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 ABSTRACT The International Timetabling Competition (ITC) 2021 focuses on sports scheduling, a domain 
intricately connected to optimizing combinatorics problems. Within the framework of the ITC 2021 challenge, a 
crucial task is to precisely allocate matches to their designated time slots. Addressing this challenge involves the 
utilization of the Adaptive Learning Modified Great Deluge (ALMGD) algorithm, which belongs to the realm of 
hyper-heuristics. This algorithm represents an evolutionary step from the foundational great deluge algorithm, 
incorporating an acceptance mechanism intricately woven with self-adaptive learning. To assess its efficacy, the 
performance of the ALMGD algorithm is scrutinized through a comparative analysis with the hill climbing and 
great deluge algorithms. As a result, the proposed algorithm can produce a solution that is superior to the 
comparison algorithm. The modified great deluge algorithm can reduce the penalty by 36%, while the hill climbing 
algorithm can only reduce the penalty by 29% and the great deluge algorithm reaches 34%.  
 

 KEYWORDS Combinatorial Optimization; Sport Scheduling; Adaptive Learning Modified Great Deluge; 
Hyper-Heuristics. 
 

I. INTRODUCTION 
N recent years, the field of optimization of combinatorial 
problems has often discussed issues related to sports 

scheduling [1]. Several factors cause sports scheduling to be an 
interesting discussion [2]. The ability of an algorithm to solve 
sports scheduling that has a large enough number of teams is 
one of these factors. With a fairly large number of teams, it is 
challenging for researchers to develop an algorithm that can 
solve them better and in less time. 

From a computational point of view, sports scheduling 
optimization is included in the category of NP-Hard problems 
[3]. So, it can be interpreted that the optimization of sports 
scheduling cannot be solved using an exact algorithm with 
polynomial time. However, it can be solved using heuristics 
algorithm with relatively fast time and produce a fairly good 
solution close to optimal [4]. The solution generated using the 
heuristics algorithm does not guarantee to be an optimal 
solution. However, the solution can be said to be quite good 
and close to optimal. The optimal solution is measured based 
on the objective function. Until now, sports scheduling has 
quite diverse objective functions [5], for example, minimizing 
soft constraint violations, minimizing match costs, minimizing 
match distances and some others. 

Research related to sports scheduling in the field of 
operations research or optimization has been carried out quite 
a lot. Examples of sports that have been conducted in 

scheduling research are football [6, 7], table tennis [8], 
basketball [9–11], and so on. Algorithms that have been used 
to solve sports scheduling optimization are adaptive large 
neighborhood search [5], a combination of greedy randomized 
adaptive search and iterated local search [12], harmony search 
[13] and so on. Sports scheduling often appears with a round 
robin model [14]. 

ITC is a competition related to scheduling optimization. In 
previous years the ITC held a competition for optimization of 
university exam scheduling. Meanwhile, ITC 2021 is currently 
hosting a competition for sports scheduling for the first time 
[15]. In the case of ITC 2021, there is an objective function to 
minimize soft constraint violations. So, that it can be 
interpreted that the best solution is the solution that has the least 
soft constraint violation. No regulatory algorithm is used to 
solve ITC 2021 but it must be the same for each instance 
provided. 

In this research, we propose an enhanced algorithm named 
adaptive learning modified great deluge (ALMGD). The 
algorithm is a combination of two algorithms, namely self-
adaptive learning and modified great deluge. In this research, a 
self-adaptive learning algorithm is used to determine the low-
level heuristic used in each iteration or what is known as LLH 
selection. The modified great deluge algorithm is a 
development of the great deluge algorithm which is used to 
determine the acceptance of the candidate solution in each 
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iteration or what is called move acceptance. The application of 
the combination of the two algorithms is carried out based on a 
hyper-heuristics framework. In the modified great deluge 
algorithm, modifications will be made to the mechanism for 
accepting candidate solutions. The ALMGD algorithm is 
expected to produce the most optimal solution compared to the 
comparison algorithm. 

II. LITERATURE REVIEW 
In this section, we will explain some of the theoretical bases 
used in this research. The theoretical basis that will be 
discussed in this section is related to the problem and the 
algorithm used. The theoretical basis is used as a reference 
from previous research. 

A.  INTERNATIONAL TIMETABLING COMPETITION 2021 
International Timetabling Competition (ITC) 2021 is a sports 
scheduling competition with a double round robin system [15]. 
Double round robin is a sport system in which each team 
competes 2 times with the same opposing team. So, it can be 
said that there are 2 stages of the match. The objective function 
of ITC 2021 is to minimize soft constraint violations. The 
mathematical model of the 2021 ITC problem was listed in 
RobinX's research [16]. However, the mathematical model has 
adjustments. ITC 2021 has 3 types of data sizes based on the 
number of slots and teams in an instance. The size of the data 
can be seen in Table 1. In addition, ITC 2021 is a time-
constrained problem. So, all teams must compete in each slot. 
Illustration of the ITC 2021 match schedule can be seen in 
Fig. 1. 

Table 1. Symbols 

Data Size Number of Teams Number of Slots 
Small 16 30 
Medium 18 34 
Big 20 38 

 

 

Figure 1. ITC 2021 Schedule Illustration 

ITC 2021 is the newest ITC. In previous years, ITC has also 
been held. However, in previous years, the ITC held a 
scheduling competition that focused on scheduling exams and 
courses. An example of previous research that has been carried 
out is at ITC 2002 using a simulated annealing algorithm to 
complete course scheduling [17]. Furthermore, at ITC 2007, 
still in the same field, a combination of hill climbing algorithm 
with great deluge and simulated annealing was used [18]. At 
ITC 2011 a combination of iterated local search and simulated 
annealing algorithms was used to solve the problem of 
scheduling high school course [19]. 

B.  GREAT DELUGE ALGORITHM 
The great deluge algorithm is an algorithm inspired by 
flooding. By analogy, a higher point will be searched for to 
avoid flooding. According to this analogy, the mechanism for 
accepting candidate solution must be equal to or higher than the 
water level for the maximization problem [20]. And vice versa, 
if the problem is minimization, the acceptance of the candidate 
solution must be lower or equal to the water level.  

Several previous studies also modified the great deluge 
algorithm. The first example is modification of the acceptance 
of the candidate solution with a flexible coefficient to increase 
flexibility [21]. In addition, modifications to the great deluge 
algorithm were also carried out on the low level heuristic 
(LLH) selection mechanism and water level reduction [22]. In 
this study, the great deluge algorithm is modified in the 
mechanism for accepting candidate solutions. The modification 
is done by adding a late acceptance strategy [23] to get better 
results. 

C.  SELF ADAPTIVE LEARNING STRATEGY  
With the number of LLH more than 1, a mechanism is needed 
to select LLH in each optimization iteration. The self-adaptive 
learning algorithm is chosen as the mechanism. Self-adaptive 
learning has 2 components, namely the neighborhood list (NL) 
and the winning neighborhood list (WNL). NL is useful for 
storing LLH which is used in each iteration while WNL is used 
to store LLH which has good performance. NL filling is 
obtained from the contents of WNL. So, it can be said that if 
LLH has good performance, in the next iteration it will have a 
greater chance of being re-selected. Several previous studies 
implemented this algorithm and showed great results. An 
example is combining it with particle swarm optimization 
algorithm [24] and combining it with artificial bee colony [25]. 

D.  HYPER-HEURISTICS 
Hyper-heuristics is a framework or approach in optimization to 
solve problems that cannot be solved manually by selecting and 
running a simpler heuristic (heuristic selection) or building a 
new heuristic (heuristic generation) [26]. Hyper-heuristics do 
not deal directly with the problem but through lower heuristics 
[27] or low level heuristics (LLH) [28]. So, in this study a 
hyper-heuristics approach was used to select LLH. 

III. METHODOLOGY 
In this section, the flow of the research carried out is explained. 
The flow of the research carried out is based on Fig. 2. Due to 
this figure, process search begins with constructing the initial 
solution, then tuning parameters, and finally carrying out the 
optimization process. 

 

 

Figure 2. Research Methodology 

A.  INITIAL SOLUTION CONSTRUCTION 
Making the initial solution is a stage to produce a feasible 
solution. A solution can be said to be feasible if the solution 
does not violate the hard constraints. If a solution is feasible, 
then the solution can be continued at the optimization stage. 
Vice versa, if it is not feasible then it cannot be continued at the 
optimization stage. Constructing a feasible initial solution is 

Initial Solution Construction

Parameter Tuning

Optimization Process
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done by using the tabu late acceptance hill climbing algorithm. 
The algorithm was chosen because it is easy to implement. This 
means that it only has 1 parameter, which is only the length of 
the fitness array. In addition, the algorithm does not have a time 
limit to run like what happened to the great deluge algorithm. 
So, this algorithm will run for a maximum of 6 hours for each 
instance. If up to 6 hours an instance still has a hard constraint 
violation, it is said that the instance is not feasible. 

B.  PARAMETER TUNING 
The proposed modified great deluge algorithm has 2 
parameters that must be filled in and tuned. These parameters 
are the length of the fitness array and the desired value. 
Parameter tuning aims to determine the appropriate parameter 
values to obtain the best solution. If the tuning parameters are 
not carried out, the results obtained can be even worse than the 
hill climbing algorithm. Not all instances have parameter 
tuning done. Parameter tuning is only performed on example 
instances. The example instance used for the tuning parameter 
is an instance that represents the size of the data. The selection 
of instances used for tuning parameters is based on the fastest 
optimization duration for each data size with the same number 
of iterations. The best tuning parameter values obtained will be 
applied to all another instances. 

C.  OPTIMIZATION PROCESS 
The optimization results obtained will be analyzed. This 
analysis aims to determine the performance of the ALMGD 
algorithm when compared to other algorithms. The first 
analysis compares the average optimization value of all 
algorithms in 10 repetitions. The analysis aims to determine the 
comparison of the average optimization results in general. 
Furthermore, an analysis related to the comparison of the 
percentage reduction in penalties and running duration is 
carried out. With this comparison, it will be known whether the 
algorithm modification for improving the penalty reduction is 
commensurate with the running duration. Then an analysis of 
the consistency of the optimization results is carried out. 
Consistency analysis is carried out using a boxplot graph. The 
more consistent they are, the better the optimization results. 
The last part is to analyze the penalty reduction in each 
iteration. The analysis was carried out using a trajectory graph. 
With the trajectory graph, the pattern and speed of penalty 
reduction that causes differences in the final optimization result 
are revealed. With the overall analysis that has been done, it is 
clear which algorithm has the best performance. 

IV. RESULTS AND DISCUSSION 
In this section, we explain the results of the experiments that 
are carried out. The experiment is carried out on devices with 
Intel Core i5-6200u specifications and 8 GB RAM capacity. 
Each experiment is carried out with 100,000 iterations and 10 
repetitions. 

A.  INITIAL SOLUTION CONSTRUCTION 
The initial solution is constructed by optimizing the hard 
constraint violation. At first, the resulting solution is a solution 
that is still free from the base constraint violation of the ITC 
2021 problem. However, the solution still violates the hard 
constraint. A solution can be said to be feasible if there is no 
violation of the hard constraint. To eliminate the hard constraint 
violation, optimization is carried out using the tabu late 

acceptance hill climbing algorithm based on previous research 
that was done in [29]. The results of the construction of the 
initial solution are shown in Table 2. 

Due to the table, 24 out of 54 instances (44.44%) are 
feasible. The most feasible data package is the Late data 
package with a total of 8 data. The Late data package will then 
be used as input for the parameter tuning process. 

Table 2. Result of Initial Feasible Solution 

Instance Result Instance Result 
Test Ins. Demo Feasible Middle4 Not feasible 
Test1 Feasible Middle5 Feasible 
Test2 Feasible Middle6 Not feasible 
Test3 Feasible Middle7 Not feasible 
Test4 Not feasible Middle8 Feasible 
Test5 Feasible Middle9 Feasible 
Test6 Not feasible Middle10 Not feasible 
Test7 Not feasible Middle11 Not feasible 
Test8 Not feasible Middle12 Feasible 
Early1 Feasible Middle13 Not feasible 
Early2 Not feasible Middle14 Not feasible 
Early3 Feasible Middle15 Feasible 
Early4 Not feasible Late1 Not feasible 
Early5 Not feasible Late2 Not feasible 
Early6 Not feasible Late3 Feasible 
Early7 Not feasible Late4 Feasible 
Early8 Feasible Late5 Not feasible 
Early9 Feasible Late6 Not feasible 
Early10 Not feasible Late7 Feasible 
Early11 Not feasible Late8 Feasible 
Early12 Not feasible Late9 Feasible 
Early13 Feasible Late10 Not feasible 
Early14 Feasible Late11 Feasible 
Early15 Not feasible Late12 Not feasible 
Middle1 Not feasible Late13 Not feasible 
Middle2 Not feasible Late14 Feasible 
Middle3 Not feasible Late15 Feasible 

B.  INITIAL SOLUTION CONSTRUCTION 
The use of the ALMGD algorithm has parameters that must be 
tuned. Parameters that are tuned in this study are the values for 
the length of the fitness array and the desired value. The length 
of the fitness array needs to be tuned because it is adjusted to 
the number of iterations carried out. If the length of the fitness 
array does not match the number of iterations used, the 
optimization results will be of lower value while the desired 
value must be tuned because it is related to the decay rate at the 
water level. If the decay rate is higher, the acceptance limit for 
worse solutions will decrease faster. This resulted in the 
trapping of the local optima. 

The values of fitness array to be experimented with are 5, 
10, and 15. This value is obtained from the trial process starting 
from 500 and decreasing to get a better solution until it gets a 
value of 10. From a value of 10, a tolerance value of 5 is given 
so that there are values of 5 and 15. Meanwhile, the desired 
value to be experimented with is 0 and corresponds to the best-
known solution (symbolized by d). The value 0 is the most 
optimal optimization value. Meanwhile, the best known-
solution value is the best optimization result that has been 
obtained from another research. The instances used for the 
parameter tuning experiment are Late3, Late8 and Late11. The 
three instances represent their respective data sizes with the 
fastest optimization duration. 
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The experimental results of the tuning parameters are 
shown in Table 3. In the table the best parameter values and 
compared with hill climbing and great deluges based on 
average result, are obtained using the fitness array value of 10 

and the desired value according to the known best solution. So, 
the optimization process that is carried out on all instances will 
use this value to produce a good solution. 

Table 3. Results of Parameter Tuning 

 
HC GD 

ALMGD 

5, 0 10, 0 15, 0 5, d 10, d 15, d 

Late3 

Max 14699 14559 14449 14644 14319 14394 14579 14504 

Min 14069 12610 12759 12519 11959 12789 12389 12085 

Avg. 14396.5 13952.2 13920.9 13855.6 13731 13926 13602 13659.6 

Late8 

Max 4409 4244 3883 4287 3735 4244 3768 3989 

Min 3608 3170 3215 3302 3132 3301 3217 2381 

Avg. 4016.3 3623.1 3486.9 3588.5 3418.3 3658 3391.2 3397.6 

Late11 

Max 1001 1066 1026 936 1096 945 941 1036 

Min 856 781 796 761 716 731 745 761 

Avg. 928.5 927.9 910 875.4 882.5 875.5 837.9 865 

 
C.  OPTIMIZATION PROCESS 
The proposed algorithm for optimization is adaptive learning 
modified great deluge (ALMGD). Adaptive learning is a 
strategy used to choose LLH which is applied in each iteration. 
There are 4 types of LLH used in this study. 3 LLH is from 
previous research [30], and 1 LLH is its improvement while the 
modified great deluge is a great deluge algorithm that is 
modified as a move acceptance to get better results. The 
modification made is by adding a move acceptance strategy. If 
at the time of optimization, the water level drops lower than the 
penalty, then the mechanism for accepting candidate solutions 
is only hill climbing or can only accept better solutions. It is 
prone to being trapped in the local optima. So, we need a 
mechanism for accepting candidates for water level 
replacement. Then a modification is made by adding a late 
acceptance strategy as a substitute for water level. The 
complete pseudocode of the proposed algorithm is shown in 
Fig. 3. 

 

 

Figure 3. Pseudocode of Adaptive Learning Modified Great 
Deluge 

The optimization results using ALMGD are compared with 
the hill climbing and great deluge algorithms. Comparison with 
hill climbing is done because hill climbing is the basic 
algorithm of optimization. While the comparison of great 
deluge is done because great deluge is the original algorithm 
before modifications are made. The results of the comparison 
of the ALMGD algorithm with the two algorithms are shown 
in Table 4. Due to the table it is seen that the optimization 
results when using the ALMGD algorithm are better than the 
two comparison algorithms on all optimized instances. This is 
caused by the trapping of the hill climbing algorithm on the 
local optima and the decrease in the water level which is lower 
than the penalty on the great deluge algorithm. 

Table 4. Comparison of Optimization Result 

Instance 
Average Penalty 

HC GD ALMGD 

TestInstanceDemo 0 0 0 

Test1 1120 1120 1120 

Test2 189.7 177.9 177.2 

Test3 1253 1253 1253 

Test5 241.2 181.1 178.6 

Early1 2756.7 2681.9 2614.4 

Early3 2909.9 2840.1 2745.4 

Early8 3143.3 2971.5 2953.8 

Early9 2216.9 1648.5 1479.6 

Early13 1644.8 1496.6 1474.5 

Early14 1922.9 873.3 855.3 

Middle5 2331.6 2001 1863.9 

Middle8 1368.7 1231.5 1228.3 

Middle9 2216.9 2168 2144 

Middle12 5109.7 4994.5 4856.6 

Middle15 3360.9 2645.5 2523.3 

Late3 14396.5 13952.2 13602 

Late4 625.4 473.6 427.5 

Late7 16932.4 16932.7 16711.7 

Late8 4016.3 3623.1 3391.2 

Late9 2308.3 2086.1 2012.4 

Late11 928.5 927.9 837.9 

Late14 3375.6 3298.4 3282.2 

Late15 1314 820 801 

 

1: procedure Adaptive Learning Modified Great Deluge 
2:  current  initial solution 
3: best  initial solution 
4: i  iteration length 
5: w  initial waterlevel or initial solution 
6: dv  desired value  
7:  d  decayrate or ((w-dv)/i) 
8: f  fitness length 
9: for all f  initial solution 
10:  repeat 
11:  for i = 1 to l do 
12:  generateCandidate using SelfAdaptiveLearning 

mechanism 
13:   if p(candidate) <= p(current) or 
14:     p(candidate) <= w or 
15:     p(candidate) <= p(f % i) then  
16:    accept the candidate 
17:   if current < best 
18:    best = current 
19:   else  
20:      reject the candidate 
21:   update w  (w-d) 
22:     end for 
23:     save best sol 
24: end procedure 
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To make it easier to measure the performance of the 
ALMGD algorithm, a comparison is made against the 
percentage of penalties reduction. The percentage value of 
penalty reduction is obtained from the comparison of the 
optimization value with the penalty value of the initial solution. 
Comparison is also equipped with duration to determine the 
effect of the running duration. The comparison is shown in 
Table 5. 

Table 5 shows that the best penalty reduction is obtained by 
the ALMGD algorithm by 36%.  The penalty reduction using 
ALMGD has a significant difference when compared to hill 

climbing. Meanwhile, when compared to the great deluge it 
only has a difference of 2%. That number may seem small, but 
if the penalty is worth thousands, it will be significant. 
Especially with the comparison of the duration of time required 
between the great deluge algorithm and the adaptive learning 
modified great deluge algorithm, there is a time difference of 
11.5 seconds. The difference in duration when converted to a 
percentage is less than 1% when compared to the duration of 
the great deluge duration. So, the 2% penalty difference is 
better because it takes the same time. 

Table 5. Percentage of Penalties Reduction and Running Duration Comparison 

Instance HC Duration (s) GD Duration (s) ALMGD Duration (s) 

TestInstanceDemo 0% 0 0% 0 0% 0 

Test1 2% 10 2% 12 2% 12 

Test2 27% 4 31% 5 32% 5 

Test3 0% 0 0% 0 0% 0 

Test5 22% 20 41% 175 49% 178 

Early1 2% 161 5% 2690 11% 2698 

Early3 45% 308 47% 2766 52% 2770 

Early8 41% 588 44% 2972 47% 2994 

Early9 63% 423 72% 1501 77% 1540 

Early13 9% 1056 18% 1499 27% 1520 

Early14 63% 708 83% 870 87% 876 

Middle5 40% 168 49% 1840 58% 1897 

Middle8 10% 1379 19% 1237 23% 1241 

Middle9 27% 1397 28% 2140 34% 2167 

Middle12 12% 1009 14% 4933 26% 4940 

Middle15 71% 241 77% 2410 83% 2415 

Late3 6% 677 9% 659 19% 671 

Late4 69% 37 76% 75 91% 78 

Late7 0% 753 0% 805 4% 810 

Late8 21% 150 28% 170 37% 177 

Late9 28% 1629 35% 1933 42% 1940 

Late11 44% 213 44% 279 55% 284 

Late14 16% 1290 18% 2974 21% 2997 

Late15 80% 789 87% 1224 89% 1235 

Average 29% 542.1 34% 1382 36% 1393.5 

 
Then an analysis is carried out related to the consistency of 

the optimization results for each algorithm. The more 
consistent the optimization value of the algorithm, the better 
the optimization results. Measurement of the consistency of 
results is carried out using box plots for all algorithms. The box 
plot results are shown in Fig. 4. 

 

Figure 4. Boxplot of Algorithm Comparison 

According to the results displayed on the boxplot, the 
penalty value of 10 repetitions using the ALMGD algorithm 
has more consistent results because there are no outliers like in 
hill climbing and great deluge. Outliers in Fig. 4 are shown by 
circle marks. In addition, it is also known that the average result 
of the ALMGD algorithm is better than the two comparison 
algorithms which are displayed by a triangle sign. 

Next is the analysis of the penalty reduction that occurs in 
the three algorithms. The analysis is carried out using 100 data 
for every 1000 iterations. The analysis is presented in a 
trajectory graph. An example of a trajectory graph that occurs 
in the Middle5 instance is shown in Fig. 5. 

In Fig. 5 the movement of the penalty reduction that occurs 
when using the hill climbing algorithm is very quickly reduced 
at the beginning of the iteration. This is because the hill 
climbing algorithm only accepts better solutions. The only 
acceptance of hill climbing resulted in encountering a local 
optimum when the initial iteration was less than 10.000. Which 
means the next iteration does not find a better solution. 
Meanwhile, the great deluge and ALMGD algorithms tend to 
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experience a slow decline, even up and down penalties. 
However, in the great deluge algorithm iterations approaching 
60,000 also experience local optima. This may be caused by the 
penalty value that has not decreased while the water level value 
is already below the penalty value. So, the next iteration only 
accepts a better solution and causes it to be stuck in the local 
optima. The ALMGD algorithm has the best result from the 
comparison algorithm because it has an additional candidate 
acceptance mechanism to avoid local optima. 

 

Figure 5. Trajectory Graph for Algorithm Comparison 

V. CONCLUSION 
This research outlines the development or modification of the 
great deluge algorithm into ALMGD in the hope of getting a 
better solution. In addition, this research also proposes a 
method to produce a feasible solution for the 2021 ITC 
problem. There are 24 out of 54 total instances or 44.44% of 
instances that can be found feasible by using hard constraint 
optimization with tabu late acceptance hill climbing strategy. 
The best parameter tested is a value of 10 for the length of the 
fitness array in the late acceptance strategy and the value of the 
best-known solution for the desired value. The proposed 
ALMGD algorithm can produce a better solution than the 
comparison algorithm, namely hill climbing and great deluges. 
A better solution is generated on all tested feasible instances. 
The average value of optimization using ALMGD algorithm 
can reduce the penalty by 36%. Meanwhile, hill climbing is 
only 29% and using great deluge is 34%. 
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