

240 VOLUME 23(2), 2024

Date of publication JUN-30, 2024, date of current version NOV-20, 2023.
www.computingonline.net / computing@computingonline.net

Print ISSN 1727-6209
Online ISSN 2312-5381
DOI 10.47839/ijc.23.2.3542

Classification of Plant Disease using a
State-of-the Art Deep Learning Algorithm

on a Tesla GPU
MANJIT JAISWAL1, KAPIL KUMAR NAGWANSHI1, ABHISHEK JAIN2, RISHIKESH KUMAR1,
SHREYASH GAURAV1, YUKTA WATTI1, ANULAL MAHTO3, SATYENDRA SINGH THAKUR1

1Department of Computer Science and Engineering, 2Department of Information Technology, 3Department of Industrial Production,
Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur-49500, India

Corresponding author: Manjit Jaiswal (e-mail: manjit.jaiswal222@gmail.com)

 ABSTRACT This paper proposes a study conducted on various techniques that can be employed for the early
detection of plant diseases. With exponential growth in the global population, there is a dire need for the detection
and prevention of various types of plant diseases such as Mosaic virus in Solanum Lycopersicon (tomato), bacterial
spot in Fragaria Ananassa (strawberry), late and early blight in Solanum Tuberosum (potato), huanglongbing in
Citrus sinensis (orange), and Isariopsis leaf spot in Vitis vinifera (grapes). These diseases generally lead to lower
yields and hence less profit. In the last two decades, there has been rapid development in the fields of image
processing and deep learning. Various models of deep learning can be used for plant disease detection. The main
objective is that as soon as plant leaf disease appears, there should be one device to monitor the symptoms and
detect them over a large field with as much accuracy as possible. This study compares the deep learning models
Resnet, MobileNet, and inceptionV3 that are implemented on a large dataset taken from the Kaggle repository.
We implemented the models using Google Colaboratory tools, which provide us with Python’s Jupyter notebook
that runs on the Google cloud server. The GPU “Tesla T4” and CPU “Intel Xenon” were used during training,
validation, and testing respectively. The training and validation accuracy of the InceptionV3 model was 98.78%
and 93.94%, respectively. MobileNet classified various plant diseases with training and validation accuracies of
99.57% and 97.31. Similarly, for ResNet, the training accuracy was found to be around 99.62% and the validation
accuracy was 97.16%. We hope that this work will provide a helpful resource for other researchers working in the
field of agriculture to detect various types of crop diseases. Future work and some challenges still faced are also
discussed in this study.

 KEYWORDS Deep Learning; CNN; ResNet; inceptionV3; MobileNet; Plant Diseases; GPU; Tesla T4; Intel
Xenon

I. INTRODUCTION
 large portion of the world’s population is dependent on
agriculture. Nearly 45% of the world’s population and

70% of the Indian populace do some kind of agriculture for a
living [1]. In particular, in India, more than 54.6% of the total
workforce is dependent on agriculture [2]. Diseases in plants
are one of the major problems that are faced in the field of
agriculture as they have an unfavorable effect on the yield and
quality of crops. As it is shown in [3], images are represented
by mathematical models on the computer, and in image feature
extraction, there are many mathematical phases in which
images are converted into numbers and eventually carried out
the image features. The agriculture industry can greatly benefit
from the proper management of diseases to produce healthy
crops. Humankind has made some advancement in the
detection and recognition of various plant diseases. Most of

these techniques included naked eye observation, which is very
ineffective, cumbersome, and slow. However, with recent
developments in image processing, disease classification and
identification has become easy and fast. The combination of
technology and agriculture can result in beneficial profit and
yield. In [4], classification of rice plant disease was performed
by Adam and SGDM optimizers along with CNN model. In [5],
corn leaf disease detection at an early stage was performed by
enhancing the K-nearest neighbor (EKNN) algorithm. In [6],
many comparisons were made using different methods such as
MobileNetV2, DenseNet169, ResNetV2, and
InceptionResNetV2 to detect the disease of leaf on Robusta
coffee plant. This study not only compares all the state-of-the-
art techniques based on their accuracy, loss, and other measures

A

Manjit Jaiswal et al. / International Journal of Computing, 23(2) 2024, 240-246

VOLUME 23(2), 2024 241

of comparison but also focuses on the accuracy as much as
possible and attempts to outperform the other earlier models.

II. LITERATURE REVIEW
Many researchers have already performed plant disease
detection and classification using various machine learning and
deep learning models. Some of the research work included
multiple convolutional neural network (CNN) architectures
such as ResNet, AlexNet, VGG, InceptionV3, and GoogleNet
for detecting and classifying various plant diseases. In [7], five
CNN architectures were used. These architectures included
VGG, Alex Net, GoogLeNet, Overfit, and Alex Net. The
dataset used here consisted of 87,848 images distributed in an
80–20 ratio for training and testing purposes. Among all these
models, VGG had the highest accuracy rate of 99.48%,
followed by AlexNetOWTBn and AlexNet with 99.44% and
99.06% accuracy rates, respectively.

In [8], the VGG, ResNet, and Inception models were used
for classification using 144000 training images and 2982
testing images. VGG, Inception and ResNet achieved the
accuracy of 87.9%, 92% and 92.9%, respectively.

In [9], CNN models were trained on a dataset containing
4,032 images of rose leaves. After image augmentation, the
number of images was 40,320 and was split into 70%, 15%,
and 15% for training, validation, and testing. The highest
accuracy was achieved by the Early Fusion-based model,
followed by the Late Fusion-based and VGG models.

In [10], a study was conducted on the detection and
prevention of diseases in apple leaves using various CNN
models. Of these, GoogLeNet (CNN) achieved the highest
accuracy of 98.5%.

Similar study was performed in [11] on 1212 images of
tomato leaves. This study focused on mobile deployment and
achieved the lowest detection confidence of 70%.

Similarly, in [12], the night-CNN model for nightshade
crop leaf disease detection was used. In [12], 50000 healthy and
infected plant leaf images were used for training and testing
purposes. In [12], the Night-CNN training and testing accuracy
ranged from 93% to 95%. We are classifying the leaves of
plants using different state-of-the-art algorithms and
comparing the accuracy, precision, recall, AUC, and time taken
by the model to train on each epoch. The models that we are
working on are ResNet [13], Inception [14], and Mobile Net
[15].

A. INCEPTION V3
Starting with the first Inception version (Inception V1, also
called GoogLeNet [16]), this architecture is based mainly on
the Inception Module. It has a deeper network with high
computational efficiency. This network comprises 22 layers.
There is a maximum pooling layer available but no fully
connected (FC) layer at the end of the architecture.

Fig. 1 shows the architecture of the naïve implementation
of the inception module.

The naïve version of the inception module has some
disadvantages. It is very expensive to compute, and the pooling
layer preserves feature depth, which means that the total depth
after concatenation can only grow at every layer.

To solve this problem, an inception module with dimension
reduction was introduced. The new implementation of
inception uses “bottleneck” layers that use 1 × 1 convolutions
to reduce the feature depth.

Figure 1. Inception Module, Naïve Version

Fig. 2 shows the architecture of the Inception module with
dimension reduction.

Figure 2. Inception Module with Dimension Reduction

Here conv. means convolution and MP means the Max
Pooling (MP) layer.

Inception V3 uses a bottleneck inception module, which
performs better than the normal inception module. In the
inception V3, the kernel sizes are small because they are more
efficient. This is achieved by factorizing the convolutions.
Factorizing kernels into smaller factors reduces the overall
complexity of the architecture.

B. MOBILENET
The MobileNet architecture is a small and fast architecture that
was introduced for mobile and related vision applications.

The MobileNet model is based on depth-wise separable
convolutions. Depth-wise separable convolutions are depth-
wise convolutions that are followed by point-wise
convolutions. 1×1 convolution is called a point-wise
convolution. Due to the depth-wise separable convolutions, the
computation cost of the MobileNet architecture is reduced
significantly. The standard convolutional layer is
parameterized by a convolution kernel K of size

K KD D M N   ,

Previous layer

Filter concatenation

3×3 conv. 5×5 conv. 3×3 m.p.
1×1 conv.

Filter
concatenation

3x3 conv. 5x5 conv. 1x1
conv.

1x1
conv.

1x1
conv.

3x3 MP

previous
layer

1x1 conv.

 Manjit Jaiswal et al. / International Journal of Computing, 23(2) 2024, 240-246

242 VOLUME 23(2), 2024

where
KD is the spatial dimension of the kernel assumed to be

square, M is the number of input channels, and N is the number
of output channels, as defined previously.

Equation (1) is used to calculate the depth- wise separable
convolution cost of the mobile net architecture.

2

1 1
cos

K

t
N D

  . (1)

Fig. 3 explains a part of MobileNet architecture with depth-

wise convolution used along with batch normalization,
Rectified Linear Unit (ReLU) and 1 × 1 convolution layer.

Figure 3. Depth wise Separable convolutions with Depth wise
and Pointwise layers followed by batch norm and ReLU

C. RESNET50
Resnet was first introduced in the ImageNet Large Scale Visual
Recognition Challenge (ILSVRC) 2015 classification
challenge. It solved the problem of deep neural networks
becoming less accurate after a certain depth [17]. In this
architecture, the concept of the residual block was first
introduced. The residual block skips the connection block.
Individual layers in this architecture give output to the next
layer and to the next residual block. Residual blocks ensure that
the accuracy of the architecture remains at least that of the
previous block, which reduces the chances of feature loss in
deeper networks. Fig. 4 explains how residual learning uses
skip connections.

Figure 4. Residual Learning Building block

III. RESEARCH METHODOLOGY

A. Dataset
We used the New Plant Disease Dataset (augmented) [18],
which can be found in the Kaggle repository. This dataset [18]
was recreated using offline augmentation from the original
dataset. The dataset should be representative of real-world
scenarios. The original dataset can be found in [19] GitHub
repository. This dataset consists of approximately 87.9
thousand RGB images and 1.43 GB in size of healthy and
diseased crop leaves, which are categorized into 38 different
classes. Image augmentation [20] is a process in which we use
the already existing images to create new sample images. This
process involves rotating, cropping, and flipping the original
images. This increases the number of sample training images
and makes our model more accurate for different possibilities
of the images. This dataset consists of approximately 87.9 K
RGB images of healthy and diseased crop leaves. These leaves
were obtained from 14 different plants and 26 different
diseases, which were categorized into 38 different classes
based on plant and disease combination. The total dataset is
divided into an 80/20 ratio of the training and validation sets,
preserving the directory structure. Of these, 70295 images are
for training and 17572 images are for validation. A new
directory containing 33 test images is created later for
prediction. All images are of size 256 × 256.

Table 1. Distribution of images in the dataset for various
species and diseases

S. NO Species and diseases Training Validation Total

1. Tomato Late Blight 1851 463 2314

2. Tomato Healthy 1926 481 2407

3. Grape Healthy 1692 423 2115

4. Orange Huanglongbing 2010 503 2513

5. Soyabean Healthy 2022 505 2527

6. Squash Powdery mildew 1736 434 2170

7. Potato Healthy 1824 456 2280

8. Corn Leaf Blight 1908 477 2385

9. Tomato Early Blight 1920 480 2400

10
Tomato Septoria

Leafspot
1745 436 2181

11.
Corm Cercospora leaf

spot gray leaf spot
1642 410 2052

12. Strawberry Leaf Scorch 1774 444 2218

13. Peach Healthy 1728 432 2160

14. Apple Scab 2016 504 2520

15.
Tomato yellow Leaf

Curl Virus
1961 490 2451

16. Tomato Bacterial Spot 1702 425 2127

17. Apple Black Rot 1987 497 2484

18. Blue berry Healthy 1816 454 2270

19. Cherry Powdery Mildew 1683 421 2104

20. Peach Bacterial Spot 1838 459 2297

21. Apple Rust 1760 440 2200

22. Tomato Target Spot 1827 457 2284

23. Pepper Bell Healthy 1988 497 2485

24.
Grape Leaf blight

(Isariopsis Leafspot)
1722 430 2152

25. Potato Late Blight 1939 485 2424

26. Tomato Mosaic Virus 1790 448 2238

weight layer

weight
layer

ReLu

ReLu

X
Identity

X

F(x)+

F(x)

3x3 depthwise
Conv

BN

ReLU

1×1 Conv

BN

ReLU

Manjit Jaiswal et al. / International Journal of Computing, 23(2) 2024, 240-246

VOLUME 23(2), 2024 243

27. Strawberry Healthy 1824 456 2280

28. Apple Healthy 2008 502 2510

29. Grape Black Rot 1888 472 2360

30. Potato Early Blight 1939 485 2424

31. Cherry Healthy 1826 456 2282

32. Corn Common Rust 1907 477 2384

33.
Grape Esca (Black

Measles)
1920 480 2400

34. Raspberry Healthy 1781 445 2226

35. Tomato Leaf Mold 1882 470 2352

36. Tomato Spider mites 1741 435 2176

37.
Pepper Bell Bacterial

Spot
1913 478 2391

38. Corn Healthy 1859 465 2324

Figure 5. Sample image from the dataset

B. Training
We used the transfer learning method on pre-trained models of
Keras applications. We trained our model on a Tesla T4 GPU
provided by Google Colaboratory. We used batch sizes of 128
and 50 epochs for training our dataset. We first downloaded the
dataset into the Google Colaboratory from Kaggle’s repository.
Then, we loaded the data into the GPU using the Data Loader
module provided in Keras. Since the original image was 256
×256 so we had to convert our images into 224×224 for training
purposes, as the models were designed for the ILSVRC dataset
where images were of size 224 × 224. We loaded our pre-
trained model weight from Keras and added more layers to use
the weights and obtain the classification result. The layers that
were added are Global Average Pooling, Dropout (0.1), ReLu,
and SoftMax layers. The Adam optimizer [21] was used along
with the categorical cross entropy [22] loss function.

The following formula is used to calculate the categorical
cross-entropy in equation (2):

(1 ())
((),)

q
j

q j

f x
L f x e

q


 , (2)

where,
qL is the loss function, ()f x is the function for which

loss is calculated,
jf denotes the thj element in

jf ,

(0,1]q and {0,1}
i

c
ye  .

The function calculated accuracy, area under the ROC
curve (AUC) score, precision, and recall.

1) Global Average Pooling [19]
The idea is to generate one feature map for each

corresponding category of the classification task in the last
convolution layer. Instead of adding fully connected layers on

top of the feature maps, we take the average of each feature
map, and the resulting vector is fed directly into the SoftMax
layer. One advantage of global average pooling over fully
connected layers is that it is more native to the convolution
structure by enforcing correspondences between feature maps
and categories. Thus, the feature maps can be easily interpreted
as category confidence maps. Another advantage is that there
is no parameter to optimize in the global average pooling; thus,
overfitting is avoided at this layer. Furthermore, global average
pooling sums out the spatial information; thus, it is more robust
to spatial translations of the input.

2) Dropout [24]
The key idea is to randomly drop units (along with their

connections) from the neural network during training. This
prevents the units from co-adapting too much. During training,
dropout samples were obtained from an exponential number of
different “thinned” networks. At test time, it is easy to
approximate the effect of averaging the predictions of all these
thinned networks by simply using a single unthinned network
with smaller weights. This significantly reduces overfitting and
provides major improvements over other regularization
methods. We show that dropout improves the performance of
neural networks on supervised learning tasks in vision, speech
recognition, document classification, and computational
biology, obtaining state-of-the-art results on many benchmark
datasets.

The following formula gives the output image after using
the dropout layer:

(,)Wy f x z , (3)

where y is the output image, x is the input image, and z is a
random mask.

3) ReLU [25]
The ReLU of the Rectified Linear Unit is used as an

activation function.
Mathematically, the ReLU function is denoted by the

following formula:

 () max(0,)F x x , (4)

where x is the input image pixel.

IV. IMPLEMENTATION AND RESULTS
Google Colaboratory (Colab) is a product of Google Research.
Colab provides a Jupyter notebook environment to run python
codes. Colab also provides free resources such as CPU, GPU
and RAM. The specifications of the hardware and software that
we have used are mentioned in Table 2.

Table 2. The Hardware and Software Specifications

S. No. Specification Type Description
1. GPU Tesla T4
2. CPU Intel Xenon (64 bi)
3. CPU RAM 12.7 GB
4. GPU RAM 15.0 GB
5. Disc 78.2 GB
6. IDE Google Colaboratory
7. Programming Language Python
8. Operating System Linux
9. CuDNN version 8302

 Manjit Jaiswal et al. / International Journal of Computing, 23(2) 2024, 240-246

244 VOLUME 23(2), 2024

After comparing the three models, i.e., InceptionV3,
MobileNet, and ResNet, we found that Resnet gives the highest
accuracy, followed by MobileNet and InceptionV3. The
comparison of models based on various criteria such as
accuracy, loss, precision, recall, and AUC is given in Table 3,
Tables 4, 5, and 6, respectively. The time taken by the models
is also shown in Table 7.

Formulas for calculating accuracy, precision, recall, and
AUC are given in equations (5) - (10).

TP
precision

TP FP



, (5)

TP
recall

TP FN



, (6)

TP TN
accuracy

TP TN FP FN




  
, (7)

FP
FPR

FP TN



, (8)

TP
TPR

TP FN



, (9)

()AUC TPR d FPR   , (10)

where TP – True Positive, FP – False Positive, TN – True
Negative, FN – False Negative, TPR – True Positive Rate and
FPR – False Positive Rate.

Table 3. Results of training and validation accuracy for
Resnet, MobileNet and InceptionV3

Accuracy (%) InceptionV3 MobileNet ResNet
Training 98.78 99.57 99.62

Validation 93.94 97.31 97.16

Figure 6. Graph showing the accuracy comparison between
ResNet, MobileNet and InceptionV3 as shown in Table 3.

Table 4. Results of training and validation loss for
InceptionV3, MobileNet and Resnet

Loss (%) InceptionV3 MobileNet ResNet
Training 3.79 1.27 1.19
Validation 21.56 10.16 11.16

Figure 7. Graph showing loss comparison between ResNet,
MobileNet and InceptionV3 as shown in Table 4.

Table 5. Results of training and validation of Precision for
InceptionV3, MobileNet and ResNet

Precision (%) InceptionV3 MobileNet ResNet
Training 97.17 98.84 98.89
Validation 93.36 96.88 96.64

Figure 8. Graph showing the precision comparison between
ResNet, MobileNet and InceptionV3 as shown in Table 5.

Manjit Jaiswal et al. / International Journal of Computing, 23(2) 2024, 240-246

VOLUME 23(2), 2024 245

Table 6. Comparison table of various models according to
recall, precision, F1-score and AUC during training time

Models Precision Recall F1-score AUC
Inception V3 0.9717 0.9874 0.9794 0.9994
MobileNet 0.9884 0.9955 0.9913 0.9997

ResNet 0.9889 0.9948 0.9918 0.9995

Figure 9. Graph showing recall comparison between ResNet,
MobileNet and InceptionV3 as shown in Table 6.

Table 7. Comparison table of various models according
to their recall, precision, F1-score and AUC during

validation time

Models Precision Recall F1-score AUC
Inception V3 0.9317 0.9285 0.93 0.9882
MobileNet 0.9736 0.9728 0.9731 0.9947

ResNet 0.9700 0.9693 0.9696 0.9935

Figure 10. Graph showing recall comparison between ResNet,
MobileNet and InceptionV3 as shown in Table 7.

Table 8. Inference Time taken by various models

Models Inference time (msec. per image)
Inception V3 ~503
MobileNet ~300

ResNet ~407

Figure 11. Bar graph showing the comparison between
training time taken by InceptionV3, MobileNet and ResNet as

shown in Table 8.

V. CONCLUSION
In this paper, we have compared the different state-of-the-art
models InceptionV3, MobileNet, and ResNet50 to classify
various plant diseases using a new plant disease dataset that
contains approximately 87900 images of various plant leaves.
In this comparison, we found that ResNet50 with an accuracy
of 99.62% performs better than MobileNet and InceptionV3,
with the accuracy of 99.57% and 98.78%, respectively. We
have also concluded that, in terms of loss, ResNet50 performs
better than MobileNet and InceptionV3. ResNet50 shows a loss
of 1.19%, followed by MobileNet and InceptionV3 with the
loss of 1.27% and 3.79%, respectively. The inference times for
MobileNet, ResNet50 and InceptionV3 is ~300msec,
~407msec and ~503msec respectively.

In the future, these models can be extended for real time on
much larger datasets and can also be integrated with mobile
applications for easier use by the common population. We can
also improve the models to make them more lightweight, less
time-consuming to train, and more accurate in real time.

References

[1] World food and agriculture - Statistical pocketbook, United Nation,
Rome, 2018, pp. 254.

[2] Annual Report 2020-21, Department of Agriculture, Cooperation &
Farmers’ Welfare, Ministry of Agriculture & Farmers’ Welfare,
Government of India, Krishi Bhawan, New Delhi, [Online]. Available at:
https://agriwelfare.gov.in/Documents/annual-report-2020-21.pdf.

[3] M. Badiger, V. Kumara, S. C. N. Shetty, S. Poojary, “Leaf and skin
disease detection using image processing,” Global Transitions
Proceedings, vol. 3, issue 1, pp. 272-278, 2022.
https://doi.org/10.1016/j.gltp.2022.03.010.

[4] S. P. Singha, K. Pritamdasa, K. J. Devia, S. D. Devi, “Custom
convolutional neural network for detection and classification of rice plant
diseases,” Procedia Computer Science, vol. 218, pp. 2026–2040, 2023.
https://doi.org/10.1016/j.procs.2023.01.179.

[5] D. A. Noola, D. R. Basavaraju, “Corn leaf image classification based on
machine learning techniques for accurate leaf disease detection,”
International Journal of Electrical and Computer Engineering (IJECE),
vol. 12, no. 3, pp. 2509-2516, 2022.
https://doi.org/10.11591/ijece.v12i3.pp2509-2516.

[6] Y. Aufar, T. P. Kaloka, “Robusta coffee leaf diseases detection based on
MobileNetV2 model,” International Journal of Electrical and Computer
Engineering (IJECE), vol. 12, no. 6, pp. 6675-6683, 2022.
https://doi.org/10.11591/ijece.v12i6.pp6675-6683.

[7] K. P. Ferentinos, “Deep learning models for plant disease detection and
diagnosis,” Computers and Electronics in Agriculture, vol. 145, pp. 311-
318, 2018. https://doi.org/10.1016/j.compag.2018.01.009.

[8] F. A. Guth, S. Ward and K. McDonnell, “From lab to field: An empirical
study on the generalization of convolutional neural network towards crop
disease detection,” European Journal of Engineering and Technology
Research, vol. 8, issue 2, pp. 32-40, 2023.
https://doi.org/10.24018/ejeng.2023.8.2.2773.

[9] S. Nuanmeesri, “A hybrid deep learning and optimized machine learning
approach for rose leaf disease classification,” Engineering, Technology
& Applied Science Research, vol. 11, no. 5, pp. 7678-7683, 2021.
https://doi.org/10.48084/etasr.4455.

[10] S. Alqethami, B. Almtanni, W. Alzhrani and M. Alghamdi, “Disease
detection in apple leaves using image processing techniques,”

 Manjit Jaiswal et al. / International Journal of Computing, 23(2) 2024, 240-246

246 VOLUME 23(2), 2024

Engineering, Technology & Applied Science Research, vol. 12, no. 2, pp.
8335-8341, 2022. https://doi.org/10.48084/etasr.4721.

[11] L. Loyani and D. Machuve, “A deep learning-based mobile application
for segmenting Tuta Absoluta’s damage on tomato plants,” Engineering,
Technology & Applied Science Research, vol. 11, no. 5, pp. 7730-7737,
2021. https://doi.org/10.48084/etasr.4355.

[12] B. M. Joshi and Dr. H. Bhavsar, “Deep learning technology based Night-
CNN for nightshade crop leaf disease detection,” International Journal
of Intelligent System and Application in Engineering, vol. 11, no. 1, pp.
215-227, 2023.

[13] K. He, X. Zhang, S. Ren and J. Sun, “Deep residual learning for image
recognition,” CoRR, vol. abs/1512.03385, 2015.
https://doi.org/10.1109/CVPR.2016.90.

[14] C. Szegedy, V. Vanhoucke, S. Ioffe and J. Shlens, “Rethinking the
inception architecture for computer vision,” CoRR, vol. abs/1512.00567,
2015. https://doi.org/10.1109/CVPR.2016.308.

[15] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto and H. Adam, “MobileNet: Efficient convolution neural
network for mobile vision application,” CoRR, vol. abs/1704.04861,
2017.

[16] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke and A. Rabinovich, “Going deeper with convolutions,”
CoRR, vol. abs/1409.4842, 2014.
https://doi.org/10.1109/CVPR.2015.7298594.

[17] T. Poggio, A. Banburski and Q. Liao, “Theoretical issues in deep
learning,” Proceedings of the National Academy of Science, vol. 117, no.
48, pp. 30039-30045, 2020. https://doi.org/10.1073/pnas.1907369117.

[18] New Plant Diseases Dataset. [Online]. Available at:
https://www.kaggle.com/datasets/vipoooool/new-plant-diseases-dataset

[19] PlantVillage-Dataset. [Online]. Available at:
https://github.com/spMohanty/PlantVillage-Dataset

[20] J. Wang and L. Perez, “The effectiveness of data augmentation in image
classification using deep learning,” arXiv, vol. abs/1712.04621, 2017.

[21] D. P. Kingma and J. Ba, “Adam: A Method for stochastic optimization,”
arXiv, ICLR-2015. https://doi.org/10.48550/arXiv.1412.6980.

[22] Z. Zhang and M. R. Sabuncu, “Generalized cross entropy loss for training
deep neural networks with noisy labels,” vol. 13, no. 9, arXiv, 2014.

[23] M. Lin, Q. Chen and S. Yan, “Network in network,” arXiv, 2014.
[24] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever and R.

Salakhutdinov, “Dropout: A simple way to prevent neural network from
overfitting,” A Journal of Machine Learning Research, vol. 15, pp. 1929-
1958, 2014.

[25] K. Hara, D. Saito and H. Shouno, “Analysis of function of rectified linear
unit used in deep learning,” arXiv, 2015.
https://doi.org/10.1109/IJCNN.2015.7280578.

MANJIT JAISWAL is currently working
as an Assistant professor in Computer
Science and Engineering Department,
School of Studies in Engineering and
Technology, Guru Ghasidas
Vishwavidyalaya, A Central University
Bilaspur, Chhattisgarh, India. He
received Master of Technology(M.Tech.)
degree in 2012 from Maulana Azad
National Institute of Technology,
Bhopal, Madhya Pradesh, India. He is
persuing Ph.D. in Computer Science

and Engineering Department, School of Studies in Engineering
and Technology, Guru Ghasidas Vishwavidyalaya, A Central
University Bilaspur, Chhattisgarh, India. He has published more
than 13 papers in reputed journals and conference like IEEE,
Scopus indexed approved etc. His research interest fields are
algorithm, Machine Learning and Deep Learning.He has more
than 10 years of teaching experience. He is a member of IAENG.

DR KAPIL KUMAR NAGWANSHI has
received his PhD from the Chhatisgarh
Swami Vivekanand Technical University
Bhilai, India. He is currently working as
an Associate Professor at SoS E&T
Guru Ghasidas Vishwavidyalay (A
Central University), Bilaspur, India. His
primary domain of teaching and rese-
arch includes the internet of things, di-
gital image processing, cyber forensics,

data science and engineering, AI, and computer networking. He
has guided 15 MTech scholars and currently supervising six
PhD scholars. He is a senior member of IEEE, YHAI, and a life
member of CSI, IETE, and members of IAENG, IACSIT, and some
other professional bodies. He is a reviewer of reputed journals
such as IEEE Access, Imaging Science Journal, Journal of Real-

Time Image Processing, and International Journal of Computer
and Electrical Engineering.

ABHISHEK JAIN as an Assistant
Professor in Information Technology
Department, Central University,
Bilaspur, India and having 14 years of
industrial, teaching and research
experience. He has completed B.E. from
GEC Raipur and MTech from NIT
Allahabad currently pursuing PhD from
Central University Bilaspur C.G. He is
also worked as senior software engi-

neer in TCS. He has authored more than 10 scientific
publications in peer reviewed journals. He has worked in
Geographical Information Systems (GIS) project Thames Water
London UK and RAPDRP Gujarat. His industrial working
experience include object-oriented analysis modelling and
design, database administrator, Oracle, SQL, XML, XSLT, DTD,
Java etc. His research focused on remote sensing, image
processing, signal processing biomedical engineering, EEG
signal, ECG Signal, IOT, blockchain technology.

RISHIKESH KUMAR is currently
pursuing Bachelor of Technology in
Computer Science and Engineering
from School of Studies in Engineering
and Technology, Guru Ghasidas
Vishwavidyalaya, Bilaspur, India. He is
currently studying the final year. Her
research interest fields are Machine
Learning, Computer Vision and
algorithm.

SHREYASH GAURAV is currently
pursuing Bachelor of Technology in
Computer Science and Engineering
from School of Studies in Engineering
and Technology, Guru Ghasidas
Vishwavidyalaya, Bilaspur, India. He is
currently studying the final year. Her
research interest fields are Machine
Learning, Computer Vision, and
Algorithm.

YUKTA WATTI is currently pursuing
Bachelor of Technology in Computer
Science and Engineering from School
of Studies in Engineering and
Technology, Guru Ghasidas
Vishwavidyalaya, Bilaspur, India. She
is currently studying the final year.
Her research interest fields are
Machine Learning, Computer Vision.

DR. ANULAL MAHTO is currently
working in Guru Ghasidas
Vishwavidyalaya (A Central
University), Bilaspur, India. He did his
Ph.D. from Birla Institute of
Technology, Meshra, Ranchi, India.
His research Areas are Ergonomics,
Artificial Intelligence, Industrial labour
psychological analysis and Manufac-

turing

MR. SATYENDRA SINGH THAKUR is
currently pursuing Ph.D. from
Computer Science and Engineering,
SoS(E&T), Guru Ghasidas
Vishwavidyalaya (A Central
University), Bilaspur, India. He did
M.Sc. in Computer Science from
Rajasthan Vidyapeeth University,
Udaipur, Rajasthan, India. His
research Areas are Artificial Intelligen-

ce, Geographical Information System and Image Processing.

