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 ABSTRACT This paper proposes a study conducted on various techniques that can be employed for the early 
detection of plant diseases. With exponential growth in the global population, there is a dire need for the detection 
and prevention of various types of plant diseases such as Mosaic virus in Solanum Lycopersicon (tomato), bacterial 
spot in Fragaria Ananassa (strawberry), late and early blight in Solanum Tuberosum (potato), huanglongbing in 
Citrus sinensis (orange), and Isariopsis leaf spot in Vitis vinifera (grapes). These diseases generally lead to lower 
yields and hence less profit. In the last two decades, there has been rapid development in the fields of image 
processing and deep learning. Various models of deep learning can be used for plant disease detection. The main 
objective is that as soon as plant leaf disease appears, there should be one device to monitor the symptoms and 
detect them over a large field with as much accuracy as possible. This study compares the deep learning models 
Resnet, MobileNet, and inceptionV3 that are implemented on a large dataset taken from the Kaggle repository. 
We implemented the models using Google Colaboratory tools, which provide us with Python’s Jupyter notebook 
that runs on the Google cloud server. The GPU “Tesla T4” and CPU “Intel Xenon” were used during training, 
validation, and testing respectively. The training and validation accuracy of the InceptionV3 model was 98.78% 
and 93.94%, respectively. MobileNet classified various plant diseases with training and validation accuracies of 
99.57% and 97.31. Similarly, for ResNet, the training accuracy was found to be around 99.62% and the validation 
accuracy was 97.16%. We hope that this work will provide a helpful resource for other researchers working in the 
field of agriculture to detect various types of crop diseases. Future work and some challenges still faced are also 
discussed in this study. 
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I. INTRODUCTION 
 large portion of the world’s population is dependent on 
agriculture. Nearly 45% of the world’s population and 

70% of the Indian populace do some kind of agriculture for a 
living [1]. In particular, in India, more than 54.6% of the total 
workforce is dependent on agriculture [2]. Diseases in plants 
are one of the major problems that are faced in the field of 
agriculture as they have an unfavorable effect on the yield and 
quality of crops. As it is shown in [3], images are represented 
by mathematical models on the computer, and in image feature 
extraction, there are many mathematical phases in which 
images are converted into numbers and eventually carried out 
the image features. The agriculture industry can greatly benefit 
from the proper management of diseases to produce healthy 
crops. Humankind has made some advancement in the 
detection and recognition of various plant diseases. Most of 

these techniques included naked eye observation, which is very 
ineffective, cumbersome, and slow. However, with recent 
developments in image processing, disease classification and 
identification has become easy and fast. The combination of 
technology and agriculture can result in beneficial profit and 
yield. In [4], classification of rice plant disease was performed 
by Adam and SGDM optimizers along with CNN model. In [5], 
corn leaf disease detection at an early stage was performed by 
enhancing the K-nearest neighbor (EKNN) algorithm. In [6], 
many comparisons were made using different methods such as 
MobileNetV2, DenseNet169, ResNetV2, and 
InceptionResNetV2 to detect the disease of leaf on Robusta 
coffee plant. This study not only compares all the state-of-the-
art techniques based on their accuracy, loss, and other measures 
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of comparison but also focuses on the accuracy as much as 
possible and attempts to outperform the other earlier models.  

II. LITERATURE REVIEW 
Many researchers have already performed plant disease 
detection and classification using various machine learning and 
deep learning models. Some of the research work included 
multiple convolutional neural network (CNN) architectures 
such as ResNet, AlexNet, VGG, InceptionV3, and GoogleNet 
for detecting and classifying various plant diseases. In [7], five 
CNN architectures were used. These architectures included 
VGG, Alex Net, GoogLeNet, Overfit, and Alex Net. The 
dataset used here consisted of 87,848 images distributed in an 
80–20 ratio for training and testing purposes. Among all these 
models, VGG had the highest accuracy rate of 99.48%, 
followed by AlexNetOWTBn and AlexNet with 99.44% and 
99.06% accuracy rates, respectively.  

In [8], the VGG, ResNet, and Inception models were used 
for classification using 144000 training images and 2982 
testing images. VGG, Inception and ResNet achieved the 
accuracy of 87.9%, 92% and 92.9%, respectively.  

In [9], CNN models were trained on a dataset containing 
4,032 images of rose leaves. After image augmentation, the 
number of images was 40,320 and was split into 70%, 15%, 
and 15% for training, validation, and testing. The highest 
accuracy was achieved by the Early Fusion-based model, 
followed by the Late Fusion-based and VGG models.  

In [10], a study was conducted on the detection and 
prevention of diseases in apple leaves using various CNN 
models. Of these, GoogLeNet (CNN) achieved the highest 
accuracy of 98.5%. 

Similar study was performed in [11] on 1212 images of 
tomato leaves. This study focused on mobile deployment and 
achieved the lowest detection confidence of 70%.  

Similarly, in [12], the night-CNN model for nightshade 
crop leaf disease detection was used. In [12], 50000 healthy and 
infected plant leaf images were used for training and testing 
purposes. In [12], the Night-CNN training and testing accuracy 
ranged from 93% to 95%. We are classifying the leaves of 
plants using different state-of-the-art algorithms and 
comparing the accuracy, precision, recall, AUC, and time taken 
by the model to train on each epoch. The models that we are 
working on are ResNet [13], Inception [14], and Mobile Net 
[15]. 

A. INCEPTION V3 
Starting with the first Inception version (Inception V1, also 
called GoogLeNet [16]), this architecture is based mainly on 
the Inception Module. It has a deeper network with high 
computational efficiency. This network comprises 22 layers. 
There is a maximum pooling layer available but no fully 
connected (FC) layer at the end of the architecture. 

Fig. 1 shows the architecture of the naïve implementation 
of the inception module. 

The naïve version of the inception module has some 
disadvantages. It is very expensive to compute, and the pooling 
layer preserves feature depth, which means that the total depth 
after concatenation can only grow at every layer.  

To solve this problem, an inception module with dimension 
reduction was introduced. The new implementation of 
inception uses “bottleneck” layers that use 1 × 1 convolutions 
to reduce the feature depth.  
 

 

Figure 1. Inception Module, Naïve Version 

Fig. 2 shows the architecture of the Inception module with 
dimension reduction. 
 

 

Figure 2. Inception Module with Dimension Reduction 

Here conv. means convolution and MP means the Max 
Pooling (MP) layer.  

Inception V3 uses a bottleneck inception module, which 
performs better than the normal inception module. In the 
inception V3, the kernel sizes are small because they are more 
efficient. This is achieved by factorizing the convolutions. 
Factorizing kernels into smaller factors reduces the overall 
complexity of the architecture. 

B.  MOBILENET 
The MobileNet architecture is a small and fast architecture that 
was introduced for mobile and related vision applications.   

The MobileNet model is based on depth-wise separable 
convolutions. Depth-wise separable convolutions are depth-
wise convolutions that are followed by point-wise 
convolutions. 1×1 convolution is called a point-wise 
convolution. Due to the depth-wise separable convolutions, the 
computation cost of the MobileNet architecture is reduced 
significantly. The standard convolutional layer is 
parameterized by a convolution kernel K of size 
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where 
KD  is the spatial dimension of the kernel assumed to be 

square, M is the number of input channels, and N is the number 
of output channels, as defined previously. 

Equation (1) is used to calculate the depth- wise separable 
convolution cost of the mobile net architecture. 
 

2

1 1
cos

K

t
N D

  .              (1) 

 
Fig. 3 explains a part of MobileNet architecture with depth-

wise convolution used along with batch normalization, 
Rectified Linear Unit (ReLU) and 1 × 1 convolution layer. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Depth wise Separable convolutions with Depth wise 
and Pointwise layers followed by batch norm and ReLU 

C. RESNET50 
Resnet was first introduced in the ImageNet Large Scale Visual 
Recognition Challenge (ILSVRC) 2015 classification 
challenge. It solved the problem of deep neural networks 
becoming less accurate after a certain depth [17]. In this 
architecture, the concept of the residual block was first 
introduced. The residual block skips the connection block. 
Individual layers in this architecture give output to the next 
layer and to the next residual block. Residual blocks ensure that 
the accuracy of the architecture remains at least that of the 
previous block, which reduces the chances of feature loss in 
deeper networks. Fig. 4 explains how residual learning uses 
skip connections.  

 

Figure 4. Residual Learning Building block 

III. RESEARCH METHODOLOGY 

A. Dataset 
We used the New Plant Disease Dataset (augmented) [18], 
which can be found in the Kaggle repository. This dataset [18] 
was recreated using offline augmentation from the original 
dataset. The dataset should be representative of real-world 
scenarios. The original dataset can be found in [19] GitHub 
repository. This dataset consists of approximately 87.9 
thousand RGB images and 1.43 GB in size of healthy and 
diseased crop leaves, which are categorized into 38 different 
classes. Image augmentation [20] is a process in which we use 
the already existing images to create new sample images. This 
process involves rotating, cropping, and flipping the original 
images. This increases the number of sample training images 
and makes our model more accurate for different possibilities 
of the images. This dataset consists of approximately 87.9 K 
RGB images of healthy and diseased crop leaves. These leaves 
were obtained from 14 different plants and 26 different 
diseases, which were categorized into 38 different classes 
based on plant and disease combination. The total dataset is 
divided into an 80/20 ratio of the training and validation sets, 
preserving the directory structure. Of these, 70295 images are 
for training and 17572 images are for validation. A new 
directory containing 33 test images is created later for 
prediction. All images are of size 256 × 256. 

Table 1. Distribution of images in the dataset for various 
species and diseases 

S. NO Species and diseases Training Validation Total 

1. Tomato Late Blight 1851 463 2314 

2. Tomato Healthy 1926 481 2407 

3. Grape Healthy 1692 423 2115 

4. Orange Huanglongbing 2010 503 2513 

5. Soyabean Healthy 2022 505 2527 

6. Squash Powdery mildew 1736 434 2170 

7. Potato Healthy 1824 456 2280 

8. Corn Leaf Blight 1908 477 2385 

9. Tomato Early Blight 1920 480 2400 

10 
Tomato Septoria 

Leafspot 
1745 436 2181 

11. 
Corm Cercospora leaf 

spot gray leaf spot 
1642 410 2052 

12. Strawberry Leaf Scorch 1774 444 2218 

13. Peach Healthy 1728 432 2160 

14. Apple Scab 2016 504 2520 

15. 
Tomato yellow Leaf 

Curl Virus 
1961 490 2451 

16. Tomato Bacterial Spot 1702 425 2127 

17. Apple Black Rot 1987 497 2484 

18. Blue berry Healthy 1816 454 2270 

19. Cherry Powdery Mildew 1683 421 2104 

20. Peach Bacterial Spot 1838 459 2297 

21. Apple Rust 1760 440 2200 

22. Tomato Target Spot 1827 457 2284 

23. Pepper Bell Healthy 1988 497 2485 

24. 
Grape Leaf blight 

(Isariopsis Leafspot) 
1722 430 2152 

25. Potato Late Blight 1939 485 2424 

26. Tomato Mosaic Virus 1790 448 2238 

weight layer 

weight 
layer 

ReLu 

ReLu 

X 
Identity 

X 

F(x)+

F(x) 

3x3 depthwise 
Conv 

BN 

ReLU 

1×1 Conv 

BN 

ReLU 



Manjit Jaiswal et al. / International Journal of Computing, 23(2) 2024, 240-246  

VOLUME 23(2), 2024 243 

27. Strawberry Healthy 1824 456 2280 

28. Apple Healthy 2008 502 2510 

29. Grape Black Rot 1888 472 2360 

30. Potato Early Blight 1939 485 2424 

31. Cherry Healthy 1826 456 2282 

32. Corn Common Rust 1907 477 2384 

33. 
Grape Esca (Black 

Measles) 
1920 480 2400 

34. Raspberry Healthy 1781 445 2226 

35. Tomato Leaf Mold 1882 470 2352 

36. Tomato Spider mites 1741 435 2176 

37. 
Pepper Bell Bacterial 

Spot 
1913 478 2391 

38. Corn Healthy 1859 465 2324 

 

  

Figure 5. Sample image from the dataset 

B. Training 
We used the transfer learning method on pre-trained models of 
Keras applications. We trained our model on a Tesla T4 GPU 
provided by Google Colaboratory. We used batch sizes of 128 
and 50 epochs for training our dataset. We first downloaded the 
dataset into the Google Colaboratory from Kaggle’s repository. 
Then, we loaded the data into the GPU using the Data Loader 
module provided in Keras. Since the original image was 256 
×256 so we had to convert our images into 224×224 for training 
purposes, as the models were designed for the ILSVRC dataset 
where images were of size 224 × 224. We loaded our pre-
trained model weight from Keras and added more layers to use 
the weights and obtain the classification result. The layers that 
were added are Global Average Pooling, Dropout (0.1), ReLu, 
and SoftMax layers.  The Adam optimizer [21] was used along 
with the categorical cross entropy [22] loss function.   

The following formula is used to calculate the categorical 
cross-entropy in equation (2):  
 

(1 ( ) )
( ( ), )

q
j

q j

f x
L f x e

q


 ,        (2) 

where, 
qL  is the loss function, ( )f x  is the function for which 

loss is calculated, 
jf  denotes the thj  element in 

jf , 

(0,1]q  and {0,1}
i

c
ye  . 

The function calculated accuracy, area under the ROC 
curve (AUC) score, precision, and recall. 
 

1) Global Average Pooling [19] 
The idea is to generate one feature map for each 

corresponding category of the classification task in the last 
convolution layer. Instead of adding fully connected layers on 

top of the feature maps, we take the average of each feature 
map, and the resulting vector is fed directly into the SoftMax 
layer. One advantage of global average pooling over fully 
connected layers is that it is more native to the convolution 
structure by enforcing correspondences between feature maps 
and categories. Thus, the feature maps can be easily interpreted 
as category confidence maps. Another advantage is that there 
is no parameter to optimize in the global average pooling; thus, 
overfitting is avoided at this layer. Furthermore, global average 
pooling sums out the spatial information; thus, it is more robust 
to spatial translations of the input. 

2) Dropout [24] 
The key idea is to randomly drop units (along with their 

connections) from the neural network during training. This 
prevents the units from co-adapting too much. During training, 
dropout samples were obtained from an exponential number of 
different “thinned” networks. At test time, it is easy to 
approximate the effect of averaging the predictions of all these 
thinned networks by simply using a single unthinned network 
with smaller weights. This significantly reduces overfitting and 
provides major improvements over other regularization 
methods. We show that dropout improves the performance of 
neural networks on supervised learning tasks in vision, speech 
recognition, document classification, and computational 
biology, obtaining state-of-the-art results on many benchmark 
datasets. 

The following formula gives the output image after using 
the dropout layer: 

 

( , )Wy f x z ,                                       (3) 

 
where y is the output image, x is the input image, and z is a 
random mask. 
 

3) ReLU [25] 
The ReLU of the Rectified Linear Unit is used as an 

activation function. 
Mathematically, the ReLU function is denoted by the 

following formula: 
 

                ( ) max(0, )F x x ,                             (4) 

 
where x is the input image pixel. 

IV. IMPLEMENTATION AND RESULTS 
Google Colaboratory (Colab) is a product of Google Research. 
Colab provides a Jupyter notebook environment to run python 
codes. Colab also provides free resources such as CPU, GPU 
and RAM. The specifications of the hardware and software that 
we have used are mentioned in Table 2. 

Table 2. The Hardware and Software Specifications 

S. No. Specification Type Description 
1. GPU Tesla T4 
2. CPU Intel Xenon (64 bi) 
3. CPU RAM 12.7 GB 
4. GPU RAM 15.0 GB 
5. Disc 78.2 GB 
6. IDE Google Colaboratory 
7. Programming Language Python 
8. Operating System Linux 
9. CuDNN version 8302 
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After comparing the three models, i.e., InceptionV3, 
MobileNet, and ResNet, we found that Resnet gives the highest 
accuracy, followed by MobileNet and InceptionV3. The 
comparison of models based on various criteria such as 
accuracy, loss, precision, recall, and AUC is given in Table 3, 
Tables 4, 5, and 6, respectively. The time taken by the models 
is also shown in Table 7. 

Formulas for calculating accuracy, precision, recall, and 
AUC are given in equations (5) - (10). 

 

TP
precision

TP FP



,         (5) 

 

TP
recall

TP FN



,         (6) 

 

TP TN
accuracy

TP TN FP FN




  
,       (7) 

 

FP
FPR

FP TN



,        (8) 

 

TP
TPR

TP FN



,        (9) 

 

( )AUC TPR d FPR   ,     (10) 

 
where TP – True Positive, FP – False Positive, TN – True 
Negative, FN – False Negative, TPR – True Positive Rate and 
FPR – False Positive Rate. 

Table 3. Results of training and validation accuracy for 
Resnet, MobileNet and InceptionV3 

Accuracy (%) InceptionV3 MobileNet ResNet 
Training 98.78 99.57 99.62 

Validation 93.94 97.31 97.16 

 

 

Figure 6. Graph showing the accuracy comparison between 
ResNet, MobileNet and InceptionV3 as shown in Table 3. 

Table 4. Results of training and validation loss for 
InceptionV3, MobileNet and Resnet 

Loss (%) InceptionV3 MobileNet ResNet 
Training 3.79 1.27 1.19 
Validation 21.56 10.16 11.16 

 

 

Figure 7. Graph showing loss comparison between ResNet, 
MobileNet and InceptionV3 as shown in Table 4. 

 

Table 5. Results of training and validation of Precision for 
InceptionV3, MobileNet and ResNet 

Precision (%) InceptionV3 MobileNet ResNet 
Training 97.17 98.84 98.89 
Validation 93.36 96.88 96.64 

 

 

Figure 8. Graph showing the precision comparison between 
ResNet, MobileNet and InceptionV3 as shown in Table 5. 
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Table 6. Comparison table of various models according to 
recall, precision, F1-score and AUC during training time 

Models Precision Recall F1-score AUC 
Inception V3 0.9717 0.9874 0.9794 0.9994 
MobileNet 0.9884 0.9955 0.9913 0.9997 

ResNet 0.9889 0.9948 0.9918 0.9995 

 

Figure 9. Graph showing recall comparison between ResNet, 
MobileNet and InceptionV3 as shown in Table 6. 

 

Table 7. Comparison table of various models according                                                                                                          
to their recall, precision, F1-score and AUC during 

validation time 

Models Precision Recall F1-score AUC 
Inception V3 0.9317 0.9285 0.93 0.9882 
MobileNet 0.9736 0.9728 0.9731 0.9947 

ResNet 0.9700 0.9693 0.9696 0.9935 

 

 

Figure 10. Graph showing recall comparison between ResNet, 
MobileNet and InceptionV3 as shown in Table 7. 

 

Table 8. Inference Time taken by various models 

Models Inference time (msec. per image) 
Inception V3 ~503 
MobileNet ~300 

ResNet ~407 

 

Figure 11. Bar graph showing the comparison between 
training time taken by InceptionV3, MobileNet and ResNet as 

shown in Table 8. 

V.  CONCLUSION 
In this paper, we have compared the different state-of-the-art 
models InceptionV3, MobileNet, and ResNet50 to classify 
various plant diseases using a new plant disease dataset that 
contains approximately 87900 images of various plant leaves. 
In this comparison, we found that ResNet50 with an accuracy 
of 99.62% performs better than MobileNet and InceptionV3, 
with the accuracy of 99.57% and 98.78%, respectively. We 
have also concluded that, in terms of loss, ResNet50 performs 
better than MobileNet and InceptionV3. ResNet50 shows a loss 
of 1.19%, followed by MobileNet and InceptionV3 with the 
loss of 1.27% and 3.79%, respectively. The inference times for 
MobileNet, ResNet50 and InceptionV3 is ~300msec, 
~407msec and ~503msec respectively.   

In the future, these models can be extended for real time on 
much larger datasets and can also be integrated with mobile 
applications for easier use by the common population. We can 
also improve the models to make them more lightweight, less 
time-consuming to train, and more accurate in real time.  
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