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 ABSTRACT In this paper, we concentrate on the images of the wounds on the human skin and propose to consider 

each image as a set of smaller pieces – crops or patches containing different textures. We overview, develop and 
compare deep learning feature extraction methods to model image crops as 200-dimensional feature vectors using 
various artificial neural network architectures: convolutional autoencoders, variational convolutional autoencoders, and 
Siamese convolutional networks trained in the contrastive learning manner. Also, we develop a custom convolutional 
encoder and decoder, use them in the aforementioned architectures and compare them with the ResNet encoder and 
decoder alternatives. Finally, we train and evaluate k-nearest neighbors and Multi-Layer Perceptron classifiers on the 
features extracted with the model above options to discriminate skin, wound, and background image patches. 
Classification evaluation results on the features, extracted with the Siamese network, show the best test accuracy for 
all implementations without a significant shift between model versions (accuracy > 93%); variational autoencoders 
show random results for all options (accuracy around 33%), and convolutional autoencoders reached good results 
(accuracy > 77%) but with a noticeable difference between the custom and ResNet versions; the latter is better. Custom 
encoder and decoder implementations are faster and smaller than the ResNet alternatives but may be less stable on 
larger datasets, which still needs investigation. Possible applications of the feature vectors include an area of interest 
extraction during wound segmentation or classification and usage as patch embeddings while training vision 
transformer architectures. 
 

 KEYWORDS wound segmentation, wound classification, autoencoder, variational autoencoder, Siamese networks, 
contrastive learning, image feature extraction 
 

I. INTRODUCTION 
RTIFICIAL neural networks (ANN) are commonly and 
widely used to solve classification, object detection, 

semantic segmentation, and other tasks in the different areas of 
the medical imaging domain [1-3]. In this research, we 
concentrate on the analysis of images of wounds on human 
skin. 

Automatic wound analysis is essential in managing chronic 
wounds, such as diabetic ulcers, pressure sores, and venous leg 
ulcers. These conditions require regular monitoring to assess 
healing progress and adjust treatment plans accordingly. 
Automated systems can offer consistent and objective 
evaluations, reducing the errors, associated with manual 
assessments [4, 5]. Another practical condition for automatic 
wound detection is in post-surgical care. Automated systems 
can help monitor surgical sites for signs of infection or any 
other dangerous condition, providing early warnings that can 
lead to timely medical interventions. This is particularly 
beneficial when patients need to manage their recovery at home 
[5]. 

As a rule, wound images are quite complex - they contain 
many different types of objects, complex backgrounds, and 
skin on various body parts. Thus, researchers apply and 
evaluate their classification or segmentation methods on some 
human skin tissues, very commonly - chronic diabetic foot 
ulcer wounds [3, 6, 7]. This tissue domain is widely approached 
because the other kinds of wounds are not essential or 
classification/segmentation tasks are perfectly solved, but 
because the foot ulcer wounds dataset [3] is publicly available. 
Datasets for the other types of human skin wounds are 
primarily private, too small, or have poor quality. 

The other important factor, except lack of data, is that most 
methods rely on supervised training. It brings the need for 
images to be annotated, either with class labels, object 
boundaries, or segmentation masks, depending on the task. 

All these lead to the problem of lack of generalization of the 
trained models. For example, in our preliminary experiments 
conducted during the preparation of this study, the U-Net [2] 
segmentation model, trained on the foot ulcer images [3], 
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reached a Dice score > 90% on the test dataset but was 
ineffective during inference on the dataset used in 
“Implementation features of wounds visual comparison 
subsystem” [8] paper. 

From the human perspective, wounds on the skin are 
recognizable. This research aims to discover ways to improve 
ANNs ability to generalize and detect wound and skin textures 
even on untypical data. To approach it, we suggest considering 
the large and complex image as a set of much smaller images, 
each representing some important texture information that can 
be extracted and used in semi-supervised classification tasks. 
A slightly similar approach, related to the burn tissues, is 
developed in [9]. In contrast with the abovementioned research, 
we perform feature extraction using deep-learning methods and 
not statistical approaches. We overview and develop different 
methods based on convolutional autoencoders, variational 
convolutional autoencoders, and Siamese networks and train 
them to convert each of these image crops to 200-dimensional 
vector-embedding that represent discriminative features of the 
particular crop and can be used in classification or clustering. 

In this research, because of the limitation of the data 
available, we work with the three categories: skin, wound, and 
background textures, but the results can be extrapolated on the 
more significant number of classes, depending on the data 
available. 

Training effective models that are able to extract feature 
vectors from the small parts of the image is the crucial step for 
further skin research, highlighting the contours of the wounds, 
analysis, and prediction of wound healing over time with or 
without different medications or other type of analysis. 

Fig.1 below shows the skin/non-skin classification results 
with the simple multilayer perceptron based on the embedding 
vectors. 
 

 

Figure 1. Classification of image areas as skin or not-skin. 
Green represents areas classified as skin, while red denotes 

areas classified as non-skin. 

In this particular example, an image with a size of 3456 by 
4608 pixels (in height and width, respectively) is submitted as 
input. After that, the image is divided by a uniform square grid 
with a step of 50 pixels. 6510 grid cells (segments) were 
obtained (70 in height and 93 in width). From the obtained data, 
10 percent of the segments were randomly uniformly selected. 

After that, each pixel is classified as belonging to human skin 
or not. Those pixels classified by the method as skin are 
highlighted in green and vice versa in red. We can see that the 
classification is correct in most cases. It is also worth paying 
attention to the part of the image where the finger presses the 
ruler, it clearly shows how the pixels of the finger is classified 
as skin, and the pixels of the ruler are classified as not skin. 
Defects also occur where there is a transition between skin and 
non-skin, and the pixels of the segment is placed on the 
boundary of the separation or where the skin’s texture is 
damaged or under atypical lighting; for example, these defects 
are visible in the wound area. A good result is also shown in 
the area in the upper left corner of the image, where the 
background color is exceptionally close to possible human skin 
color. Still, only a small number of segments are misclassified. 
This and other results are possible because of modeling not the 
specific and complex features on the images but rather more 
general-like textures. In this example, the convolutional neural 
network model, trained to extract embeddings from the 35x35 
images, was used to extract semantic vectors and, later, with a 
dense neural network - discriminate vectors for the 50 by 50 
images. While texture classification can show some excellent 
visual results, the main point is in the efficient semantic vector 
modeling of the skin/wound/background/mixed image crops, 
which can lead to the feature vectors, which are distributed in 
their high-dimensional space in an expected way, where skin 
vectors are close to each other, and others are further from 
them. 

The overall structure of the paper is as follows: 

 II Literature overview section reveals information 
about current approaches to image feature extraction 
and our motivation to use autoencoders, variational 
autoencoders, and Siamese networks for this task, as 
well as some basic descriptions of these architectures 

 III Materials and methods contain information about 
data we use, calculations we performed to develop 
custom models’ structure, and description of the 
experiments we conducted. Finally, it shows the 
methods we used for performance evaluation 

The last sections contain information on the experiment 
results and conclusions on application prospects. 

 
II. LITERATURE OVERVIEW 
An image can be easily treated as a flat vector by flattening its 
rows into one. However, this brings more disadvantages than 
advantages as the resulting vector is very long, so 
computationally expensive, and if we try to flatten images, we 
will face the problem of translation invariance; also, we will 
not get any semantics at all, at least any semantics 
generalization. A statistical approach can also be used, like in 
the previously mentioned research on burn images, which uses 
a combination of statistics of the grey-level histogram, Haralick 
texture features, and mean intensity values of color spaces [9]. 
This approach may struggle to capture features from various 
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skin tones, particularly under different lighting conditions, and 
may overlook small texture details and boundaries, such as the 
edges of wounds, that define different regions. Therefore, we 
propose using a trainable ANN approach. The outputs from the 
activation layers of convolutional neural networks can be 
treated as image semantic vectors. Depending on the network 
architecture, depth, and training data, these vectors may 
represent simple edges or more complex structures, such as 
wound boundaries or even entire object classes. By combining 
the outputs of different activations, the neural network learns a 
general representation of the data. We recommend extracting 
semantics from the simple yet sufficiently general parts of 
human skin in the image, which can provide information about 
color and texture without relying on highly complex or specific 
features. Thus, convolutional neural networks are an effective 
option for creating semantic vectors. 

Recent studies in the deep learning field [10-12] show that 
feature vectors, or as we also call them in this paper - semantic 
vectors from the images or image parts, can be used in the 
unsupervised or semi-supervised manner to solve the wide 
variety of tasks. 

The promising neural network architecture option emerges 
from anomaly detection, data compression, and noise reduction 
tasks. Different research [13-17] in this area uses neural 
network architecture called autoencoder. An autoencoder is an 
artificial neural network trained to copy input data to output 
data. Inside, a hidden layer h describes the hidden code used to 
represent the input data. The network consists of two parts: the 
encoder function and the decoder that creates the reconstruction 
[37]. In the classical autoencoder, the hidden layer has a 
dimension smaller than the input and output layers. This 
property is also used for data compression [14, 15]. 

Autoencoders can work with different types of data in 
different domains, but this study concentrates on medical 
images; thus, its main focus is on convolutional autoencoders, 
where dense layers are replaced with convolution layers. 

When training an autoencoder, loss functions are used. 
They determine how much the reproduced object differs from 
the original x. In this case, we consider the task of working with 
images, so the convolutional autoencoder is used. Commonly 
used loss functions include Mean Square Error (1) and Binary 
Cross Entropy (2), which is a partial variant of Cross Entropy: 

𝑀𝑆𝐸 =
1

𝑛
(𝑥 − �̅�)

ଶ



ୀଵ

, (1) 

  

𝐵𝐶𝐸 =
ଵ


∑ 𝑥 log(�̅�) + (1 − 𝑥)log (1 − �̅�)

ୀଵ ,  (2) 

 
where n is the number of images for which the error is 
calculated, 𝑥 is the original image, and �̅� is the reproduced 
one. 

Even though some studies claim [18] that MSE gives better 
results on small-dimensional images and BSE on large-
dimensional images, they are often used interchangeably. 

The hidden layer output h of the encoder is the semantic 
vector we seek. 

However, classic autoencoders have the disadvantage of 
generalizing poorly regarding things different from what they 
were trained on. The authors of [19] show this problem in more 
detail. They consider different types of autoencoders from the 
point of view of the properties of their hidden layers. They 
trained the autoencoder model on a large data set - a set of 
handwritten digits MNIST [20], saved the vectors obtained at 
the output of the h=f(x) encoder, and then reduced the 
dimensionality of the vectors to 2 using the method of principal 
components [21] and visualized the obtained points on a plane. 
Results show that the points are divided into clusters 
corresponding to different numbers, which is logical and 
desirable. However, the clusters are elongated and have a 
substantial spread of values. In addition, it is possible to trace 
a significant drop in the density — a ‘gorge’ at the boundaries 
of the cluster separation, which may indicate that when an 
atypical digit that was not in the training set appears, the 
reproduction by the classic autoencoder may be of poor quality. 
However, the authors also consider another neural network 
architecture — a variational autoencoder, in which these 
problems are minimized. 

The variational autoencoder [22, 23], unlike the classical 
one, belongs to the class of generative neural networks. While 
discriminative modeling aims to train a predictor based on 
previously collected observations, generative modeling aims to 
solve the more general problem of learning the joint 
distribution of data [23]. Thus, generative models allow making 
assumptions about how data is formed. We can study the joint 
distribution of different skin textures and colors as ‘skin texture 
modeling,’ which also provides the ability to achieve a more 
general semantic vector representation. 

Differences in the architecture are manifested in its center; 
if, in the classic autoencoder, the middle of the model is a 
vector of a small (smaller than the input vector) dimension, 
then in the variational one, it is somewhat different. The first 
part is the encoder, usually called the recognition model, and 
the decoder is called the generative model. The encoder can be 
written as q(z|x), where x is the input vector, z is the hidden 
middle layer vector, and the decoder is p(x|z)p(z). Since this 
model is generative, generation must be present somewhere. It 
happens precisely in the center of the model. Unlike a classical 
encoder that learns to find a reduced representation of the input 
data, in a variational autoencoder, the recognition model tries 
to approximate the input data distribution during training. Since 
it is impossible to approximate something for which no 
information is available, an assumption is traditionally made 
about the distribution, such as that it is normal. In the 
variational autoencoder, the hidden vector represents the 
parameters of the assumed normal distribution—specifically, 
the mean (“mu”) and the standard deviation (“std”). These 
parameters are used to sample a new vector from this 
distribution, which is then used to reconstruct the image. Then 
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a vector z is randomly selected from a normal distribution with 
the aforementioned parameters. After that, the decoder 
reproduces the image from the selected vector z. Thus, 
considering the decoder as a product of probabilities p(x|z)p(z), 
we see that it reflects the probability of the simultaneous 
occurrence of two events p(zx) — the sampling of the vector z 
from the normal distribution with parameters mu and std, and 
the generation of the original image x by the decoder afterward. 

The loss function ELBO (Evidence Lower Bound) [23] is 
essential, which, on the one hand, should minimize the error 
between the input and the generated image and, on the other 
hand, bring the distribution parameters mu and std closer to the 
parameters of the standard normal distribution. 

 
𝐸𝐿𝐵𝑂 = 𝐸(𝑧|𝑥)[𝑙𝑛𝑝(𝑥|𝑧)] − 𝐷[𝑞(𝑥|𝑧)||𝑝(𝑧)], (3) 

 
where the first part of ln[𝑝(𝑥|𝑧)] is the likelihood function 
responsible for the correctness of the reconstruction and 𝐷is 
the Kullback-Leibler divergence (KL-Divergence), which is 
also called the relative entropy, and this term of the loss 
function is responsible for ensuring that the distributions 
𝑞(𝑥|𝑧) (posterior probability) and 𝑝(𝑧) (prior probability) have 
the most similar parameters. This way, we get an artificial 
neural network trained to obtain the normal distribution 
parameters for the input image and then generate the output. 
Having the mu and std hidden parameters of the variational 
autoencoder network trained on the skin texture images, we can 
sample semantic vectors from the normal distribution with the 
aforementioned trained parameters that generalize the skin. 

The third auspicious approach originates from the recent 
studies of deep metric learning. Metric learning aims to 
measure the similarity among samples while using an optimal 
distance metric for learning tasks [24]. The main goal of this 
approach is to bring similar objects closer and increase the 
distance between the different objects. In recent years ideas of 
deep metric learning have emerged in unsupervised learning for 
efficient semantic vector generation in computer vision and not 
only fields. [3, 10, 12, 25-27]. Contrastive learning is one of the 
most used and well-performing techniques in deep metric 
learning. The authors of SimCLR (A Simple Framework for 
Contrastive Learning of Visual Representations) [28] show 
how to use it to generate semantic vectors of images with a 
limited amount of data and in the way that similar embeddings 
will be and different will have large distances. SimCLR uses 
Siamese network architecture. It consists of twin networks that 
accept distinct inputs but are joined by an energy function at 
the top [29]. The networks share the same structure and 
hyperparameters, so in practice, one instance is used but fed 
with two different images during inference. The idea of training 
Siamese network in SimCLR is following: 

Use two images from different classes as anchor images. If 
classes are unknown – sample two different images from the 
dataset. 

For each anchor image, create two positive samples by 

applying different transformations on the anchor image like 
random cropping, random color distortion - a technique where 
the hue, saturation, brightness, and contrast of an image are 
randomly altered. 

Use convolutional neural network (CNN) to calculate 
embeddings for each of the positive samples 

Calculate the loss function between all of the four positive 
sample embeddings in the way that two positive sample 
embeddings from the one anchor image should be close to each 
other and far from the other anchor image positive samples in 
terms of the loss function 

SimCLR uses a version of the contrastive loss that is known 
as Normalized Temperature-Scaled Cross-Entropy (NT-Xent) 
loss (4) as the error function: 

 

𝑙, = −𝑙𝑜𝑔
ୣ୶୮൭

ೞቀ,ೕቁ

ഓ
൱

∑ 𝕝ೖಯ
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ೖసభ ୣ୶୮൭

ೞቀ,ೕቁ

ഓ
൱

 , 

 
 

(4) 

 
Where i and j denote positive pair of samples, 𝑧 , 𝑧 – 

embeddings of the corresponding vectors, 𝑠𝑖𝑚൫𝑧 , 𝑧൯ – cosine 

similarity between the embeddings, 𝕝ஷ ∈ {0, 1} is and 
indicator function, evaluating to 1 if 𝑘 ≠ 𝑖 and 𝜏 is a 
temperature parameter, N is a size of a randomly sampled 
minibatch of examples from the dataset. The same as for the 
one image example, two positive samples are created, and we 
have 2N embeddings. 

With the trained network, one can create texture 
embeddings so that skin textures will be close to the other skin 
textures and other parts of the image will be far away in terms 
of the contrastive loss function and cosine similarity. 

III. MATERIALS AND METHODS 
The first part of this section describes the data and data 
extraction methods used for the experiments. The second 
describes the models we created and the main steps of setting 
up an experiment to compare the three aforementioned 
semantic vector generation methods applied and adapted to the 
skin wound and background texture images. Also, it contains 
an overview of the method to perform a visual comparison of 
the created vectors. The third, finally, describes the training and 
evaluation stages of k-nearest neighbors (KNN) and Multi-
Layer Perceptron (MLP) classifiers to discriminate semantic 
vectors into skin, wound, and background classes. While we 
are not intended for simple texture classification, this is a 
straightforward way to evaluate the ability of models to create 
efficient semantic vectors. 

 
A. THE DATA 
In the previous sections, we repeatedly mentioned that data is 
crucial for good-performing machine learning models. If to be 
precise – data of good quality and in abundance. Also, we said 
there is a data quality and quantity problem in the medical 
image segmentation field. Thus, the decision was to study how 
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to generalize some low-dimensional data. 
The SFA dataset [30] contains skin images ranging from 1 

to 35 pixels. We suggested using the largest 35px available 
images for the test. A total of 3354 skin images and 5590 non-
skin samples are available in the set. 

Wound images are not available in the aforementioned 
dataset, so to extract them, we use the ulcer wound 
segmentation dataset created by the authors of The Foot Ulcer 
Segmentation Challenge [3]. The overall wound data extraction 
is achieved in a few steps: 

- apply segmentation mask on the image with foot ulcer 
tissue to retrieve wound image only 

- find the center of the extracted wound image 
- crop rectangle (35x35 px) from the center 
- cut off black sides if present 
- save the extracted rectangle as a wound texture image 

if not more than 50% black color. 
We applied this method on 1210 images from the validation 

and train datasets of The FUSC [3] dataset. As a result of the 
extraction method described before, we received 530 wound 
texture images. Many wounds from the aforementioned FUSC 
dataset contain small and low-resolution images unsuitable for 
wound texture extraction. 

Below, in Figure 2, there is an example of some images 
from the dataset. The first row contains skin images, the second 
- non-skin (possible backgrounds), third – extracted wound 
images. 
 

      

      

      

Figure 2: Enlarged examples of skin, background and wound 
images 

Although they have been enlarged for clarity, there are 
different skin textures, colors, and shades, so this set can 
competently represent a variety of skin. Moreover, background 
images also correspond to a great variety of non-skin textures. 
The problem with the wound texture images is that they 
sometimes contain large areas of black pixels. This issue arises 
from the low resolution or cropping process of the images in 
the FUSC dataset. These black regions can potentially mislead 
the neural network, causing it to mistakenly identify black or 
black-red edges as wound areas. Unfortunately, this is the only 
way to create the desired dataset for now. In the future, 
unsupervised segmentation, combined with this paper's 
semantic vector generation and classification method, may be 
used to create a better wound texture dataset from the unlabeled 
data. 

Finally, we shuffled equal amounts of wound, skin, and 
background images and performed train/validation/test split of 
the data (preserving an equal amount of each class 
representative in the datasets): 

 1113 train images 

 318 validation images 

 159 test images 
 
B.  EMBEDDING GENERATION METHOD 
The task is to define models to generate semantic vectors and 
the method of their comparison using the datasets described 
above. 

Three different methods of image semantic vectors are used 
and compared: 

Convolutional autoencoder [31] with the MSE (1) loss; 
Variational convolutional autoencoder [23] with ELBO (3) 

loss; 
Siamese network [29], inspired by the SimCLR framework 

[28] with the contrastive loss (4). 
Each of the mentioned models shares the same 

convolutional encoder part. Different modifications of the 
ResNet [32] encoder are commonly used while experimenting 
with autoencoders or in SimCLR. Despite this, our initial guess 
is that ResNet is too complex for this type of task. For the 
experiment, we created custom architecture that is simple 
enough but also fulfills all needs of the experiment. Two 
critical factors are to be considered: the receptive field of the 
inner dense layer neurons and the hidden vector dimension. 

The empirical suggestion is that the receptive field should 
be at least the size of the initial training data. While the pooling 
operation increases both theoretical and practical receptive 
field in a good way and the stacking of layers also increases it 
to some extent [33], they make the model more complex, 
moreover, decrease the dimensionality primarily of the already 
small input. Authors of [34] show that sequential usage of the 
dilated convolutions results in the exponential expansion of the 
receptive field size. According to [34] receptive field can be 
calculated recursively using (5) or in an iterative manner with 
(6): 

 
𝑟ିଵ = 𝑠 ∗ 𝑟 + (𝑘 − 𝑠)  (5) 

 
where l is a layer index, r – receptive field, s – stride, k - kernel 
size 
 

𝑟 = ∑ ((𝑘 − 1) ∏ 𝑠
ିଵ
ୀଵ )

ୀଵ + 1  (6) 

 
where L is the number of layers 𝑟 – receptive field of the final 
layer neuron. 

If dilated convolutions are used in the layer, the value of 
kernel size k is calculated as follows (7): 

 
k = α(k − 1) + 1  (7) 

 
where α is a dilation factor. 

The other significant factor to consider is the area covered 
by each embedding vector neuron. (8), (9) [35] are used to 
calculate leftmost u and rightmost 𝑣 indexes of the original 
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image, which that are covered by the theoretical receptive field. 
 

u = u ∏ 𝑠

ୀଵ − ∑ p ∏ 𝑠

ିଵ
ୀଵ


ୀଵ   (8) 

 

𝑣 = 𝑣 ∏ 𝑠

ୀଵ − ∑ (1 +  p −

ୀଵ

 𝑘) ∏ 𝑠
ିଵ
ୀଵ   

 
(9) 

 
The hidden layer dimension should be large enough to hold 

the semantic information of the texture and color but must not 
be just a flattened copy of the initial data. Also,  

the size of the vector must be large enough for use in the 
statistical measures and not very computationally expensive for 

real-time evaluation using different metrics. 
Based on these prerequisites and after calculating the 

theoretical receptive field value for the different architecture 
combinations, the suggested custom encoder and decoder 
architectures (Fig. 3, Fig. 4). 

Each rectangle corresponds to the network layer. For 
example: ` 5x5 conv., 8, s=1, p=0, d=1 ` means 5 by 5 kernel 
size, 8 output channels, stride=1, padding=0, and dilation=1. 
The arrow after the layer shows the output dimensions of the 
transformed input. 

This model takes a 35 by 35 by 3 image and produces 200-
dimensional vector as a flattened output. 

 

 

Figure 3 Custom encoder network architecture 

 

Figure 4 Custom decoder network architecture 
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Decoder architecture is opposite to the encoder. However, 
instead of transpose convolutions, which may cause a 
checkboard pattern effect [36], we use upsampling based on the 
nearest-neighbors approach with a learnable convolution layer 
afterward. Because of this, the decoder contains more layers 
than the encoder. Convolutions are not used to decrease input 
width and height, and they are configured in a way that does 
not change it; instead, they introduce learnable parameters – 
filters. This way, we try to go around the checkboard pattern 
effect but still have a learnable decoder network that 
reconstructs the image. 

The receptive field of each value of the last convolutional 
layer output is 29 by 29 pixels, which is just slightly smaller 
than the original image size, and as shown in Fig.  5, it covers 
the whole input. 

Axis represents the input image (brown skin rectangle in the 
middle) dimensions, red rectangle – area, which affects the 
value of the top-left output value of the final convolutional 
layer, blue – central, and green – bottom right. This shows that 
the whole image is covered by the final layer outputs and that 
every value from the output vector holds information about a 

large area of the input image.  
Based on this encoder, three architectures are implemented 

for the experiment on the Fig. 6. 
 

 

Figure 5. Receptive field of the output layer of the custom 
encoder network 

 

 

Figure 6. a) autoencoder; b) variational autoencoder; c) Siamese network; architectures 

 
Outputs of the layers in dashed rectangles are used as 

semantic vectors. It is important to note that in the first two 
architecture options, we use a combination of linear and non-
linear layers before the semantic embedding layer, this is 
because these options result in better embedding generations, 
according to my preliminary experiments, but We do not use 
the fully connected layer in the last CLR option. This is because 
in [28] the authors show that, for the SimCLR framework, the 
flattened layers before the non-linear projection head perform 
more than 10% better. That is why, we make this exception for 
the c network. Another critical difference is that while working 

with the ResNet model encoder (more on this in the later 
paragraphs), I use a linear reduction head, which decreases the 
encoder flattened output from the 512 dimensions to the 200. 

The training of the autoencoder – model a is as follows: 
- pass batches of training images through the encoder. 
- reconstruct them back through the decoder. 
- compare reconstructed with the original ones using 

MSE loss. 
By doing this, we train the network to create hidden 

representations of the skin texture images and reconstruct the 
original images from these representations. Testing and 
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validation work in a similar manner. After training, only the 
encoder is used for further experiments to produce vector 
embeddings of the input image. 

The training of the variational autoencoder – model b is 
slightly different. Image batches are passed in the same 
manner. However, in the middle of the network, after the 
encoder, 200-dimensional embedding that comes after one 
non-linear and one linear layer after flattening the image is 
reduced to the 2 nodes that represent parameters of the normal 
distribution. Then, the new 200-dimensional vector is sampled 
from the normal distribution that uses these two parameters, 
and the image is reconstructed from this vector in the decoder 
network. ELBO is used as a loss function. The model learns to 
generate semantic vectors of the skin texture. In opposite to the 
standard autoencoder, where embeddings from the input image 
are considered semantic vectors, in variational autoencoder, 
sampled from the Normal distribution, with the produced by 
the network parameters, vectors are the semantic vectors that 
are being sought. The motivation is that the generative model 
generalizes skin texture better than the discriminative. 
Important to note that two configurations of the ELBO loss 
function are tested: one with a KL-Divergence multiplier equal 
to 1 and one with a KL-Divergence multiplier being 0.1, which 
penalizes the distribution part of the loss function and, in 
theory, may result in better similarity of the sampled textures 
and training ones. 

Model c is trained and evaluated differently. It has no 
decoder; only the encoder part is used. 

For each training iteration, one image representing skin, 
background, and wound is selected from the batch. For each 
type of image, n skin (positive samples), n background 
(negative samples), and n wound (negative samples) images are 
randomly selected from the training data, with n being a fixed 
number. The original skin, background, and wound texture 
images are referred to as the anchor, while the additional 
selected images serve as positive and negative samples. 

In contrast to the SimCLR framework, where image 
transformations are used to create negative and positive 
samples, this experiment employs a supervised approach.  

The positive and negative images are passed through the 
network, and a contrastive loss with cosine similarity is used to 
calculate the difference between the pairs of produced 
embeddings. The loss function is designed to bring positive 
samples closer together and push negative samples further 
apart. 

The temperature parameter, a crucial constant in the 
contrastive loss formula, plays a significant role. According to 
[37], a lower temperature parameter increases the penalization 
of complex negative samples, resulting in a more typical 
distribution. Based on this, we chose to train two CLR models: 
one with a temperature parameter of 0.07 and another with 0.2, 
as these values are referenced in the literature. 

Training of two configurations of these three models is 
performed. The first is with the custom encoder and decoder, 
and the second is with the ResNet18 encoder and decoder. 10 
models, considering different encoders, model types, and 
model parameters, are trained and evaluated in total, not 
considering some preliminary training aimed at defining 
architectures and some initial parameters. Comparison is 
performed in terms of test loss function values, training speed, 
evaluation speed, and model weight. 

The next comparison stage is the visual evaluation of the 
created vector embeddings. Each model option is used to create 

embeddings from test dataset samples. 200-dimensional 
embeddings are reduced to the 2-dimensional vectors using 
Uniform Manifold Approximation and Projection (UMAP) 
[38] dimensionality reduction method and visualized on the 2D 
plane. UMAP is known for its efficiency on large amounts of 
data and its ability to preserve local connections between the 
data, which is very important. The goal is to determine the 
model that creates the best dense clusters from the data of one 
type that are also easily separable from each other. UMAP 
accepts hyperparameters, and after a set of experiments, we 
selected n_neighbors=15, min_dist=0.1. The other important 
hyperparameter is metric, which calculates the distance 
between the points during dimensionality reduction. We use 
two options: cosine similarity for the autoencoder and Siamese 
model-generated vectors and KL Divergence for the variational 
autoencoder results. More about metrics in the Results section. 

The third stage includes applying two classification models 
on wound/skin/background embeddings generated by the 
embedding generation models. This stage quantitatively 
assesses how easy it is to discriminate the created vectors. We 
choose two different methods: k-nearest neighbors (KNN) and 
multi-layer perceptron (MLP). According to our intuition, 
KNN should work better for the models that generate vectors 
grouped into clusters with a considerable distance between 
them. MLP can model complex function that divides them. For 
the KNN, we decided to use 15 nearest neighbors (as in the 
dimensionality reduction step) and apply weights on them, 
where the closest points have the largest weight. For 
the metric parameter, we use the same approach as for the 
dimensionality reduction. The MLP model consists of 4 hidden 
fully connected layers with 256, 128, 64, and 32 artificial 
neurons, respectively. Input – 200-dimensional vector, output 
– three neurons that correspond to one of the seeking 
classes. Activation functions for the hidden layers – ReLu, L2 
regularization with alpha=0.1 to prevent overfitting 
and constant learning rate = 0.001. Optimizer – Adam. As data 
is evenly distributed between classes’, we use accuracy as an 
evaluation metric. We combine test and validation datasets into 
one and use a total of 477 images for evaluation and 1113 for 
training. 

After training and evaluating these classification models, 
we could use a simple method shown in Figure 1 in the 
introduction section to see how effective our classification is 
on the completely new and untypical wound image. As a 
reminder, the method is shown in Fig. 7. 
 

 

Figure 7. Simple embedding application 

 
This method, for sure, does not provide a way of effective 

segmentation; here, we mainly use it to visually determine the 
effectiveness of vector generation from the image crops that are 
larger than 35x35 pixels. It gives a basic intuition if a specific 
vector generation model produces semantic vectors that can be 
used in more complex skin and wound analysis methods. 

IV. RESULTS AND DISCUSSION 
We start with the results of the vector generation models' 
parameters, training, and evaluation. Next, we show how skin, 
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wound, and background embeddings created with the models 
above are distributed on the plane and make initial conclusions. 
And finally, we analyze the classification results to rely on 

some metrics while making the conclusions. 
Table 1 contains the results of the model training. 

 
 

Table 1. Model comparison 

 
Model param. 

 
Model name 

Total parameters 
Model size 
(MB) 

Average inference 
time (ms) 

Test MSE loss 
Test NT-Xent 
loss 

Test ELBO loss 

Custom CAE 102200 0.66 1.12±0.3 0.0119 - - 

ResNet CAE 11311632 53.71 5.72±1.06 0.01504 - - 

Custom VAE  1 182600 0.98 2.12±0.69 0.05409 - 0.09106 

ResNet VAE 1 11392032 54.03 6.66±1.84 0.05424 - 0.06788 

Custom VAE 0.1 182600 0.98 2.23±0.9 0.05438 - 0.05513 

ResNet VAE 0.1 11392032 54.03 6.63±1.44 0.05449 - 0.05484 

Custom CLR 0.07 62000 0.51 1.21±0.63 - 1.492 - 

ResNet CLR 0.07 11271432 53.56 6.18±1.33 - 1.159 - 

Custom CLR 0.2 62000 0.51 1.12±0.5 - 0.89 - 

ResNet CLR 0.2 11271432 53.56 6.03±1.17 - 0.8369 - 

 
The experiments were conducted using an Nvidia GeForce 

RTX 2060 GPU, equipped with 6GB of GDDR6 memory, to 
ensure efficient training and inference of the models. We use 
Adam optimizer with constant learning rate=0.0001 and batch 
size 128 for 1000 epochs. 

The first word in the model's name denotes the model type: 
Custom or ResNet 18. Second model architecture: 
convolutional autoencoder (CAE), variational autoencoder 
(VAE), or contrastive learning encoder (CLR). Third word 
(number) – the value of some specific for the model loss 
function multiplier: KL divergence weight for VAE 
architectures and temperature parameter for the CLR models. 
A detailed description of each model is the in the previous 
section. 

We can see from Table 1 above that Custom models are 
much smaller in terms of the number of parameters. Custom 
models have roughly 100 times fewer parameters than their 
ResNet equivalents for CAE  architecture, with 60 times fewer 
parameters for VAE and 180 for CLR models. Custom models 
are less than 1 MB large, and ResNet options all have about 54 
MB – roughly 50 larger. In terms of inference time, all models 
are high-speed (range 1-8 ms), and the difference is not so 
significant as Custom models are 2-3 times faster. Important to 
notice that models' inference time is affected by the hardware 
but is still relevant to analyze their performance in terms of 
time efficiency relative to each other. We used an average of 
10000 evaluations on one sample to calculate inference time 
for every configuration. One may say that the small model 

size's drawback is its performance, but the evaluation metrics 
from the test data show that this statement is not precisely 
correct. For the CLR models, the smallest loss function value 
is achieved by ResNet 0.2, but it is much smaller than the 
Custom 0.2 model result (0.8369 and 0.89, respectively). 

Regarding mean squared error (MSE) loss (reconstruction 
loss), the smallest result is achieved by Custom CAE, and the 
ResNet CAE result is slightly larger (0.0119 and 0.01504, 
respectively). Regarding ELBO loss, the smallest result is 
0.05484 with ResNet VAE 0.1, which is slightly better  
than Custom VAE 0.1 with 0.05513. Unfortunately, these 
results do not allow us to filter models for the next experiment, 
but the vital conclusion lies in different model loss function 
configurations. For both VAE models, 0.1 multipliers for the 
KL-Divergence results in a much better final test loss function 
value, the same as for the 0.2 temperature parameter for the 
CLR models. 

Fig. 8 shows the 2-dimensional visualization of the test and 
validation embeddings. As described in the previous section, 
we used UMAP to reduce 200-dimensional vectors into 2 
dimensions. Our preliminary experiments showed no use 
in cosine distance measures while reducing semantic vectors 
created by the VAE models. All points are uniform without any 
separation. Thus, we used cosine distance for all the 
configurations except VAE. We used KL-Divergence as it is 
part of the ELBO loss function. While KL-Divergence is not a 
distance measure, it can be used as a measure of similarity or 
dissimilarity between vectors. 
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Figure 8. 2-dimensional embedding visualization 

 
CAE models separate different textures but with lots of 

spatial mixes - some groups that are separated from the others 
are filled with different types of textures, like the bottom-left 
group from the first row, second column graph (CAE ResNet). 
This may be a sign that the neural network is learned to extract 
features that are not discriminative in terms of the 
wound/skin/background domains. 

VAE models provide vectors that are not easily separable 
into clusters, which is expected, as ELBO loss penalizes 
vectors to be normally distributed. However, points are 
grouped according to the domain, with some mix at the borders 
of the groups. It is seen that skin texture vectors are placed 
between the wound and background ones. This may mean that 
VAE models can be used to discriminate wounds and 
backgrounds. We expect that the KNN classifier will suffer 
with the correct classification as groups of different textures are 
close to each other and do not have any free buffer space, so it 
is easy to misclassify the sample when checking the nearest 
neighbors. Still, MLP can learn how to model function that 
separates these close groups efficiently. 

CLR provides the best separation of textures, especially the 
ResNet version. Still, there are some mixes, this we can 
conclude that possible issues with the CAE model may also 
affect CLR. 

Table 2 shows classification results using KNN and MLP 
on the vectors generated by each type of embedding generation 
model. Details on classifier training are described in the 
previous section. 

Table 2. Embedding classification results 

             Evaluation             
parameter 

 
Model name 

KNN 
train 
accuracy 

KNN test 
accuracy 

MLP train 
accuracy 

MLP test 
accuracy 

Custom CAE 1 0.777778 0.880503 
0.813417 
 

ResNet CAE 1 0.796646 
0.988320 
 

0.905660 
 

Custom VAE  1 0.351303 0.339623 1 
0.339623 
 

ResNet VAE 1 0.349506 0.331237 1 
0.345912 
 

Custom VAE 0.1 0.350404 0.329140 1 0.333333 

 

ResNet VAE 0.1 0.361186 0.341719 1 
0.358491 
 

Custom CLR 0.07 1 0.953878 
0.986523 
 

0.945493 
 

ResNet CLR 0.07 1 0.960168 1 
0.953878 
 

Custom CLR 0.2 1 0.945493 
0.991914 
 

0.941300 
 

ResNet CLR 0.2 1 0.960168 1 
0.955975 
 

 
These results show that embeddings generated by VAE 

models are utterly useless in terms of texture discrimination. 
MLP can learn to train VAE vector distribution as expected, 
but test accuracy shows that model overfits. KNN classifier 
shows a random result - 0.33 on all VAE model embeddings. 
Thus, variational autoencoders are unsuitable for generating 
embeddings intended to be used in classification tasks. 
Nevertheless, they can be used to generate artificial skin and 
wound textures. Using KL-Divergence instead of cosine 
similarity as a metric for KNN classification of VAE-generated 
vectors does not result in better accuracy, which is an 
unexpected result and may be caused by some non-obvious 
errors in the experiment setup. 

In general, it is shown that both KNN and MLP classifiers 
are easily overfitted in almost all configurations. Thus, more 
robust regularization during training and other techniques to 
prevent overfitting must be introduced. 

CLR model embeddings result in the best classification 
results for both MLP and KNN classifiers (more than 0.93), 
with no significant difference between them. This shows that 
Custom CLR models are the best option for semantic vector 
generation when we need to use them in the classification task. 
These modes are smaller and faster than ResNets’ and slightly 
less performant on the classification task. 

CAE models show moderate accuracy, better than VAE, but 
not so good as CLR models. The only advantage of CAE over 
CLR is that CLR models were trained using all three data 
classes, and CAE – used only skin textures. CAE models can 
be used when only one data class and no others are present 
during embedding model training time. 
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While CLR models show the best potential to be used for 
semantic vector generation for classification tasks, important to 
highlight that the way CLR models are trained implies that 
similar vectors are to be grouped into clusters that are spatially 
far from each other, and this gives a significant advantage over 
the autoencoder way of training. 

Some other sidenote conclusions from the training and 
evaluation process are: 

- feature vector standardization does not affect MLP and 
KNN classifiers' training and evaluation results 

- image patch standardization to the mean (0.458) and 
standard deviation (0.17) of a skin/wound/background 
dataset improves Custom model variants test loss 
values, decreases pre-trained ResNet loss values, and 
improves not-pre-trained ResNet loss values. 
However, standardization does not affect classification 
accuracy. 

Even with low-dimensional data, it is important to 
emphasize that the quality of these data is crucial. As 
mentioned in the Data section, poor-quality images (due to 
noise, low resolution, lossy compression or other reasons) can 
negatively impact classification results by damaging important 
features and as a result tricking models. This highlights the 
need for careful preprocessing (utilizing denoising 
autoencoders or other techniques) in case of working with such 
data. 

V. CONSLUSIONS 
In conclusion, we highlight the main outputs of the conducted 
research. While these results may be suitable for different 
areas, we only state them here for the human skin wound 
texture domain. 

- variational autoencoders are not suitable for generating 
feature texture vectors intended to be used in 
classification tasks. However, they are efficient in 
generating synthetic skin or wound textures and are to 
be used for this. 

- ResNet variational autoencoders generate much better 
synthetic skin than Custom models. 

- Custom models (in CLR architecture) are smaller, 
faster, and almost as effective as ResNets. In contrast, 
ResNets provide more stable results and should be 
considered after the accumulation of a large amount of 
training data to prevent embedding model overfit. 

- CLR architecture is the smallest, fastest, and most 
efficient in generating semantic vectors for 
classification. It should be used when we have at least 
two classes during model training. For example, 
skin/non-skin, wound/non-wound. CAE architecture 
should be used when this is impossible and only one 
data class is available, so convolutional autoencoder 
may be trained on it. 

- 0.1 multiplier for KL-Divergence calculation in ELBO 
loss function during VAE training results in faster 
convergence than the usage of the unit multiplier. 
Other multipliers are to be considered. 

- Usage of the 0.2 temperature parameter for NT-Xent 
loss during CLR model training results in faster 
convergence and provide less uniform distribution of 
the vectors than the usage of the 0.07 temperature 
value. 

The application of the semantic feature vector generation 
models and the semantic feature vectors of textures in the 

human skin wound domain may vary. We could generate 
synthetic textures for data augmentation during classification 
or segmentation model training or to find and classify 
skin/wound areas on large, complex, and non-typical images. 
There may be applications in vision transformer models or 
others still to be found. In this paper, we analyzed this topic, 
evaluated a few deep-learning-based feature vector generation 
methods, and generated options for further research. 
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