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 ABSTRACT Forest heterogeneity indicates the forest condition on producing more carbon into environment. 
Semidang Bukit Kabu Hunting Park Forest is a nature reserve lies over two districts of Central Bengkulu and Seluma, 
Bengkulu Province, which should have a heterogeneous forest to protect its natural resources. However, the data 
showed that the condition of it does not appear to have dense forest heterogeneity anymore, and its rate still remain 
unknown. Remote sensing as one of tools to help the remote monitoring was believed to be helpful to this question. 
This study showed changes in the heterogeneity from 2016 to 2021. Sentinel-2 imageries were occupied to help the 
process of classification of forest and non-forest areas. Support Vector Machine, as one of powerful machine learning 
tools, was also help the process with the integrating of Principal Component Analysis to optimize forest characteristics. 
This study indicates that there are significant reductions of forest heterogeneity over the area. The number of forest 
(heterogeny areas) continues to decline from 8122 ha in 2016 to 4339 ha in 2021. Furthermore, this study had proven 
that the algorithm of support vector machines showed significant performance to build the model towards the data with 
overall accuracy rate of 0.9434 and a kappa index of 0.9833. 
 

 KEYWORDS heterogeneity; forest; Semidang Bukit Kabu; support vector machine; principal component analysis; 
Bengkulu; Indonesia. 
 

I. INTRODUCTION 
FOREST are an ecosystem that is important for the 
sustainability of life on Earth. One of the main roles of forests 
is as a provider of oxygen for life. Forests have a very large 
number of plants, so they can produce a large enough amount 
of oxygen. In other functions, forests are also capable of greatly 
absorbing carbon emissions [1, 2]. In addition, forests also have 
the ability to absorb carbon dioxide from the air, thereby 
reducing the concentration of greenhouse gases. Forests are one 
of the most life-rich ecosystems on Earth. As an ecosystem, 
forests are habitats for various types of plants and animals [3]. 
The forest boasts a considerable level of biodiversity. 
Indonesia's tropical forest ecosystem is widely regarded as one 
of the most affluent and intricate ecosystems globally [4–7]. 
Tropical forests, which are found in areas with a hot and humid 
climate all year, are home to a diverse range of plants and 
animals [8, 9]. 

In Indonesia, there are several types of forests that are 
distinguished by their function, including production forests, 
conservation forests, protected forests, and hunting forests. A 
hunting forest, also known as a hunting park, is a type of 

conservation forest that allows for hunting tours [10]. Hunting 
activities are not only intended for tourism, but also to control 
certain animal populations. Hunting activities in the hunting 
park are strictly regulated for hunting time, types of animals 
that can be hunted, and weapons used for hunting. As an 
ecosystem for living things, forests should ideally consist of 
heterogeneous plants. Forest heterogeneity is the key to the 
existence of healthy ecosystems [11, 12]. The distribution of 
biodiversity is largely determined by the heterogeneity of 
forests [3, 13]. Many factors affect forest heterogeneity, such 
as topography, light, tree regeneration patterns, and climate 
[14, 15]. 

The forests in Indonesia continue to be impacted by 
deforestation. Changes in land use by humans are contributing 
to this ongoing issue [16]. Deforestation primarily results from 
the conversion of forested areas into plantations, logging for 
timber, and mining activities. This phenomenon also affects 
protected forests, despite efforts by the Ministry of 
Environment and Forestry to conserve these areas for their role 
as a water supply [17, 18]. Many factors, either directly or 
indirectly, influence forest land use [19, 20]. The 
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transformation of the forests on the island of Sumatra was 
mainly driven by the encroachment of plantations, particularly 
those cultivating oil palm, rubber trees, and coffee. In addition 
to plantation activity, forest fires and natural disasters such as 
landslides have also played a role in altering the vegetation [21, 
22]. Currently, deforestation is a concern for many parties, 
including governments and environmentalists. Semidang Bukit 
Kabu Hunting Park (SBK) is a lowland, wet tropical forest with 
a reasonably low topography. It is located at 0-8 meters above 
sea level and is geographically located at 3.778242-3.982736 S 
and 102°47'41"-102°60'10" E. Figure 1 illustrates the location 
of SBK in the Seluma and Bengkulu Tengah districts, within 
the Bengkulu Province of Indonesia. SBK is under the 
management of the Natural Resources Conservation Centre 
(BKSDA) of Bengkulu Province, a government organization 
entrusted with the oversight and protection of all flora and 
fauna in the region. 

 

 

Figure 1. The SBK map 

The primary function of the SBK forest is to protect the 
living natural resources and ecosystems in its area. However, 
this forest is also used for hunting activities, tourism purposes, 
and pest control. There are still many protected endangered 
species in this area, such as the Sumatran tiger, deer, wild boar, 
and other protected species. Nevertheless, the reality of the 
2021 SBK forest does not look like a heterogeneous forest with 
a high density. The heterogeneity of SBK forests as 
conservation forests decreases from year to year. This is likely 
to change the land use of SBK forests into plantations or 
residential areas. This condition is very worrying and threatens 
the survival of animals and ecosystems in the SBK forest. 
Serious efforts are needed from the government and 
communities to maintain the health of Indonesia's forests. SBK 
has undergone a succession process of ecosystem changes 
toward a more orderly and stable environment. Succession is 
an anti-deforestation effort by the government to restore forest 
heterogeneity. However, the succession by the relevant 
government has not been optimal. As mentioned earlier, there 
has been a lot of deforestation in SBK forests. Various 
problems are faced in managing the SBK area, such as 

encroachment, illegal logging, and poaching. It was recorded 
that 120 squatters cleared forest areas by turning the forest into 
plantation land, taking forest wood, and hunting Sumatran 
tigers. The arrival of forest encroachers from outside Seluma 
Regency blindly cleared the forest for oil palm plantations, 
coffee, and rubber. The latest condition is that the vegetation in 
SBK consists of logged-over areas, young and old shrubs, and 
several plantations. This causes an increase in the homogeneity 
of vegetation in forest conservation areas. 

We have undertaken a comprehensive analysis of forest and 
non-forest density through remote sensing imagery to better 
comprehend the pattern of vegetation change in the SBK area 
[23, 24]. Research [25, 26] shows the trend of cover changes 
and land changes through satellite image processing. The SVM 
method, according to [27–30], is numerous and accurate in the 
classification process of remote sensing image data, 
particularly forest images. The classification of forest objects 
based on remote sensing data entails the deployment of 
machine learning models. These models systematically analyze 
the features and attributes of objects to discern and categorize 
them. Notably, the scrutiny of pixel-based point patterns 
enables the identification of various object classes, particularly 
land cover, through remote sensing technology [31, 32]. The 
data series used for analysis in this research are Landsat images 
from 2016 to 2021. It is critical to understand the current SBK 
forest area and how it has changed over time [10]. This study 
categorizes land cover into two classes: forest and non-forest. 
Vegetation is classified as forest if it comprises diverse plant 
species, whereas bare land and homogeneous vegetation are 
categorized as non-forest. The PCA (Principal Component 
Analysis) model is employed to differentiate between the forest 
and non-forest classes [33–35]. PCA is a technique used to 
simplify data with linear transformations that form a new 
coordinate system with maximum variance [36]. Through 
PCA, it can be seen what factors play the most role in 
explaining phenomena in the dataset while maintaining the 
characteristics of the data (maximum variance). Hence, our 
research leverages PCA to improve SVM's ability to 
differentiate between forest and non-forest areas with greater 
accuracy. To date, there has been no research addressing 
changes in forest areas within SBK. This study seeks to analyze 
the distribution pattern of land density (forest and non-forest) 
to enhance the conservation of natural resources and 
ecosystems. This includes the preservation of plant and animal 
species diversity and their ecosystems, which are vital for 
supporting life. 

II. METHOD 
This research constitutes a quantitative study that seeks to 
ascertain the extent of changes in the SBK forest land area. The 
analysis of forest area changes is based on the delineation of 
forest and non-forest parameters. The study indicates a 
significant level of deforestation in the SBK region from 2016 
to 2021. Achieving accurate land cover classification in the 
SBK area is essential, which is why we utilized remote sensing 
data from the Sentinel-2 satellite through the USGS Earth 
Explorer. Sentinel-2 imagery is known for its high accuracy in 
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classifying objects, particularly in wetland areas [37, 38]. We 
believe these images will be suitable for classifying forest and 
non-forest land in the SBK area. When performing remote 
sensing-based object classification, various methods such as 
Random Forest (RF), Naïve Bayes (NB), and Stochastic 
Gradient Descent (SGD) have been commonly utilized [39–
41]. In this research, SVM was selected due to its superior 
classification results in comparison to other methods when 
applied to low-resolution remote sensing images using QGIS-
based tools. In the research [42, 43], RF, NB, and SGD 
demonstrated better performance than SVM. However, SVM 
outperformed in classifying two object classes (forest and non-
forest) with limited data. Moreover, research [44, 45] show the 
SVM method remains highly effective for classifying 
vegetation, land cover, including forests, compared to other 
methods. 

The research method presented in Figure 2 outlines the 
stages involved in the land classification process. The research 
commences with the analysis of satellite imagery of the SBK 
area from 2016 to 2021. This data is utilized to forecast changes 
in the protected forests over time [30]. Geometric and 
radiometric corrections are provided to make the image more 
representative and avoid distortion [46–48]. Geometric and 
radiometric corrections were performed using the Semi-
Automatic Classification (SCP) plugin in QGIS [49, 50]. A 
composite band or band combination involves combining 
bands in image data. This process entails entering the selected 
channel into the three primary colors (RGB) to create a 
composite image. The aim of using color composites is to 
obtain better visual information than using only a single band. 
The process is typically carried out using the Semi-Automatic 
Classification (SCP) plugin. 

 

 
Figure 2. Research method 

In addition, the correction is also intended so that the image 
can represent the shape in actual conditions with the 

appropriate coordinates. The following process is to crop the 
image according to the administrative boundary as an Area of 
Interest (AOI). The processing stage, which follows the 
preprocessing phase, consists of five distinct steps. Due to the 
extensive range of color values in remote sensing images, the 
utilization of unsupervised clustering becomes imperative, as 
these images cannot be effectively classified during the initial 
stages of processing [51]. The clustering process is 
automatically done by using the K-Means method [52, 53]. 
Unsupervised clustering is the process of grouping image 
pixels into several classes using cluster analysis [54, 55]. The 
clustering stage yields ten distinct classes in the AOI image, 
each characterized by a specific range of values depicted in 
Figure 3. The subsequent step involves using PCA to discern 
whether the area pertains to the forest or non-forest class. 
Typically, PCA is utilized for feature extraction to differentiate 
between forest and non-forest areas [56]. 

 

 
Figure 3. Clustering range value 

 
To ensure accurate classification, it is imperative to verify 

that the area is assigned to one of the classes by conducting the 
K-Means clustering iteration in the third stage. This involves 
the utilization of stratified random sampling, which facilitates 
the automatic selection of 200 points from the image for each 
class. The sampling process is executed utilizing the 
AcATAMa plugin, which effectively streamlines the selection 
of representative points for classification purposes [49, 57]. 
Automating the process of classifying forest and non-forest 
objects involves determining sample points, which are then 
used to partition the data into training and test sets. The training 
data is crucial for model development, while the test data is 
essential for model evaluation. In this study, 70% of the data is 
designated for training and 30% for testing to ensure that the 
differences in land cover distribution, as revealed by the 
confusion matrix, are clearly visible. The subsequent step 
entails employing SVM to classify the training data. To ensure 
precision and minimize errors, the classification process 
utilizes skit-learn within the OseGEO Shell toolkits on QGIS, 
as illustrated in Figure 4 [58, 59]. The process of determining 
the area of the classification results involves converting the 
image format from raster to vector and subsequently utilizing 
the calculator feature within QGIS for computation. Following 
this, the data is subjected to validation to verify the 
correspondence of the SVM classification results with each 
class. This validation procedure encompasses the application of 
a confusion matrix to 120 samples from both classes. 
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Figure 4. Classification using SVM 

III. RESULTS AND DISCUSSION 
Table 1 presents data from an image classification study using 
a 200 x 200 pixel dataset for forest and non-forest classes. The 

PCA model suggests that utilizing SVM for classification 
would be more effective, as the classification parameters based 
on class have been revealed through PCA. The input image 
used in the study depicts multiple plots for PCA, summarizing 
numerous independent variables (X) that are found to be 
correlated or influencing each other, consolidating them into 
one or more new variables containing a blend of the original 
independent variables. The data in Table 1 also includes a 
contour plot of the PCA model, which visually represents the 
data by displaying images with colors based on variations in 
one of the main components. There are discernible differences 
in pixel colors in forest and non-forest models. In essence, PCA 
can highlight distinct parameters in the forest and non-forest 
classification processes.  

 
Table 1. PCA model 

Class RGB images PCA model contour 2D 
 
 
 

Forest 

  
 
 
 

Non-forest 

  

 
Table 2. Spectral and PCA model overview 

Class Spectral PCA model  
 
 
 

Forest 

  
 
 
 

Non-forest 

  

 
 
 

 
 

Table 3. PCA model scatter 2D and loading dataset 
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Class PCA model scatter 2D Loading dataset 
 
 
 

Forest 

 

 

 
 
 

Non-forest 

  

PCA aims to explain the structure of variance-covariance 
through a linear combination of variables. Table 2 shows the 
percentage of variation explained by the PCA model. The forest 
model has three main components that describe RGB values of 
0.88 for red, 1.0 for green, and 0.98 for blue. In comparison, 
the non-forest model has an RGB value of 0.97 for red, 1.0 for 
green, and 1.0 for blue. Based on the plot, it is known that the 
non-forest model has a more stable RGB level compared to the 
forest model. 

The scatter plot in Table 3 shows the differences in the 
model with several groupings of pixels of different types. 
Based on the dataset processed through the Evince application, 
an overview is shown according to each model.  

The analysis of both models confirms their ability to 
accurately predict data for each class. The forest model 
achieves an accuracy rate of 86.2%, while the non-forest model 
achieves an accuracy rate of 94.4%. The visualization in Table 
3 illustrates that nearly all sample datasets are correctly 
categorized. Each model's graph displays an inverse 
relationship with the PCA model loading graph. In the forest 
model, the graph decreases, whereas in the non-forest model, it 
increases with varying accuracy values. This disparity is 
attributed to the confusion matrix, revealing that in the forest 
model, five sample points are misclassified as non-forest, 
resulting in a lower accuracy compared to the non-forest model. 

 

 
Figure 5. SVM classification results 

The six maps in Figure 5 represent heterogeneity changes 
that occurred in SBK. The green color represents the forest 
area, while the yellow color represents the non-forest area. We 
can see significant deforestation from 2016 to 2021, spread 

evenly within the protected forest area. In other words, the area 
included in the non-forest class is expanding. 

Table 4. Classification result area 

Classification Area in years (ha) 
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2016 2017 2018 2019 2020 2021 
Forest 8122 6458 5967 5814 5621 4339 

Non-forest 1102 2766 3258 3411 3604 4978 

 
The data in Table 4 also supports map data that shows 

deforestation in yearly numbers. Meanwhile, the area defined 
as the non-forest area in the SBK area is increasing. Indeed, 
further research is needed to determine what happened in the 
conversion of this forest area, which is now defined as non-
forest. Sentinel-2 image processing data classified as SVM is 
validated using a truncated Sentinel-2 image. The accuracy test 
can be calculated by using a confusion matrix. The results of 
the SVM accuracy test can be found in Table 5. 

This study utilized six remote sensing images, one captured 
each year. We applied a 10% cloud cover threshold to the 
Sentinel-2 image and selected the clearest one to optimize 
identification results. After testing with 120 forest and non-
forest sample points, we found the lowest accuracy to be 0.84 
on January 26, 2019, and the highest accuracy to be 1.00 on 
March 12, 2017, and March 11, 2020, resulting in an average 
overall accuracy of 0.94. These accuracy values demonstrate 
that the results of the SVM classification of the Sentinel-2 
image are reliable for identifying forest and non-forest areas. 
Additionally, the user accuracy provides the average 
probability (%) of a pixel from the classified image 
representing these classes in the field. If a class has a user 
accuracy value of 100%, it indicates that these classes have not 
been misclassified by not taking pixels from other classes. The 
accuracy test results are shown in Table 6. 

Table 5. Results of SVM Classification Confusion Matrix 

Date Overall accuracy 
April 9, 2016 0.90 

March 12, 2017 1.00 
April 11, 2018 0.94 

January 26, 2019 0.84 
March 11, 2020 1.00 

July 29, 2021 0.99 

 
The next step is the Kappa accuracy test to determine 

whether one error matrix is significantly different from another. 
The final step is to determine the overall accuracy, which is the 
ratio of the total number of areas (pixels) correctly classified to 
the entire area (pixels) of observations. The test results could 
reveal the truth about the classified image. The results of the 
overall accuracy calculation for both forest and non-forest 
classes are 0.9434, while the kappa index is 0.9833. 

Table 6. Performance Model 

Classification 
data 

Reference data 
Forest Non-

forest 
Row 
total 
(x) 

xy User 
accuracy 

(%) 
Forest 59 1 60 3540 98.336 

Non-forest 0 60 60 3660 100 
Column total 

(y) 
59 61 120 7200  

 
The classification of forest and non-forest areas in SBK to 

determine the rate of heterogeneity change shows outstanding 
results using the SVM method. This study used the appropriate 
data to produce a classification. This is indicated by the high 
accuracy of classification [60]. Studies [61–64] have also 
shown very high accuracy, above 90%, for image 
classification. Optimization of feature recognition in remote 

sensing image classification using PCA is more effective in 
obtaining high accuracy than other methods [65, 66]. 

IV. CONCLUSIONS 
The primary purpose of using PCA in this study is to 
differentiate between two specific classes. However, further 
research is necessary to broaden the scope of object 
classifications. The classification results indicate deforestation 
in SBK from 2016 to 2021. Nevertheless, additional 
investigations are required to identify the underlying causes of 
deforestation and assess the sustainability of the forest 
succession program in the SBK area. The area of Semidang 
Bukit Kabu Hunting Park Forest decreased from 8122 ha in 
2016 to 4339 ha in 2021, indicating a continued decline in 
forest area. The most significant deforestation occurred from 
2016 to 2017, with a total extent of 1664 ha. The application of 
SVM and PCA methods to classify forest and non-forest areas 
in remote sensing images yields high overall accuracy of 
0.9434 and a Kappa index of 0.9833. 
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