable transmission, according to the bit error 
rate (BER). This research paper significantly contributes to the standardization of the next-generation wireless 
sensor networks. 
 

 KEYWORDS Space Time Code (STC); Zero Forcing Algorithm (ZF); Minimum Mean Squared Error Detector 
(MMSE); Quadriga; Wireless Sensor Network (WSN). 
 

I. INTRODUCTION 
ODAY, a variety of industries are boosting the efficiency 
of their operating processes in response to rising demand. 

A research area in the next-generation wireless sensor networks 
(WSNs) is industrial communication. Increasing the 
operational effectiveness of industrial control processes is one 
of the important needs for industrial communication systems 
[1]. Reduced capital expenditures should also be used to 
support more adaptable operations [2-4]. Recently, the use of 
wireless communication technology in industrial applications, 
most notably in Wireless Sensor Networks (WSN), has 
attracted a lot more interest [3]. It is anticipated that industrial 
wireless communication will be able to give processes a high 
level of real-time dynamic control [5]. The benefits of wireless 
technologies, such as their retrofitability and intrinsic 
flexibility, also present a significant opportunity for the 
development of industrial communication in the future [6, 7]. 

The state-of-the-art wireless technology, however, was 
unable to handle the demanding communication robustness 
required by the industrial environment's extreme channel 
conditions [8, 9]. In industrial settings, there are metal 
structures for pumps, robots, pipes, and other devices [10]. 
High scattering is therefore a fundamental element in industrial 
contexts [11]. The salve nodes can also be protected by metal 

structures in a given direction at a specific time [12]. The 
performance as a result is dramatically worsened [13]. 

MIMO approaches may be the best option for achieving 
high dependability through spatial diversity [14]. Space-time 
code, in particular, can be used to good effect to harness the 
spatial diversity produced by multiple signal transmissions 
[15, 16]. The space-time code with coding gain and diversity 
order offers the best solution for meeting the reliability 
requirements of the next-generation wireless sensor networks. 

Youn et al. [17] proposed a cooperative space-time line 
code (C-STLC) technique for a relay-assisted Internet of 
Things (R-IoT) in which each relay IoT device (RID) sends the 
STLC encoded signal to a single access point (AP) at the 
second hop after successfully decoding the signal received 
from a source IoT device at the first hop. In addition to being 
intricate in nature, this operation takes a long time. The authors 
of [18] suggested a framework that uses space spreading in 
conjunction with either {time or frequency diversity, or both} 
to lessen interference and signal loss caused by channel 
impairments and to enable the effective functioning of densely 
populated, large-scale Internet of Things (IoT). Thus, this 
reduced the chance of the transmission side interference. Using 
array-processing gain, a multiple-antenna array on the 
receiving side improved performance in the presence of 

T
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channel impairments. The drawback of this technology is that 
only one device may communicate at a time; two devices 
cannot transmit on the same block.  

Rajawat et al. [19] demonstrated how Reinforcement 
Learning (RL) can help make industrial production systems 
resilient and adaptable so they can react to changes instantly. 
The application of RL in a variety of adaptive cognitive 
systems with Industrial IoT-edges in manufacturing processes 
was investigated in this work. Nonetheless, a lot of events in 
Industrial IoT applications need for real-time decision 
processing. These occurrences are frequently extremely scant 
and complicated and often without enough information to make 
conclusions. The array concept presented by the authors in [20] 
is made up of tiny, spatially dispersed subarrays that can fit 
inside the non-metallic components of an automobile.  In order 
to compensate for the delays, space-time adaptive processing 
was added. Nevertheless, the Space-Time Adaptive Processing 
(STAP) was limited in its performance by the number of taps 
examined in a simulation with various fractional delays. 

The distributed antenna system (DAS) increases spectrum 
efficiency while also improving energy efficiency [21, 22]. The 
antennas in a distributed antenna system are scattered 
throughout the service area and connected to a centralized core 
node known as a master node (MN) [23, 24]. The received 
signal's quality is greatly enhanced by this structure. On the 
basis of channel state information (CSI), recent research has 
shown the potential of DAS [25-27]. To the best of the authors' 
knowledge, no research projects have examined the 
performance of a distributed antenna system coupled with 
space-time coding in a next-generation wireless sensor network 
(WSN). This research area is of great concern for the 
standardization of next-generation wireless sensor networks. 

Two space-time codes are presented in this research for the 
use in the next-generation wireless sensor networks. From an 
uplink (UL) standpoint, the system configuration for WSN is 
addressed. The sensor network is covered by a consistent 
distribution of MN antennas. As a result, slave nodes and MN 
can have a line of sight (LoS). In order to use the proposed 
space-time coding, it is presumed that the slave nodes have two 
antennas. In order to construct a highly dependable WSN, a 
new space-time code is formulated. Additionally, the decoding 
process is carried out by low-complexity linear decoders 
designed using the Minimum Mean Squared Error (MMSE) 
and Zero Forcing (ZF) algorithms. In comparison to existing 
STC systems, a low-complexity space-time code can be 
developed. The effectiveness of the proposed space-time 
coding schemes in improving the dependability of the next-
generation WSNs and communication quality will be examined 
in contrast to the commonly used Alamouti code in terms of 
BER. 

The rest of the paper is organized as follows. The system 
model is described in Section II. In Section III, channel 
modelling for industrial wireless systems is developed. A 
signal representation for Section IV is formulated. In Section 
V, the proposed coding systems are presented. Section VI 
demonstrates simulation results. Section VII provides a 
conclusion. 

II.  MODELLING OF THE SYSTEM 
The proposed uplink system model for a sensor network with a 
(50 m x 50 m) spatial dimension is made clear in Figure 1.  
 

 

Figure 1.  WSN system model 

Over the network region, the slave nodes are uniformly and 
properly distributed. The MN is linked to distributed antennas 
so that they are precisely synchronized with one another and 
connected to a high-speed, larger-capacity link. This work 
makes the assumption that the proposed space-time codes can 

be used in SNs with two antennas. Each node is about 25 2
m away from the distribution of antennas thanks to the 
collocation of SNs in the network's core. It is expected that 
there are Nm total MN antennas with K SNs.   

III.  INDUSTRIAL WSN CHANNEL MODELLING 
The wireless channel in industrial WSNs has a distinct 
statistical analysis from the free-space urban region. Concrete 
walls and metal ceilings are common in industrial automation 
[28]. There is considerable multipath as a result. In this paper, 
the Quadriga channel formulation has been applied for realistic 
results and estimating the accurate performance of industrial 
WSN [29, 30]. Quadriga develops a geometric stochastic 
channel model that it uses to produce the channel 
parameters [30]. 

Numerous multipath components that are supplemented by 
the dispersed sensor network represent each channel. At the 
carrier frequency fc, the channel impulse response between the 
mth transmit antenna and the kth receive antenna is expressed 
as [31]. 
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where ,  and c c cP   are the cth path received power, phase 

angle, and time delay, respectively. c  is the delta impulse 

function, and PT represents the total number of paths. 
Calculations for the frequency response at the carrier frequency 
fc between the mth transmit antenna and the kth receive antenna 
are given in [32]. 
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where cf  is the carrier frequency. The carrier frequency used 

in this research is 5.8 GHz, which is the standard frequency 
used in industrial applications [33]. 

The channel coefficients between the Kth transmit antenna 
and the mth receive antenna are denoted by Hi, where

2

0

1

( )i
i kmd

d

H h ,  is the path-loss exponent and d0 is the 

reference distance. As the path-loss in an obstructed industrial 
WSN spans from 2 to 3, a path-loss exponent of 2.5 is used in 
this research [34-36]. 

IV. SIGNAL REPRESENTATION 
This section expresses the proposed space-time code signal 
representation. Assume that STBC is used to transmit the signal 
by each Slave Node (SN) in the sensor network. The code of 
Kth SN is expressed as Xk with a size of 2 × T. The received 
signal by MN in T time slots can be expressed as follows: 
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where 4 2
kH  represents the channel fading coefficients 

from the Kth slave node to the master node antennas. 
4 2

kn  represents zero mean, unit variance complex 

Gaussian random variables. The entries of the random noise are 
independent and are identically distributed (i.i.d).  represents 

the received SNR. 1

2
is used to normalize the transmitted 

signal energy to be 1 in each time slot. 

V. THE PROPOSED CODING SCHEMES 
For next-generation wireless sensor networks, the proposed 
space-time coding techniques for the transmitted signal from 
the slave nodes (SN) to the master node (MN) antennas are 
provided in this section. The transmitted signal at MN is then 
estimated using a nearly optimal low-complexity linear 
decoder that is designed. One SN with two transmitting 

antennas is the case that we are considering. Let kX be the 

transmitted signal from the two transmit antennas at SN over 

two time slots, where 2 T
kX  . In this research project

2T   is chosen. 

A.  Proposition STC 1 
The suggested space-time code is formulated as follows: 
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where 1s  and 2s  are the transmitted symbols over 2 Time slots 

leading to achieving a code rate of 1. Here indicates complex 
conjugate. Using a QAM constellation, these symbols are 
developed. Complex valued-design parameters that will be 
defined later are a, b, c, and d. 

It is assumed that over the course of the coding block 
period, the channel coefficients are quasi-static, meaning they 
are unchanged with regard to time. Thus, the equivalent 
channel from one slave node to master node can be described 

by  1 2k k kH h h .  

By substitution, equation (3) can be rewritten as follows: 
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The transmission of equal average power for each symbol 

time is the restriction used to generate this STC such that 
2 2 2 2

a b c d   . This constraint helps simplify the 

optimization procedure to determine the parameters  
a, b, c and d. 

In equation (4), the proposed space-time code Xk is a 
maximum likelihood (ML) detectable with an exhaustive 
search complexity of O(M2), where M is the constellation size. 
The exhaustive search examines all potential values of the 
transmitted symbols (s1, s2) and selects (s1, s2) that minimizes 
the Euclidean distance D(s1, s2): 
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By expanding D(S1,S2), equation (7) can be rewritten as 

follows: 
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where C is a function of the symbol pair and a constant that is 
independent of the symbols. The following variables have been 
utilized to minimize the Euclidean distance: 
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B.  Proposition STC 2 
The other space-time code can be designed as follows: 
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where 1s  and 2s  are the symbols that were transmitted 

throughout two time slots to obtain a code rate of 1. Here
indicates complex conjugate. These symbols are produced by 
the QAM constellation.  

Equation (3) can be rewritten as follows under the same 

circumstances  1 2k k kH h h , such that 
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The proposed code performs well in achieving 

orthogonality because it satisfies HXX    
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By expanding D (S1, S2), equation (13) can be rewritten as 

follows:  
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where Q  is a constant independent of the symbols and 

1 2( , )P s s is a function of the symbol pair 1 2( , )s s . The 

following parameters have been used to minimize the 
Euclidean distance. 
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Additionally, to achieve the optimum performance at the 

receiver side, near-optimal-low complexity zero-forcing (ZF) 
and minimum mean squared error (MMSE) detectors are 
designed for decoding the received signal. 

Denote  
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where ZFG and MMSEG are the matrices of zero forcing and 

minimum mean squared error algorithms decoder, respectively. 
The received signal can be estimated by 
 

                          MMSEX G Y  ,                                 (17) 

 

where X is the estimated received symbols from the slave 
nodes. 

VI.  SIMULATION RESULTS 
The proposed scenario is depicted in Figure 2 from an uplink 
perspective. The proposed space-time coding can be used since 
each slave node (SN) has two antennas. Quadrature phase shift 
keying (QPSK) is the used modulation. The proposed space-time 
code formula is implemented using MATLAB simulation 
platform. For the master node, three cases are investigated. One 
instance is when the master node (MN) has one antenna. In the 
second scenario, there are two antennas on the master node 
(MN). As a result, the performance may be examined using just 
two antennas dispersed over the sensor network area. MN, which 
has four distributed antennas, is the other model. The channel 
parameters are generated stochastically using a quasi-
deterministic radio channel generator (Quadriga) [35]. Quadriga 
uses a stochastic geometry model [36]. Based on statistical 
distributions extrapolated from several real-time channel 
measurements, the channel parameters are determined. As a 
result, it is feasible to get more real accurate results. Quadriga 
was designed to make it possible to model MIMO radio channels 
for particular network configurations. 

 

 

Figure 2. Quadriga model proposed scenario 

 
As shown in Figure 2, the slave nodes represented by the blue 

circles are distributed randomly within the sensor network 
region. The master node antennas are placed at the corners of the 
network region.  

For sake of clarification, we present the channel parameters of 
a WINNER indoor hotspot for typical indoor deployments and 
the channel parameters of industrial WSN indoor deployments. 
We compare the K-factor, shadow fading, delay spread and 
angular spread calculated from the channel coefficients obtained 

from the measurements and the channel builder from Quadriga. 
 

 

Figure 3.  K-factor for industrial indoor deployments 

 

 

Figure 4.  Shadow fading for industrial indoor deployments 

 

 
Figure 5.  Delay spread for industrial indoor deployments 
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Figure 6.  Azimuth spread of arrival angles for industrial 
indoor deployments 

 

 

 

Figure 7.  Elevation spread of arrival angles for industrial 
indoor deployments 

 

 

 
Figure 8.  K-factor for typical indoor deployments 

 
Figure 9.  Shadow fading for typical indoor deployments 

 

 
Figure 10.  Delay spread for typical indoor deployments 

 

 
Figure 11.  Azimuth spread of arrival angles for typical indoor 

deployments 

As we can in these figures, industrial WSN indoor 
deployment is a highly scattered environment which limits the 
performance of wireless communication systems.  

Due to its widespread use in numerous wireless 
communication networks, the Alamouti code is used as a basis 
to measure the performance of the proposed codes. Firstly, we 
consider the case of one antenna MN as shown in Figure 12. As 
we can see in Figure 13, the proposed codes significantly 
perform better than the Alamouti code. For instance, the coding 
gain of Proposition 2 is about 5 dB higher than that of Alamouti 
under the same conditions. 
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Figure 12.  Proposed scenario with one antenna MN 

 

 

Figure 13.  BER performance for the proposed codes and 
Alamouti code for MN antenna 

 

 

Figure 14.  Proposed system for two antennas at the MN 

 

Figure 14 depicts the suggested system for the master node 
with just two antennas. Figure 15 illustrates how the proposed 
space-time codes work better than the Alamouti code in the 
scenario of two transmit antennas at the SN. At low SNR, the 
proposed space-time code of Proposition 1 outperforms the 
Alamouti code. However, because of intense scattering and 
interference, performance suffers at high SNR. As can be 
observed, the space-time code in Proposition 2 has a coding gain 
of around 7 dB at BER=10-3. The distribution of antennas and 
the carefully designed coding parameters are attributable to this. 
 

 

Figure 15.  BER performance for the proposed codes and 
Alamouti code for MN with two antennas 

 

 

Figure 16.  BER performance for the proposed codes and 
Alamouti code for MN with four distributed antennas 

The proposed space-time codes greatly outperform the 
Alamouti code for the scenario of a master node with four 
distributed antennas. As can be observed, Proposition 2 achieves 
a coding gain of more than 9 dB at BER=10-3 while Proposition 
1 only achieves a gain of roughly 5 dB over the Alamouti code. 
The graphic demonstrates that under identical environmental 
conditions, the designed coding parameters of the Proposition 2 
space-time code outperform those of the other space-time codes. 
This is because the MN with four distributed antennas increases 
the likelihood of line of sight (LoS) and the meticulously 
designed coding parameters minimize the Euclidean distance. 
The suggested configuration, in conjunction with the proposed 
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space-time codes, can fulfill the reliability demands, which is 
BER=10-9 for industrial automation for the next generation 
wireless sensor networks. 

VII. CONCLUSIONS 
For next-generation wireless sensor networks, two distinct 
space-time codes are proposed in this research. The Alamouti 
code is used to compare the proposed codes. The simulation 
findings demonstrate that a large coding gain can be attained, 
resulting in more reliable communication to meet the 
requirements of industrial automation for reliability. The space-
time code for Proposition 2 can perform exceptionally well. A 
setup of master nodes with four distributed antennas is 
suggested. The combination of the proposed space-time codes 
and distributed configuration can provide the necessary 
resilience. This research project has a significant impact on the 
standardization of the next-generation wireless sensor networks. 
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