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 ABSTRACT Breast cancer (BC) is a major global health concern. Detecting BC at an early stage gives more 
treatment options and can help avoid more aggressive treatments. The use of machine learning (ML) in BC 
prediction offers significant potential for improving the accuracy and speed of diagnosis, personalizing treatment, 
and identifying high-risk patients.  However, there are significant challenges associated with the use of ML, 
including the need for high-quality data and more flexible models with optimal parameters to achieve high 
efficiency. In this paper, we propose an optimized framework based on multi-stage data exploration. This 
framework is designed to provide a comprehensive approach to data exploration, ensuring that the data is well-
prepared for ML. In addition, the framework includes dynamic ensemble-based classifiers, which combine 
multiple independent classifiers to improve accuracy and mitigate the risk of overfitting in conjunction with the 
cross-validation techniques. These classifiers are optimized using Bayesian hyperparameter tuning, which involves 
selecting the optimal values for the various hyperparameters of the model. This approach can significantly improve 
the prediction accuracy of the resulting model. The study evaluates the framework using the publicly available 
Wisconsin Diagnostic Breast Cancer (WDBC) dataset and compares our results with other state-of-the-art models. 
The experimental results show that the best result is 100% for accuracy and recall with hyperparameters of 
(Ensemble Method = AdaBoost, Number of learners = 322, learning rate = 0.9350, and the Maximum number of 
splits = 1). The highest performance has been achieved with the proposed framework compared with the other 
models in terms of accuracy (mean = 99.35%, best = 100%, worst = 98.7%, and Standard Deviation = 0.325). The 
framework can potentially improve the accuracy and efficiency of BC prediction, ultimately leading to better 
outcomes for patients. 
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I. INTRODUCTION 
REAST cancer (BC) is a type of cancer that develops in 
the breast cells. It is one of the most common cancer types, 

affecting women and men of all ages, although it is more 
common in women [1, 2]. The exact causes of BC are not fully 
understood, but there are several risk factors that can increase 
the likelihood of developing the disease [3]. One of the most 
significant risk factors is age. The older a person is, the higher 
the risk of developing BC. Other risk factors include family 
history, personal history, certain genetic mutations, and 
exposure to certain hormones. 

Symptoms of BC can vary, but they often include a lump or 
mass in the breast, a change in the breast size or shape, skin 

changes, such as dimpling or puckering, and nipple discharge. 
It is important to note that not all lumps in the breast are 
cancerous; many other conditions can cause similar symptoms. 
However, it is always important to see a healthcare provider if 
any changes are noticed in the breast [4]. 

Diagnosing BC usually involves a combination of imaging 
and biopsies. Imaging tests, such as mammograms, 
ultrasounds, or MRIs, can help detect abnormalities in the 
breast tissue, while a biopsy involves taking a small sample 
from a tissue for further examination under a microscope [5, 6]. 

The treatment depends on several factors, including the 
type and stage of the cancer, as well as the individual's overall 
health. Treatment options may include a surgery, radiation 
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therapy, chemotherapy, hormone therapy, or targeted 
therapy [7]. 

Prevention of BC involves maintaining a healthy lifestyle, 
such as regular exercise, maintaining a healthy weight, and 
limiting alcohol intake. It is also important for individuals with 
a higher risk to have regular BC screenings and to discuss their 
risk factors with their healthcare providers. BC can be a life-
threatening disease, but with early detection and appropriate 
treatment, the outlook for many individuals is positive. It is 
important for individuals to be aware of their risk factors and 
seek medical attention if any changes are noticed in their 
breasts [8]. Ongoing research and advances in treatment 
continue to provide hope for individuals affected by BC [9]. 

Early-stage detection is critical in improving individuals’ 
prognosis and survival rates with the disease. The treatment can 
be initiated before cancer has a chance to spread beyond the 
breast, which can significantly improve the outcomes [10]. One 
of the most significant benefits of early-stage detection is that 
less invasive treatment options may be available. For example, 
if BC is detected at an early stage, a lumpectomy, i.e. removing 
only the cancerous tissue and not the entire breast, may be a 
viable treatment option. This can have significant physical and 
psychological benefits for patients, as they can retain their 
breasts and avoid more extensive surgery [11]. In addition to 
improving treatment options and outcomes, early-stage 
detection can reduce the need for more aggressive treatments, 
such as chemotherapy. When BC is detected at an advanced 
stage, the likelihood of cancer spreading to other parts of the 
body is higher, which means that more aggressive treatment 
options may be necessary. However, if the cancer is detected 
early, there may be a greater opportunity to avoid such 
aggressive treatments [12]. Early-stage detection of BC also 
means that individuals can receive support and guidance earlier 
in their cancer journey. This can include psychological and 
emotional support, as well as practical support, such as access 
to financial assistance and resources for managing the side 
effects of treatment.   

Machine learning (ML) has emerged as a powerful tool for 
BC prediction, offering the potential to improve the accuracy 
and speed of diagnosis. ML algorithms can analyze huge 
amounts of data, identify patterns, and make predictions based 
on those patterns. In the context of BC, this can include 
analyzing medical images, genetic data, and other patient data 
to identify the signs of BC. Diagnosis accuracy can be 
increased by training ML algorithms to recognize subtle 
patterns that may be challenging for human specialists to 
recognize [13, 14]. ML can also improve the speed of 
diagnosis. Traditional methods of diagnosis can be time-
consuming and may require multiple tests, while ML 
algorithms can provide a rapid and accurate diagnosis based on 
a single image or dataset [15]. Another key benefit is the 
potential to personalize treatment. ML algorithms can be 
trained on patient data to identify patterns and predict treatment 
outcomes. This can help healthcare professionals tailor 
treatments to individual patients based on their unique 
characteristics, improving the outcomes and reducing the risk 
of adverse effects [16]. Additionally, ML can help healthcare 
professionals identify high-risk patients who may benefit from 
more frequent screening or surveillance. By analyzing patient 
data, ML algorithms can identify patients at a higher risk of 
developing BC and recommend appropriate screening and 
surveillance strategies [17, 18]. 

Ensemble classifiers have gained popularity in ML in recent 
years, with numerous benefits attributed to their use. An 
ensemble classifier is a combination of multiple individual 
classifiers, which are trained independently, and then their 
predictions are combined to make a final prediction [19]. This 
approach has been shown to improve the accuracy and 
robustness of models. Another important benefit of ensemble 
classifiers is their ability to alleviate the overfitting [20]. 

Overfitting occurs when a model is trained on a particular 
dataset to the extent that it begins to memorize the data rather 
than learn the underlying patterns and relationships. As a result, 
the model may perform well on the training data but poorly on 
new, unseen data [21]. Ensemble classifiers can help avoid 
overfitting by combining the predictions of multiple individual 
classifiers, reducing the risk of over-reliance on any particular 
model. Using multiple independent models, ensemble 
classifiers can help ensure the resulting predictions are robust 
and reliable [20]. Cross-validation is a widely used technique 
in ML commonly used in conjunction with ensemble classifiers 
to help avoid overfitting. It involves dividing the data into 
multiple subsets, with one subset used for testing and the 
remaining for training. By repeating this process multiple 
times, rotating the test, and training subsets, cross-validation 
can estimate the model's performance on new, unseen data. 
This approach can help ensure that the model is not overfitting 
to the training data, as it is being evaluated on multiple different 
subsets of the data [22]. 

Hyperparameter tuning is a crucial aspect of ML that 
involves selecting the optimal values for the various 
hyperparameters of a model. A key benefit of hyperparameter 
tuning is improving the accuracy of a model. By fine-tuning the 
hyperparameters, the model can capture the underlying patterns 
and relationships in the data more effectively, resulting in more 
accurate predictions. This is particularly important in 
applications where high accuracy is critical, such as medical 
diagnosis or financial forecasting. Another important benefit of 
hyperparameter tuning is the improved robustness of the 
model. Robustness refers to a model's ability to perform well 
in a wide range of environments and conditions. By tuning the 
hyperparameters, the model can be more robust to changes in 
the underlying data distribution or the data itself. This is 
particularly important in applications with highly dynamic or 
noisy data, such as in online advertising or fraud detection [23]. 

This study aims to accommodate the previous challenges by 
developing a multi-stage approach to data exploration and 
preprocessing to ensure the data is well-prepared for ML, 
tuning the hyperparameters of dynamic ensemble-based 
classifiers, which combine multiple independent classifiers to 
achieve better performance. Cross-validation is used in 
conjunction with ensemble classifiers to help avoid overfitting. 

The rest of this paper is organized as follows: Section II 
summarizes the literature of related works, and Section III 
illustrates the proposed study framework; Section IV presents 
the data exploration methods; Section V discusses the 
preprocessing techniques; and Section VI describes the ML 
models to predict BC. The experimental findings utilizing the 
proposed framework are presented in Section VII. Finally, the 
paper is concluded in Section VIII. 

II. LITERATURE REVIEW 
The Wisconsin Diagnostic Breast Cancer (WDBC) dataset is 
widely used in ML studies, especially in medical diagnosis. 
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The dataset contains 569 BC tumor biopsy samples, each with 
30 features. The features include the mean, standard deviation, 
and worst values of 10 different characteristics, such as radius, 
texture, perimeter, area, smoothness, compactness, concavity, 
symmetry, fractal dimension, and diagnosis (M=malignant, 
B=benign). The dataset has been widely studied, and numerous 
ML techniques have been applied to classify whether a tumor 
is benign or malignant. 

One of the earliest studies on the WDBC dataset was 
conducted by Wolberg et al. in 1995 [24]. They used a 
backpropagation neural network to classify the tumors and 
achieved an accuracy of 96.5% with their model. Although the 
study was conducted over two decades ago, it remains an 
important reference for applying ML to medical diagnosis. 

In 2016, Aalaei et al. [25] explored using a genetic 
algorithm for feature selection in diagnosing BC. Three 
different datasets: WDBC, Wisconsin Prognostic Breast 
Cancer (WPBC), and Wisconsin Breast Cancer" dataset 
(WBC), were used to evaluate the algorithm's performance. 
The results showed that it could identify relevant features and 
improve accuracy in all three datasets. The study concluded 
that genetic algorithms could be an effective tool for feature 
selection in BC diagnosis. 

In 2017, Jeyasingh et al. [26] examined a modified version 
of the Bat Algorithm (MBA) for feature selection to identify 
and remove irrelevant features from an original dataset. The 
Bat Algorithm was adapted by incorporating simple random 
sampling to select instances from the WDBC dataset randomly. 
The modified bat algorithm was found to be effective in 
selecting features that could accurately classify the WDBC 
dataset. The results also showed that the modified bat algorithm 
reduced the number of features used in classification while still 
achieving a high accuracy rate. 

In 2018, Yue et al. [27] examined the use of various ML 
algorithms, including Artificial Neural Network (ANN), 
Decision Tree (DT), Support Vector Machine (SVM), and k-
Nearest Neighbors (k-NN), to improve the accuracy of BC 
diagnosis and prognosis. The results suggest that ML can be 
used to improve the accuracy and efficiency of BC diagnosis 
and prognosis. 

In 2019, Latchoumi et al. [28] examined the use of a bio-
inspired weighted quantum particle swarm optimization 
(QPSO) and smooth support vector machine (SVM) ensembles 
for the identification of abnormalities in medical data. The 
QPSO algorithm was used to optimize the parameters of the 
SVM model, while the SVM model was used to classify 
medical data into normal and abnormal classes. Results showed 
that the proposed method achieved better accuracy of 98.42% 
than traditional methods, demonstrating its potential for use in 
medical data analysis. Showrovet et al. [29] selected 10 
features from the WDBC dataset and trained three different 
models on them: ANN, Naive Bayes, and SVM. They achieved 
a better accuracy of 96.72% with the SVM model. 

In 2020, Sheth et al. [30] proposed frameworks based on 
Feature Selection Technique based on Support Vector Machine 
(FSTBSVM), ML, and Jaya optimization techniques. The 
framework achieved an accuracy of 94.36%. 

In 2021, Chugh et al. [31] compared the performance of 
deep learning (DL) and ML by surveying computer systems 
that use one of these techniques. The study found that, with 
large data, the DL showed better performance while the ML 
was suitable for small datasets. Ara et al. [32] practiced various 
ML classifiers and conducted a performance evaluation to 

determine the best ML classifier to predict BC more accurately. 
Six classifiers were used: SVM, Logistic Regression (LR), K-
Nearest Neighbors (KNN), DT, Naive Bayes, and Random 
Forest (RF). With an accuracy of 96.5%, the RF and SVM 
classifiers surpassed the other four. Gopal et al. [33] developed 
methods to leverage the Internet of Things (IoT) and ML for 
early BC diagnosis. Three classifiers, Multi-Layer Perceptron 
(MLP), Random Forest (RF), and logistic regression, were used 
on the WDBC dataset. The MLP classifier surpassed the other 
two with an accuracy of 98% and a lower error rate than LR 
and RF. Assegie et al. [34] applied the adaptive boosting 
(Adboost) algorithm to eliminate the bias towards the benign 
observations that appeared when using the decision tree. The 
Adboost and DT algorithms achieved an accuracy of 92.53% 
and 88.80%, respectively. Lahoura et al. [41] employed a 
cloud-based extreme learning machine (ELM) approach and 
achieved an impressive accuracy of 98.68%. 

In 2022, Hemavathi et al. [35] applied deep learning 
techniques to predict BC early. First, through a heat map, the 
proposed framework reduced the WDBC dataset’s attributes to 
14 out of 30 attributes. Second, the model used the optimal 
attributes to train ML algorithms, such as LR, KNN, SVM 
(Radial Basis Function), SVM (Linear), DT, RF, and Gaussian 
Naive Bayes (NB), with Bagged Trees, Subspace discriminant, 
and Random Under-Sampling (RUS) Boosted Trees. Finally, 
the study compared the performance metrics of the earlier ML 
classifiers. The RF performed better than other classifiers, with 
a 98.6% accuracy rate. Monirujjaman Khan et al. [36] 
compared the performance of four ML algorithms’ predictions: 
RF, LR, DT, and KNN. The findings showed that the LR had 
the best result of 98% accuracy. Samieinasab et al. [37] 
developed a framework based on ensemble techniques to 
predict BC more accurately. The Extra Tree algorithm is used 
to pick the suitable features as inputs to the classification model 
with the stacking approach. The proposed framework was 
applied to WDBC’s BC dataset and achieved an accuracy of 
98%. Rasool et al. [38] aimed to develop four exploratory 
techniques: feature distribution, hyperparameter optimization, 
correlation, and elimination. Compared with the three ML 
models, polynomial SVM gained 99.3% accuracy. Bhardwaj et 
al. [2] implemented MLP, KNN, and RF on the WDBC dataset. 
The main objective of the study was to sort the tumors as 
benign or malignant. The RF classifier achieved the highest 
accuracy of 96.24% compared to other classifiers. Saleh et al. 
[1] proposed a deep recurrent neural network (RNN) model 
consisting of five hidden layers and five dropout layers. The 
Keras–Tuner method was used for the WDBC dataset to extract 
the optimal features and feed these features to the RNN model. 
Compared with the regular classifier models, the optimized 
deep RNN achieved the best performance. Christo et al. [39] 
proposed a framework based on feature selection methods and 
RF-ML techniques to classify the tumors in the WDBC dataset. 
The study applied this technique to various datasets. The 
accuracy of the proposed framework on the WDBC dataset was 
97.1%. Ogundokun et al. [40] utilized hyperparameter 
optimization techniques to enhance the performance of ANN 
and CNN. They also conducted a comparative analysis of their 
performance against SVM and MLP. Notably, the ANN 
achieved an impressive accuracy of 99.2% when evaluated 
using the WDBC dataset. 

According to previous studies, using ML in BC prediction 
offers significant potential for improving the accuracy and 
speed of diagnosis, personalizing treatment, and identifying 
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high-risk patients.  However, there are also significant 
challenges associated with the use of ML, including the need 
for high-quality data and more flexible models with optimal 
parameters to achieve high efficiency and avoid the overfitting 

problems. Addressing these challenges will be essential in 
realizing the full potential of ML for BC prediction. Table 1 
provides a summary of the review of the literature.

Table 1. Summary of the review of the literature 

Author Year Dataset Methods / Techniques Result 

Saleh et al. [1] 2022 WDBC Optimized deep RNN with Keras–Tuner 96.74 accuracy 

Bhardwaj et al. [2] 2022 WDBC MLP, KNN, and RF RF = 96.24% accuracy 

Rasool et al. [38] 2022 WDBC Optimized SVM with bayesian hyperparameter optimization 99.3% accuracy 

Samieinasab et al. [37] 2022 WDBC 
Extra Tree algorithm is used for features selection with Bagging, 

Boosting, and Voting 
0.982 accuracy 

Hemavathi et al. [35] 2022 WDBC deep learning RF = 98.6% accuracy rate 

Monirujjaman Khan et al. [36] 2022 WDBC RF, LR, DT, and KNN LR = 98% accuracy 

Christo et al. [39] 2022 WDBC RF-ML with Feature selection 97.1% accuracy 

Ogundokun et al. [40] 2022 WDBC 
Optimized ANN and CNN with hyperparameter optimization, SVM, 

and MLP. PSO feature selection applied to WDBC 
ANN = 99.2% accuracy 

Assegie et al. [34] 2021 WDBC Adboost and DT 92.53% accuracy 

Gopal et al. [33] 2021 WDBC MLP, RF, and logistic regression, MLP = 98% accuracy 

Ara et al. [32] 2021 WDBC SVM, LR, KNN, DT, Naive Bayes, and RF 
SVM and RF = 96.5% 

accuracy 

Lahoura et al. [41] 2021 WDBC Cloud-based ELM 98.68% accuracy 

Sheth et al. [30] 2020 WDBC Optimized FSTBSVM with Jaya optimization techniques 94.36%. accuracy 

Showrov et al. [29] 2019 WDBC SVM with 10 selected features 96.72% accuracy 

Latchoumi et al. [28] 2019 WDBC WQPSO with smooth SVM 98.42% accuracy 

Jeyasingh et al. [26] 2017 WDBC RF ML model with features chosen by MB algorithm 96% accuracy 

Aalaei et al. [25] 2016 WDBC ANN model with features chosen by GA algorithm 97.3 accuracy 

III. METHODOLOGY 
In this section, the suggested framework will be covered, along 
with study questions. 

The study aims to answer the following questions: 
 Do the data exploration techniques help researchers 

build accurate predictive models for detecting BC? 
 Does hyperparameter tuning play a critical role in 

detecting BC accurately? 
To answer these questions, a framework is proposed, as 

demonstrated in Figure 1. The framework has ten significant 
steps outlined as follows: 

1. Acquiring the WDBC datasets from the Kaggle 
repository. 

2. Describing the dataset and distribute features to study 
the uniqueness of features. 

3. Studying the feature relationships by calculating the 
Pearson correlation coefficient (r) and drawing the 
correlation heat map. 

4. Studying the features and determine the importance of 

the features using the correlation and chi-squared test. 
5. Cleaning dataset (remove missing values and duplicate 

instances). 
6. Balancing the target class using the Synthetic Minority 

Oversampling Technique (SMOTE). 
7. Splitting the dataset into a training dataset and a testing 

dataset. 
8. Applying the Bayesian hyperparameter tuning 

algorithm to the implementation of the dynamic training 
model with five predictive ensemble models (AdaBoost, 
RUSBoost, LogitBoost, GentleBoos, and Bag) on the 
datasets; evaluate and select the best model. 

9. Training the regular ML models (fine tree, logistic 
regression (LR), medium gaussian SVM (MGSVM), 
and fine KNN). 

10. Using the accuracy, precision, recall, and F1-Score 
matrices to evaluate the performance of the proposed 
dynamic ensemble model and compare it with the 
regular ML model; the evaluation considered two 
conditions: with or without feature selection.
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Figure 1. A proposed framework for breast cancer prediction.

IV. DATA EXPLORATION 

A. DATASET DESCRIPTION: 
The experiments in this study used the WDBC Dataset. The 
dataset can be found in the Kaggle Repository [42]. WDBC 
contains 569 instances, distributed as 357 benign and 212 
malignant, with no missing values or duplicated instances. The 

dataset consists of 31 features, comprising one categorical 
feature (output class) and 30 numerical features. The statistical 
information for the numerical features (F2-F31) is presented in 
Table 2. 

Figure 2 shows a colormap visualization technique to 
represent the relationship between the features and the 
distribution of data points across a range of values. It is evident 



Ayman Alsabry et al. / International Journal of Computing, 23(2) 2024, 254-267  

VOLUME XX(XX), 2023 259 

that there is an unequal distribution of the target class and data 
overlap in certain features, such as F6, F10, F11, F13, F16, F17, 

F18, F21, F23, F26, F30, and F31. This overview led us to 
conduct a more thorough analysis in the following sections.

Table 2. Wisconsin Diagnostic Breast Cancer Dataset Features 

No Feature Missing value Min Median Max 
F2 Radius mean  None 6.981 13.37 28.11 
F3 Texture mean None 9.710 18.84 39.28 
F4 Perimeter mean None 43.79 86.24 188.5 
F5 Area mean  None 143.50 551.1 2501 
F6 Smoothness mean None 0.05263 0.09587 0.1634 
F7 Compactness mean None 0.01938 0.09263 0.3454 
F8 Concavity mean None 0 0.06154 0.4268 
F9 Concave points mean None 0 0.0335 0.2012 
F10 Symmetry mean None 0.106 0.1792 0.304 
F11 Fractal dim. Mean None 0.04996 0.06154 0.09744 
F12 Radius SE None 0.1115 0.3242 2.873 
F13 Texture SE None 0.3602 1.108 4.885 
F14 Perimeter SE None 0.757 2.287 21.98 
F15 Area SE None 6.802 24.53 542.2 
F16 Smoothness SE None 0.001713 0.00638 0.03113 
F17 Compactness SE None 0.002252 0.02045 0.1354 
F18 Concavity SE None 0 0.02589 0.396 
F19 Concave points SE None 0 0.01093 0.05279 
F20 Symmetry SE None 0.007882 0.01873 0.07895 
F21 Fractal dim. SE None 0.0008948 0.003187 0.02984 
F22 Radius worst None 7.93 14.97 36.04 
F23 Texture worst None 12.02 25.41 49.54 
F24 Perimeter worst None 50.41 97.66 251.2 
F25 Area worst None 185.2 686.5 4254 
F26 Smoothness worst None 0.07117 0.1313 0.2226 
F27 Compactness worst None 0.02729 0.2119 1.058 
F28 Concavity worst None 0 0.2267 1.252 
F29 Concave points worst None 0 0.09993 0.291 
F30 Symmetry worst None 0.1565 0.2822 0.6638 
F31 Fractal dim. Worst None 0.05504 0.08004 0.2075 

 

Figure 2. Data Visualization using Colormap. 

B. CHECKING THE CORRELATION BETWEEN FEATURES: 
Investigations into feature correlation are important because 
they aid in identifying relationships between different dataset 
features. By understanding the correlation between features, 
data scientists can better understand the underlying structure of 
the data and make more informed decisions about which 
features to include in their models. Correlation investigations 
can also help identify potential sources of bias or outliers in a 

dataset, which can be useful for improving the accuracy and 
reliability of predictive models. Figure 3 shows the correlation 
between the features, whereas Table 3 shows the features 
selected to compare the performance of the proposed 
framework with and without feature selection. 

C. CHECKING THE OVERLAP BETWEEN CLASSES:  
The effects of overlapping target classes on ML training can be 
quite severe. If an algorithm cannot accurately distinguish 
between two classes due to overlapping features, it will not be 
able to learn how to correctly classify new data points into 
either class. This can lead to inaccurate predictions and poor 
performance on unseen data points. 

The target class overlap is depicted in Figures 4 and 5. In 
particular, the smoothness mean, fractal dimension mean, 
texture se, smoothness se, concave points se, and fractal 
dimension se features overlap. 

D. CHECKING THE IMBALANCE PROBLEM:  
Data distribution is crucial for disease prediction. Figure 6 
shows the target class (malignant, benign) distribution, where 
37.25% of instances are malignant and 62.75% are benign. In 
this case, the imbalance problem needs to be handled; 
otherwise, the variance in the number of target classes may 
cause bias when selecting the training set randomly.
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Table 3. Feature selection using correlation, and chi-squared test 

No Feature 
Correlation >= 0.6 
(See Figure 3) 

Importance using chi2 
Selected 
Features 

Value Ranking 

F2 Radius mean F3, F4, F8, F9, F12, F14, F15, F22, F,24, F25, F29 174.1708 7 Selected 
F3 Texture mean F23 68.1022 18 Non-Selected 
F4 Perimeter mean F2, F5, F7, F8, F9, F12, F14, F15, F22, F24, F25, F28, F29 170.6867 8 Selected 
F5 Area mean F2, F4, F8, F9, F12, F14, F15, F22, F24, F25, F29 176.6110 6 Selected 
F6 Smoothness mean F7, F9, F10, F11, F26 41.2315 23 Non-Selected 
F7 Compactness mean F4, F6, F8, F9, F10, F11, F17, F18, F19, F24, F27, F28, F29, F31 96.4315 15 Selected 
F8 Concavity mean F2, F4, F5, F7, F9, F12, F14, F15, F17, F18, F19, F22, F24, F25, F27, F28, F29 159.1932 9 Selected 
F9 Concave points mean F2, F4, F5, F6, F7, F8, F12, F14, F15, F19, F22, F24, F25, F27, F28, F29 192.8852 5 Selected 
F10 Symmetry mean F6, F7, F30 31.3718 25 Non-Selected 
F11 Fractal dim. Mean F6, F7, F17, F21, F31 8.3221 28 Non-Selected 
F12 Radius SE F2, F4, F5, F8, F9, F14, F15, F22, F24, F25 177.0891 12 Selected 
F13 Texture SE - 9.8869 26 Non-Selected 
F14 Perimeter SE F2, F4, F5, F8, F9, F12, F15, F19, F22, F24, F25, F29 107.6787 13 Selected 
F15 Area SE F2, F4, F5, F8, F9, F12, F14, F22, F24, F25 155.2731 11 Selected 
F16 Smoothness SE - 1.5256 30 Non-Selected 
F17 Compactness SE F7, F8, F11, F18, F19, F21, F27, F28, F31 43.9593 22 Non-Selected 
F18 Concavity SE F7, F8, F17, F19, F21, F28 73.1931 17 Non-Selected 
F19 Concave points SE F7, F8, F9, F14, F17, F18, F21, F29 63.9390 19 Non-Selected 
F20 Symmetry SE - 1.6977 29 Non-Selected 
F21 Fractal dim. SE F11, F17, F18, F19, F31 8.7185 27 Non-Selected 
F22 Radius worst F2, F4, F5, F8, F9, F12, F14, F15, F24, F25, F28, F29 199.7237 2 Selected 
F23 Texture worst F3 75.3487 16 Non-Selected 
F24 Perimeter worst F2, F4, F5, F7, F8, F9, F12, F14, F15, F22, F25, F28, F29 206.9704 1 Selected 
F25 Area worst F2, F4, F5, F8, F9, F12, F14, F15, F22, F24, F29 197.7166 3 Selected 
F26 Smoothness worst F6, F7, F27, F31 54.9273 20 Non-Selected 
F27 Compactness worst F7, F8, F9, F17, F26, F27, F29, F30, F31 99.0969 14 Selected 
F28 Concavity worst F4, F7, F8, F9, F17, F18, F27, F29, F31 155.4776 19 Selected 
F29 Concave points worst F2, F4, F5, F7, F8, F9, F14, F19, F22, F24, F25, F27, F28 195.7161 4 Selected 
F30 Symmetry worst F10, F27 45.5458 21 Non-Selected 
F31 Fractal dim. Worst F7, F11, F21, F26, F27, F28 32.9465 24 Non-Selected 

 
 

 

Figure 3. Features Correlation Heatmap. 
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Figure 4. Features Distribution. 

 

 

Figure 5. Classes Normal Distribution of Features.

 

Figure 6. Target Class Distribution. 

 

E. CHECKING THE OUTLIERS VALUE: 
Outliers are data points far away from the majority of the other 
data points in a dataset. Outliers can be caused by errors in data 
collection, or they may be legitimate observations that are 
simply rare. In ML, outliers can have a significant impact on 
the accuracy of models. Outliers can significantly bias the 
distribution mean and standard deviation. When we add a large 
outlier, the mean is more than doubled, and the standard 
deviation is over ten times larger. However, the median and 
interquartile range have not changed much. 

Figure 7 shows three methods to identify outliers: three 
standard deviations (3-SD) above and below the mean; 1.5 
times the interquartile range (IQR) above or below the third and 
first quartiles; and third, three scaled median absolute 
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deviations above and below the median. The three methods are 
represented by different colors: red, blue, and black, 
respectively, in Figure 7. 

 

 
 
 

 

Figure 7. Identify Outliers.

V. PREPROCESSING 
Raw data is often messy and should be preprocessed before 
being ready to be used. After the previous data analysis, a sense 
of what the data looks like is formed. The following are the 
major preprocessing steps performed by the WDBC. 

A. HANDLING OUTLIERS’ VALUES: 
In healthcare, outliers’ data is not necessarily bad; outliers are 
often expected on large enough sets of data due to natural 
variations. 3-SD (µ+3ơ) and below (µ-3ơ) means are useful for 
normally distributed data.  However, due to the sensitivity of 
both metrics, the bounds may shift significantly with skewed 
data or large outliers. In contrast, both the interquartile range 
and median absolute deviation methods are more useful for 
general distributions and unaffected by extreme outliers. This 
study applied the 3-SD method for removing extremely large 
outliers from the WDBC dataset, as illustrated in Figure 7. 

B. HANDLING IMBALANCE PROBLEM: 
The study used SMOTE techniques to balance the target class 
by creating new instances for the minority class.  SMOTE 
determines the new points by finding their collinearity with the 
neighboring points of the minority class. 

VI. PREDICTIVE MODELS 
The study used an ensemble classifier, which is a powerful tool 
in ML, as it combines multiple individual classifiers to create a 
dynamic model for accurate and reliable predictions. These 
classifiers include AdaBoost, LogitBoosting, GentleBoost, 
RUSBoost, and Bagged decision trees. It is important to tune 
the parameters of the individual classifiers in order to maximize 
their performance within the ensemble. This is done through 5-
fold cross-validation and the Bayesian optimization techniques, 
which allow efficient exploration of parameter space. The 
performance of the dynamic model was compared with other 
state-of-the-art models, including fine trees, LR, MGSVM, and 

fine KNN. The comparison was conducted using accuracy, 
precision, recall, and the F1 score. 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
்௉ା்ே

்௉ା்ேାிேାி
,                (1) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
்௉

்௉ାி௉
,                            (2) 

𝑅𝑐𝑎𝑙𝑙 =
்௉

்௉ାிே
,                                   (3) 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
ଶ×௉௥௘௖௜௦௜௢௡×ோ௘௖௔௟௟

௉௥௘௖௜௦௜௢௡ାோ௘௖௔௟௟
.       (4) 

where:  
TP = True Positive, 
FP = False Positive, 
TN = True Negative, 
FN = False Negative. 

A. HYPERPARAMETER OPTIMIZATION: 
Hyperparameter tuning is an important part of the ML process. 
It involves adjusting the parameters of a model to optimize its 
performance. This is done by testing different combinations of 
hyperparameters and selecting the best one. Bayesian 
optimization was employed in this study. It is a powerful 
technique for hyperparameter tuning that uses Bayesian 
inference to find the optimal set of hyperparameters for a given 
ML model. This technique has become increasingly popular in 
recent years due to its ability to quickly and accurately identify 
the best set of hyperparameters for a given problem. 

B. ADABOOST DECISION TREE: 
This is an ensemble ML algorithm that uses a combination of 
weak learners to create a strong learner. It works by combining 
multiple weak learners (one-level decision trees) to create a 
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more powerful model. Each weak learner is trained on the same 
dataset but with different weights assigned to each instance, 
and the final model is the weighted average of all the weak 
learners. AdaBoost is used for both classification and 
regression problems, and it has been found effective in 
improving accuracy over single models. 
 

 

Figure 8. AdaBoost Algorithm. 

C. LOGITBOOST DECISION TREE: 
It is an ensemble learning technique that combines the strengths 
of decision trees and logistic regression to create a powerful 
predictive model. It uses a series of decision trees to learn from 
the data and then combines the results with logistic regression 
to produce a more accurate prediction. This technique is often 
used in classification problems. The convex optimization 
equation of LogitBoost is as follows: 
 

𝑓 = ∑ 𝑎௧ℎ௧
 
௧ ,                          (5) 

 

where, f represents the output of the LogitBoost ensemble 
model, which is the sum of the individual predictions from 
the decision trees (ℎ௧) weighted by the coefficients (𝑎௧). 

The logistic loss is minimized by the equation: 
 

෌ log (1 + 𝑒ି௬೔௙(௫೔) 
)

 

௜
           (6) 

 
where:  

 ∑   
௜ : Represents the summation over all instances in 

the dataset. 
 𝑦௜: Denotes the true label or target value of the i-th 

instance. 
 𝑓(𝑥௜): Represents the predicted output or score 

obtained from the ensemble model for the i-th 
instance. 

 log: Denotes the natural logarithm. 
 e: Represents the base of the natural logarithm. 

D. GENTLEBOOST: 
An ensemble learning technique combining decision trees' 
powers with the boosting algorithm. It works by combining 
multiple weak learners (decision trees) to create a strong 
learner. The boosting algorithm helps reduce bias and variance, 
resulting in improved accuracy and better generalization 
performance. It is a powerful tool for classification problems, 
as it can handle both continuous and categorical data. The 
following equation may be used to compute the mean squared 
error: 

 
෌ 𝑤௧,௜  (𝑦௜ − 𝑓௧(𝑥௜))ଶ 

௜
,                (7) 

 
where:  

 𝑤௧,௜: The observation weights. 
 𝑓௧(𝑥௜): The prediction of 𝑓௧-regression model fitted 𝑥௜-

response values. 

E. DECISION TREE RUSBOOST: 
This is an ensemble learning technique that combines the 
strengths of both decision trees and boosting algorithms. It uses 
a random under-sampling technique to reduce the size of the 
training dataset and then applies boosting to create a strong 
classifier from the reduced dataset. This technique has been 
shown to improve accuracy and reduce overfitting compared to 
traditional decision tree methods. 

F. ENSEMBLE BAGGED DECISION TREES: 
It is also an ensemble machine-learning technique that 
combines multiple decision trees to create a more accurate and 
stable prediction. It works by training multiple decision trees 
on different subsets of the data and then combining their 
predictions to form a more robust prediction. This technique 
can help reduce overfitting and improve accuracy. 

VII. RESULTS AND DISCUSSION 
To evaluate how well the proposed framework worked, three 
different approaches were used. The first approach used the 
original dataset without preprocessing to train the proposed 
optimized dynamic model and compare its performance with 
the performance of four other ML models. 

The second approach involved balancing the target class 
distribution using the SMOTE technique, followed by training 
the ML models. This approach obtained encouraging 
performance with fine trees, logistic regression, and fine KNN. 
The proposed optimized ensemble model and MGSVM 
achieved the highest accuracy of 100%. 

The third approach involved removing outliers and then 
balancing the target class distribution using the SMOTE 
technique. In comparison to earlier approaches, the findings 
obtained from the dynamic model of optimized ensemble 
classifiers, fine tree, logistic regression, fine KNN, and 
MGSVM models are superior. The following is the result of all 
the approaches with various conditions: 

A. THE FIRST APPROACH (WITHOUT DOING OUTLIERS 
DETECTION AND SMOTE TECHNIQUES): 
Table 4 shows the performance analysis of the first approach in 
terms of test accuracy rate (mean). The proposed optimized 
GentleBoost achieved a better average test accuracy of about 
97.35% for the mean, 98.2% for the best, 96.5% for the worst, 
and 0.425 for the standard deviation. 

Without feature selection, the accuracy (highest) achieved 
by the fine tree is 96.5%, LR is 93.8%, MGSVM is 97.3%, fine 
KNN is 94.7%, and the GentleBoost is 98.2%. 

As shown in Table 5, feature selection reduces the 
performance of the ML models, where the accuracy (highest) 
achieved by fine tree is 91.2%, LR is 94.7%, MGSVM is 
95.6%, fine KNN is 94.7%, and GentleBoost is 94.7%. The 
optimal GentleBoost hyperparameter is shown in Table 6. 
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Table 4. Performance analysis of the first approach in terms of test accuracy rate 

Models Mean Best Worst SD 

Fine Tree 96.5% 96.5% 96.5% 0 

Logistic Regression 93.8% 93.8% 93.8% 0 

MGSVM 96.45% 97.3% 95.6% 0.425 
Fine KNN 92.95% 94.7% 91.2 % 0.875 
Proposed  97.35% 98.2% 96.5% 0.425 

 
 

Table 5. Performance comparison of the first approach 

ML Models 
Accuracy Precision Recall F1-Score 

Without With Without With Without With Without With 

Fine Tree 96.5% 91.2% 98% 91.5% 92.9% 90.5% 95% 90% 
Logistic Regression 93.8 94.7 94.4% 95.8% 92.9% 92.9% 94% 94% 
MGSVM 97.3% 95.6% 97.2 98.6% 97.6% 90.5% 97% 94% 
Fine KNN 94.7% 94.7% 95.8% 94.4% 92.9% 95.2% 94% 95% 
Proposed 98.2% 94.7% 100% 94.4 95.2% 95.2% 97.5% 95% 

 
 

Table 6. GentleBoost optimal hyperparameter for the first 
approach 

Bayesian hyperparameter tuning algorithm 

Hyperparameter Value 
Ensemble Method GentleBoost 
Number of learners 97 
Learning rate 0.8299 
Maximum number of splits 1 

B. THE SECOND APPROACH (WITHOUT DOING 
OUTLIERS DETECTION AND DOING SMOTE TECHNIQUE): 
The performance analysis of the second approach in terms of 
test accuracy rate is shown in Table 7. 

Table 7. Performance analysis of the second approach in 
terms of test accuracy rate 

Models Mean Best Worst SD 

Fine Tree 94.75% 95.1% 94.4% 0.175 

LR 96.5% 96.5% 96.5% 0 

MGSVM 98.6% 100% 97.2% 0.7 
Fine KNN 98.25% 98.6% 97.9% 0.175 
Proposed  99.3% 100% 98.6% 0.525 

The following discussion includes a thorough comparison of 
the best prediction model performance: 

- Without feature selection: Table 8 shows the 
significant contribution of the SMOTE technique in 
improving the performance of ML models. The 
problem of ML models’ bias toward the majority class 
is avoided in the training process by balancing the 
target class. The experiments proved that the SMOTE 
technique without feature selection provided 
significant accuracy, reaching 100% with a MGSVM 
and the proposed AdaBoost with Bayesian 
optimization algorithm. The fine tree model does not 
gain benefits from balancing the target class, unlike 
the logical regression and fine KNN models, which 
showed a slight improvement in performance. 

- With feature selection: In comparison with the first 
approach, the SMOTE technique provides significant 
results in the case of feature selection; The achieved 
accuracy of fine tree is 97.2%, LR is 95.8%, MGSVM 
is 97.9%, fine KNN is 95.1, and the optimized 
ensemble model is 97.9%. Table 9 displays the 
AdaBoost's optimal hyperparameter. 

Table 8. Performance comparison of the second approach 

ML Models 
Accuracy Precision Recall F-Score 

Without With Without With Without With Without With 

Fine Tree 95.1% 97.2% 93% 97.2% 97.2% 97.2% 95% 97.2% 
Logistic Regression 96.5% 95.8% 93% 97.2% 100% 94.4% 96% 96% 
MGSVM 100% 97.9% 100% 97.2% 100% 98.6% 100% 98% 
Fine KNN 98.6% 95.1% 96.5% 94.4% 93.7% 95.8% 95% 95% 
Proposed 100% 97.9% 100% 98.6% 100% 97.2% 100% 98% 

 

Table 9. AdaBoost optimal hyperparameter for the second approach 

Bayesian hyperparameter tuning algorithm 

Hyperparameter Value 
Ensemble Method AdaBoost 
Number of learners 72 
Learning rate 0.9505 
Maximum number of splits 3 
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C. THIRD APPROACH (DOING OUTLIERS DETECTION 
AND DOING SMOTE TECHNIQUE): 

Table 10. Performance analysis of the third approach in 
terms of test accuracy rate (average) 

Models Mean Best Worst SD 

Fine Tree 96.65% 97.3% 96% 0.324 

LR 95.3% 95.3% 95.3% 0 

MGSVM 98.65% 100% 97.3% 0.675 
Fine KNN 96.65 99.3% 94% 1.325 
Proposed  99.35% 100% 98.7% 0.325 

 
Table 10 shows the performance analysis of the proposed 
model and the other four ML models in terms of test accuracy 
rate. The proposed optimized AdaBoost achieved a better 
average of test accuracy of about 99.35% for the mean, 100% 
for the best, 98.7% for the worst, and 0.325 for the standard 
deviation. 
 

A comprehensive comparison of the best performance of 
predictive models is discussed below: 

- Without feature selection: Among the five ML 
models, the ensemble model (AdaBoost) with the 
Bayesian hyperparameter tuning algorithm and the 
MGSVM received the most significant performance, 
with 100% accuracy. The second-best performance 
was by the fine KNN algorithm with 99.3% accuracy, 
98.7% precision, 100% recall, and 99 % F1-score. 
Table 11 shows the comparison of the performance of 
the five models for all conditions in the third 
approach. Table 12 displays the AdaBoost's optimal 
hyperparameter. 

- With feature selection: The LR model outperformed 
the other predictive models with an accuracy of 
98.7%, a precision of 97.2%, a recall of 100%, and an 
F1-score of 98.5%. 

Table 13 shows the evaluation of performance in 
comparison with similar works of literature 

Table 11. Performance comparison of the third approach 

ML Models 
Accuracy Precision Recall F1-Score 

Without With Without With Without With Without With 

Fine Tree 97.3% 94.7% 97.2% 94.4% 97.5% 94.9% 97% 95% 

LR 95.3% 98.7% 91.5% 97.2% 98.7% 100% 95% 98.5% 
MGSVM 100% 96% 100% 94.4% 100% 97.5% 100% 96% 
Fine KNN 99.3% 98% 98.6% 95.8% 100% 100% 99% 98% 
Proposed  100% 97.3% 100% 97.2% 100% 97.5% 100% 97% 

 

Table 12. AdaBoost optimal hyperparameter for the third approach 

Bayesian hyperparameter tuning algorithm 

Hyperparameter Value 
Ensemble Method AdaBoost 
Number of learners 322 
Learning rate 0.9350 
Maximum number of splits 1 

 

Table 13. Evaluation of performance in comparison to similar works of literature 

Author Year Classifier Accuracy (%) 
[25] 2016 ANN with GA algorithm 97.3% 
[28] 2019 Smooth SVM with WQPSO 98.42% 
[30] 2020 FSTBSVM with Jaya optimization technique 94.36% 
[33] 2021 MLP 98% 
[34] 2021 Adboost algorithm 92.53% 
[41] 2021 Cloud-based ELM 98.68% 
[36] 2022 LR 98% 
[35] 2022 RF 98.6% 
[2] 2022 RF 96.24% 
[38] 2022 Polynomial SVM with grid search optimization  99.3% 
[40] 2022 Optimized ANN and CNN with hyperparameter optimization 99.2% 

Proposed 2023 
Dynamic learning model of ensemble classifiers, including AdaBoost, RUSBoost, LogitBoost, 
GentleBoost, and Bag. The model used with Bayesian hyperparameter tuning algorithm 

Test accuracy rate 
= 99.35% 

 
VIII. CONCLUSION AND FUTURE SCOPE 
In conclusion, the optimized framework based on multi-stage 
data exploration and dynamic ensemble-based classifiers with 
Bayesian hyperparameter tuning represents a significant 
advancement in BC prediction. The framework provides a 
comprehensive approach to data exploration and 
preprocessing, ensuring the data is well-prepared for ML. 

Additionally, the framework includes dynamic ensemble-based 
classifiers, which combine multiple independent classifiers to 
improve accuracy and mitigate the risk of overfitting. These 
classifiers are optimized using hyperparameter tuning, which 
selects the optimal values for the various hyperparameters of 
the model, leading to more accurate BC prediction. The 
experimental results show that the proposed framework 
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outperforms other models in terms of test accuracy rate (mean), 
precision, recall, and F1 score. The framework also achieved 
significant performance in different approaches, making it a 
practical and effective tool for BC prediction. Using the 
publicly available WDBC dataset, the framework is readily 
accessible to other researchers and practitioners, which can 
further improve the accuracy and efficiency of BC prediction. 

According to the information provided in Table 4, the 
optimized dynamic ensemble-based classifiers achieved 
remarkable accuracy rates when trained on the original WDBC 
data. The best accuracy rate obtained was 98.2%, with a mean 
accuracy rate of 97.35%. Furthermore, balancing the target 
class using SMOTE demonstrated a notable impact on 
improving test accuracy. As indicated in Table 7 and 10, 
utilizing SMOTE resulted in a significant improvement of 
1.0183%, ultimately leading to a best accuracy value of 100%. 
This improvement is in comparison to the accuracy achieved 
without employing SMOTE. In addition, the optimized 
framework has the potential to improve the accuracy of BC 
prediction, ultimately leading to better outcomes for patients. 
The framework's comprehensive approach to data exploration, 
combined with dynamic ensemble-based classifiers and 
hyperparameter tuning, represents a significant advancement in 
BC prediction. The framework can be applied to other domains, 
providing a reliable and robust tool for ML. 

This study depicted how the proposed framework 
performed on a relatively small numerical dataset. Trials using 
bigger datasets, like big data, can be used in the future to 
expand the scope of this study. Future work can mainly focus 
on improving this framework to make it applicable to all types 
of datasets, whether numerical or images. 
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