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 ABSTRACT In recent years, representational learning has attracted considerable attention. However, 
unsupervised representation learning has received less attention compared to supervised representation learning. 
This paper introduces a combination of a deep neural network (DNN) and a generative adversarial network (GAN) 
that can learn features through unsupervised learning. Essentially, the Generative Adversarial Network (GAN) is 
a deep learning architecture that engages two neural networks in a framework similar to a zero-sum game. 
Generating new, synthetic data that resembles a known data distribution is the aim of GANs. In June 2014, Ian 
Goodfellow and associates first developed the idea of Generative Adversarial Network (GAN). The research used 
a new type of GAN model which is called Wasserstein GAN. There are some distinct differences between 
traditional GAN and Wasserstein GAN. This paper highlights the differences and benefits of using Wasserstein 
GAN, as well as the architecture of Wasserstein GAN. This study trained the model on an image dataset to extract 
features, and subsequently tested it on another dataset, demonstrating that the GAN model learns a hierarchy of 
representation from object parts in the discriminator. The purpose of this paper is to use unsupervised learning like 
Convolutional Neural Network (CNN) and Wasserstein Generative Adversarial Network (WGAN) for feature 
extraction from unlabeled dataset. 
 

 KEYWORDS Deep Neural Network; Generative Adversarial Network; Wasserstein GAN, Convolutional 
Neural Network; Unsupervised Learning; Representation Learning. 
 

I. INTRODUCTION 
EARNING features from large amounts of images is an 
active research topic. Computer vision models need to 

learn features from images in different kinds of tasks, such as 
image classification, image colorization, or object direction. It 
is essential for many applications across many industries, such 
as computer vision, healthcare, security, and entertainment. It 
makes it possible for computers to comprehend and interpret 
visual data, which opens up a wide range of creative and useful 
use cases. In various types of deep learning tasks, whether 
supervised or unsupervised, learning features from an image 
dataset is crucial. The image datasets are mostly unlabeled. 

Deep learning techniques have a transformative impact 
across diverse domains, including artistic creation and medical 
diagnostics, in the rapidly evolving field of artificial 
intelligence. Research and development activities in deep 
learning are dynamic and expected to drive further 

advancements in the field. The goal is to create AI systems that 
are more powerful, effective, and ethically sound. This 
trajectory is highly influenced by the complex needs arising 
from various application domains, demonstrating a dedication 
to customizing AI solutions to particular contextual problems. 

Generative Adversarial Networks (GANs) are one of the 
many methods leading this evolution that has attracted 
significant interest. GANs, distinguished by their unique 
approach of harnessing the antagonistic interaction between the 
discriminator and the generator, two neural networks, have 
proven their usefulness in a diverse array of applications. 
Notably, they differ significantly from traditional machine 
learning models, which frequently rely on carefully labeled 
datasets, in that they can learn meaningful features from 
unlabeled, raw data. 

Typically, a large labeled data corpus is required to achieve 
visually appealing results in feature learning. However, this 
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work's adopted paradigm, unsupervised learning, offers a more 
efficient approach to extract meaningful patterns from 
unlabeled data, marking a significant step towards real machine 
autonomy. The study under review suggests a novel 
combination of convolutional neural networks (CNNs) and 
generative adversarial networks (GANs), which together 
provide a potent mechanism for feature extraction from 
unlabeled data. The resulting model is 
positioned at the nexus of the supervised and unsupervised 
learning paradigms and is known as the Deep Convolutional 
Generative Adversarial Network (DCGAN). 

There aren't many studies investigating the possibilities of 
GAN models, especially when it comes to unlabeled datasets, 
which emphasizes how novel and important this work is. The 
suggested methodology adds a significant component to the 
expanding body of knowledge in the field of deep learning by 
using the discriminator or generator as a means of 
representation learning for supervised tasks. This study 
contributes to the existing body of knowledge on GANs in the 
context of unlabeled data, paving the way for future 
advancements in the field. 

II. RELATED WORK 
The Generative Adversarial Networks (GANs) model has not 
received much research. On the other hand unsupervised 
representation learning is a well studied problem in computer 
science research. This research used unsupervised 
representation learning with the GAN model. 

In [1] this paper, a new GAN was introduced which is called 
LAPGAN. The author develops a low resolution generated 
image which can be reliable. But this model failed to learn 
features from unlabeled images. Some methods like [2, 3] are 
based on the Convolutional Neural Network (CNN) and 
worked very well learning features from images. They even 
achieved state-of-art results. The drawback of these methods is 
that models need enormous labeled data to obtain the results. 

Certain generative models, like Autoencoders (AE), have 
been proposed to reconstruct images and create unsupervised 
learning representations that can extract features from the input 
and produce a latent space representation [4, 5] that is far more 
accurate. Even though the reconstruction error that is used to 
train them might not be the best metric for learning 
representation in particular, the AE's training process is entirely 
unsupervised. 

Clustering the data (e.g., with K-means) and using the 
clusters to boost classification scores is a traditional method of 
unsupervised representation learning. Hierarchical clustering 
of image patches can be used to learn effective image 
representations in the context of images [6]. 

In [7] this paper context demonstrated how to determine the 
approximate function of each convolution filter in the network 
by employing deconvolutions and filtering the maximal 
activations. Likewise, by applying a gradient descent to the 
inputs, [8] can examine the optimal image that triggers specific 
subsets of filters.  

One of the most well-liked unsupervised algorithms in 
recent years [9] is the idea of generative adversarial networks 
(GANs), which offer an engaging framework for two networks 
to play a two-player minimax game to learn data distribution 
from unlabeled datasets. They are appealing to representation 
learning because of their unsupervised learning process. But 
one of the main issues with GANs is that their training phase is 
unstable, which frequently leads to generators that produce 

meaningless outputs that are dispersed throughout the training 
data. 

There are two types of generative image models that have 
been thoroughly examined: parametric and non-parametric. 

Non-parametric models are frequently employed in texture 
synthesis [10], super-resolution [11], and in-painting [12]. 
They match from a database of pre-existing images, frequently 
matching patches of images.  

In early 2000, [13] models generated textual images using 
MNIST dataset. However, generating neutral images has 
succeeded most recently. Deconvolution network approach 
[14] and a recurrent approach [15] had got success in 
generating neutral images. But they have not leveraged for 
supervised learning. 

Most recently, Deep Convolutional GAN (DCGAN) [16] 
was introduced which also gives state of the art results and 
leverages for supervised tasks. But the only problem of this 
model is model collapse. The model can learn  its distribution 
partially and generate just some. 

In this paper, the research solves the model collapse 
problem by introducing Wasserstein GAN. This Gan uses Earth 
Mover (EM) distance instead of a traditional matrix that solves 
the vanishing gradient problem. The goal of this paper is to 
develop a Wasserstein Generative Adversarial Networks 
(GAN) model with a convolutional neural network (CNN) that 
will learn features from unlabeled data without model collapse 
and can leverage supervised learning. 

The proposed mode will be sufficiently effective to resolve 
the model collapse issue that most GAN models previously 
encountered. 

III. METHODOLOGY 
One well-known class of artificial intelligence algorithms that 
is frequently used in the machine learning and deep learning 
domains is called Generative Adversarial Networks (GANs). 
This paper conducts a thorough analysis of the suggested 
model, the Wasserstein GAN (WGAN), in the section that 
follows. The explanation explores the WGAN's nuances, 
explaining what makes it unique and clearly separating it from 
the traditional GAN architecture. This section attempts to 
provide a refined understanding of the innovations and 
distinctive features that set the Wasserstein GAN architecture 
apart from the conventional GAN paradigm by offering a 
thorough analysis of the architecture. 

A.  WASSERSTEIN GAN ARCHITECTURE 
The Wasserstein Generative Adversarial Network (WGAN), 
sometimes known as the WGAN, is a variation on the regular 
GAN that was developed to overcome some of the stability and 
convergence problems that traditional GANs have. As like 
traditional GANs the objective of Wasserstein GAN (WGAN) 
is to make the critic accurately distinguish between real and 
created data, while the generator's goal is to provide data that 
is as real as feasible. This phase is called min max game. This 
game is between the generator which produces new data or 
images and the discriminator which distinguishes between real 
and fake data. As figure 1 shows, a noise z is used in the 
generator to produce synthetic data samples [17].  The 
produced fake image then processes in the discriminator (critic) 
alongside the real image to produce the loss value. The main 
difference between Wasserstein GAN and Traditional GAN is 
in Discriminator (Critic). There are differences in distance 
matrix and loss function. 
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Figure 1. Architecture of Wasserstein GAN 

B.  WASSERSTEIN DISTANCE 
The goal of the WGAN generator is the same as that of the 
traditional GAN generator. However, the distance metric in 
WGAN and traditional GAN is different. The generator's goal 
is to produce samples that closely mimic the actual data 
distribution from random noise. The generator's objective is to 
deceive critics into thinking that the generated data is accurate.  

So, the objective function is designed to minimize the 
Wasserstein distance between the real and generated data 
distributions. The Wasserstein distance is a key difference 
between traditional gan and WGAN which is a more stable 
metric than Jensen-Shannon divergence or Kullback-Leibler 
divergence employed in traditional GANs . The Earth-Mover's 
distance is another name for the Wasserstein distance, it 
estimates the "cost" of changing one distribution into another. 
Therefore, G seeks to minimize a function that evaluates D’s 
ability to tell the difference between the real and fake: 

 

  


ீ
𝔼௭~(௭)ൣ𝐷൫𝐺(𝑧)൯൧.                                 (1) 

 

In equation (1), D is referred to as the "critic" in this context 
because it is trained to approximate the Wasserstein distance 
between real and produced distributions rather than to 
categorize data. G is the generator that produces fake samples 
from the noise z.  

The critic in a WGAN seeks to calculate the Wasserstein 
distance between the real and generated data distributions. In 
the traditional gan, the discriminator (in traditional gan the 
critic called discriminator) tries to determine whether data is 
real or fake whereas in WGAN’s critic try to calculate the 
distance between real and fake data. The critic tries to 
maximize a function of the wasserstein distance between the 
average value of real image and the average value of 
generated/fake images: 

 
௫


(𝔼௫~ೝೌ(௫)[𝐷(𝑥)]  − 𝔼௭~(௭)[𝐷(𝐺(𝑧))])        (2) 

 
In equation (2), 𝔼 represents the expected value, 𝑝(𝑥)is 

the distribution of the real data, and 𝑝௭(𝑧) is the prior 
distribution for generating fake data. G is the generator that 
produces fake samples from the noise z.  

After maximizing the objective function, the critic D creates 
a meaningful gradient that the generator G can use to advance 
itself. So generator G tries to minimize its objective function 

and the critic D tries to maximize its objective function. It is 
called a min-max game. 

C.  WASSERSTEIN LOSS 
There is a major difference in the use of loss function between 
traditional GAN and Wasserstein GAN. In traditional GANs 
usually use binary cross-entropy whereas in WGAN use 
Wasserstein loss. For binary classification issues, the binary 
cross-entropy loss is frequently used. The discriminator in a 
GAN is simply a binary classifier because it seeks to 
distinguish between real and generated (false) samples. Cross-
entropy is a measure of the difference of two probability 
distributions.  In binary cross-entropy GAN uses labels 0 and 
1. Label 0 is for fake images and label 1 for real images.  

Discriminator loss: 
 

𝑙𝑜𝑠𝑠 = −𝔼௫~ೝೌ(௫)[𝑙𝑜𝑔 𝐷(𝑋)] − 𝔼௭~(௭)[𝑙𝑜𝑔 (1

− 𝐷(𝐺(𝑧)))] ⬚ 
      (3) 

Generator loss: 
 

𝑙𝑜𝑠𝑠ீ  = −𝔼௭~(௭)[𝑙𝑜𝑔 𝐷(𝐺(𝑧))]                      (4) 
 

However, the problem of binary cross-entropy is that when 
the model runs for a while it collapses or the gradient descent 
does not update and the value becomes constant. It is called the 
vanishing gradient problem. In traditional GANs, the generator 
may encounter vanishing gradients, particularly if the 
discriminator grows too powerful. This happens as a result of 
the binary cross-entropy loss overload that can produce small 
gradients in typical GANs. The generator's ability to learn can 
be hampered by small gradients. Without taking into account 
the diversity of the actual data distribution, the generator begins 
to produce a little variety or perhaps just one sort of output. 
Without actually understanding the underlying data 
distribution, the generator sort of discovers a "shortcut" to 
deceive the discriminator. And this mode of generator is called 
‘Mode Collapse’.   

Our proposed model uses the Wasserstein loss to solve this 
problem. We design the Wasserstein loss by minimizing the 
Wasserstein distance, also known as the Earth Mover distance. 
WGAN, unlike traditional GAN, uses any label value for both 
real and fake images. Therefore, the value is not limited to 0 
and 1. That is what solves the mode collapse. 

Wasserstein Critic loss: 
 

𝑙𝑜𝑠𝑠௧  = 𝔼௫~ೝೌ(௫)[𝐶(𝑥)]  − 𝔼௭~(௭)[𝐶(𝐺(𝑧))]             
(5)  

 
Wasserstein Generator loss: 

 
𝑙𝑜𝑠𝑠௧  = 𝔼௭~(௭)[𝐶(𝐺(𝑧))]             (6)                          

 
For Wasserstein loss (WLoss) there is a  condition that must 

enforce in the size of the critic's gradients that it should be 
limited in size. This condition is called 1-Lipschitz continuous 
condition. Itt means the norm of the gradient should be 1 or less 
at each point. This is important for stable training with WLoss 
and to approximate Earth mover’s distance correctly. There are 
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2 ways to enforce the 1-Lipschitz continuous condition which 
are Weight Clipping and Gradient Penalty. In the proposed 
model, this research uses Gradient Penalty.  

Gradient Penalty is a term added as a regularization term to 
the loss, to ensure the critic is 1-L continuous. So there is a new 
term going to add to the loss equation: 
 

𝑥 =  𝛼 ∗ 𝑟𝑒𝑎𝑙 + (1 − 𝛼)  ∗ 𝑓𝑎𝑘𝑒                       (7) 
 

 𝑔𝑝 = (||𝜵𝑐(𝑥)||ଶ − 1)ଶ    (8) 
 

In equation (8), gp is calculated by applying an interpolated 
mix of real and fake images (because it’s impossible to check 
the gradient at every point of the feature space). So the final 
Wasserstein critics loss equation is: 
 

𝑙𝑜𝑠𝑠௧  = 𝔼௫~ೝೌ(௫)[𝐶(𝑥)]  − 𝔼௭~(௭)[𝐶(𝐺(𝑧))]  

+ 𝜆(||𝜵𝑐(𝑥)||ଶ − 1)ଶ  
               (9) 

   
In equation (9), 𝜆 is intensity term of the gradient penalty, 

controls the strength of the penalty.  

IV. TRAINING & TESTING 
In this study, the model trained with Imagenet-1k [18]. The pre-
trained model is used to generate images from CIFAR-10 [19] 
dataset and use the images in the L2-SVM classifier. So the 
model never trained with CIFAR-10 [19] dataset but still 
generated good images and the study used the L2-SVM to find 
how good the WGAN is in representation learning.  

A.  MODEL SETUP 
This study distinguishes the model's architectural arrangement 
by including five layers in both the generators and critics. The 
overall goal of the research, to enable the training of generative 
models with higher resolution and depth, justifies this design 
decision. This quest, through extensive model exploration, 
resulted in the identification of a structured family of 
architectures that performed well during the dataset's training. 

Three explicit architectural principles are followed in the 
instantiation of the convolutional Wasserstein Generative 
Adversarial Network (WGAN). First, batch normalization is 
incorporated into both the discriminator and the generator [20]. 
This method, which achieves a zero mean and unit variance by 
normalizing the input of each unit, is used to stabilize the 
learning process. In light of the possible difficulties resulting 
from insufficient initialization, batch normalization stands out 
as a prominent technique that resolves training problems and 
improves gradient flow, particularly when dealing with deeper 
models. 

Second, in terms of the generator, the hyperbolic tangent 
(Tanh) activation is used in the output layer, while Rectified 
Linear Unit (ReLU) is the activation function used in all other 
layers [21]. It has been empirically observed that this deliberate 
use of activation functions accelerates the learning trajectory of 
the model, enabling a faster saturation and coverage of the 
color space that is intrinsic to the training distribution. The 
bounded activation is known for its effectiveness in obtaining 
faster convergence, especially in the form of Tanh. 

Thirdly, all layers of the critics use the Leaky Rectified 
Linear Unit (LeakyReLU) activation [22]. This decision shows 
prowess, especially in higher-resolution modeling, and is 
especially pertinent to the discriminator's context. The 
discriminator becomes more sensitive and skilled at identifying 
subtleties in the input data when non-linearity is carefully 
introduced, especially in the negative domain. 

In conclusion, the convolutional WGAN demonstrates a 
wise and empirically supported methodology through its 
carefully thought-out architecture, informed by the concepts of 
batch normalization and careful activation function selection. 
This method aims to make training more complex and high-
resolution generative models more consistent and effective. It 
is based on a systematic study of architectural arrangements 
and makes a big contribution to the larger discussion on 
advanced generative adversarial networks. 

During the model's training regimen, the Adam optimizer 
[23] is employed to facilitate the optimisation process. Its 
parameters include a momentum parameter of 0.5 and a 
learning rate of 0.0002. This optimizer improves training 
process efficiency and convergence and is well-known for its 
effectiveness in stochastic optimisation tasks. 

Moreover, the critics specifically use the Leaky Rectified 
Linear Unit (Leaky ReLU) activation function [22]. Here, a 
critical factor controlling the level of leakiness in the activation 
function, the parameter alpha, is set to 0.2. The addition of 
controlled non-linearity by the Leaky ReLU, especially in the 
negative domain, enhances the critics' perceptual abilities and 
helps the model identify subtle characteristics in the input data. 

In order to optimize the model's training dynamics, a careful 
and well-informed decision went into choosing the optimizer 
and activation function, as well as fine-tuning the related 
hyperparameters. Under the convolutional Wasserstein 
Generative Adversarial Network (WGAN) architecture used in 
this study, such careful configuration is essential to achieving 
convergence, stability, and efficient representation learning. 

B.  DATASET 
The research at hand used the CIFAR-10 [19] dataset as its 
main source of data for model training and evaluation. CIFAR-
10 consists of 60,000 color images with a 32 x 32 pixel 
resolution that are methodically arranged into 10 different 
classes. The dataset is further divided into subsets, with 10,000 
images set aside for model performance testing and 5,000 
images designated for training. It is standard procedure in 
machine learning assessments to separate datasets into training 
and test sets in order to gauge the model's capacity for 
generalization. The dataset is useful as a benchmark for image 
classification tasks because it contains a wide range of visual 
content that is contained within the designated classes. 

Figure 2, which shows representative samples from this 
image repository, has been included to give a visual insight into 
the nature of the CIFAR-10 dataset. This graphical depiction 
aims to provide a concrete comprehension of the visual variety 
and intricacy contained in the CIFAR-10 dataset, highlighting 
its importance in supporting thorough model training and 
assessment in the context of image classification. 
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Figure 2. Data sample of CIFAR-10 Dataset 

C.  RESULT & DISCUSSION 
The research uses the Imagenet-1k dataset [18] as a source of 
real images for unsupervised training. During the training 
process, 32 × 32 min-resized center crops are used. The main 
goal is to evaluate the Wasserstein Generative Adversarial 
Networks (WGAN) representation learning performance. The 
model is trained using the Imagenet-1k dataset to determine 
how well the learned representations perform in supervised 
tasks. Figure 3 provides a visual representation of the 
evaluation of representation learning performance by showing 
the evolution of the generator loss and critic's loss over the 
dataset's training. This graphical representation sheds light on 
the convergence and effectiveness of the unsupervised learning 
process by showing how the WGAN model adjusts and fine-
tunes its parameters during training. 
 

  

Figure 3.  Generator and Critics loss 

It then uses CIFAR 10 dataset in the convolutional features 
from all layers of the critics, max pooling each layer's 

representation to create a 4 × 4 spatial grid. Following their 
flattening and concatenation into a 28672 dimensional vector, 
these features are then used to train a regularized linear L2-
SVM classifier. In the process, The CIFAR 10 split into 2 parts; 
training dataset and test dataset. The pre-trained WGAN model 
is used to train and test the L2-SVM classifier. first the model 
train with training dataset. To measure the performance, the test 
dataset is used to test the accuracy of the model and it gives an 
accuracy of how the WGAN performs for representation 
learning. So basically, WGAN never trained with the CIFAR-
10 dataset but it trained with Imagenet-1k dataset. However, 
the pre-trained WGAN used to generate images from CIFAR-
10 to train l2-SVM classifier. 

This achieved 83.2 %, which is better than other Deep 
convolutional GANs. The table 1 shows the different results of 
the CIFAR-10 dataset used in different models.. 

Applying unsupervised representation learning algorithms 
as a feature extractor on supervised datasets and assessing the 
effectiveness of linear models fitted on top of these features is 
a popular method for assessing the quality of these algorithms. 
A well-tuned single-layer feature extraction pipeline using K-
means as the feature learning algorithm has shown very strong 
baseline performance on the CIFAR-10 dataset. This technique 
achieves 80.6% accuracy when using 4800 feature maps, which 
is an extremely large number. The base algorithm's 
unsupervised multi-layered extension achieves 82.0% accuracy 
[24]. Using traditional GAN and deep convolutional neural 
networks (DCGAN) [16] CIFAR-10 dataset achieved 82.4 %. 
In that contreset this research’s model deep convolutional 
wasserstein gan has achieved 83.2 % which is better then most 
of the studies. 

But Still, The result is not as good as Exemplar CNN [25], 
whose accuracy is 84.3%. This paper leaves it for future work 
to increase the accuracy. 

Table 1: Accuracy on the CIFAR-10 dataset. 

Model Accuracy Accuracy 
(400 per class) 

Max # of 
features units 

1 Layer K-
mean 

80.6 % 63.7 % 4800 

3 Layer K-
means 

Learned RF 

82.0 % 70.7 % 3200 

View Invariant 
K-means 

81.9 % 72.6 % 6400 

Exemplar 
CNN 

84.3% 77.4 % 1024 

DCGAN 82.8% 73.8 % 512 

WGAN (This 
research) 

83.2 % 74.1 % 512 

 

V. CONCLUSION 
This paper presents the Wasserstein Generative Adversarial 
Networks (WGAN) as a useful model for unsupervised 
representation learning. A key aspect of this research is a 
thorough explanation of the differences between the 
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architectures of conventional Generative Adversarial Networks 
(GAN) and the WGAN paradigm. The empirical results 
presented in this paper demonstrate that WGAN achieves an 
industry-leading level of accuracy, especially when it comes to 
extracting significant features from datasets that lack explicit 
labeling. 

A significant aspect of this work is the methodical way in 
which it tackles a gap that is widely present in the literature: 
models' vulnerability to instability and possible collapse over 
long training intervals. The empirical data presented here 
confirms that WGAN is effective in addressing these issues, 
which increases its relevance in the larger context of 
unsupervised representation learning techniques. 

While the recorded achievements are commendable, the 
scientific investigation remains cognizant of the need for 
scientific advancement. Therefore, we acknowledge the 
existing possibility of improving accuracy metrics. This 
concession also suggests future directions for future research 
projects, shedding light on the ongoing scholarly effort to 
improve and enhance unsupervised representation learning 
techniques. 
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