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 ABSTRACT A novel neural network-based analytical system has been developed for classifying helicopter 
turboshaft engine operating modes during flight operations. This system utilizes a neural network architecture 
comprising an input layer with three neurons, two fully connected hidden layers, and an output layer with two neurons. 
The proposed approach demonstrates an exceptional recognition accuracy of 0.997 (99.7%) across steady-state, 
unsteady, and transient operating modes of helicopter turboshaft engines. A new method for training this neural network 
has been introduced, employing forward propagation, loss calculation, backpropagation, and weight updates, enhanced 
by an adaptive learning rate and the cross-entropy function as the loss criterion. The method also incorporates a novel 
modified Smooth ReLU activation function for hidden layer neurons. This innovation led to a near-perfect accuracy in 
network training and reduced the loss to 0.025 (2.5%), highlighting the high quality and reliability of the neural network 
in classifying engine operating modes during flight. Furthermore, it has been empirically shown that the application of 
this neural network significantly reduces type I errors by a factor of 2.09 to 2.14 and type II errors by 2.05 to 2.21 times 
compared to traditional classifiers based on ART-1 and BAM networks. This advancement marks a substantial 
improvement in classification accuracy and error minimization for helicopter turboshaft engine operating modes. 
 

 KEYWORDS helicopter turboshaft engines, flight conditions, operation mode, analytical system, neural network, 
classifier, classifying, recognizing. 
 

I. INTRODUCTION 
A. RELEVANCE OF THE RESEARCH 

ODERN helicopters are complex systems where 
efficiency and reliability depend on main components, 

particularly turboshaft engines (TE). These engines must 
operate in various modes to meet different flight conditions and 
operational requirements. Accurate classification of TE 
operating modes is crucial for enhancing performance and 
safety [1, 2]. Achieving high reliability requires precise, timely 
data on TE operation, supported by advanced monitoring and 
diagnostic methods to detect deviations early [3–5]. Effective 
models and algorithms for classifying TE operating modes are 
essential for improving operational characteristics and 
minimizing failure risks, thereby enhancing overall flight 
safety [6–8]. 

B.  STATE-OF-THE-ART 
Classification of helicopter TE operating modes can be 
achieved in the state space using state variables as criteria [9, 
10]. However, output signal vectors include additive random 
measurement noise, complicating the development of 
classification rules insensitive to this noise. Additionally, 

accurately determining class boundaries is challenging due to 
the significant dependence on engine dynamic parameters and 
random disturbances [11, 12]. The Bayesian method is 
commonly used for classification [13, 14], but it has 
drawbacks, such as the need to account for extensive a priori 
and a posteriori information on impacts, spectral density, and 
measurement errors, limited classification capability to steady 
operating modes, and reduced quality due to errors in 
distribution estimates and class recognition centers. 

In [15] determined that improving the gas turbine engine 
(turbojet engine) classification operating modes quality is 
achieved by increasing each class analyzed signals 
compactness, choosing a classified parameters space nonlinear 
transformation certain type. This leads to a change in the 
distance between classes and an increase in class proximity 
measures in the selected metric [15]. Currently, the gas turbine 
engine operating modes classification is usually carried out 
manually, involving a highly qualified specialist. However, this 
work can be lengthy and monotonous, which can lead to errors 
and waste of time. 

In [16], a gas turbine engine diagnosing method was 
developed and tested using a physical model based on 0-
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dimensional system analysis, which effectively detects faults in 
engine components with high accuracy. However, the method's 
disadvantage in its reduced ability to classify different engine 
operating conditions accurately, leading to decreased 
diagnostic accuracy under unexpected or transient conditions. 

In [17], a data-driven troubleshooting framework was 
developed for the fuel delivery system and gas turbine sensor 
measurements, using machine learning classifiers. It was 
compared with methods like support vector machines, linear 
discriminant analysis, K-neighbors, and decision trees, 
demonstrating its benefits through simulation. However, the 
framework is limited in accurately classifying conditions other 
than those on which it was trained, potentially reducing 
diagnostic accuracy when encountering new or changing 
conditions. 

In [18], a high-reliability thrust estimation method for gas 
turbine engine direct thrust control was proposed, combining a 
physical module and an error-compensating module to account 
for factors like sensor noise and atmospheric changes, 
demonstrating high accuracy and reliability compared to 
existing methods. However, this method may be limited in 
adapting to changing engine operating conditions or new 
modes not represented in the training data set, affecting its 
operating modes classification. 

Thus, various diagnostic approaches for gas turbine 
engines, including physical models, machine learning 
frameworks, and thrust estimation techniques, exhibit high 
precision in fault detection but may encounter challenges in 
accurately classifying operating states, diminishing 
performance in unforeseen or novel scenarios. 

The development of neural network methods for classifying 
helicopter TE operating modes is a promising direction in 
aviation technology. Neural networks can process large 
datasets and identify hidden patterns that traditional methods 
may miss, especially in complex and dynamic helicopter 
operations, enhancing safety and system reliability [19–21]. 
The main task of neural network classification is to divide the 
observed data set into classes corresponding to different 
helicopter TE operating modes, analyzing parameters like 
temperature, pressure, and speed. Classification accuracy and 
speed are crucial as they influence operational decisions during 
flight [22, 23]. Neural networks can significantly enhance the 
diagnosing and monitoring process of helicopter TE 
operational status by automating and optimizing engine 
control, leading to increased efficiency and safety [24–26]. 
They adapt to changing conditions by analyzing large datasets 
from various sensors, accurately determining the current 
operating mode, and predicting deviations to prevent accidents 
[27]. Automating classification and diagnosis reduces reliance 
on the human factor, minimizing errors due to fatigue or 
inattention and speeding up data analysis, which is crucial for 
flight safety [28, 29]. 

It is worth noting that for the helicopter TE classifying 
operating modes task solving, a hybrid neural network based 
on the ART-1 and BAM networks was developed in [30], 
which allows adding new classes of data to long-term memory 
without deleting those already saved. However, this approach 
has critical limitations: 

1. High computational costs, mean that hybrid neural 
networks can require significant computational resources, 
which can be problematic for real-time data processing on 
board a helicopter. 

2. Setting up and training hybrid neural networks is 

complex and requires significant effort to ensure the stable and 
helicopter TE's reliable operation in various operating 
conditions. 

3. Problems with scalability consist that as the data classes 
number and the information increases amount, problems may 
arise with the system scalability, which can reduce its 
efficiency and performance. 

4. Hybrid neural networks effectiveness is highly 
dependent on the quality and the data used completeness to 
train them. Missing or corrupted data can significantly impact 
classification accuracy. 

5. The results obtained from hybrid neural networks can be 
difficult to interpret and analyze, which can make it difficult to 
identify and correct errors in the system. 

6. Hybrid neural networks may require prior information 
significant amounts for initial training, which is not always 
possible to provide in real operating conditions. 

These limitations highlight the need for more effective 
neural network classification methods for helicopter TE 
operating modes, ensuring high accuracy and reliability under 
flight conditions. An analytical system based on these methods 
will be crucial for monitoring and diagnosing gas turbine 
engines, enabling timely detection and correction of deviations 
from the norm. 

C.  MAIN ATTRIBUTES OF THE RESEARCH 
The object of the research is the helicopter TE operating 

modes classification. 
The subject of the research includes methods and analytical 

systems for helicopter TE operating modes classification. 
The research aims to develop a method for the helicopter 

TE operating modes neural network classification at flight 
conditions, based on the advanced algorithms and analyt-ical 
systems integration that can effectively adapt to changing flight 
conditions and pro-vide high accuracy in determining the 
engine's current state. To achieve this aim, the following 
scientific and practical tasks were solved: 

1. Mathematical description of TE operating modes 
classifying task at flight conditions. 

2. The helicopter TE operating modes classifying task at 
flight conditions analytical system development. 

3. Development of helicopter TE operating modes at flight 
conditions neural network classifier. 

4. Development of an algorithm for training a neural 
network classifier of helicopter TE operating modes at flight 
conditions. 

5. Conducting a computational experiment for the 
helicopter TE operating modes classifying. 

6. Carrying out a comparative analysis with the most 
approximate analogue, implemented in the ART-1 and BAM 
networks form [30]. 

Thus, the main contribution of the research is the research 
is the development of a neural network analytical system for 
the helicopter TE operating modes classifying at flight 
operation, which, thanks to the neural network technologies 
use, allows one to the helicopter TE recognize steady-state, 
unsteady and transient modes with high accuracy, which, in 
turn, allows crew commanders make the right decisions to carry 
out the flight with high accuracy. 
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II.  MATERIALS AND METHODS 
A.  MATHEMATICAL DESCRIPTION OF HELICOPTER 
TURBOSHAFT ENGINES OPERATING MODES 
CLASSIFYING TASK AT FLIGHT CONDITIONS 
According to [15], the helicopter TE dynamic behaviour is 
described by a system of equations in the state space: 

�̇�(𝑡) = 𝐹൫𝑋(𝑡), 𝑈(𝑡), 𝑉(𝑡), 𝐴(𝑡)൯, (1) 

𝑌(𝑡) = 𝐺൫𝑋(𝑡), 𝑈(𝑡), 𝑉(𝑡)൯, (2) 

where, according to [15, 30], X(t) is the engine state variables 
vector; U(t) is the control actions vector; V(t) is the disturbing 
external influences vector; Y(t) is the observed (initial) 
coordinates vector; F and G are the nonlinear vector functions. 
Then the main reasons for changes in engine states can be 
considered as changes in the vectors U(t) and V(t), the 
helicopter TE parameters A(t), as well as changes in operators 
F and G during its operation. 

These equations correspond to an oriented graph displaying 
the changing helicopter TE modes stages (Fig. 1), where H1 is 
the steady-state modes class for which U(t) = const, 
A(t) = const, F(t) = const; H2 is the regimes class accompanied 
by a parameters linear trend, for which U(t) = const, A(t) = var, 
F(t) = var; H3 is the transient operating modes class (states), for 
which U(t) = var, A(t) = const, F(t) = const; H4 is the 
unspecified operating modes class (acceleration, throttling), for 
which U(t) = var, A(t) = var, F(t) = var [15, 30]. 

H1 H2 H3

H4

 

Figure 1. Helicopter turboshaft engines change classes state 
process model [15, 30]. 

The variables in (1)–(2) represent a time series formed by 
data sets based on the measuring results of the helicopter TE 
thermogas-dynamic parameters y1(t), y2(t), …, yN(t) at a certain 
observation interval 𝑡 ∈ [𝑡ଵ, 𝑡ଶ], similar to [15, 30], allows us 
to identify its characteristic sections corresponding to certain 
classes S1, S2, …, Sk of helicopter TE states ⋃ 𝑆ఈ


ఈୀଵ = 𝑆, 

where S0 is the possible modes class (serviceable states). 
The procedure for solving this task using a neural network 

is shown in Fig. 2, where F(t) is the neural network desired 
initial reactions vector: 𝐹(𝑡) = {𝐹ଵ(𝑡), 𝐹ଶ(𝑡), … , 𝐹ெ(𝑡)}, ξ1...ξM 
are the neural network outputs; ε1(t)…εM(t) are the error vector 
values at the neural network output. 

y1(t)

y2(t)

yN(t)

Neural 
network

ξ1

ξM

ε1(t)

εM(t)

F1(t)

Fk(t)

 

Figure 2. Helicopter turboshaft engines operating modes 
neural network classifier universal diagram [15, 30]. 

According to [15, 30], neural network training comes down 
to the fact that the input is time series y1(t), …, yN(t) “segments” 

at a certain observation interval 𝑡 ∈ [𝑡, 𝑡ାଵ], belonging to the 
engine Sα, (α = 1, 2, …, k) previously known classes (modes 
work). According to each case, the neural network generates 
the desired responses in the recognized class number α binary 
representation form. For example, code (0,0) at the neural 
network corresponds output to the helicopter TE steady-state 
modes class, code (0,1) to the transient modes class, and code 
(1,0) to the unestablished modes class, etc. In this case, 
depending on the helicopter TE parameters, when receiving the 
code (0,0) at the output, the helicopter TE steady-state modes 
corresponding class, the modes one is determined: nominal, 
first cruising, second cruising, emergency, idle mode. The 
minimum error ε corresponds to a trained neural network that 
solves the helicopter TE recognizing (classifying) operating 
modes task. 

In this case, based on the described modes classification 
(H1, H2, H3, H4) and the output codes of the neural network (for 
example, (0, 0) for steady-state modes, (0, 1) for transient 
modes, etc.), it is possible to determine, which operating modes 
have the greatest impact on the helicopter TE components 
wear. 

To do this, it is necessary to assess how each operating 
mode affects the helicopter TE main components' wear. This 
can be done based on historical operational data or 
experimental data. For example, steady-state mode (H1) 
corresponds to minimal wear, modes with a linear trend (H2) 
correspond to moderate wear, transient modes (H3) correspond 
to significant wear due to changes in parameters, and 
unspecified modes (H4) correspond to maximum wear due to 
frequent changes in parameters. For the modes of each class, 
wear coefficients KH1 KH2, KH3, and KH4 are introduced, which 
will characterize the wear degree in each mode. Then the 
accumulated wear model is represented as the time spent on 
products sum in each mode and the corresponding wear 
coefficients: 

W = KH1 · TH1 + KH2 · TH2 + KH3 · TH3 + KH4 · TH4, (3) 

where W is the general wear, TH1 TH2, TH3, TH4 are the time spent 
in modes H1, H2, H3 and H4 respectively. 

To generate accurate class numbers binary representations 
for the steady-state prompt and reliable recognition, transient 
and unestablished modes, as well as determining specific 
modes within steady-state ones, such as nominal or cruising 
modes, which minimizes classification error and improves 
engine condition diagnostics and monitoring, it is proposed to 
develop the neural network training analytical system consists 
based on the time series “segments” corresponding to the 
helicopter TE operating modes various classes. 

B.  THE HELICOPTER TURBOSHAFT ENGINES 
OPERATING MODES CLASSIFYING TASK AT FLIGHT 
CONDITIONS ANALYTICAL SYSTEM DEVELOPMENT 
The proposed analytical system for the helicopter TE 
classifying operating modes (Fig. 3, 4) is an integrated 
approach, including the neural networks [31, 32] and advanced 
data analysis methods [33–35] use. The system is based on a 
mathematical model (1)–(2), which allows for the helicopter 
TE's various operating modes' accurate identification and 
classification without the need to modify the neural network 
itself. The system integrates dynamic data processing and 
optimization algorithms to improve classification accuracy and 
reliability. This provides the ability to quickly monitor and 
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diagnose engine conditions in real-time, which is critical to 
ensuring the helicopter operations’ safety and efficiency. 
 

Data 
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y2(t)

y3(t)

y4(t)

y1(t)...yN(t)

H1

H2

H3

H4

 

Figure 3. Proposed analytical system for the helicopter 
turboshaft engines classifying operating modes (proposed 

structural scheme) (author’s research). 

 

Figure 4. Proposed analytical system for the helicopter 
turboshaft engines classifying operating modes (proposed 

experimental equipment) (author’s research). 

The data acquisition module reads and preprocesses the 
parameters y1(t), y2(t), …, yN(t) time series over the observation 
interval t ∈ [t1, t2]. In this module, measured data yi(t) for each 
i-th parameter (i = 1, 2, ..., N) are collected from sensors 
installed on helicopter gas turbine engines. It is noted that the 
gas-generator rotor r.p.m. nTC(t) is recorded on board the 
helicopter using the D-2M sensor, the free turbine rotor speed 
nFT(t) is recorded using the D-1M sensor, the gas temperature 
in front of the compressor turbine 𝑇∗(t) – using a sensor 
consisting of 14 T-101 thermocouples [36]. Time series are 
represented as discrete values: 

𝑦 = 𝑦(𝑡ଵ), 𝑦(𝑡ଶ), … , 𝑦(𝑡), (4) 

where t1, t2, …, tn are time points in the observation interval. 
For each time series, filtering is applied using the moving 

average method, which allows you to smooth out short-term 
fluctuations and highlight a more stable trend, improving the 
subsequent analysis and classification accuracy: 

𝑦ො(𝑡) =
1

2 ∙ 𝑘 + 1
∙  𝑦(𝑡 + 𝑗)



ୀି

, (5) 

where k is the filter window size. 
To ensure comparability, the parameter values are 

normalized as: 

𝑦
(𝑡) =

𝑦(𝑡) − 𝜇

𝜎

, (6) 

where μi and σi are the parameter yi(t) mean and standard 
deviation, respectively. 

In this case, the detection and elimination of the anomalous 
value that may distort the analysis is performed according to 
the conditions: 

𝐼𝑓 |𝑦(𝑡) − 𝜇| > 𝜆 ∙ 𝜎 , 𝑡ℎ𝑒𝑛 𝑦(𝑡) = 𝜇 , (7) 

where λ is the threshold coefficient for determining anomalies. 
It is noted that the time series decomposition into 

components is an important stage of analysis, which allows one 
to identify trends and cyclical components, improving 
interpretability and identifying hidden patterns in the data. In 
this case, it is advisable to use the expression: 

yi(t) = Ti(t) + Si(t) + ϵi(t), (8) 

where Ti(t) is the trend, Si(t) is the seasonal component, ϵi(t) is 
the random error. The seasonal component in the helicopter TE 
operating modes classification context represents regular and 
repeated changes in thermogas-dynamic parameters that 
indicate cyclic engine operating modes associated with 
repeated operating conditions or standard operating procedures 
[37]. 

The training sample formation is carried out by dividing 
time series into training samples corresponding to known 
engine operating modes. In this case, the following expression 
is valid: 

𝑿 = {𝑦(𝑡), 𝑆}௧∈[௧భ,௧మ], (9) 

where Si is the operating mode class label for time interval t. 
The time series analysis module performs complex data 

processing aimed at identifying key characteristics and areas in 
which helicopter TE reflects various operating modes. 

The helicopter TE time series parameters segmentation into 
sections corresponding to the operation of different classes is 
carried out using threshold values or algorithms that take into 
account dynamic changes in engine parameters. 

At a steady state (H1), the engine parameters remain stable 
within values certain range. In this case, a criterion for the 
parameter values stability is applied in the form: 

𝑖𝑓 𝑚𝑎𝑥൫𝑦(𝑡)൯ − 𝑚𝑖𝑛൫𝑦(𝑡)൯ <∈ுଵ, 𝑡ℎ𝑒𝑛 𝑐𝑙𝑎𝑠𝑠 𝐻ଵ, (10) 

where ϵH1 is the threshold for determining stability. 
During transient states (H3), engine parameters change 

dynamically, which may indicate a transition between different 
operating modes. One of the criteria for determining transition 
states is the change in the parameter rate change: 

if
𝑑𝑦(𝑡)

𝑑𝑡
>∈ுଷ, then class 𝐻ଷ, (11) 

where ϵH3 is the threshold for determining a transition state. 
In unspecified modes (H4), engine parameters change 

significantly and do not have stability or transition obvious 
signs. Unspecified modes are determined by the parameter’s 
variability: 
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if var൫𝑦(𝑡)൯ >∈ுସ, then class 𝐻ସ, (12) 

where ϵH4 is the threshold for determining high variability. 
The helicopter TE parameters time series characteristic 

features identification is realized using data analysis methods 
[33–35]. The parameter yi(t) oscillations amplitude is defined 
as the difference between the maximum and minimum values 
over a certain time interval: 

Amplitude൫𝑦(𝑡)൯ = max൫𝑦(𝑡)൯ − min൫𝑦(𝑡)൯. (13) 

To estimate the parameter yi(t) oscillation frequency, 
spectral analysis or methods for identifying the main 
frequencies are used: 

Frequency൫𝑦(𝑡)൯ = arg max


หℱ൫𝑦(𝑡)൯ห
ଶ

, (14) 

where ℱ൫𝑦(𝑡)൯ is the parameter yi(t) Fourier transform. 
The parameter yi(t) autocorrelation function ρy(k) at a given 

lag k can be used to assess the current value dependence degree 
on previous values: 

𝜌௬(𝑘) =
𝐸ൣ൫𝑦(𝑡) − 𝜇௬

൯ ∙ ൫𝑦(𝑡 − 𝑘) − 𝜇௬
൯൧

𝜎௬
ଶ

, (15) 

where 𝜇௬
 is the average parameter yi(t) value, 𝜎௬

ଶ  is the 
parameter yi(t) standard deviation. 

Cluster analysis is used to time series group regions that 
exhibit similar behavioural and dynamic characteristics [38, 
39]. In this case, to assess the similarity between time series 
yi(t) and yj(t) two sections, the Euclidean distance is used: 

𝐷 = ඩ  ቀ𝑦(𝑡) − 𝑦(𝑡)ቁ

௧మ

௧ୀ௧భ

ଶ

, (16) 

where t1 and t2 are the time interval boundaries on which the 
analysis is performed. 

To assess the linear dependence degree between time series 
yi(t) and yj(t) two sections, the Pearson correlation coefficient 
was applied. This coefficient allows you to numerically express 
how closely and uniquely one time series changes with another 
over a given time interval [t1, t2]. The Pearson correlation 
coefficient is defined as: 

𝜌 =
∑ (𝑦(𝑡) − 𝑦ത) ∙ ൫𝑦(𝑡) − 𝑦ത൯

௧మ
௧ୀ௧భ

ට∑ (𝑦(𝑡) − 𝑦ത)
௧మ
௧ୀ௧భ

ଶ
∙ ට∑ ൫𝑦(𝑡) − 𝑦ത൯

௧మ
௧ୀ௧భ

ଶ
, (17) 

where 𝑦ത and 𝑦ത are the time series sections yi(t) and yj(t) 
average values. 

To calculate each point to the centroid’s proximity, 
consisting metric Euclidean distance and Pearson correlation 
coefficient combination is proposed. Let x = (x1, x2, …, xn) be 
the point x attributes, c = (c1, c2, …, cn) be the centroid 
attributes. Then the combined metric is defined as the 
Euclidean distance and the Pearson correlation coefficient 
weighted sum according to the expression: 

Comb. metric(𝑥, 𝑐) = 𝜔 ∙ 𝐷(௫,) + (1 − 𝜔) ∙ 𝜌(௫,), (18) 

where 0 ≤ ω ≤ 1 is the weighting factor that determines the 
Euclidean distance compared to the Pearson correlation 
coefficient importance. 

The proposed combined metric allows one to take into 
account both the spatial distance between points and centroids 
and their temporal correlation characteristics when performing 
the helicopter TE parameters time series cluster analysis. 

Consequence. When ω = 1, the combined metric (17) 
minimizing is equivalent to minimizing the Euclidean distance 
between point x and centroid c. This means that clustering 
based on the combined metric with minimizing = 1 is 
equivalent to clustering based solely on the points by Euclidean 
distance spatial separation. 

The time series classification module using a pre-trained 
neural network is a method based on transferring knowledge 
obtained from a pre-trained model to automatically classify 
sections of a time series into predefined classes S1, S2, ..., Sk. It 
is basis is a neural network classifier capable of efficiently 
processing temporary data and identifying their characteristics 
in the context of the classification task. 

C.  DEVELOPMENT OF HELICOPTER TURBOSHAFT 
ENGINES OPERATING MODES AT FLIGHT CONDITIONS 
NEURAL NETWORK CLASSIFIER 

The main thermogas-dynamic parameters recorded on 
board the helicopter are: the gas-generator rotor r.p.m. nTC, the 
gas temperature in front of the compressor turbine 𝑇∗, the free 
turbine rotor speed nFT. For three input parameters (nTC, 𝑇∗, 
nFT), based on [40, 41], the neural network classifier has the 
form shown in Fig. 5, where ∆ is the time delay (Δt = 1 second).  

According to Fig. 3, 4, the neural network must have 2×L 
inputs L for each of the parameters: nTC, 𝑇∗, nFT. The specified 
L parameters are the measured parameters nTC, 𝑇∗, nFT, as well 
as delayed values. The outputs of the neural network are signals 
ξ1 and ξ2. For a trained network, the outputs should take the 
values F1 and F2 (Table 1). 

Table 1. Neural network classifier output values (author’s 
research, based on [15, 30]) 

Recognized modes Neural network output signals 
F1 F2 

Steady-state class 0 0 
Unspecified mode class 1 0 

Transient class 0 1 

nTK(t)

nTK(t – Δt)

nTK(t – LΔt + Δt)

ξ1

ξ2

Neural 
netwok

...

TG(t)

TG(t – Δt)

TG(t – LΔt + Δt)
...

*

*

*

nFT(t)

nFT(t – Δt)

nFT(t – LΔt + Δt)
...

 

Figure 5. Proposed neural network classifier generalized 
architecture (author’s research, based on [15, 30]). 

To implement the generalized architecture of the proposed 
neural network classifier (Fig. 5), the work proposes the use of 
a neural network of such an architecture (Fig. 6): 

1. An input layer consisting of three neurons corresponding 
to the parameters nTC, 𝑇∗, nFT, supplemented with 
corresponding delay lines. 

2. In the first hidden layer, which is a fully connected layer 
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with 64 neurons, the activation function is Smooth ReLU of the 
form [36]: 

𝑓(𝑥) = ൝
𝑥,                 if 𝑥 > 0,

1

1 + 𝑒ିఊ∙௫
, if 𝑥 ≤ 0,

 (19) 

where γ is a parameter that determines the “degree of 
smoothness” of the function. For x > 0, Smooth ReLU is a 
traditional ReLU [42]. For x ≤ 0, Smooth ReLU uses a sigmoid 
function to smoothly transition from 0 to negative values. The 
proposed neural activation function Smooth ReLU retains the 
ReLU advantages (no gradient for positive values), avoids 
sharp gradient “steps” and adds smoothness for negative 
values, which speeds up neural network training [36]. 

The novel activation function, Smooth ReLU, which is a 
derivative of the ReLU function, represents a proprietary 
advancement. This ReLU modification aims to create a 
smoother and more continuous activation function to enhance 
the convergence process and training stability. The proposed 
adjustment markedly improves neural network performance, 
particularly in deep learning tasks where stability and 
convergence speed are crucial, as validated by the experimental 
results presented in [36]. 

3. The second hidden layer, which is a fully connected layer 
with 32 neurons, activation function – Smooth ReLU (18). 

4. The output layer is a fully connected layer with two 
neurons and a Softmax activation function to obtain the 
probability distribution of the three possible output 
combinations (0,0), (1,0) and (0,1). 

The proposed neural network classifier architecture 
accounts for time dependencies in the input data sequence with 
delays. Three input features are processed to reveal hidden 
temporal patterns. Hidden layers with Smooth ReLU activation 
introduce nonlinearity, capturing complex dependencies. An 
output layer with Softmax activation and two neurons classify 
the data into three mutually exclusive categories: (0, 0), (1, 0), 
and (0, 1). This approach balances generalization and accuracy 
in classifying helicopter TE operating modes. 
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Figure 6. Helicopter turboshaft engines operating modes at 
flight conditions neural network classifier proposed 

architecture (author’s research). 

D.  DEVELOPMENT OF AN ALGORITHM FOR TRAINING A 
NEURAL NETWORK CLASSIFIER OF HELICOPTER 
TURBOSHAFT ENGINES OPERATING MODES AT FLIGHT 
CONDITIONS 

At the data preparation stage, the training sample ൛𝑥(), 𝑦()ൟ
ୀଵ


, 

where 𝐗 = ൫𝑛்
()

, 𝑇∗()
, 𝑛ி்

()
൯ is the helicopter TE thermogas-

dynamic parameters nTC, 𝑇∗, nFT values vector, y(i) is the target 
class for the i-th value nTC, 𝑇∗, nFT, is specified. Helicopters TE 
thermogas-dynamic parameters nTC, 𝑇∗, nFT values 
normalization is carried out according to the expression (5). 

The training sample data in the time sequences form taking 
into account delays is organized in the form of time sequences 
taking into account delays through the “time-delay embedding” 
method use. After applying the delay line, the input vector X is 
converted to X' as: 

𝐗ᇱ = ൫𝑥
(ଵ) (𝑡), 𝑥

(ଵ) (𝑡 − 1), … 𝑥
(ଵ) (𝑡 − 𝜏), 

𝑥
(ଶ) (𝑡), 𝑥

(ଶ) (𝑡 − 1), … 𝑥
(ଶ) (𝑡 − 𝜏), 

𝑥
(ଷ) (𝑡), 𝑥

(ଷ) (𝑡 − 1), … 𝑥
(ଷ) (𝑡 − 𝜏)ቁ, 

(20) 

where X is a vector representing the time sequence of 
helicopters TE thermogas-dynamic parameters nTC, 𝑇∗, nFT at 
time t, τ is the time delay (lag), and m is the dimension or 
number of delays taken into account in the analysis. The delay 
line applying result is a vector X' with dimension 3 × (τ + 1). 

The proposed training algorithm innovation is the proposal 
to introduce an attention mechanism based on time sequences. 
This approach allows the neural network to focus on the most 
significant time steps when classifying helicopter TE operating 
modes, improving the model's accuracy and interpretability. 
The attention mechanism allows the model to highlight the 
most important points in time in data sequences. This is 
especially useful for processing time series, where not all time 
points are equally relevant to the decision. An attention module 
is added between the input vector X' and the first hidden layer. 
The attention module will calculate weighting coefficients for 
each time point, determining its importance for the current task, 
that is: 

𝑒௧ = tanh(𝑊ఢ ∙ 𝑥௧ + 𝑏ఢ), (21) 

𝑎௧ =
exp(𝑒௧)

∑ exp(𝑒௧)ఛାଵ
ୀଵ

, (22) 

where Wϵ is the weight matrix, be is the displacement vector, et 
is the intermediate scoring for time point t, and at is the 
attention weighting coefficient for point t. 

The context vector is calculated as follows: 

𝑐 =  𝑎௧ ∙ 𝑥௧

ఛ

௧ୀ

. (23) 

The context vector c is the input sequence time points 
weighted summation obtained using the attention mechanism. 
This vector c is fed to the neural network's first hidden layer 
input, replacing the original vector X', allowing the network to 
focus on the most significant time steps during training. 

Then the first hidden layer output with 64 neurons is given 
by: 

𝐡ଵ = Smooth ReLU(𝐖ଵ ∙ 𝐜 + 𝐛ଵ). (24) 

where W1 is a weight matrix of size 64 × (3 × (τ + 1)), b1 is a 
displacement vector of length 64. 

The second hidden layer output with 32 neurons is given 
by: 

𝐡ଶ = Smooth ReLU(𝐖ଶ ∙ 𝐡ଵ + 𝐛ଶ). (25) 
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where W2 is a weight matrix of size 32 × 64, and b2 is a 
displacement vector of length 32. 

For an output layer with 2 neurons and Softmax activation, 
the following expressions are valid: 

𝐨 = 𝐖ଷ ∙ 𝐡ଶ + 𝐛ଷ, (26) 

𝐲ො = Softmax(𝐨), (27) 

where W3 is a weight matrix of size 2 × 32, b3 is a displacement 
vector of length 2, 𝐲ො is the predicted probabilities vector for 
each class. 

For the helicopter TE operating modes classifying task 
using Softmax activation, it is advisable to apply the cross-
entropy function, since it effectively measures the difference 
between the classes' true distribution and the model-predicted 
probability distribution: 

𝐿(𝐲, 𝐲ො) = −  𝑦 ∙ log(𝑦ො)

ଶ

ୀଵ

, (28) 

where y is the true class label, 𝐲ො is the predicted class 
probability. 

In this case, Adam's algorithm is used to minimize the loss 
function [43]. For each layer l, the weights are updated 
according to the following expressions: 

𝐦௧
𝐖 = 𝛽ଵ ∙ 𝐦௧ିଵ

𝐖 + (1 − 𝛽ଵ) ∙
𝜕𝐿

𝜕𝐖

, 

𝐦௧
𝐛 = 𝛽ଵ ∙ 𝐦௧ିଵ

𝐛 + (1 − 𝛽ଵ) ∙
𝜕𝐿

𝜕𝐛

, 

(29) 

𝐯௧
𝐖 = 𝛽ଶ ∙ 𝐯௧ିଵ

𝐖 + (1 − 𝛽ଶ) ∙ ൬
𝜕𝐿

𝜕𝐖

൰
ଶ

, 

𝐯௧
𝐛 = 𝛽ଶ ∙ 𝐯௧ିଵ

𝐛 + (1 − 𝛽ଶ) ∙ ൬
𝜕𝐿

𝜕𝐛

൰
ଶ

, 

(30) 

𝐦ෝ ௧
𝐖 =

𝐦௧
𝐖

1 − 𝛽ଵ


, 𝐦ෝ ௧
𝐛 =

𝐦௧
𝐛

1 − 𝛽ଵ

, (31) 

𝐯ො௧
𝐖 =

𝐯௧
𝐖

1 − 𝛽ଶ


, 𝐯ො௧
𝐛 =

𝐯௧
𝐛

1 − 𝛽ଶ

, (32) 

𝐖 = 𝐖 − 𝛼௧ ∙
𝐦ෝ ௧

𝐖

ට𝐯ො௧
𝐖 + 𝜖

, 𝐛 = 𝐛 − 𝛼௧ ∙
𝐦ෝ ௧

𝐛

ට 𝐯ො௧
𝐛 + 𝜖

, (33) 

where β1 and β2 are the Adam algorithm parameters (in this 
work we assume β1 = 0.9 and β2 = 0.999 according to [44]), ϵ 
is a small number added for numerical stability (in this work 

we assume ϵ = 10−8), 
డ

డ𝐖
 and 

డ

డ𝐛
 are the gradients of the loss 

function L for the weights Wl and biases bl, respectively, αt is 
the adaptive training rate at iteration t, which for the Adam 
algorithm is defined as: 

𝛼௧ = 𝜂 ∙
ඥ1 − 𝛽ଶ



1 − 𝛽ଵ


, (34) 

where η is the initial training rate. 
Thus, the neural network training algorithm as helicopter 

TE operating modes neural network classifier is defined as: 
1. The weights and biases initialization with random values. 
2. Forward propagation is the input data passing through 

the model, computing each layer outputs until the predicted 
probabilities 𝐲ො are obtained. 

3. Calculate the loss using the loss function to calculate the 
difference between the predicted and true values. 

4. Backpropagation is calculating the loss function 
gradients for the weights and each layer biases. 

5. Parameter update – update weights and biases using the 
gradient descent algorithm. 

6. Repeating steps 2–5 to achieve convergence based on 
reducing the loss function on the validation data set. 

The training algorithm for the helicopter TE operating 
modes neural network classifier has several key advantages: 
random initialization of weights and biases reduces the local 
minimal risk; forward propagation efficiently computes 
outputs for accurate probability prediction; the loss function 
quantifies the difference between predicted and actual values; 
backpropagation precisely calculates gradients to optimize 
layer parameters; gradient descent systematically updates 
weights and biases for steady convergence; and the iterative 
process continuously refines the model, enhancing its 
generalization and classification accuracy based on validation 
data. 

III. CASE STUDY 
A.  RESULTS OF DETERMINING AND PRE-PROCESSING 
THE TRAINING SAMPLE 
The algorithm for solving the task of helicopter TE operating 
modes classifying was researched using the example of data 
recorded on board the Mi-8MTV helicopter for the TV3-117 
TE [45–48] (Fig. 7) during a six-minute flight interval of a 
helicopter with a twin-engine power plant. Recognition modes 
of engine operation are steady-state operating modes (nominal, 
first cruising, second cruising, emergency, idle mode) [30]. 

 

Figure 7. Diagram of the dependence of neural network 
classifier training error on the width of the hour window 

(author’s research, published in [30]). 

The main feature by which time series “reference” sections 
are identified when constructing a neural network training 
sample is the engine control knob position. In what follows, 
from the thermogas-dynamic parameters general group shown 
on the digitized oscillogram obtained at the Mi-8MTV 
helicopter flight operation mode, only those that relate to the 

first engine (N = 1) are considered: 𝑛்
(ଵ) is the gas-generator 
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rotor r.p.m. (curve 1), 𝑛ி்
(ଵ) is the free turbine rotor speed (curve 

3); 𝑇∗(ଵ) is the gas temperature in front of the compressor 
turbine (curve 5). These data, together with the time coordinate 

t (min), form the input vector 𝐗 = ൫𝑛்
(ଵ)()

, 𝑇∗(ଵ)()
, 𝑛ி்

(ଵ)()
൯, 

where t ∈ [7.268; 13.374]. While working with the oscillogram 
(Fig. 6), a training interval corresponding to two minutes was 
identified, within which the following modes exist: 
acceleration – t1 = 7.268 min; t2 = 7.318 min; stable (0.8 
nominal) – t2 = 7.318 min; t3 = 8.268 min; throttling – t3 = 8.268 
min; t4 = 8.308 min. The data was taken every second, so the 
training set contained 256 time samples. At the same time, the 
acceleration and throttling modes accounted for only five 
counts each. The total observation interval was 4 minutes 16 
seconds (256 time counts). For high-quality classification, the 
width of the time window must be at least five samples to 
recognize operating modes classes [49]. According to the 

vector 𝐗 = ൫𝑛்
(ଵ)()

, 𝑇∗(ଵ)()
, 𝑛ி்

(ଵ)()
൯, in Table 2 presented a 

neural network training sample fragment. 

Table 2. Training sample fragment (author’s research). 

Number Parameter value 
nTC 𝑻𝑮

∗  nFT 
1 0.983 0.924 0.979 
2 0.985 0.931 0.980 

… … … … 
48 0.973 0.912 0.966 
… … … … 
93 0.975 0.914 0.979 
… … … … 

151 0.978 0.921 0.973 
… … … … 

202 0.964 0.887 0.958 
… … … … 

256 0.953 0.877 0.949 

At the input data preparing stage (training sample 
preliminary analysis), the training sample homogeneity is 
assessed according to the Fisher-Pearson criterion [50]: 

𝜒ଶ = ට𝜒ଵ
ଶ + 𝜒ଶ

ଶ, (35) 

where 𝜒ଵ = ට
ே


∙ 𝑆𝑘, 𝜒ଶ = ට

ே

ଶସ
∙ 𝐾 are the test statistic values, 

where 𝑆𝑘 =
ே

(ேିଵ)∙(ேିଶ)
∙ ∑ 𝑁 ∙ ቀ

௫ି௫̅

௦
ቁ

ଷ

ୀଵ  is the sample 

skewness coefficient, 𝐾 =
ே

(ேିଵ)∙(ேିଶ)∙(ேିଷ)
∙ ∑ 𝑁 ∙ୀଵ

ቀ
௫ି௫̅

௦
ቁ

ସ

−
ଷ∙(ேିଵ)మ

(ேିଶ)∙(ேିଷ)
 is the sample kurtosis, 𝑠 =

ට
ଵ

ேିଵ
∙ ∑ 𝑁 ∙ (𝑥 − �̅�)ଶ

ୀଵ  is the sample standard deviation, 

�̅� =
ଵ

ேିଵ
∙ ∑ 𝑁 ∙ 𝑥ୀଵ  is the sample mean. 

Moreover, to determine the Fisher-Pearson test critical 
value, the significance level α = 0.01 was adopted in the work, 
which means that the type I error probability (the null 
hypothesis rejection when it is true) is 1 %. Thus, only 1 % of 
the time will we falsely reject the null hypothesis, which sets a 
rigour high level when testing the data homogeneity 
hypothesis. 

In this case, the freedom degrees number for calculating the 
Fisher-Pearson test (also known as the Pearson goodness-of-fit 
test) is defined as df = k – 1 – m, where k is the categories or 
intervals number in the sample, m is the parameters’ number to 
be estimated 

Thus, the obtained value χ2 = 3.588 is less than the critical 
value is 𝜒௧

ଶ  = 22.362, which confirms the samples’ 
homogeneity and the normal distribution hypothesis. 

Also, at the input data preparing stage (training sample 
preliminary analysis), the training sample homogeneity is 
confirmed according to the Fisher-Snedecor criterion [51]. To 
do this, a training sample of size N = 256 elements is randomly 

divided into two subsamples of size 𝑛ଵ = 𝑛ଶ =
ே

ଶ
= 128 

elements each. In this case, the null hypothesis H0 means the 
two subsamples’ variances (𝜎ଵ

ଶ = 𝜎ଶ
ଶ) equality and the 

alternative H1 means the two subsamples’ variances (𝜎ଵ
ଶ ≠ 𝜎ଶ

ଶ) 
inequality. Then the Fisher-Snedecor criterion is calculated as: 

𝐹 =
𝑠ଵ

ଶ

𝑠ଶ
ଶ, (36) 

where 𝑠ଵ
ଶ =

ଵ

ேభିଵ
∙ ∑ (𝑥 − �̅�)ଶேభ

ୀଵ  and 𝑠ଶ
ଶ =

ଵ

ேమିଵ
∙ ∑ ൫𝑥 −

ேమ
ୀଵ

�̅�൯
ଶ
 are the two-sample variance. 
The obtained F value is compared with the critical value 

Fcritical at a given significance level α = 0.01 and freedom 
degrees df1 = N1 – 1, df2 = N2 – 1. If F > Fcritical, then the null 
hypothesis is rejected, and the samples are considered 
heterogeneous in variance. 

The resulting value is F = 1.28 is less than the critical value 
is Fcritical = 3.44, which also confirms the samples’ homogeneity 
and the normal distribution hypothesis. 

The training and test samples’ representativeness was 
evaluated through cluster analysis, which identified eight 
classes (Fig. 8a). Following randomization, the training and test 
samples were created in a 2:1 ratio (67 % and 33 %, 
respectively). Both samples' cluster analysis also revealed eight 
classes (Fig. 8b), with similar distances between clusters, 
confirming the samples' representativeness [38, 39].  

 
(a) 

 
(b) 

Figure 8. Cluster analysis results: (a) Training sample; (b) 
Test sample (author’s research, published in [30]). 
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The helicopter TE thermogas-dynamic parameters optimal 
sample size determination results enabled: the training sample 
consists is 256 elements (100 %), the validation (control) 
sample comprises 172 elements (67 % of the training sample), 
and the test sample includes 84 elements (33 % of the training 
sample). In this case, for cluster analysis, a combined metric 
(17) was used, and the weighting coefficient was chosen to be 
ω = 0.05. This combined metric weight means that 95 % is 
metric distance and 5 % is the Pearson correlation coefficient. 
When varying the weighting coefficient values, for example, ω 
= 0.10, ω = 0.15, ω = 0.20, the classes number (8 classes) 
remains unchanged, however, the metric distance varies from 
5.50 to 8.25 % and, at the same time, remains equal between 
classes. This indicates a selected weighting coefficient 
significant influence on the clusters’ structure and emphasizes 
the need for parameters careful selection to achieve optimal 
clustering results. 

When training the neural network classifier (Fig. 6), the 
window width was taken to be L = 12, which corresponds to 
3 × L = 36 neural network inputs. Fig. 9 analysis shows that 
when the helicopter TE operating modes classification 
(recognition) task solving, it is enough to take the time window 
width equal to 8...12. 

 

Figure 9. Diagram of the neural network classifier training 
error dependence on the hour window width (author’s 

research). 

B.  NEURAL NETWORK CLASSIFIER TRAINING RESULTS 
The data used to train the neural network consist of the 
helicopter's TE thermogas-dynamic characteristics, which are 
captured during the helicopter's flight: gas-generator rotor 
r.p.m. nTC, free turbine rotor speed nFT, gas temperature in front 
of the compressor turbine 𝑇∗ (Table 2). 

During the training of the neural network classifier with the 
proposed algorithm, the neural network accuracy (Fig. 10) loss 
(Fig. 11) dependences on the iterations number (200 iterations 
in total) were obtained. In the diagrams, the “blue curve” 
represents training on the training set, and the “orange curve” 
represents validation on the control set. 

 

Figure 10. Diagram of the accuracy function dynamics at the 
model training and validation stages (author’s research). 

 
(a) 

 
(b) 

Figure 11. Diagram of the loss function dynamics at the 
model training and validation stages (author’s research). 

Fig. 10 shows that the accuracy reaches 1, and Fig. 11 that 
the loss does not exceed 0.025. As can be seen from Fig. 10a, 
the neural network training error by the developed algorithm 
using the Smooth ReLU activation function developed in [36] 
reaches its minimum is 0.0003 at 200 training epochs, while 
after 200 training epochs, the error remains stable and does not 
change its value. A similar experiment was also carried out 
using the developed algorithm using the traditional ReLU 
activation function (Fig. 10b). As can be seen from Fig. 10b, to 
achieve a minimum training error of 0.0003, the neural network 
needed 420 training epochs, which is 2.10 times more than 
when using the Smooth ReLU activation function developed in 
[36]. As can be seen from Fig. 11, the neural network training 
convergence was achieved with 200 training epochs using the 
Smooth ReLU activation function developed in [36], and with 
420 training epochs using the traditional ReLU activation 
function. This indicates the training's high efficiency and the 
model's ability to generalize data with high accuracy, which 
makes it suitable for helicopter TE operating modes 
classifying. 

After the neural network classifier training (Fig. 6) on a test 
sample (33 % of the training sample), its effectiveness was 
tested on a control sample (67 % of the entire sample) in the 
helicopter TE operating modes classifying task at flight 
conditions. To recognize the helicopter TE operating modes, 
the neural network classifier selects samples from the 
observations' time series values corresponding to the steady-
state modes within the time window ∆𝑦(𝑡), by subtracting the 
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average value (moving average) over the entire interval t ∈ [t1; 
t2]. In steady state, ∆𝑦(𝑡) is equal to zero, and in other modes, 
it is different from zero, that is [15, 30]: 

∆𝑦(𝑡) = 𝑦 −
1

𝐿
∙  𝑦

ିଵ

ୀ

, (37) 

where L is the “window” width, while the time window optimal 
size in the experimental research process. 

Fig. 12 shows that the neural network classifier outputs 

reference values take the values 0 or 1, while the actual output 
signals (due to the time window moving process inertia) can 
take continuous values in the range [0; 1]. Therefore, according 
to [15, 30], the calculated values of ξ1 and ξ2 are rounded to the 
nearest integer using the following expression: 

𝜉̅ = ൜
0, if 𝜉 ≤ 0.5,
0, if 𝜉 > 0.5.

 (38) 

  
 

  
 

Figure 12. The TV3-117 TE operating ratings’ classification diagram (“blue curve” is the etalon; “orange curve” is the proposed 
neural network classifier): (a) 1st exit (nTC); (b) 2nd exit (𝑇∗); (c) 1st exit (nTC) taking into account errors; (d) 2nd exit (𝑇∗) taking 

into account errors (author’s research). 

Fig. 13 shows diagrams of the helicopter TE operating 
modes classification quality coefficient dependence on the 
training epochs number, obtained from the validation sample. 
In this case, the quality coefficient was determined as: 

𝐶௨௧௬ = ൬1 −
𝑇

𝑇

൰ ∙ 100%, (39) 

where Terror is the section total time corresponding to erroneous 
classification; T0 is the test sample duration (in our case T0 = 
1.6 seconds, see Fig. 12). 

As can be seen from Fig. 13, the quality coefficient for 
recognizing the helicopter TE operating modes lies in the range 
from 99.95 to 99.99 % with optimal 200 neural network 
training epochs. This indicates the model's high accuracy, 
which achieves near-perfect classification levels, 
demonstrating stable and efficient training under the given 
parameters. 

 
(a) 
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(b) 

Figure 13. Diagrams of the TV3-117 TE operating modes 
classification quality coefficient: (a) 1st exit (ξ1); (b) 2nd exit 

(ξ2) (author’s research). 

Also, as a control experiment part conducted on a validation 
sample, regression models presented in Fig. 1 were obtained 
(Fig. 14).  

 

(a) 

 

(b) 

Figure 14. Diagrams of the TV3-117 TE operating modes 
classification quality coefficient: (a) 1st exit (ξ1); (b) 2nd exit 

(ξ2) (author’s research). 

 
 
 

In this case, the determination coefficient was R2 = 0.989 
(for the first output) and R2 = 0.987 (for the second output). The 
results indicate that the model’s data variation explains 98.9 % 
and 98.7 %, respectively. This means that the models well 
describe the output parameters' dependence on input data and 
can be effectively used in the helicopter TE operating modes 
classification. 

The TV3-117 TE steady-state, unsteady and transient 
modes classification make it possible to reduce specific fuel 
consumption. To estimate the TV3-117 TE specific fuel 
consumption, a model was built in the Python programming 
language for 5 operating modes: nominal, first cruise mode, 
second cruise mode, emergency mode and idle mode. 

The 'specific_fuel_consumption’ function calculates the 
new fuel consumption based on the classification at flight 
operation mode and improvement factor in fuel efficiency. To 
train the model, a multilayer perceptron with two hidden layers 
was used. The data is split into training and testing sets, 
standardized, and then used to train a neural network model. 

As a result, the TV3-117 TE specific fuel consumption 
comparison was obtained for the original passport data and for 
the data obtained when using proposed neural network 
classifier (Fig. 7) in the helicopter TE operating modes 
classification task at flight operation mode.  

It is assumed that the neural network classifies operating 
modes based on time series yi(t), which represent data on 
engine parameters at a certain time t. In this case, the neural 
network generates a recognized class number binary 
representation: (0,0) is the steady state (for example, nominal, 
first cruising, second cruising, emergency, idle mode); (0,1) is 
the transition mode; (1,0) is the unsteady mode. 

Specific fuel consumption Ce is determined as the 
helicopter TE operating modes classification and other 
parameter’s function: 

𝐶 = 𝑓ఈ(ℎ𝑒𝑙𝑖𝑐𝑜𝑝𝑡𝑒𝑟 𝑇𝐸 𝑜𝑡ℎ𝑒𝑟 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠), (40) 

where fα is a function depending on the helicopter TE 
parameters specific to the operating mode α. The results are 
shown in Fig. 15. 

 

Figure 15. The TV3-117 turboshaft engine specific fuel 
consumption (author’s research). 

For each operating mode, you can use physical models [52–
55] or empirical dependencies [52–55] that take into account 
the helicopter TE parameters influence on fuel consumption. 
For example: 

1. In nominal mode, a model based on stable engine operation 
can be used. 

2. Cruise modes can take into account the fuel consumption 
optimization at various flight speeds and altitudes. 

3. In emergency idle modes, increased fuel consumption due 
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to changed gas turbine engine operating parameters can be 
taken into account. 

The TV3-117 TE specific fuel consumption (Fig. 15) for 
the original passport data and for the data obtained when using 
neural network in the helicopter TE operating modes 
classification task at flight operation mode is less by 
0.0055…0.0144 kg/EFPH. 

C.  NEURAL NETWORK CLASSIFIER VALIDATION 
RESULTS 
The obtained results validation was carried out using k-fold 
cross-validation, in which the obtained data (Fig. 11) is divided 
into k = 8 equal parts (folds). In k = 8 for each iteration, one 
part is used for testing, and the remaining k − 1 parts are used 
for training the model. The process is repeated k = 8 times and 
the results are averaged to obtain the final score. Partitioning 
the data into k = 8 folds is done as follows: 

D = {D1, D2, …, Dk}, (41) 

where D is the original dataset and Di is the i-th fold. 
For each i-th fold from 1 to k, the following is true: 

𝑇𝑟𝑎𝑖𝑛 =
𝐷

𝐷

, 

Testi = Di. 

(42) 

To assess the model quality on each fold, it is assumed that 
Accuracyi is the quality metric on the i-th fold. Then the 
average quality metric for all folds will be equal to: 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑀𝑒𝑡𝑟𝑖𝑐 =  
1

𝑘
∙  𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 .



ୀଵ

 (43) 

The obtained data (Fig. 11) validation results are shown in 
Table 3. 

Table 3. The obtained data validation results (author’s research). 

Fold number Metric Font size and style Font size and style Font size and style Font size and style 

1st exit (nTC) (Fig. 11a) 2nd exit (𝑻𝑮
∗ ) (Fig. 11b) 

1st exit (nTC) taking into 
account errors (Fig. 11c) 

2nd exit (𝑻𝑮
∗ ) taking into 

account errors (Fig. 11d) 
1 Accuracy1 0.982 0.985 0.992 0.983 
2 Accuracy2 0.962 0.972 0.983 0.985 
3 Accuracy3 0.973 0.980 0.987 0.994 
4 Accuracy4 0.984 0.985 0.991 0.990 
5 Accuracy5 0.991 0.993 0.972 0.977 
6 Accuracy6 0.990 0.991 0.974 0.978 
7 Accuracy7 0.982 0.983 0.988 0.989 
8 Accuracy8 0.984 0.986 0.980 0.985 
Average Metric 0.981 0.984 0.983 0.985 

As can be seen from Table 3, the Average Metric values for 
the obtained results were respectively: 0.981, 0.984, 0.983, 
0.985. This indicates the proposed model's accuracy high level 
in all four diagrams. These results demonstrate the model's 
reliability and stability in classifying the helicopter TE 
operating modes, showing minimal deviations between 
different folds and experiments. 

High Average Metric values indicate that the model has 
strong generalization ability, successfully recognizing engine 
operating modes on both training and test samples. Thus, the 
proposed k-fold cross-validation methodology confirms the 
model's efficiency and stability, making it suitable for use in 
helicopter TE real operating conditions. 

These results also highlight thorough validation process 
importance when developing machine learning algorithms for 
technical applications, ensuring the classification systems' 
accuracy and reliability. 

D.  THE RESULTS OBTAINED STABILITY ASSESSING 
To assess the neural network training stability, several 
indicators have been proposed. Some of the main ones are the 
gradient values, changes in the loss function and accuracy 
metrics on the training and validation samples [56–59]. 

To assess the gradients' stability, you can use their norms, 
for example, the L2 gradient norm, which is defined as: 

‖∇𝐿‖ଶ = ඩ ൬
𝜕𝐿

𝜕𝜃

൰
ଶ

ୀଵ

, (44) 

where ∇L is the loss function L gradient, and θi are the model 
parameters (weights and biases). 

Stable training assumes that the loss function L decreases 
during the training process. This can be estimated as the 
difference in the loss function values at two successive 
iterations: 

∆𝐿 = 𝐿௧ିଵ − 𝐿௧ , (45) 

where Lt is the loss function value at iteration t. 
For a more detailed analysis, it is proposed to use the 

change coefficient in the loss function, which is defined as: 

Loss change ratio =
|𝐿௧ିଵ − 𝐿௧|

𝐿௧ିଵ

. (46) 

To assess stability, it is also proposed to track changes in 
model accuracy on the training and validation sets: 

∆Accuracy = Accuracy௧ − Accuracy௧ିଵ, (47) 

where Accuracyt is the model accuracy at iteration t. 
To assess the training stability, it is also proposed to 

monitor metrics such as Accuracy or mean square error (MSE) 
on the validation set: 

∆Validation Metric = Metric௧ − Metric௧ିଵ. (48) 

Stable training also implies the absence of significant 
fluctuations in metrics, i.e.: 

𝜎(∆𝐿) ≈ 0, 𝜎(∆Accuracy) ≈ 0, (49) 

where σ is the changes in standard deviation in loss functions 
or metrics. 

According to the neural network training obtained results 
(Fig. 9, Fig. 10a), the initial data can be presented in Table 4. 
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Table 4. The initial data for the neural network stability 
assessing (author’s research) 

Epoch Training 
accuracy 

Validation 
Accuracy 

Loss 

1 0.950 0.940 0.025 
50 0.970 0.960 0.010 

100 0.985 0.980 0.005 
150 0.990 0.990 0.002 
200 0.995 0.995 0.0003 

Then, according to (38)–(43), we obtain: ∆L100–101 = 0.005 
– 0.0048 = 0.0002, ∆L150–151 = 0.002 – 0.0018 = 0.0002, Loss 

change ratio100–101 = 
.ଶ

.ହ
 = 0.04, Loss change ratio150–151 = 

.ଶ

.ଶ
 = 0.1, ∆Training Accuracy100–101 = 0.985 – 0.984 = 0.001, 

∆Training Accuracy150–151 = 0.990 – 0.989 = 0.001, 
∆Validation Accuracy100–101 = 0.980 – 0.979 = 0.001, 
∆Validation Accuracy150–151 = 0.990 – 0.989 = 0.001. 
According to the data obtained, it can be stated that losses 
decrease smoothly and gradually, without sudden jumps, which 
indicates a stable convergence of the model. At the same time, 
the accuracy of the training and validation samples grows 
steadily and reaches high values (0.995). Small changes in 
accuracy and loss function at each step indicate that training is 
proceeding without sudden changes, which also confirms 
stability. Thus, the neural network is trained steadily, with a 
smooth improvement in all key metrics. 

E.  RESULTS OF THE FIRST AND SECOND TYPES OF 
ERRORS’ CALCULATION AND ROC ANALYSIS 
According to [15, 30], the first and second error types [60, 61] 
may occur, i.e., the state Si to the class Sj assignment. Therefore, 
the work assessed the first and second types of errors in 
recognizing the helicopter TE operating modes. The first and 
second types of errors in the helicopter TE operating modes 
recognizing tasks are determined as follows. The first error type 
occurs when the neural network incorrectly classifies a steady-
state mode (code 0,0) when in fact it is a transient mode (code 

0,1), transient (code 1,0), or other incorrect mode. This results 
in erratic or abnormal engine operation being mistaken for 
normal, which can have serious consequences for safety and 
operation. The second type of error occurs when the neural 
network does not recognize the steady-state mode (code 0,0) 
and incorrectly classifies it as a transient, transient, or other 
incorrect mode (for example, codes 0,1 or 1,0). In this case, 
normal engine operation is incorrectly perceived as abnormal, 
which can lead to unnecessary adjustments or engine stalling. 
These errors can significantly affect the efficiency and safety 
of helicopter operations. The first and second types of errors 
are calculated as: 

𝛼 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
, 𝛽 =

𝐹𝑁

𝐹𝑁 + 𝑇𝑃
, (50) 

where TP (True Positive) is the steady-state mode (code 0,0) 
correct classifications number; TN (True Negative) is the 
unidentified modes (codes 0,1, 1,0 and others) correct 
classifications number; FP (False Positive) is the steady-state 
mode (code 0,0) incorrect classifications number the 
uninstalled one instead; FN (False Negative) is the unspecified 
mode incorrect classifications number the steady-state mode 
(code 0,0) instead.  

The first type error null hypothesis: “The neural network 
correctly classifies the helicopter TE operating modes as 
steady-state mode (code 0,0) when they are unsteady (code 0,1, 
1,0, or others)”. 

The second type error null hypothesis: “The neural network 
correctly classifies the helicopter TE operating modes steady-
state mode as unestablished or transient (codes 0,1, 1,0 or 
others) when they are steady (code 0,0)”. 

Table 5 shows the helicopter TE operating modes the first 
and second types recognizing task error calculations 
comparative analysis results using the proposed neural network 
classifier (Fig. 5) and the neural network classifier previously 
developed in [30] based on the ART-1 and BAM networks. 

 

Table 5. The first and second errors’ types calculations comparative analysis results (author’s research). 

Neural network classifier The helicopter TE operating modes recognizing error probability, % 
Steady-state mode  

(code 0,0) 
Transient mode  

(code 0,1) 
Unestablished mode  

(code 1,0) 
The first 

error type 
The second 
error type 

The first 
error type 

The second 
error type 

The first 
error type 

The second 
error type 

Proposed neural network classifier 0.65 0.34 0.66 0.36 0.68 0.39 
Neural network classifier based on the ART-1 and BAM 

networks [30] 
1.38 0.75 1.41 0.77 1.42 0.80 

As can be seen from Table 5, the first error type in 
recognizing the helicopter TE operating modes takes values in 
the range from 0.66 to 0.68 % when using the proposed neural 
network classifier (Fig. 5). At that time, the first type error takes 
values in the range from 1.38 to 1.42 % when using a neural 
network classifier based on the ART-1 and BAM networks 
[30]. Thus, the developed neural network classifier use (Fig. 5) 
reduces the first type error by 2.09…2.14 times compared with 
the neural network classifier based on the ART-1 and BAM 
networks [30] use. Similarly, the second type error in 
recognizing the helicopter TE takes values in the range from 
0.34 to 0.39 % when using the proposed neural network 
classifier (Fig. 5), and when using a neural network classifier 
based on the ART-1 and BAM networks [30] – in the range 
from 0.75 to 0.80 %. Thus, the developed neural network 

classifier (Fig. 5) use reduces the second type error by 
2.05…2.21 times compared with the neural network classifier 
based on the ART-1 and BAM networks [30] use. 

Based on the calculated first and second errors’ types, the 
helicopter TE operating modes recognition accuracy is 
determined as: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
, (51) 

and the decision-making accuracy to carry out a flight is as 
follows: 

𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑠
, (52) 

where “Correct decisions” is the situations set when the 
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decision made corresponds to the actual need for the flight (for 
example, the helicopter TE operating mode is correctly 
determined), and “Total decisions” is the sum of the correct and 
incorrect decisions. 

Table 6 shows the helicopter TE operating mode 
recognizing accuracy calculations comparative analysis results 
and the flight implementation decision-making accuracy when 
using both the developed neural network classifier (Fig. 5) and 
the neural network classifier based on the ART-1 and BAM 
networks [30]. 

Table 6. Accuracy calculations comparative analysis 
results (author’s research). 

Neural network classifier Accuracy Decision 
accuracy 

Proposed neural network classifier 0.997 0.973 
Neural network classifier based on the ART-

1 and BAM networks [30] 
0.985 0.935 

As shown in Table 6, the accuracy of recognizing helicopter 
TE operating modes using the developed neural network 
classifier (Fig. 5) is 0.997, which is 1.06 times higher than that 
achieved with a neural network classifier based on ART-1 and 
BAM networks [30]. Similarly, the flight decision-making 
accuracy with the developed classifier is 0.985, 1.05 times 
higher than with the ART-1 and BAM-based classifier [30]. 
Therefore, the developed neural network classifier (Fig. 5), 
used as a closed onboard helicopter TE automatic control 
system component [62], should effectively recognize 
helicopter TE operating modes under flight conditions. 

To assess the classification model quality, the work used 
ROC analysis with the ROC curve construction. The ROC 
curve is constructed based on the True Positive Rate (TPR) and 
False Positive Rate (FPR) values at different classifier 
thresholds [63–65].  

True Positive Rate (TPR) is defined as: 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
. (53) 

False Positive Rate (FPR) is defined as: 

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
. (54) 

The area under the AUC curve is calculated using numerical 
methods such as the trapezoidal method. The analytical 
expression for numerical integration by the trapezoidal method 
has the form: 

𝐴𝑈𝐶 = (𝐹𝑃𝑅ାଵ − 𝐹𝑃𝑅)

ିଵ

ୀଵ

∙
𝑇𝑃𝑅ାଵ + 𝑇𝑃𝑅

2
, (55) 

where n is the threshold’s number. Table 7 and Fig. 16 shows 
the ROC analysis results. 

Table 7. ROC analysis results (author’s research). 

Actual \ 
Predicted 

Proposed neural 
network classifier 

Neural network classifier 
based on the ART-1 and 

BAM networks [30] 
True Positives 98 2 
True Negatives 2 8 
False Positives 285 290 
False Negatives 35 98 

TPR 0.786 0.029 
FPR 0.018 0.032 
AUC 0.895 0.567 

 
(a) 

 
(b) 

Figure 16. The AUC-ROC curve: (a) Proposed neural 
network classifier; (b) Neural network classifier based on the 

ART-1 and BAM networks [30] (author's research). 

Thus, the proposed neural network classifier use gives high 
accuracy with false positive results at a low level; the neural 
network classifier based on the ART-1 and BAM networks [30] 
use gives moderate accuracy, with noticeable errors, and 1.58 
times lower than that proposed neural network classifier. 

IV. DISCUSSION 
This article represents a significant expansion and continuation 
of further research [30] in the development the helicopter TE 
operation modes classifying at flight operating conditions 
neural network methods and systems. Unlike [30], this article 
develops the helicopter TE operating modes classifying 
analytical system (Fig. 3, 4), which basis is a neural network 
classifier (Fig. 5). 

Unlike [30], this article proposes the feed-forward neural 
network with delay lines at its input with an innovative Smooth 
ReLU activation function use [36]. This architecture neural 
network use made it possible to reduce the first type error 
(cases when the system mistakenly identifies an engine 
operation normal error mode as a transient or unsteady mode) 
by 2.09...2.14 times and the second type error (cases when the 
system does not recognize and does not signal the transients 
that actually occurred or unsteady engine operating modes) 
2.05...2.21 times compared with a neural network classifier 
based on the ART-1 and BAM networks use [30] (Table 3). 
Even a slight reduction in the first and second types errors is 
critical for the helicopter TE operating modes classifying at 
real-time flight conditions, since this directly affects flight 
safety. Reducing the first type errors number prevents 
unnecessary interference in engine operation, which reduces 
the risk failures and extends the units life. Reducing the second 
type errors number ensures timely detection and potentially 
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dangerous operating modes elimination, which increases the 
helicopter control reliability and efficiency, minimizing the 
emergency situations likelihood. 

Based on the traditional backpropagation algorithm, the 
proposed neural network training algorithm has been 
developed, which distinguishing feature from the traditional 
one is the attention mechanism introduction based on time 
sequences in the input layer. This made it possible to converge 
the neural network training with 200 training epochs, and also 
to the loss function value reduce from 2.5 to 0.3 % (Fig. 10). 
At that time, the neural network classifier based on the ART-1 
and BAM networks [30] use made it possible to achieve the 
neural network convergence and the loss function value reduce 
from 2.5 to 0.3 % only with 1000 training epochs. The results 
obtained made it possible to increase the helicopter TE 
operating modes classification accuracy at flight operating 
conditions from 98.5 to 99.7 %, as well as to increase the 
decision-making on flight operations accuracy from 93.5 to 
97.3 % (Table 4). This means improvements in the neural 
network training speed and efficiency, leading to more reliable 

and responsive real-time helicopter classification and control. 
In addition, the helicopter TE operating modes classifying 

developed neural network analytical system use at flight 
operating conditions made it possible to determine the specific 
fuel consumption value according to the operating mode. 

The helicopter TE operating modes classifying developed 
neural network analytical system use at flight operating 
conditions potential disadvantages are high computational 
costs. Training and using a neural network with the attention 
mechanism implementation requires significant computing 
resources, which can be problematic in limited hardware power 
conditions on board a helicopter. This may result in the need 
for additional hardware modifications, increased power 
consumption, and increased system complexity. 

At the same time, in [66] the helicopter TE complex 
monitoring and operation control implementing on-board 
neural network methods possibility based on placing an 
electronic neural network system on board the helicopter, 
implemented on the Intel Core Stick 2 neural processor 
(Fig. 17) basis, has been proven. 

 
Figure 17. The modified Mi-8T helicopter cabin proposed appearance (the helicopter turboshaft engines integrated monitoring 

and operation control proposed on-board electronic neural network system is highlighted in red) (author’s research). 

This allows you to significantly reduce computational costs 
and increase the efficiency of the system in real time. The such 
a processor use provides the necessary performance (the all 
operation execution time s, taking into account the retrieving 
data from memory time, is 196.246 ns, while this parameter for 
the Raspberry Pi NanoPi M1 Plus processor is 1589.544 ns 
[66]) for processing data large amounts and executing complex 
calculations, which makes it possible to the helicopter TE 
quickly monitoring [67] and operation control directly [68–73] 
at flight conditions. 

Thus, the Intel Core Stick 2 neural processor use eliminates 
the helicopter TE operating modes classifying neural network 

analytical system above-mentioned disadvantages at the on-
board implementation conditions. 

V. CONCLUSIONS 
The neural network analytical system for helicopter turboshaft 
engines operating modes classification at flight operation mode 
was further researched, which differs from existing ones in that 
the developed neural network uses the input layer with three 
neurons, two fully connected hidden layers and an output layer 
with two neurons consisting made it possible to the helicopter 
turboshaft engines recognizing steady-state modes, unsteady 
modes and transient modes task solve with accuracy is up to 
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0.997 (99.7 %). This, in turn, allows the helicopter crew 
commander to make the right decision regarding the flight 
execution with an accuracy of 0.945 (94.5 %). 

A neural network training method has been developed an 
input layer with three neurons, two fully connected hidden 
layers, and an output layer with two neurons consisting, based 
on forward propagation, loss calculation, backpropagation and 
updating the neural network weights, which due to the adaptive 
training rate, cross-entropy function as a loss function use, as 
well as the proposed modified function for the hidden layers 
Smooth ReLU activating neurons, made it possible to achieve 
almost the neural network training 100 % accuracy and reduce 
losses to 0.025 (2.5 %), which is a high indicator of the quality 
of work neural network in the helicopter turboshaft engines 
operating modes classification at flight operation mode task. 

It has been experimentally proven that the proposed neural 
network uses, the input layer with three neurons, two fully 
connected hidden layers and an output layer with two neurons 
consisting, in the helicopter turboshaft engines operating 
modes classifying at flight operation mode task, reduces the 
first type errors by 2.09...2.14 times and the second type errors 
– by 2.05...2.21 times compared with the neural network 
classifier based on the ART-1 and BAM networks [30]. This 
shows the feasibility of the developed neural network used in 
an onboard implementation to classify the helicopter turboshaft 
engines’ operating modes during flight operation. 
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