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ABSTRACT Binary Decision Diagrams (BDDs) are often used in specific types of reliability analysis
known as topological (or structure) analysis and time-independent analysis. The previous focuses only
on the analysis of system topology, which is defined by structure function. The latter takes into account
the structure function together with the time-independent reliabilities of components that the system is
composed of. However, the most interesting type of reliability analysis is time-dependent analysis in which
reliabilities of the components are time-dependent functions. In this paper, we first present the development
of a mathematical model of a non-repairable system composed of independent non-repairable components
and explain the properties of this model from the point of view of time-dependent, time-independent, and
topological reliability analysis. In the second part of the paper, we present and experimentally compare two
methods for time-dependent reliability analysis of the considered mathematical model. The first method
is based on the direct application of BDDs and we label it as a basic approach. The second, symbolic
approach, combines BDDs with expression trees. The experimental comparison implemented using open-
source C++ libraries TeDDy and GiNaC shows that the first method based on the basic approach is much
faster than the second method using expression trees.

KEYWORDS binary decision diagram; GiNaC; probabilistic decision diagram; structure function;
symbolic expression; TeDDy; time-dependent reliability.

I. INTRODUCTION
A Binary Decision Diagram (BDD) is a graph structure
that can represent any Boolean function [1], [2]. Due to
its ability to efficiently store information about a Boolean
function and to be simply processed on a computer, it has
found applications in almost all areas dealing with Boolean
functions. Nowadays, BDDs are used in the analysis of
logic circuits [3], synthesis of optical circuits [4], game
theory [1], mathematical programming [5], and many other
areas. Along with all these areas they have found important
applications in reliability analysis [6], [7]. In this case, they
allow representing functions defining the structure of large
systems composed of many components.

Although BDDs have found use in many areas, they
are primarily used in solving time-independent problems.
For example, in reliability analysis, they have been used
in the evaluation of system reliability from the topolog-

ical point of view or from the point of view of time-
independent probabilistic analysis [7], but according to our
knowledge, they have been used in time-dependent analysis
only marginally. Furthermore, many papers dealing with
applications of BDDs in reliability analysis are based on
custom software solutions of researchers, which have not
been made publicly available and were primarily used for
solving a specific problem considered in the papers of
researchers. Because of that, we have decided to develop
a software solution that will be publicly available. This so-
lution has a character of C++ software library named TeDDy
(Templated Decision Diagram library) and is available under
link https://github.com/MichalMrena/DecisionDiagrams.

Unlike well-known BDD packages, such as CUDD [8]
or BuDDy [9], which are commonly used in logic design,
TeDDy has been developed primarily for tasks related
to reliability analysis of large systems. It allows us to
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perform topological analysis as well as probabilistic time-
independent analysis [10]. However, many tasks of relia-
bility analysis are based on time-dependent analysis [11]–
[14]. Most of these tasks are based on the direct application
of state transition diagrams and the theory of stochastic
processes [15]. If we want to use our library to solve such
kinds of problems, we have to consider the incorporation
of time processing into it. This can be done in several
ways. Thus, in comparison to existing research, the main
contribution of this paper lies in performing time-dependent
probabilistic analysis using BDDs.

In this paper, we compare two approaches to how BDDs
can be utilized in time-dependent reliability analysis. The
first, simpler approach is based on the idea that elements
(nodes) of the BDD will represent time-dependent functions
defining reliabilities of the components of the system whose
structure is expressed by the BDD. The second approach is
based on the idea that the BDD defining the structure of
the system is transformed into symbolic expression, which
is stored in the form of an abstract syntax tree with one
independent variable – time. Using a state-of-the-art library
for manipulation of symbolic expressions GiNaC [16] we
show that the first approach is quicker than the second one.

II. RELIABILITY ANALYSIS OF NON-REPAIRABLE
SYSTEM WITH INDEPENDENT NON-REPAIRABLE
COMPONENTS
Reliability is an important characteristic of most real-world
systems. It is crucial in the development of integrated
circuits based on field programmable gate arrays [17], in the
deployment of unmanned aerial vehicle systems [18], [19],
in the design of vehicular ad-hoc networks [13], in creation
of smart buildings and homes [12] as well as in many other
areas summarized in a nice way in [20]. Based on available
data about the system and its components, we can create
various mathematical models of the system that allow us to
consider various properties of the system [21]–[23].

According to [21], the reliability of a system is defined
as the ability of the system to perform a required function
under given environmental and operational conditions for a
given period of time. From the mathematical point of view,
reliability R at time t agrees with the probability that the
system does not fail by time t assuming that it works at time
t = 0. If we introduce a random variable T that defines the
time to failure of the system, then reliability at time t can
be expressed as the following function:

R(t) = Pr{T > t}; R(0) = 1. (1)

The complementary function is known as system unreli-
ability. Using random variable T , it is defined at time t as
the probability that a failure of the system occurs by time t
given that the system works at time t = 0, i.e.:

F (t) = Pr{T ≤ t} = 1−R(t); F (0) = 0. (2)

The previous two definitions imply that the system can
be in one of two states from the reliability point of view.

These states are working and failed. Thus, for a given time
point t, we can define a random variable Zt that takes value
1 if the system is working and value 0 if it is failed at time
point t. With respect to random variable T , random variable
Zt can be defined as follows:

Zt = I(T > t) =

{
1, if T > t

0, otherwise
, (3)

where I(.) is indication function that takes value 1 if the
expression in the parentheses is true and value 0 otherwise.
Since the random variable Zt has only two possible values,
it has a Bernoulli distribution.

If we consider uncountable collection of random variables
Zt for all possible values of t, i.e., for t ∈ : [0,∞), then we
obtain continuous stochastic process {Zt, 0 ≤ t < ∞}.
This process defines how the state of the system changes as
time flows and can be described by system state function
Z(t):

Z(t) = {Zt, 0 ≤ t <∞}
= I(T > t) : [0,∞)→ {0, 1}.

(4)

It is worth noting that we use two similar symbols that are
Z(t) and Zt. The difference between them lies in the fact
that t in Z(t) is an independent variable whose value is not
known a priori, while t in Zt denotes a time point that is
known a priori. A notation in which a priori information
is placed in the subscript of the considered mathematical
object will also be used in the rest of the paper.

Using the system state function, event {T > t} agrees
with event {∀τ ∈ [0, t] : Z(τ) = 1}. Therefore, the
definition (1) of reliability can be expressed in the following
form:

R(t) = Pr{{∀τ ∈ [0, t] : Z(τ) = 1}|Z(0) = 1}

=
Pr{∀τ ∈ [0, t] : Z(τ) = 1}

Pr{Z(0) = 1}

=
Pr{∀τ ∈ [0, t] : Z(τ) = 1}

R(0)
.

(5)

Since definition (1) implies that R(0) = 1, we can write:

R(t) = Pr{∀τ ∈ [0, t] : Z(τ) = 1}. (6)

Using the conditional probability, we can rewrite this for-
mula as the following multiplication:

R(t) =Pr{{∀τ ∈ [0, t) : Z(τ) = 1}|Z(t) = 1}
.Pr{Z(t) = 1}.

(7)

In what follows, we will assume that the system is non-
repairable. Using this assumption event {Z(t) = 1} implies
that:

Pr{{∀τ ∈ [0, t) : Z(τ) = 1}|Z(t) = 1} = 1; (8)

therefore, we can write:

R(t) = Pr{Z(t) = 1}. (9)
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Next, let us assume that the system is composed of n
components that are independent. Let us define a random
variable Ti that specifies the time to failure of the i-th
component, for i = 1, 2, . . . , n. Using this random variable,
we can define the reliability of the i-th component at time
t as follows:

pi(t) = Pr{Ti > t} (10)

and its unreliability in the following manner:

qi(t) = Pr{Ti ≤ t} = 1− pi(t). (11)

As in the case of the whole system, we can introduce the
state function of the i-th component Zi(t):

Zi(t) = {Zi,t, 0 ≤ t <∞}
= I(Ti > t) : [0,∞)→ {0, 1},

for i = 1, 2, . . . , n,

(12)

which can be viewed as uncountable collection of random
variables Zi,t modeling state of the i-th component at time
point t. As in the case of random variable Zt, random
variables Zi,t have Bernoulli distribution.

If we assume that the components of the system are non-
repairable, then the same procedure as above can be used
to show that the reliability and unreliability functions of the
i-th component have the following forms:

pi(t) = Pr{Zi(t) = 1} : [0,∞)→ [0, 1],

qi(t) = 1− pi(t) : [0,∞)→ [0, 1].
(13)

Using the same notation as in the case of stochastic process
(12), these time-dependent functions can also be viewed
as uncountable collections of time-independent probabilities
(probabilities at a priori defined time points). These proba-
bilities are labeled as pi,t and qi,t = 1 − pi, t and they are
together referred to as component state probabilities. Thus,
we can write:

pi(t) = {pi,t, 0 ≤ t <∞},
qi(t) = {qi,t, 0 ≤ t <∞}

= {1− pi,t, 0 ≤ t <∞}.
(14)

Clearly, the state of a system composed of n components
depends on the states of its components. For this purpose,
it is useful to introduce one more function, which is struc-
ture function. The structure function is a mapping of the
following form [21]:

ϕ(x) : {0, 1}n → {0, 1}, (15)

where x = (x1, x2, . . . , xn) is the state vector, variable xi

for i = 1, 2, . . . , n defines state of the i-th component, and n
is the number of components. Since we assume that states of
the components are modeled by time-dependent state func-
tions Zi(t), we can substitute state vector x by a vector of
component state functions Z(t) = (Z1(t), Z2(t), . . . , Zn(t).
Based on this substitution, we can write:

Z(t) = ϕ(Z(t)) = ϕ(Z1(t), Z2(t), . . . , Zn(t)). (16)

System state function (16) defined by structure function
(15) together with component state probabilities (13) rep-
resents the basic mathematical model used in reliability
analysis. It is a model of a non-repairable system com-
posed of independent non-repairable components. Using
this model, system reliability is a function depending on
structure function ϕ(x), component reliabilities p(t) =
(p1(t), p2(t), . . . , pn(t)) and time t, i.e.:

R(ϕ,p, t) = Pr{ϕ(Z(t)) = 1}. (17)

The independence of system components implies that this
function can be rewritten in the following form:

R(ϕ,p, t) =
∑

x∈{0,1}n

ϕ(x)

n∏
i=1

Pr{Zi(t) = xi}. (18)

Function (18) can be analyzed in three basic ways that
are time-dependent probabilistic analysis, time-independent
probabilistic analysis, and topological analysis.

A. TIME-DEPENDENT PROBABILISTIC ANALYSIS
In time-dependent probabilistic analysis, we assume that
structure function (15) and component reliabilities (13)
are a priori given, and we study how time influences the
reliability of the system. If we use notation such that a priori
information is placed in the subscript of the considered
measure, we can write:

R(ϕ,p, t) = Rϕ,p(t), (19)

which indicates that reliability is a function of time. In this
case, reliability can be calculated using the formula (18).

B. TIME-INDEPENDENT PROBABILISTIC ANALYSIS
Sometimes it is useful to study how the reliability of the
system depends on state probabilities of its components.
In this case, we assume that component states are not
modeled by time-dependent state functions Zi(t) but rather
by random variables Zi,t. According to (12) these random
variables have Bernoulli distribution with the following two
probabilities:

pi,t = Pr{Zi,t = 1},
qi,t = 1− pi,t.

(20)

This implies that system reliability is a function depending
only on state probabilities of system components, i.e.:

R(ϕ,p, t) = Rϕ,t(pt)

=
∑

x∈{0,1}n

ϕ(x)

n∏
i=1

Pr{Zi,t = xi},
(21)

where pt = (p1,t, p2,t, . . . , pn,t).
Time-independent probabilistic analysis can also be per-

formed without a priori knowledge of the time in which we
want to perform such a kind of reliability analysis. In this
case, subscript t can be omitted, random variables Zi,t have
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a form of Zi, and component state probabilities are labeled
as pi and qi. The consequence of this is that the reliability
function becomes a time-invariant function:

R(ϕ,p, t) = Rϕ(p)

=
∑

x∈{0,1}n

ϕ(x)

n∏
i=1

Pr{Zi = xi},
(22)

where p = (p1, p2, . . . , pn).
This approach is suitable for analyzing how various values

of component state probabilities influence the reliability of
the whole system, which is a typical task of a special part of
reliability analysis known as importance analysis [7], [24].

C. TOPOLOGICAL ANALYSIS
Finally, we can study system reliability from the topological
point of view. This means that we focus on the layout of the
system and connections between system components. In this
case, we assume that the component reliabilities and time
are fixed, and we analyze how system reliability changes
depending on various structure functions. Therefore, in this
case, the reliability of the system can be defined as a
function depending on the structure function:

R(ϕ,p, t) = Rp,t(ϕ) (23)

and can be computed using formula (21).
A specific type of topological analysis is structure analy-

sis, in which we assume that both states of each component
occur with the same probability which is independent of
time, i.e.:

Pr{Zi,t = 1} = Pr{Zi,t = 0} = 1

2
,

for i = 1, 2, . . . , n and t ∈ [0,∞).
(24)

In this specific case, topological reliability (23) can be
transformed using formula (21) in the following way:

Rp,t(ϕ) = R 1
2
(ϕ)

=
∑

x∈{0,1}n

ϕ(x)
n∏

i=1

1

2

=
1

2n

∑
x∈{0,1}n

ϕ(x).

(25)

where vector 1
2
= ( 12 ,

1
2 , . . . ,

1
2 ) used in the subscript means

that each of n system components is reliable with the
probability 0.5.

Please note that the structure function can be viewed
as a Boolean function of n variables. In this case, the
last row in the previous formula agrees with the relative
number of points (state vectors with respect to reliability
terminology) at which the structure function is true (takes
value 1 on the output). With respect to Boolean functions,
this characteristic agrees with the Truth Density (TD) of
Boolean function, therefore, we can write:

R 1
2
(ϕ) = TD(ϕ(x)). (26)

Clearly, this measure does not depend on the time point at
which it is evaluated. In some works, e.g., [25], it is known
as state frequency of system state 1 and is marked using the
following notation:

Fr=1(ϕ) = R 1
2
(ϕ). (27)

An advantage of the structure analysis is that it requires
only the structure function as its input. Hence, for example,
it allows us to analyze systems that do not yet exist, we only
need to know their topology. Because of that, this kind of
analysis is used in the phase of the design of the system to
find the topology that will be most reliable without respect
to the reliabilities of the system components.

III. DECISION DIAGRAMS
As the previous section implies, one of the key elements of
the model of a system is structure function. Evaluation of
system reliability thus requires a suitable representation of
this function. Choice of the representation is essential if we
need to analyze a system with numerous components since
simple approaches – like truth tables – fail for functions
with a higher number of variables.

Decision diagrams are often the structure of choice when
one needs to represent larger discrete functions. Even though
the size of the diagram is still exponential in the number of
variables in the worst case [26], they can often represent a
function much more efficiently [2]. The literature describes
various types of decision diagrams. In general, a decision
diagram is a directed acyclic graph structure containing
two types of nodes. Terminal nodes contain values of the
function, and internal nodes represent variables with several
outgoing edges, which is given by the size of the domain of
the variable. Consequently, each internal node represents a
decision based on the value of the variable hence the name
decision diagram.

Reduced Ordered Multi-valued Decision Diagram
(ROMDD or shortly just MDD) [27] is a common general
type of decision diagram, which represents an integer
function of the following form:

f(x) : {0, 1, . . . ,m1 − 1} × {0, 1, . . . ,m2 − 1}
× · · · × {0, 1, . . . ,mn − 1} → {0, 1, . . . ,m− 1},

(28)

where x = (x1, x2, . . . , xn), n denotes the number of vari-
ables, mi ∈ N− {1} denotes the size of the domain of the
variable xi for i = 1, 2, . . . , n, N denotes the set of natural
numbers, and m ∈ N−{1} denotes the size of the codomain
of the function. In Figure 1, we can see an example of an
MDD representing an integer function of three variables. In
the case when mi = mj = m for i, j = 1, 2, . . . , n the
definition (28) agrees with the definition of Multiple-valued
Logic function [28]. Furthermore, if m = 2 the definition
(28) agrees with the definition of Boolean function [1]. In
such a case, the decision diagram is known as a Binary
Decision Diagram (BDD) [2].

Historically, BDD is a decision diagram that precedes
MDD – we can consider MDD as a generalization of BDDs.
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Figure 1. MDD representing an integer function where
m1 = 3,m2 = 2,m3 = 2.

Since BDDs can efficiently represent Boolean functions they
have found their application in numerous areas dealing with
applications of logic functions [1], [28], such as design
and verification of logic circuits or artificial intelligence.
Moreover, since the definition of the structure function (15)
agrees with the definition of a Boolean function, which
BDD can efficiently represent, BDDs have also found strong
application in reliability analysis [6], [7], [10]. In the rest
of the paper, we will focus on the application of BDDs in
probabilistic analysis.

BDD has at most two terminal nodes representing values
0 and 1, which can be interpreted as false and true respec-
tively. Each internal node of BDD has two outgoing edges
representing two possible values of the variable, again, the
values 0 and 1. In the paper we use the notation VALUE(T )
to denote value stored in terminal node T , INDEX(A) to
denote index of the variable associated with internal node
A, and LeftSon(A) and RIGHTSON(A) to denote left and
right son of an internal node A respectively.

IV. PROBABILISTIC ANALYSIS BY BDDS
Based on the construction and internal structure of BDD it
can be shown that it is an orthogonal representation of a
Boolean function. This makes it a convenient structure for
performing probabilistic calculations. The literature offers
two principal approaches to the calculation of output proba-
bilities known as bottom-up and top-down [28] algorithms.
Both approaches can calculate the so-called Node Traversing
Probability (NTP) [29] of the terminal node (typically the
node representing 1) using a traversal of the BDD, in which
they associate intermediate results with the nodes. They
differ in the order in which they traverse the diagram and
in the node from which they read the resulting NTP. In the
rest of the paper, we use the bottom-up approach, which was
used by other researchers [30] in a probabilistic evaluation.

Figure 2. Internal node of a probabilistic BDD depicting the
relation between the graph structure and component state
probabilities.

However, the techniques we describe further in the paper
are also applicable to the top-down approach and possibly
to other approaches as well.

A. TIME-INDEPENDENT ANALYSIS
1) Bottom-up algorithm
Evaluation of system reliability requires us to evaluate the
probability that the structure function (15) evaluates to
1 given component state probabilities (20) or (13). This
agrees with the NTP of the terminal node representing value
1. To evaluate this NTP, the bottom-up algorithm assigns
probability Prob(A) to each internal node A associated with
variable xi using the following recursive formula:

Prob(A) = qi ∗ Prob(A0) + pi ∗ Prob(A1), (29)

where A0 and A1 are nodes where the edges representing
values 0 and 1 lead to and qi and pi are component state
probabilities. The recursion terminates if Ak (for k = 0, 1)
is a terminal node, in which case it returns the value k i.e.,
the value stored in the node. Finally, to obtain the system
reliability, we evaluate the probability Prob(root) of the root
node.

Considering the relation (29), we may notice that it is
closely tied with the structure of the internal node as we
can see in Figure 2. Let us notice that in the figure, the
component state probabilities qi and pi are placed on the
edges. We refer to such a BDD as a probabilistic BDD.

2) Bottom-up algorithm implementation
Implementation of the bottom-up algorithm is relatively
straightforward. It is a simple recursive algorithm that
follows the relation (29). However, there are certain compli-
cations caused by node sharing that need to be addressed.
Direct computation of (29) in each internal node would
cause the recursion to visit shared nodes multiple times
– recomputing the entire subgraph each time. This would
make the algorithm considerably inefficient. Therefore, the
implementation of the algorithm visits each node exactly
once and it puts the value computed at each node into a
cache (we refer to it as memo).

In Algorithm 1, we can see the pseudocode of the
algorithm. Lines 2–4 implement the terminating case of
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Algorithm 1 Bottom-up algorithm for the calculation of
Node Traversing Probabilities in BDD.

1: procedure BOTTOMUPNTP(node, p)
2: if ISTERMINAL(node) then
3: return VALUE(node)
4: end if
5: if CONTAINS(memo) then
6: return LOOKUP(memo, node)
7: end if
8: i← INDEX(node)
9: prob0 ← BOTTOMUPNTP(LEFTSON(node), p)

10: prob1 ← BOTTOMUPNTP(RIGHTSON(node), p)
11: result← (1− pi) ∗ prob0 + pi ∗ prob1
12: PUT(memo, node, result)
13: return result
14: end procedure

Figure 3. Reliability Block Diagram depicting simple series-
parallel system made of four components.

the relation (29) and lines 9–11 implement the case for
internal nodes. Lines 5–7 and line 12 marked with blue color
implement the caching mechanism, which ensures that each
node is visited exactly once. The actual data structure behind
the variable memo is implementation-defined. Typically, it
is a hash table that maps a pointer to a real number. In
section V, we discuss another possibility which is to store
the cached value directly in the node.

Logical view of probabilistic BDD places the compo-
nent state probabilities qi and pi in the edges. However,
implementing the BDD this way would not be reasonable
since the same information would be stored duplicitly in
multiple edges. In the case of time-independent analysis, qi
and pi are real numbers – typically represented as floating
point numbers. Hence, the input of the algorithm is usually
a single vector p of floating point numbers representing
probabilities pi for i = 1, 2, . . . n. There is no need to
store qi since they can be easily computed using the formula
(20). Consequently, implementation of the time-independent
analysis is relatively straightforward.

B. TIME-DEPENDENT ANALYSIS
Evaluation of the NTP gets complicated when we work with
time-dependent component state probabilities. In this case,
the probabilities are expressions containing variable t repre-

Figure 4. Probabilistic BDD representing structure function
of the series-parallel system depicted in Figure 3.

senting time. The expressions typically represent cumulative
distribution functions of some probability distribution such
as exponential or Weibull [21].

We will illustrate the problem and, subsequently, our
solution using a simple example. Let us consider a simple
storage system analyzed in [31]. The system consists of two
units connected in parallel. Each unit has two hard drives
configured as RAID 1 and RAID 0 respectively. In Figure 3
we can see a reliability block diagram describing the system,
which has the following structure function:

ϕ(x) = (x1 ∨ x2) ∨ x3x4. (30)

Using the function and the inclusion-exclusion principle
we can calculate the system reliability using the following
formula:

Rϕ,p(t) = p1(t) + p2(t) + p3(t)p4(t)

− p1(t)p2(t)

− p1(t)p3(t)p4(t)

− p2(t)p3(t)p4(t)

+ p1(t)p2(t)p3(t)p4(t).

(31)

In Figure 4, we can see a probabilistic BDD representing
the structure function. By using the bottom-up algorithm and
relation (29) we obtain the following formula:

Rϕ,p(t) = q1(t)(p2(t) + q2(t)p3(t)p4(t)) + p1(t), (32)

which after substituting 1 − pi(t) for each qi(t) agrees
with formula (31). Let us assume the same exponential
distributions of component reliabilities as authors in [31]
– we can see the distributions in Table 1. If we substitute
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Table 1. Storage system component reliability distributions.

Component Component reliability pi(t)
1 exp (1/25, 359) ∗ t
2 exp (1/6, 246) ∗ t
3 exp (1/4, 764) ∗ t
4 exp (1/44, 360) ∗ t

Figure 5. Reliability function of the series-parallel system
depicted in Figure 3.

the distributions into expression (31) we can plot the system
reliability function which we can see in Figure 5.

Now let us consider the task of evaluating system reliabil-
ity at multiple time points using BDD. The input vector p is
no longer a vector of simple floating-point numbers, but it is
a vector of cumulative distribution functions describing the
evolution of component reliabilities in time. We identified
two approaches to the problem.

1) Basic approach
The first approach, which we call the basic approach, is
straightforward. The idea is to, first, evaluate each element
of p at time point t, transforming it into pt – a simple vector
of floating-point numbers representing component probabil-
ities at time point t – and proceed with the calculation
of system reliability using the standard time-independent
algorithm such as the bottom-up algorithm described in the
previous subsection. This approach requires no modification
of the standard algorithm and therefore can be used with
existing tools. However, it requires repeated evaluation of
the bottom-up algorithm for each time point t.

The authors in [32] utilize this approach in the analysis
of distributed generation power systems. In Algorithm 2 we
can see a pseudocode that shows how to use this approach to
evaluate system reliability at multiple time points. One can
recognize that this algorithm is based on the application of
the formula (21), which is used to compute system reliability
for various component state probabilities defined by a priori
known time points.

2) Symbolic approach
The second approach utilizes symbolic expressions – hence
we refer to it as symbolic approach. Various computer al-

Algorithm 2 Basic approach to the evaluation of system
reliability in multiple time points.

1: function EVALUATEBASIC(bdd, timePoints, p)
2: for ∀ t ∈ timePoints do
3: pt ←EVALUATEDISTRIBUTIONS(p, t)
4: R←BOTTOMUP(bdd, pt)
5: end for
6: end function

gebra systems such as Matlab, GNU Octave, or wxMaxima
allow manipulation, evaluation, and analysis of expressions
represented by trees. Figure 6 shows an example of such a
tree. Thus, the main idea of the symbolic approach is to per-
form the calculation on expressions rather than probabilities
evaluated in time t. Therefore, the input vector p contains
expressions representing component state probabilities pi(t)
depending on a single variable t representing time.

The symbolic approach differs from the basic one in two
principal aspects. First, it requires modification of bottom-
up algorithm (or equivalent NTP evaluating algorithm) in a
way that it performs addition and multiplication on symbolic
expressions instead of floating-point numbers. Second, after
the last step of the bottom-up algorithm, the result is a
symbolic expression describing the NTP of terminal node
1. This expression contains a single variable – symbol t
representing time. Then, to evaluate system reliability at
time t, we evaluate the expression for a given value of
t. Thus, with the basic approach we evaluate BDD using
bottom-up algorithm for each time point evaluation whereas
with the symbolic approach we run the bottom-up algorithm
only once, and then we evaluate the symbolic expression for
each time point. One can notice that this approach is based
on the application of formula (19), which defines system
reliability as a time-dependent function with a priori given
probability distributions specifying reliabilities (13) of the
system components over time.

Algorithm 3 presents a pseudocode that shows the sym-
bolic approach in the evaluation of system reliability at
multiple time points. This can be compared with Algo-
rithm 2 to see the difference between the two approaches.
An interesting question is which approach is better if we
need to evaluate system reliability at multiple time points.
Therefore, in Section VI we provide an experimental com-
parison of the two approaches in multiple scenarios.

Algorithm 3 Symbolic approach to the evaluation of system
reliability in multiple time points.

1: function EVALUATESYMBOLIC(bdd, timePoints, p)
2: exprTree← CREATETREE(bdd, p)
3: for ∀ t ∈ timePoints do
4: R←EVALUATETREE(exprTree, t)
5: end for
6: end function
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Figure 6. Expression tree representing expression (32).

V. TEDDY
The implementation of probabilistic calculations with BDDs
requires support from the software library for the manipula-
tion of BDDs. Several high-quality BDD packages exist in-
cluding CUDD [8], BuDDy [9], and Sylvan [33]. However,
they do not support probabilistic calculations or they support
it in a very limited way. Since the probabilistic calculations
are one of the cornerstones of reliability evaluation, we have
decided to implement our own decision diagram package
named TeDDy (Templated Decision Diagram library) [10].
Furthermore, our motivation was also to make the library
available under an open-source license with support for
MDDs (see. section III).

A. LIBRARY STRUCTURE
Figure 7 shows a UML package diagram describing the log-
ical structure of the library, which consists of four modules.
Library implementation uses well-known techniques such as
unique tables, apply cache, or node pooling [34] utilized by
other decision diagram packages.

The core module implements typical functionalities of
the decision diagram package. It contains all the algorithms
described by Bryant for BDDs [2]. Its biggest asset is that
it supports MDDs by providing the MDD structure as well
as generalized versions of the aforementioned algorithms.

The core-io module is built on top of the core module.
It implements input from and output of the diagrams to
different formats such as truth table, expression tree, or PLA
file [35].

The reliability module is the biggest asset of TeDDy.
It is dedicated specifically to reliability analysis by BDDs
and MDDs. It uses the core module in the implementation
of various reliability analysis algorithms proposed by our
research group [10]. Using it, we can evaluate importance of
system components [21], [24], [36] or find minimal path sets
and minimal cut sets [37]–[39]. This module implements the
probabilistic algorithms described in section IV. The exten-

Figure 7. UML package diagram describing the logical
structure of the TeDDy library.

sion of this module to support time-dependent probabilistic
analysis is the central topic of this paper.

Finally, the tsl – test support library – module contains
tools used for testing of other modules. In the future, we plan
on expanding it to a standalone module providing reliability
analysis tools beyond decision diagrams.

B. PROBABILISTIC ANALYSIS
An implementation of the symbolic approach requires a
modification of the bottom-up algorithm in a way that
it can add and multiply symbolic expressions instead of
numbers. This in turn requires a suitable representation of
the symbolic expression. The first option is to manually
implement the expression tree. The second option is to use
an existing library. In TeDDy, we went with the second
option picking the mature library GiNaC [16] – an open-
source C++ library for (besides other use cases) the creation,
manipulation, and evaluation of symbolic expressions. This
made the modification of the bottom-up algorithm quite
straightforward, since the GiNaC expression overloads arith-
metic operators (a feature of the C++ language) and, thus,
can “act” as floating-point values. A clever use of C++
templates can allow us to use the same code for time-
independent and time-dependent versions of the bottom-up
algorithm.

In the time-dependent case, the input of the bottom-up
algorithm is a vector of GiNaC expressions GiNaC::ex
representing component state probabilities containing a
single variable – symbolic expression representing time
GiNaC::realsymbol("t"). The output of the algo-
rithm is a single GiNaC::ex expression representing the
NTP of terminal node 1, which can be evaluated for any
value of t. The caching mechanism described in section IV
works in the same way – the memo table just needs to
map pointers to GiNaC expression. It is interesting to note
that TeDDy provides an alternative option. It can store the
cached data directly in the nodes of the diagram. Thus, the
mapping is performed just by reading a property of the node.
Comparison of the two approaches in terms of speed will
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Table 2. Comparison of the basic and symbolic approach in
the computation of system reliability of the four-component
storage system from Figure 3.

Time
points Basic [ns] Symbolic

init [ns] Symbolic [ns]

10 956 9,252 267,071
100 7,258 9,454 2,607,722

1,000 69,447 9,949 25,945,398
10,000 692,683 13,456 257,718,581

be the subject of our future research since right now it is
not clear which of the options is more performant.

Finally, one feature of the symbolic approach worth men-
tioning is that it allows for easier interaction with computer
algebra systems – we can serialize the expression and import
it into some computer algebra systems for further analysis.
For example, we obtained the expression (32) by running the
bottom-up algorithm with a vector containing symbols such
as GiNaC::realsymbol("p_1") as input we obtained
the chart in Figure 5 by exporting the resulting GiNaC
expression (which GiNaC allows in multiple formats) and
importing it into R system and using the ggplot library to
create the chart.

VI. EXPERIMENTAL EVALUATION

As we mentioned in section IV, the comparison of the basic
and symbolic approaches in terms of speed is an interesting
question. Since we have both approaches implemented in
TeDDy, we performed an experimental comparison in the
evaluation of time-dependent system reliability at multiple
time points. We performed three experiments on a PC
with an Intel i9-10900KF processor with 128GiB of DDR4
RAM running the Void Linux operating system. The code
was compiled with the g++-12.2.0 compiler with the -O3
optimization flag.

A. STORAGE SYSTEM EXAMPLE

The first comparison we performed was on the storage
system depicted in Figure 3. In the experiment, we evaluated
system reliability using component reliabilities presented in
Table 1 at 10; 100; 1,000; and 10,000 selected time points.
Table 2 shows the result of the comparison. The durations
in the table were obtained as average from 100 replications
of the computation. Column Basic contains the total time in
nanoseconds required to compute system reliability at the
given number of time points. Column Symbolic init contains
the time needed to create the expression tree and column
Symbolic contains the total time in nanoseconds required
to compute system reliability at the given number of time
points. The results clearly show that the basic approach is
in the order of magnitude faster than the symbolic approach
even when we need to evaluate a higher number of time
points.

Table 3. Comparison of the basic and symbolic approach in
the computation of system reliability of randomly generated
series-parallel systems.

n |BDD| |Tree| Basic
[ns]

Symbolic
init [ns] Symbolic [ns]

10 12 599 1,739 26,187 3,823,367
20 22 15,218 3,606 51,791 101,280,004
30 32 546,208 6,020 82,222 3,595,178,608
40 42 11,494,828 7,401 103,151 72,100,562,769

B. RANDOM SERIES-PARALLEL SYSTEMS
The second comparison aims to compare the two approaches
in the analysis of series-parallel systems with different
topologies. For this purpose, we generated random series-
parallel systems with 10, 20, 30, and 40 components using
the approach described in [40]. For each such system,
we computed system reliability in 10 time points. Since
the systems are randomly generated, we assume exponen-
tial distributions of component reliabilities with randomly
generated rate parameters. Table 3 contains the results of
the comparison. The durations in the table were obtained
for each variable count n as average from 10 randomly
generated system topologies and 10 replications for each
topology. In addition to the previously described columns
the table also contains |BDD| and |Tree| columns, which
contain the average number of nodes in BDD and the
expression trees respectively.

The results confirm the results of the first experiment that
the basic approach is significantly faster. Moreover, the re-
sults also indicate that the complexity of the expression tree
increases dramatically with increasing number of variables.
This suggests that the symbolic approach is not suitable for
a system with a higher number of components while the
basic approach seems to scale very well if the size of the
BDD stays reasonable.

C. PLA BENCHMARK CIRCUITS
The two experiments that we described so far used series-
parallel systems. Therefore, in the last experiment, we
decided to analyze systems of different nature – PLA circuits
from the IWLS’93 benchmark [41]. Reliability analysis
of logic circuits is specific since the structure function
contains variables representing inputs of the circuits as well
as variables representing unreliable logic gates [42]. The
analysis aims only at the variables representing the logic
gates fixing the input variables for all possible inputs. Hence,
the size of the BDD is relatively small despite a higher
number of variables n. In this experiment, we also assumed
exponential distributions of component reliabilities. Just like
in the first experiment, we evaluated system reliability at 10;
100; 1,000; and 10,000 time points.

Table 4 presents the results of the experiment. In addition
to the previously described columns, the PLA file columns
contain the name of the benchmark, and the n column
contains the number of variables representing the logic
gates – the number of variables in the analyzed BDD. The
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Table 4. Comparison of the basic and symbolic approach in
the computation of system reliability of PLA circuits.

PLA
file n

Time
points Basic [ns] Symbolic

init [ns] Symbolic [ns]

con1 11 10 1,905 986 36,352
con1 11 100 18,002 1,078 357,491
con1 11 1,000 178,788 1,275 3,566,846
con1 11 10,000 1,791,139 2,017 35,643,194
xor5 17 10 2,210 698 23,954
xor5 17 100 21,317 763 237,646
xor5 17 1,000 212,002 874 2,384,453
xor5 17 10,000 2,120,591 1,391 23,797,647
rd53 35 10 3,860 2,158 74,064
rd53 35 100 37,498 2,338 731,114
rd53 35 1,000 374,347 2,709 7,277,917
rd53 35 10,000 3,736,264 4,274 72,870,141

squar5 40 10 4,469 8,019 220,688
squar5 40 100 43,178 8,306 2,189,516
squar5 40 1,000 430,617 9,086 21,934,328
squar5 40 10,000 4,297,874 14,722 218,934,519

sqrt8 44 10 4,864 2,000 67,313
sqrt8 44 100 47,538 2,220 661,964
sqrt8 44 1,000 473,333 2,555 6,612,181
sqrt8 44 10,000 4,760,873 4,303 66,284,840

results show that, again, the basic approach performed better
than the symbolic approach. However, the relative difference
between the two approaches is much smaller than in the
previous experiments.

Each of the above-described experiments showed that the
basic approach performs much better than the symbolic
approach if we consider the speed of evaluating system
reliability in multiple time points. Although the results are
specific for our implementation – our library TeDDy and
GiNaC library for the manipulation of expressions – the rel-
ative difference between the two approaches is considerable
and therefore is unlikely to change significantly for other
implementations. However, the symbolic approach that we
presented is still a valid and useful tool for time-dependent
reliability analysis because of the mentioned possibilities to
further manipulate and analyze the expression.

VII. CONCLUSION
Reliability belongs to the key characteristics of almost
every system. Its evaluation can be complicated and time-
consuming in the case of complex systems, which typically
are composed of many heterogeneous components. There-
fore, computer-aided reliability analysis of such systems
requires the application of data structures able to represent
their structure and the development of methods that can
work with these data structures in an efficient way. One
of the most popular data structures used for this purpose is
a BDD.

As we presented in this paper, system reliability can be
viewed as a function depending on three parameters, which
are structure function ϕ(x), component state probabilities
p(t) and time t. Depending on parameters that are a
priori known, we distinguish topological, time-dependent
probabilistic, and time-independent probabilistic reliability
analysis.

In previous works, BDDs had been applied successfully
in topological and time-independent probabilistic reliability
analysis. In this paper, we showed a simple extension of the
basic algorithm for probabilistic evaluation by BDD. The
extensions allow the calculation of time-dependent system
reliability (and other probabilistic system characteristics)
using the basic time-independent algorithm with little to no
modifications. Furthermore, we introduced symbolic expres-
sions as another way of time-dependent analysis by BDD.
Symbolic expressions allow easier interaction with other
computer algebra systems as well as further examination of
the system’s reliability function. However, our experimental
evaluation shows that if we are only interested in the
evaluation of system reliability in numerous time points,
then the simpler modification of the basic approach is more
efficient.

In future research, we would like to focus on the develop-
ment of methods for time-dependent probabilistic reliability
analysis of multi-state systems using TeDDy. In this case,
more than two states are used to model the behavior of the
system and its components, therefore, MDDs are used to
model the structure function of such systems [43].
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[5] T. Hadžić and J. N. Hooker, “Cost-bounded binary decision diagrams for
0-1 programming,” in Integration of AI and OR Techniques in Constraint
Programming for Combinatorial Optimization Problems, P. Van Henten-
ryck and L. Wolsey, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2007, pp. 84–98.

[6] A. Rauzy, “Binary decision diagrams for reliability studies,” in Handbook
of Performability Engineering, K. B. Misra, Ed. London, UK: Springer
London, 2008, pp. 381–396.

[7] E. Zaitseva, V. Levashenko, and J. Kostolny, “Importance analysis based
on logical differential calculus and binary decision diagram,” Reliability
Engineering & System Safety, vol. 138, pp. 135–144, 2015.

[8] F. Somenzi, “Cudd: Cu decision diagram package,” https://github.com/
vscosta/cudd, 2005, accessed: 2023-07-20.

[9] J. Lind-Nielsen, “Buddy – a binary decision diagram package,” https://
github.com/jgcoded/BuDDy, 2014, accessed: 2023-07-20.

[10] M. Mrena, M. Kvassay, and E. Zaitseva, “Teddy: Templated decision
diagram library,” SoftwareX, vol. 26, p. 101715, 2024.

[11] A. K. Das and T. K. Roy, “Fractional order EOQ model with linear trend
of time-dependent demand,” International Journal of Intelligent Systems
and Applications, vol. 7, no. 3, pp. 44–53, 2015.

[12] V. Kharchenko, Y. Ponochovnyi, A.-S. M. Q. Abdulmunem, and A. Bo-
yarchuk, “Security and availability models for smart building automation
systems,” International Journal of Computing, vol. 16, no. 4, pp. 194–202,
2017.

[13] Rakhi and G. L.Pahuja, “Component Importance Measures based Risk and
Reliability Analysis of Vehicular Ad Hoc Networks,” International Journal
of Computer Network and Information Security, vol. 10, no. 10, pp. 38–45,
2018.

[14] L. Ozirkovskyy, B. Volochiy, O. Shkiliuk, M. Zmysnyi, and P. Kazan,
“Functional safety analysis of safety-critical system using state transition
diagram,” Radioelectronic and Computer Systems, no. 2, pp. 145–158,
2022.

VOLUME 23(3), 2024 369

https://github.com/vscosta/cudd
https://github.com/vscosta/cudd
https://github.com/jgcoded/BuDDy
https://github.com/jgcoded/BuDDy


Mrena et al./ International Journal of Computing, 23(3) 2024, 360-370

[15] T. Nakagawa, Stochastic Processes, ser. Springer Series in Reliability
Engineering. London, UK: Springer London, 2011.

[16] C. Bauer, A. Frink, and R. Kreckel, “Introduction to the ginac framework
for symbolic computation within the c++ programming language,” Journal
of Symbolic Computation, vol. 33, no. 1, pp. 1–12, 2002.

[17] E. Babeshko, V. Kharchenko, K. Leontiiev, and E. Ruchkov, “Practical
aspects of operating and analytical reliability assessment of FPGA-based
I&C systems,” Radioelectronic and Computer Systems, no. 3, pp. 75–83,
2020.

[18] H. Fesenko, V. Kharchenko, A. Sachenko, R. Hiromoto, and V. Kochan,
“An internet of drone-based multi-version post-severe accident monitoring
system: Structures and reliability,” in Dependable IoT for Human and
Industry, V. Kharchenko, A. L. Kor, and A. Rucinski, Eds. New York:
River Publishers, 2022, pp. 197–217.

[19] Y. Sun, H. Fesenko, V. Kharchenko, L. Zhong, I. Kliushnikov, O. Il-
liashenko, O. Morozova, and A. Sachenko, “UAV and IoT-based systems
for the monitoring of industrial facilities using digital twins: Methodology,
reliability models, and application,” Sensors, vol. 22, no. 17, p. 6444, 2022.

[20] E. Zio, “Reliability engineering: Old problems and new challenges,”
Reliability Engineering & System Safety, vol. 94, no. 2, pp. 125–141,
2009.

[21] M. Rausand and A. Høyland, System Reliability Theory, 2nd ed. John
Wiley & Sons, Inc., 2004.

[22] A. Lisnianski, I. Frenkel, and Y. Ding, Multi-state System Reliability Anal-
ysis and Optimization for Engineers and Industrial Managers. London,
UK: Springer-Verlag London Ltd., 2010.

[23] B. Natvig, Multistate Systems Reliability Theory with Applications, ser.
Wiley Series in Probability and Statistics. Chichester, UK: John Wiley &
Sons, Ltd, 2011.

[24] W. Kuo and X. Zhu, Importance Measures in Reliability, Risk, and
Optimization: Principles and Applications, 1st ed. Wiley Publishing,
2012.

[25] M. Kvassay and E. Zaitseva, “Topological analysis of multi-state systems
based on direct partial logic derivatives,” in Recent Advances in Multi-
state Systems Reliability, ser. Springer Series in Reliability Engineering,
A. Lisnianski, I. Frenkel, and A. Karagrigoriou, Eds. Cham, CH: Springer
International Publishing, 2018, pp. 265–281.

[26] J. Newton and D. Verna, “A theoretical and numerical analysis of the
worst-case size of reduced ordered binary decision diagrams,” ACM Trans.
Comput. Logic, vol. 20, no. 1, 2019.

[27] A. Srinivasan, T. Ham, S. Malik, and R. Brayton, “Algorithms for dis-
crete function manipulation,” in 1990 IEEE International Conference on
Computer-Aided Design. Digest of Technical Papers, 1990, pp. 92–95.

[28] S. Yanushkevich, D. Miller, V. Shmerko, and R. Stankovic, Decision
Diagram Techniques for Micro- and Nanoelectronic Design Handbook.
CRC Press, 2006.

[29] S. Nagayama, A. Mishchenko, T. Sasao, and J. T. Butler, “Exact and
heuristic minimization of the average path length in decision diagrams,”
J. Multiple Valued Log. Soft Comput., vol. 11, pp. 437–465, 2005.

[30] Y. Mo, L. Xing, and S. V. Amari, “A multiple-valued decision diagram
based method for efficient reliability analysis of non-repairable phased-
mission systems,” IEEE Transactions on Reliability, vol. 63, no. 1, pp.
320–330, 2014.

[31] P. Rusnak, J. Rabcan, M. Kvassay, and V. G. Levashenko, “Time-
dependent reliability analysis based on structure function and logic dif-
ferential calculus,” in International Conference on Dependability of Com-
puter Systems, 2018.

[32] S. Du, R. Kang, Z. Zeng, and E. Zio, “Time-dependent reliability assess-
ment of a distributed generation system based on multi-valued decision
diagrams and markov processes,” in Safety and Reliability – Theory and
Applications. CRC Press, 2017.

[33] T. van Dijk, Sylvan: multi-core decision diagrams. University of Twente,
2016.

[34] K. Brace, R. Rudell, and R. Bryant, “Efficient implementation of a bdd
package,” in 27th ACM/IEEE Design Automation Conference, 1990, pp.
40–45.

[35] K. McElvain, “Iwls’93 benchmark set: Version 4.0,” Tech. Rep., 1993.
[36] E. Zaitseva and V. Levashenko, “Importance analysis by logical differen-

tial calculus,” Automation and Remote Control, vol. 74, 2013.
[37] W.-C. Yeh, “A new algorithm for generating minimal cut sets in k-out-of-

n networks,” Reliability Engineering & System Safety, vol. 91, no. 1, pp.
36–43, 2006.

[38] ——, “An improved algorithm for searching all minimal cuts in modified
networks,” Reliability Engineering & System Safety, vol. 93, no. 7, pp.
1018–1024, 2008.

[39] M. Forghani-elahabad and N. Kagan, “An approximate approach for
reliability evaluation of a multistate flow network in terms of minimal
cuts,” Journal of Computational Science, vol. 33, pp. 61–67, 2019.

[40] M. Mrena, M. Kvassay, and S. Czapp, “Single and series of multi-valued
decision diagrams in representation of structure function,” in Lecture
Notes in Networks and Systems, vol. 484 LNNS, 2022, pp. 176–185.

[41] P. Fišer, “Collection of digital design benchmarks,” https://ddd.fit.cvut.cz/
www/prj/Benchmarks/, 1991, accessed: 2023-10-31.

[42] M. Kvassay, E. Zaitseva, V. Levashenko, and J. Kostolny, “Reliability
analysis of multiple-outputs logic circuits based on structure function
approach,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 36, no. 3, pp. 398–411, 2017.

[43] A. Shrestha, L. Xing, and Y. Dai, “Decision diagram based methods
and complexity analysis for multi-state systems,” IEEE Transactions on
Reliability, vol. 59, no. 1, pp. 145–161, 2010.

MICHAL MRENA received the bachelor’s de-
gree, master’s degree, and PhD degree in infor-
matics from the University of Zilina, Slovakia in
2019, 2021, and 2024 respectively. He is currently
an assistant professor with the Department of In-
formatics at the Faculty of Management Science
and Informatics, University of Zilina, Slovakia.
His research focuses on data structures, optimiza-
tion of program code, and decision diagrams in
the reliability analysis of complex systems.

MIROSLAV KVASSAY received the bachelor’s
degree, master’s degree, and PhD degree in in-
formatics from the University of Zilina, Slovakia
in 2010, 2012, and 2015 respectively. He is cur-
rently an associate professor with the Department
of Informatics at the Faculty of Management
Science and Informatics, University of Zilina,
Slovakia. He deals with the theory of reliability
engineering, Boolean and multiple-valued logic,
and their applications in reliability analysis.

370 VOLUME 23(3), 2024

https://ddd.fit.cvut.cz/www/prj/Benchmarks/
https://ddd.fit.cvut.cz/www/prj/Benchmarks/

	INTRODUCTION
	RELIABILITY ANALYSIS OF NON-REPAIRABLE SYSTEM WITH INDEPENDENT NON-REPAIRABLE COMPONENTS
	TIME-DEPENDENT PROBABILISTIC ANALYSIS
	TIME-INDEPENDENT PROBABILISTIC ANALYSIS
	TOPOLOGICAL ANALYSIS

	DECISION DIAGRAMS
	PROBABILISTIC ANALYSIS BY BDDS
	TIME-INDEPENDENT ANALYSIS
	Bottom-up algorithm
	Bottom-up algorithm implementation

	TIME-DEPENDENT ANALYSIS
	Basic approach
	Symbolic approach


	TEDDY
	LIBRARY STRUCTURE
	PROBABILISTIC ANALYSIS

	EXPERIMENTAL EVALUATION
	STORAGE SYSTEM EXAMPLE
	RANDOM SERIES-PARALLEL SYSTEMS
	PLA BENCHMARK CIRCUITS

	CONCLUSION
	References
	Michal Mrena
	Miroslav Kvassay


