

486 VOLUME 23(3), 2024

Date of publication SEP-30, 2024, date of current version AUG-13, 2024.
www.computingonline.net / computing@computingonline.net

Print ISSN 1727-6209
Online ISSN 2312-5381
DOI 10.47839/ijc.23.3.3669

Computer Modelling of Textures on
Images with Human Skin Wound Areas

BOHDAN LUKASHCHUK
Ukrainian National Forestry University, Ukraine, Lviv, 103, Gen. Chuprynky St., 79057

Corresponding author: Bohdan Lukashchuk (e-mail: bohdan.lukashchuk@gmail.com).

 ABSTRACT In this paper, we concentrate on the images of the wounds on the human skin and propose to consider

each image as a set of smaller pieces – crops or patches containing different textures. We overview, develop and
compare deep learning feature extraction methods to model image crops as 200-dimensional feature vectors using
various artificial neural network architectures: convolutional autoencoders, variational convolutional autoencoders, and
Siamese convolutional networks trained in the contrastive learning manner. Also, we develop a custom convolutional
encoder and decoder, use them in the aforementioned architectures and compare them with the ResNet encoder and
decoder alternatives. Finally, we train and evaluate k-nearest neighbors and Multi-Layer Perceptron classifiers on the
features extracted with the model above options to discriminate skin, wound, and background image patches.
Classification evaluation results on the features, extracted with the Siamese network, show the best test accuracy for
all implementations without a significant shift between model versions (accuracy > 93%); variational autoencoders
show random results for all options (accuracy around 33%), and convolutional autoencoders reached good results
(accuracy > 77%) but with a noticeable difference between the custom and ResNet versions; the latter is better. Custom
encoder and decoder implementations are faster and smaller than the ResNet alternatives but may be less stable on
larger datasets, which still needs investigation. Possible applications of the feature vectors include an area of interest
extraction during wound segmentation or classification and usage as patch embeddings while training vision
transformer architectures.

 KEYWORDS wound segmentation, wound classification, autoencoder, variational autoencoder, Siamese networks,
contrastive learning, image feature extraction

I. INTRODUCTION
RTIFICIAL neural networks (ANN) are commonly and
widely used to solve classification, object detection,

semantic segmentation, and other tasks in the different areas of
the medical imaging domain [1-3]. In this research, we
concentrate on the analysis of images of wounds on human
skin.

Automatic wound analysis is essential in managing chronic
wounds, such as diabetic ulcers, pressure sores, and venous leg
ulcers. These conditions require regular monitoring to assess
healing progress and adjust treatment plans accordingly.
Automated systems can offer consistent and objective
evaluations, reducing the errors, associated with manual
assessments [4, 5]. Another practical condition for automatic
wound detection is in post-surgical care. Automated systems
can help monitor surgical sites for signs of infection or any
other dangerous condition, providing early warnings that can
lead to timely medical interventions. This is particularly
beneficial when patients need to manage their recovery at home
[5].

As a rule, wound images are quite complex - they contain
many different types of objects, complex backgrounds, and
skin on various body parts. Thus, researchers apply and
evaluate their classification or segmentation methods on some
human skin tissues, very commonly - chronic diabetic foot
ulcer wounds [3, 6, 7]. This tissue domain is widely approached
because the other kinds of wounds are not essential or
classification/segmentation tasks are perfectly solved, but
because the foot ulcer wounds dataset [3] is publicly available.
Datasets for the other types of human skin wounds are
primarily private, too small, or have poor quality.

The other important factor, except lack of data, is that most
methods rely on supervised training. It brings the need for
images to be annotated, either with class labels, object
boundaries, or segmentation masks, depending on the task.

All these lead to the problem of lack of generalization of the
trained models. For example, in our preliminary experiments
conducted during the preparation of this study, the U-Net [2]
segmentation model, trained on the foot ulcer images [3],

A

Bohdan Lukashchuk et al. / International Journal of Computing, 23(3) 2024, 486-497

VOLUME 23(3), 2024 487

reached a Dice score > 90% on the test dataset but was
ineffective during inference on the dataset used in
“Implementation features of wounds visual comparison
subsystem” [8] paper.

From the human perspective, wounds on the skin are
recognizable. This research aims to discover ways to improve
ANNs ability to generalize and detect wound and skin textures
even on untypical data. To approach it, we suggest considering
the large and complex image as a set of much smaller images,
each representing some important texture information that can
be extracted and used in semi-supervised classification tasks.
A slightly similar approach, related to the burn tissues, is
developed in [9]. In contrast with the abovementioned research,
we perform feature extraction using deep-learning methods and
not statistical approaches. We overview and develop different
methods based on convolutional autoencoders, variational
convolutional autoencoders, and Siamese networks and train
them to convert each of these image crops to 200-dimensional
vector-embedding that represent discriminative features of the
particular crop and can be used in classification or clustering.

In this research, because of the limitation of the data
available, we work with the three categories: skin, wound, and
background textures, but the results can be extrapolated on the
more significant number of classes, depending on the data
available.

Training effective models that are able to extract feature
vectors from the small parts of the image is the crucial step for
further skin research, highlighting the contours of the wounds,
analysis, and prediction of wound healing over time with or
without different medications or other type of analysis.

Fig.1 below shows the skin/non-skin classification results
with the simple multilayer perceptron based on the embedding
vectors.

Figure 1. Classification of image areas as skin or not-skin.
Green represents areas classified as skin, while red denotes

areas classified as non-skin.

In this particular example, an image with a size of 3456 by
4608 pixels (in height and width, respectively) is submitted as
input. After that, the image is divided by a uniform square grid
with a step of 50 pixels. 6510 grid cells (segments) were
obtained (70 in height and 93 in width). From the obtained data,
10 percent of the segments were randomly uniformly selected.

After that, each pixel is classified as belonging to human skin
or not. Those pixels classified by the method as skin are
highlighted in green and vice versa in red. We can see that the
classification is correct in most cases. It is also worth paying
attention to the part of the image where the finger presses the
ruler, it clearly shows how the pixels of the finger is classified
as skin, and the pixels of the ruler are classified as not skin.
Defects also occur where there is a transition between skin and
non-skin, and the pixels of the segment is placed on the
boundary of the separation or where the skin’s texture is
damaged or under atypical lighting; for example, these defects
are visible in the wound area. A good result is also shown in
the area in the upper left corner of the image, where the
background color is exceptionally close to possible human skin
color. Still, only a small number of segments are misclassified.
This and other results are possible because of modeling not the
specific and complex features on the images but rather more
general-like textures. In this example, the convolutional neural
network model, trained to extract embeddings from the 35x35
images, was used to extract semantic vectors and, later, with a
dense neural network - discriminate vectors for the 50 by 50
images. While texture classification can show some excellent
visual results, the main point is in the efficient semantic vector
modeling of the skin/wound/background/mixed image crops,
which can lead to the feature vectors, which are distributed in
their high-dimensional space in an expected way, where skin
vectors are close to each other, and others are further from
them.

The overall structure of the paper is as follows:

 II Literature overview section reveals information
about current approaches to image feature extraction
and our motivation to use autoencoders, variational
autoencoders, and Siamese networks for this task, as
well as some basic descriptions of these architectures

 III Materials and methods contain information about
data we use, calculations we performed to develop
custom models’ structure, and description of the
experiments we conducted. Finally, it shows the
methods we used for performance evaluation

The last sections contain information on the experiment
results and conclusions on application prospects.

II. LITERATURE OVERVIEW
An image can be easily treated as a flat vector by flattening its
rows into one. However, this brings more disadvantages than
advantages as the resulting vector is very long, so
computationally expensive, and if we try to flatten images, we
will face the problem of translation invariance; also, we will
not get any semantics at all, at least any semantics
generalization. A statistical approach can also be used, like in
the previously mentioned research on burn images, which uses
a combination of statistics of the grey-level histogram, Haralick
texture features, and mean intensity values of color spaces [9].
This approach may struggle to capture features from various

 Bohdan Lukashchuk et al. / International Journal of Computing, 23(3) 2024, 486-497

488 VOLUME 23(3), 2024

skin tones, particularly under different lighting conditions, and
may overlook small texture details and boundaries, such as the
edges of wounds, that define different regions. Therefore, we
propose using a trainable ANN approach. The outputs from the
activation layers of convolutional neural networks can be
treated as image semantic vectors. Depending on the network
architecture, depth, and training data, these vectors may
represent simple edges or more complex structures, such as
wound boundaries or even entire object classes. By combining
the outputs of different activations, the neural network learns a
general representation of the data. We recommend extracting
semantics from the simple yet sufficiently general parts of
human skin in the image, which can provide information about
color and texture without relying on highly complex or specific
features. Thus, convolutional neural networks are an effective
option for creating semantic vectors.

Recent studies in the deep learning field [10-12] show that
feature vectors, or as we also call them in this paper - semantic
vectors from the images or image parts, can be used in the
unsupervised or semi-supervised manner to solve the wide
variety of tasks.

The promising neural network architecture option emerges
from anomaly detection, data compression, and noise reduction
tasks. Different research [13-17] in this area uses neural
network architecture called autoencoder. An autoencoder is an
artificial neural network trained to copy input data to output
data. Inside, a hidden layer h describes the hidden code used to
represent the input data. The network consists of two parts: the
encoder function and the decoder that creates the reconstruction
[37]. In the classical autoencoder, the hidden layer has a
dimension smaller than the input and output layers. This
property is also used for data compression [14, 15].

Autoencoders can work with different types of data in
different domains, but this study concentrates on medical
images; thus, its main focus is on convolutional autoencoders,
where dense layers are replaced with convolution layers.

When training an autoencoder, loss functions are used.
They determine how much the reproduced object differs from
the original x. In this case, we consider the task of working with
images, so the convolutional autoencoder is used. Commonly
used loss functions include Mean Square Error (1) and Binary
Cross Entropy (2), which is a partial variant of Cross Entropy:

𝑀𝑆𝐸 =
1

𝑛
(𝑥 − �̅�)

ଶ

ୀଵ

, (1)

𝐵𝐶𝐸 =
ଵ

∑ 𝑥 log(�̅�) + (1 − 𝑥)log (1 − �̅�)

ୀଵ , (2)

where n is the number of images for which the error is
calculated, 𝑥 is the original image, and �̅� is the reproduced
one.

Even though some studies claim [18] that MSE gives better
results on small-dimensional images and BSE on large-
dimensional images, they are often used interchangeably.

The hidden layer output h of the encoder is the semantic
vector we seek.

However, classic autoencoders have the disadvantage of
generalizing poorly regarding things different from what they
were trained on. The authors of [19] show this problem in more
detail. They consider different types of autoencoders from the
point of view of the properties of their hidden layers. They
trained the autoencoder model on a large data set - a set of
handwritten digits MNIST [20], saved the vectors obtained at
the output of the h=f(x) encoder, and then reduced the
dimensionality of the vectors to 2 using the method of principal
components [21] and visualized the obtained points on a plane.
Results show that the points are divided into clusters
corresponding to different numbers, which is logical and
desirable. However, the clusters are elongated and have a
substantial spread of values. In addition, it is possible to trace
a significant drop in the density — a ‘gorge’ at the boundaries
of the cluster separation, which may indicate that when an
atypical digit that was not in the training set appears, the
reproduction by the classic autoencoder may be of poor quality.
However, the authors also consider another neural network
architecture — a variational autoencoder, in which these
problems are minimized.

The variational autoencoder [22, 23], unlike the classical
one, belongs to the class of generative neural networks. While
discriminative modeling aims to train a predictor based on
previously collected observations, generative modeling aims to
solve the more general problem of learning the joint
distribution of data [23]. Thus, generative models allow making
assumptions about how data is formed. We can study the joint
distribution of different skin textures and colors as ‘skin texture
modeling,’ which also provides the ability to achieve a more
general semantic vector representation.

Differences in the architecture are manifested in its center;
if, in the classic autoencoder, the middle of the model is a
vector of a small (smaller than the input vector) dimension,
then in the variational one, it is somewhat different. The first
part is the encoder, usually called the recognition model, and
the decoder is called the generative model. The encoder can be
written as q(z|x), where x is the input vector, z is the hidden
middle layer vector, and the decoder is p(x|z)p(z). Since this
model is generative, generation must be present somewhere. It
happens precisely in the center of the model. Unlike a classical
encoder that learns to find a reduced representation of the input
data, in a variational autoencoder, the recognition model tries
to approximate the input data distribution during training. Since
it is impossible to approximate something for which no
information is available, an assumption is traditionally made
about the distribution, such as that it is normal. In the
variational autoencoder, the hidden vector represents the
parameters of the assumed normal distribution—specifically,
the mean (“mu”) and the standard deviation (“std”). These
parameters are used to sample a new vector from this
distribution, which is then used to reconstruct the image. Then

Bohdan Lukashchuk et al. / International Journal of Computing, 23(3) 2024, 486-497

VOLUME 23(3), 2024 489

a vector z is randomly selected from a normal distribution with
the aforementioned parameters. After that, the decoder
reproduces the image from the selected vector z. Thus,
considering the decoder as a product of probabilities p(x|z)p(z),
we see that it reflects the probability of the simultaneous
occurrence of two events p(zx) — the sampling of the vector z
from the normal distribution with parameters mu and std, and
the generation of the original image x by the decoder afterward.

The loss function ELBO (Evidence Lower Bound) [23] is
essential, which, on the one hand, should minimize the error
between the input and the generated image and, on the other
hand, bring the distribution parameters mu and std closer to the
parameters of the standard normal distribution.

𝐸𝐿𝐵𝑂 = 𝐸(𝑧|𝑥)[𝑙𝑛𝑝(𝑥|𝑧)] − 𝐷[𝑞(𝑥|𝑧)||𝑝(𝑧)], (3)

where the first part of ln[𝑝(𝑥|𝑧)] is the likelihood function
responsible for the correctness of the reconstruction and 𝐷is
the Kullback-Leibler divergence (KL-Divergence), which is
also called the relative entropy, and this term of the loss
function is responsible for ensuring that the distributions
𝑞(𝑥|𝑧) (posterior probability) and 𝑝(𝑧) (prior probability) have
the most similar parameters. This way, we get an artificial
neural network trained to obtain the normal distribution
parameters for the input image and then generate the output.
Having the mu and std hidden parameters of the variational
autoencoder network trained on the skin texture images, we can
sample semantic vectors from the normal distribution with the
aforementioned trained parameters that generalize the skin.

The third auspicious approach originates from the recent
studies of deep metric learning. Metric learning aims to
measure the similarity among samples while using an optimal
distance metric for learning tasks [24]. The main goal of this
approach is to bring similar objects closer and increase the
distance between the different objects. In recent years ideas of
deep metric learning have emerged in unsupervised learning for
efficient semantic vector generation in computer vision and not
only fields. [3, 10, 12, 25-27]. Contrastive learning is one of the
most used and well-performing techniques in deep metric
learning. The authors of SimCLR (A Simple Framework for
Contrastive Learning of Visual Representations) [28] show
how to use it to generate semantic vectors of images with a
limited amount of data and in the way that similar embeddings
will be and different will have large distances. SimCLR uses
Siamese network architecture. It consists of twin networks that
accept distinct inputs but are joined by an energy function at
the top [29]. The networks share the same structure and
hyperparameters, so in practice, one instance is used but fed
with two different images during inference. The idea of training
Siamese network in SimCLR is following:

Use two images from different classes as anchor images. If
classes are unknown – sample two different images from the
dataset.

For each anchor image, create two positive samples by

applying different transformations on the anchor image like
random cropping, random color distortion - a technique where
the hue, saturation, brightness, and contrast of an image are
randomly altered.

Use convolutional neural network (CNN) to calculate
embeddings for each of the positive samples

Calculate the loss function between all of the four positive
sample embeddings in the way that two positive sample
embeddings from the one anchor image should be close to each
other and far from the other anchor image positive samples in
terms of the loss function

SimCLR uses a version of the contrastive loss that is known
as Normalized Temperature-Scaled Cross-Entropy (NT-Xent)
loss (4) as the error function:

𝑙, = −𝑙𝑜𝑔
ୣ୶୮൭

ೞቀ,ೕቁ

ഓ
൱

∑ 𝕝ೖಯ
మಿ
ೖసభ ୣ୶୮൭

ೞቀ,ೕቁ

ഓ
൱

 ,

(4)

Where i and j denote positive pair of samples, 𝑧 , 𝑧 –

embeddings of the corresponding vectors, 𝑠𝑖𝑚൫𝑧 , 𝑧൯ – cosine

similarity between the embeddings, 𝕝ஷ ∈ {0, 1} is and
indicator function, evaluating to 1 if 𝑘 ≠ 𝑖 and 𝜏 is a
temperature parameter, N is a size of a randomly sampled
minibatch of examples from the dataset. The same as for the
one image example, two positive samples are created, and we
have 2N embeddings.

With the trained network, one can create texture
embeddings so that skin textures will be close to the other skin
textures and other parts of the image will be far away in terms
of the contrastive loss function and cosine similarity.

III. MATERIALS AND METHODS
The first part of this section describes the data and data
extraction methods used for the experiments. The second
describes the models we created and the main steps of setting
up an experiment to compare the three aforementioned
semantic vector generation methods applied and adapted to the
skin wound and background texture images. Also, it contains
an overview of the method to perform a visual comparison of
the created vectors. The third, finally, describes the training and
evaluation stages of k-nearest neighbors (KNN) and Multi-
Layer Perceptron (MLP) classifiers to discriminate semantic
vectors into skin, wound, and background classes. While we
are not intended for simple texture classification, this is a
straightforward way to evaluate the ability of models to create
efficient semantic vectors.

A. THE DATA
In the previous sections, we repeatedly mentioned that data is
crucial for good-performing machine learning models. If to be
precise – data of good quality and in abundance. Also, we said
there is a data quality and quantity problem in the medical
image segmentation field. Thus, the decision was to study how

 Bohdan Lukashchuk et al. / International Journal of Computing, 23(3) 2024, 486-497

490 VOLUME 23(3), 2024

to generalize some low-dimensional data.
The SFA dataset [30] contains skin images ranging from 1

to 35 pixels. We suggested using the largest 35px available
images for the test. A total of 3354 skin images and 5590 non-
skin samples are available in the set.

Wound images are not available in the aforementioned
dataset, so to extract them, we use the ulcer wound
segmentation dataset created by the authors of The Foot Ulcer
Segmentation Challenge [3]. The overall wound data extraction
is achieved in a few steps:

- apply segmentation mask on the image with foot ulcer
tissue to retrieve wound image only

- find the center of the extracted wound image
- crop rectangle (35x35 px) from the center
- cut off black sides if present
- save the extracted rectangle as a wound texture image

if not more than 50% black color.
We applied this method on 1210 images from the validation

and train datasets of The FUSC [3] dataset. As a result of the
extraction method described before, we received 530 wound
texture images. Many wounds from the aforementioned FUSC
dataset contain small and low-resolution images unsuitable for
wound texture extraction.

Below, in Figure 2, there is an example of some images
from the dataset. The first row contains skin images, the second
- non-skin (possible backgrounds), third – extracted wound
images.

Figure 2: Enlarged examples of skin, background and wound
images

Although they have been enlarged for clarity, there are
different skin textures, colors, and shades, so this set can
competently represent a variety of skin. Moreover, background
images also correspond to a great variety of non-skin textures.
The problem with the wound texture images is that they
sometimes contain large areas of black pixels. This issue arises
from the low resolution or cropping process of the images in
the FUSC dataset. These black regions can potentially mislead
the neural network, causing it to mistakenly identify black or
black-red edges as wound areas. Unfortunately, this is the only
way to create the desired dataset for now. In the future,
unsupervised segmentation, combined with this paper's
semantic vector generation and classification method, may be
used to create a better wound texture dataset from the unlabeled
data.

Finally, we shuffled equal amounts of wound, skin, and
background images and performed train/validation/test split of
the data (preserving an equal amount of each class
representative in the datasets):

 1113 train images

 318 validation images

 159 test images

B. EMBEDDING GENERATION METHOD
The task is to define models to generate semantic vectors and
the method of their comparison using the datasets described
above.

Three different methods of image semantic vectors are used
and compared:

Convolutional autoencoder [31] with the MSE (1) loss;
Variational convolutional autoencoder [23] with ELBO (3)

loss;
Siamese network [29], inspired by the SimCLR framework

[28] with the contrastive loss (4).
Each of the mentioned models shares the same

convolutional encoder part. Different modifications of the
ResNet [32] encoder are commonly used while experimenting
with autoencoders or in SimCLR. Despite this, our initial guess
is that ResNet is too complex for this type of task. For the
experiment, we created custom architecture that is simple
enough but also fulfills all needs of the experiment. Two
critical factors are to be considered: the receptive field of the
inner dense layer neurons and the hidden vector dimension.

The empirical suggestion is that the receptive field should
be at least the size of the initial training data. While the pooling
operation increases both theoretical and practical receptive
field in a good way and the stacking of layers also increases it
to some extent [33], they make the model more complex,
moreover, decrease the dimensionality primarily of the already
small input. Authors of [34] show that sequential usage of the
dilated convolutions results in the exponential expansion of the
receptive field size. According to [34] receptive field can be
calculated recursively using (5) or in an iterative manner with
(6):

𝑟ିଵ = 𝑠 ∗ 𝑟 + (𝑘 − 𝑠) (5)

where l is a layer index, r – receptive field, s – stride, k - kernel
size

𝑟 = ∑ ((𝑘 − 1) ∏ 𝑠
ିଵ
ୀଵ)

ୀଵ + 1 (6)

where L is the number of layers 𝑟 – receptive field of the final
layer neuron.

If dilated convolutions are used in the layer, the value of
kernel size k is calculated as follows (7):

k = α(k − 1) + 1 (7)

where α is a dilation factor.

The other significant factor to consider is the area covered
by each embedding vector neuron. (8), (9) [35] are used to
calculate leftmost u and rightmost 𝑣 indexes of the original

Bohdan Lukashchuk et al. / International Journal of Computing, 23(3) 2024, 486-497

VOLUME 23(3), 2024 491

image, which that are covered by the theoretical receptive field.

u = u ∏ 𝑠

ୀଵ − ∑ p ∏ 𝑠

ିଵ
ୀଵ

ୀଵ (8)

𝑣 = 𝑣 ∏ 𝑠

ୀଵ − ∑ (1 + p −

ୀଵ

 𝑘) ∏ 𝑠
ିଵ
ୀଵ

(9)

The hidden layer dimension should be large enough to hold

the semantic information of the texture and color but must not
be just a flattened copy of the initial data. Also,

the size of the vector must be large enough for use in the
statistical measures and not very computationally expensive for

real-time evaluation using different metrics.
Based on these prerequisites and after calculating the

theoretical receptive field value for the different architecture
combinations, the suggested custom encoder and decoder
architectures (Fig. 3, Fig. 4).

Each rectangle corresponds to the network layer. For
example: ` 5x5 conv., 8, s=1, p=0, d=1 ` means 5 by 5 kernel
size, 8 output channels, stride=1, padding=0, and dilation=1.
The arrow after the layer shows the output dimensions of the
transformed input.

This model takes a 35 by 35 by 3 image and produces 200-
dimensional vector as a flattened output.

Figure 3 Custom encoder network architecture

Figure 4 Custom decoder network architecture

 Bohdan Lukashchuk et al. / International Journal of Computing, 23(3) 2024, 486-497

492 VOLUME 23(3), 2024

Decoder architecture is opposite to the encoder. However,
instead of transpose convolutions, which may cause a
checkboard pattern effect [36], we use upsampling based on the
nearest-neighbors approach with a learnable convolution layer
afterward. Because of this, the decoder contains more layers
than the encoder. Convolutions are not used to decrease input
width and height, and they are configured in a way that does
not change it; instead, they introduce learnable parameters –
filters. This way, we try to go around the checkboard pattern
effect but still have a learnable decoder network that
reconstructs the image.

The receptive field of each value of the last convolutional
layer output is 29 by 29 pixels, which is just slightly smaller
than the original image size, and as shown in Fig. 5, it covers
the whole input.

Axis represents the input image (brown skin rectangle in the
middle) dimensions, red rectangle – area, which affects the
value of the top-left output value of the final convolutional
layer, blue – central, and green – bottom right. This shows that
the whole image is covered by the final layer outputs and that
every value from the output vector holds information about a

large area of the input image.
Based on this encoder, three architectures are implemented

for the experiment on the Fig. 6.

Figure 5. Receptive field of the output layer of the custom
encoder network

Figure 6. a) autoencoder; b) variational autoencoder; c) Siamese network; architectures

Outputs of the layers in dashed rectangles are used as

semantic vectors. It is important to note that in the first two
architecture options, we use a combination of linear and non-
linear layers before the semantic embedding layer, this is
because these options result in better embedding generations,
according to my preliminary experiments, but We do not use
the fully connected layer in the last CLR option. This is because
in [28] the authors show that, for the SimCLR framework, the
flattened layers before the non-linear projection head perform
more than 10% better. That is why, we make this exception for
the c network. Another critical difference is that while working

with the ResNet model encoder (more on this in the later
paragraphs), I use a linear reduction head, which decreases the
encoder flattened output from the 512 dimensions to the 200.

The training of the autoencoder – model a is as follows:
- pass batches of training images through the encoder.
- reconstruct them back through the decoder.
- compare reconstructed with the original ones using

MSE loss.
By doing this, we train the network to create hidden

representations of the skin texture images and reconstruct the
original images from these representations. Testing and

Bohdan Lukashchuk et al. / International Journal of Computing, 23(3) 2024, 486-497

VOLUME 23(3), 2024 493

validation work in a similar manner. After training, only the
encoder is used for further experiments to produce vector
embeddings of the input image.

The training of the variational autoencoder – model b is
slightly different. Image batches are passed in the same
manner. However, in the middle of the network, after the
encoder, 200-dimensional embedding that comes after one
non-linear and one linear layer after flattening the image is
reduced to the 2 nodes that represent parameters of the normal
distribution. Then, the new 200-dimensional vector is sampled
from the normal distribution that uses these two parameters,
and the image is reconstructed from this vector in the decoder
network. ELBO is used as a loss function. The model learns to
generate semantic vectors of the skin texture. In opposite to the
standard autoencoder, where embeddings from the input image
are considered semantic vectors, in variational autoencoder,
sampled from the Normal distribution, with the produced by
the network parameters, vectors are the semantic vectors that
are being sought. The motivation is that the generative model
generalizes skin texture better than the discriminative.
Important to note that two configurations of the ELBO loss
function are tested: one with a KL-Divergence multiplier equal
to 1 and one with a KL-Divergence multiplier being 0.1, which
penalizes the distribution part of the loss function and, in
theory, may result in better similarity of the sampled textures
and training ones.

Model c is trained and evaluated differently. It has no
decoder; only the encoder part is used.

For each training iteration, one image representing skin,
background, and wound is selected from the batch. For each
type of image, n skin (positive samples), n background
(negative samples), and n wound (negative samples) images are
randomly selected from the training data, with n being a fixed
number. The original skin, background, and wound texture
images are referred to as the anchor, while the additional
selected images serve as positive and negative samples.

In contrast to the SimCLR framework, where image
transformations are used to create negative and positive
samples, this experiment employs a supervised approach.

The positive and negative images are passed through the
network, and a contrastive loss with cosine similarity is used to
calculate the difference between the pairs of produced
embeddings. The loss function is designed to bring positive
samples closer together and push negative samples further
apart.

The temperature parameter, a crucial constant in the
contrastive loss formula, plays a significant role. According to
[37], a lower temperature parameter increases the penalization
of complex negative samples, resulting in a more typical
distribution. Based on this, we chose to train two CLR models:
one with a temperature parameter of 0.07 and another with 0.2,
as these values are referenced in the literature.

Training of two configurations of these three models is
performed. The first is with the custom encoder and decoder,
and the second is with the ResNet18 encoder and decoder. 10
models, considering different encoders, model types, and
model parameters, are trained and evaluated in total, not
considering some preliminary training aimed at defining
architectures and some initial parameters. Comparison is
performed in terms of test loss function values, training speed,
evaluation speed, and model weight.

The next comparison stage is the visual evaluation of the
created vector embeddings. Each model option is used to create

embeddings from test dataset samples. 200-dimensional
embeddings are reduced to the 2-dimensional vectors using
Uniform Manifold Approximation and Projection (UMAP)
[38] dimensionality reduction method and visualized on the 2D
plane. UMAP is known for its efficiency on large amounts of
data and its ability to preserve local connections between the
data, which is very important. The goal is to determine the
model that creates the best dense clusters from the data of one
type that are also easily separable from each other. UMAP
accepts hyperparameters, and after a set of experiments, we
selected n_neighbors=15, min_dist=0.1. The other important
hyperparameter is metric, which calculates the distance
between the points during dimensionality reduction. We use
two options: cosine similarity for the autoencoder and Siamese
model-generated vectors and KL Divergence for the variational
autoencoder results. More about metrics in the Results section.

The third stage includes applying two classification models
on wound/skin/background embeddings generated by the
embedding generation models. This stage quantitatively
assesses how easy it is to discriminate the created vectors. We
choose two different methods: k-nearest neighbors (KNN) and
multi-layer perceptron (MLP). According to our intuition,
KNN should work better for the models that generate vectors
grouped into clusters with a considerable distance between
them. MLP can model complex function that divides them. For
the KNN, we decided to use 15 nearest neighbors (as in the
dimensionality reduction step) and apply weights on them,
where the closest points have the largest weight. For
the metric parameter, we use the same approach as for the
dimensionality reduction. The MLP model consists of 4 hidden
fully connected layers with 256, 128, 64, and 32 artificial
neurons, respectively. Input – 200-dimensional vector, output
– three neurons that correspond to one of the seeking
classes. Activation functions for the hidden layers – ReLu, L2
regularization with alpha=0.1 to prevent overfitting
and constant learning rate = 0.001. Optimizer – Adam. As data
is evenly distributed between classes’, we use accuracy as an
evaluation metric. We combine test and validation datasets into
one and use a total of 477 images for evaluation and 1113 for
training.

After training and evaluating these classification models,
we could use a simple method shown in Figure 1 in the
introduction section to see how effective our classification is
on the completely new and untypical wound image. As a
reminder, the method is shown in Fig. 7.

Figure 7. Simple embedding application

This method, for sure, does not provide a way of effective

segmentation; here, we mainly use it to visually determine the
effectiveness of vector generation from the image crops that are
larger than 35x35 pixels. It gives a basic intuition if a specific
vector generation model produces semantic vectors that can be
used in more complex skin and wound analysis methods.

IV. RESULTS AND DISCUSSION
We start with the results of the vector generation models'
parameters, training, and evaluation. Next, we show how skin,

 Bohdan Lukashchuk et al. / International Journal of Computing, 23(3) 2024, 486-497

494 VOLUME 23(3), 2024

wound, and background embeddings created with the models
above are distributed on the plane and make initial conclusions.
And finally, we analyze the classification results to rely on

some metrics while making the conclusions.
Table 1 contains the results of the model training.

Table 1. Model comparison

Model param.

Model name

Total parameters
Model size
(MB)

Average inference
time (ms)

Test MSE loss
Test NT-Xent
loss

Test ELBO loss

Custom CAE 102200 0.66 1.12±0.3 0.0119 - -

ResNet CAE 11311632 53.71 5.72±1.06 0.01504 - -

Custom VAE 1 182600 0.98 2.12±0.69 0.05409 - 0.09106

ResNet VAE 1 11392032 54.03 6.66±1.84 0.05424 - 0.06788

Custom VAE 0.1 182600 0.98 2.23±0.9 0.05438 - 0.05513

ResNet VAE 0.1 11392032 54.03 6.63±1.44 0.05449 - 0.05484

Custom CLR 0.07 62000 0.51 1.21±0.63 - 1.492 -

ResNet CLR 0.07 11271432 53.56 6.18±1.33 - 1.159 -

Custom CLR 0.2 62000 0.51 1.12±0.5 - 0.89 -

ResNet CLR 0.2 11271432 53.56 6.03±1.17 - 0.8369 -

The experiments were conducted using an Nvidia GeForce

RTX 2060 GPU, equipped with 6GB of GDDR6 memory, to
ensure efficient training and inference of the models. We use
Adam optimizer with constant learning rate=0.0001 and batch
size 128 for 1000 epochs.

The first word in the model's name denotes the model type:
Custom or ResNet 18. Second model architecture:
convolutional autoencoder (CAE), variational autoencoder
(VAE), or contrastive learning encoder (CLR). Third word
(number) – the value of some specific for the model loss
function multiplier: KL divergence weight for VAE
architectures and temperature parameter for the CLR models.
A detailed description of each model is the in the previous
section.

We can see from Table 1 above that Custom models are
much smaller in terms of the number of parameters. Custom
models have roughly 100 times fewer parameters than their
ResNet equivalents for CAE architecture, with 60 times fewer
parameters for VAE and 180 for CLR models. Custom models
are less than 1 MB large, and ResNet options all have about 54
MB – roughly 50 larger. In terms of inference time, all models
are high-speed (range 1-8 ms), and the difference is not so
significant as Custom models are 2-3 times faster. Important to
notice that models' inference time is affected by the hardware
but is still relevant to analyze their performance in terms of
time efficiency relative to each other. We used an average of
10000 evaluations on one sample to calculate inference time
for every configuration. One may say that the small model

size's drawback is its performance, but the evaluation metrics
from the test data show that this statement is not precisely
correct. For the CLR models, the smallest loss function value
is achieved by ResNet 0.2, but it is much smaller than the
Custom 0.2 model result (0.8369 and 0.89, respectively).

Regarding mean squared error (MSE) loss (reconstruction
loss), the smallest result is achieved by Custom CAE, and the
ResNet CAE result is slightly larger (0.0119 and 0.01504,
respectively). Regarding ELBO loss, the smallest result is
0.05484 with ResNet VAE 0.1, which is slightly better
than Custom VAE 0.1 with 0.05513. Unfortunately, these
results do not allow us to filter models for the next experiment,
but the vital conclusion lies in different model loss function
configurations. For both VAE models, 0.1 multipliers for the
KL-Divergence results in a much better final test loss function
value, the same as for the 0.2 temperature parameter for the
CLR models.

Fig. 8 shows the 2-dimensional visualization of the test and
validation embeddings. As described in the previous section,
we used UMAP to reduce 200-dimensional vectors into 2
dimensions. Our preliminary experiments showed no use
in cosine distance measures while reducing semantic vectors
created by the VAE models. All points are uniform without any
separation. Thus, we used cosine distance for all the
configurations except VAE. We used KL-Divergence as it is
part of the ELBO loss function. While KL-Divergence is not a
distance measure, it can be used as a measure of similarity or
dissimilarity between vectors.

Bohdan Lukashchuk et al. / International Journal of Computing, 23(3) 2024, 486-497

VOLUME 23(3), 2024 495

Figure 8. 2-dimensional embedding visualization

CAE models separate different textures but with lots of

spatial mixes - some groups that are separated from the others
are filled with different types of textures, like the bottom-left
group from the first row, second column graph (CAE ResNet).
This may be a sign that the neural network is learned to extract
features that are not discriminative in terms of the
wound/skin/background domains.

VAE models provide vectors that are not easily separable
into clusters, which is expected, as ELBO loss penalizes
vectors to be normally distributed. However, points are
grouped according to the domain, with some mix at the borders
of the groups. It is seen that skin texture vectors are placed
between the wound and background ones. This may mean that
VAE models can be used to discriminate wounds and
backgrounds. We expect that the KNN classifier will suffer
with the correct classification as groups of different textures are
close to each other and do not have any free buffer space, so it
is easy to misclassify the sample when checking the nearest
neighbors. Still, MLP can learn how to model function that
separates these close groups efficiently.

CLR provides the best separation of textures, especially the
ResNet version. Still, there are some mixes, this we can
conclude that possible issues with the CAE model may also
affect CLR.

Table 2 shows classification results using KNN and MLP
on the vectors generated by each type of embedding generation
model. Details on classifier training are described in the
previous section.

Table 2. Embedding classification results

 Evaluation
parameter

Model name

KNN
train
accuracy

KNN test
accuracy

MLP train
accuracy

MLP test
accuracy

Custom CAE 1 0.777778 0.880503
0.813417

ResNet CAE 1 0.796646
0.988320

0.905660

Custom VAE 1 0.351303 0.339623 1
0.339623

ResNet VAE 1 0.349506 0.331237 1
0.345912

Custom VAE 0.1 0.350404 0.329140 1 0.333333

ResNet VAE 0.1 0.361186 0.341719 1
0.358491

Custom CLR 0.07 1 0.953878
0.986523

0.945493

ResNet CLR 0.07 1 0.960168 1
0.953878

Custom CLR 0.2 1 0.945493
0.991914

0.941300

ResNet CLR 0.2 1 0.960168 1
0.955975

These results show that embeddings generated by VAE

models are utterly useless in terms of texture discrimination.
MLP can learn to train VAE vector distribution as expected,
but test accuracy shows that model overfits. KNN classifier
shows a random result - 0.33 on all VAE model embeddings.
Thus, variational autoencoders are unsuitable for generating
embeddings intended to be used in classification tasks.
Nevertheless, they can be used to generate artificial skin and
wound textures. Using KL-Divergence instead of cosine
similarity as a metric for KNN classification of VAE-generated
vectors does not result in better accuracy, which is an
unexpected result and may be caused by some non-obvious
errors in the experiment setup.

In general, it is shown that both KNN and MLP classifiers
are easily overfitted in almost all configurations. Thus, more
robust regularization during training and other techniques to
prevent overfitting must be introduced.

CLR model embeddings result in the best classification
results for both MLP and KNN classifiers (more than 0.93),
with no significant difference between them. This shows that
Custom CLR models are the best option for semantic vector
generation when we need to use them in the classification task.
These modes are smaller and faster than ResNets’ and slightly
less performant on the classification task.

CAE models show moderate accuracy, better than VAE, but
not so good as CLR models. The only advantage of CAE over
CLR is that CLR models were trained using all three data
classes, and CAE – used only skin textures. CAE models can
be used when only one data class and no others are present
during embedding model training time.

 Bohdan Lukashchuk et al. / International Journal of Computing, 23(3) 2024, 486-497

496 VOLUME 23(3), 2024

While CLR models show the best potential to be used for
semantic vector generation for classification tasks, important to
highlight that the way CLR models are trained implies that
similar vectors are to be grouped into clusters that are spatially
far from each other, and this gives a significant advantage over
the autoencoder way of training.

Some other sidenote conclusions from the training and
evaluation process are:

- feature vector standardization does not affect MLP and
KNN classifiers' training and evaluation results

- image patch standardization to the mean (0.458) and
standard deviation (0.17) of a skin/wound/background
dataset improves Custom model variants test loss
values, decreases pre-trained ResNet loss values, and
improves not-pre-trained ResNet loss values.
However, standardization does not affect classification
accuracy.

Even with low-dimensional data, it is important to
emphasize that the quality of these data is crucial. As
mentioned in the Data section, poor-quality images (due to
noise, low resolution, lossy compression or other reasons) can
negatively impact classification results by damaging important
features and as a result tricking models. This highlights the
need for careful preprocessing (utilizing denoising
autoencoders or other techniques) in case of working with such
data.

V. CONSLUSIONS
In conclusion, we highlight the main outputs of the conducted
research. While these results may be suitable for different
areas, we only state them here for the human skin wound
texture domain.

- variational autoencoders are not suitable for generating
feature texture vectors intended to be used in
classification tasks. However, they are efficient in
generating synthetic skin or wound textures and are to
be used for this.

- ResNet variational autoencoders generate much better
synthetic skin than Custom models.

- Custom models (in CLR architecture) are smaller,
faster, and almost as effective as ResNets. In contrast,
ResNets provide more stable results and should be
considered after the accumulation of a large amount of
training data to prevent embedding model overfit.

- CLR architecture is the smallest, fastest, and most
efficient in generating semantic vectors for
classification. It should be used when we have at least
two classes during model training. For example,
skin/non-skin, wound/non-wound. CAE architecture
should be used when this is impossible and only one
data class is available, so convolutional autoencoder
may be trained on it.

- 0.1 multiplier for KL-Divergence calculation in ELBO
loss function during VAE training results in faster
convergence than the usage of the unit multiplier.
Other multipliers are to be considered.

- Usage of the 0.2 temperature parameter for NT-Xent
loss during CLR model training results in faster
convergence and provide less uniform distribution of
the vectors than the usage of the 0.07 temperature
value.

The application of the semantic feature vector generation
models and the semantic feature vectors of textures in the

human skin wound domain may vary. We could generate
synthetic textures for data augmentation during classification
or segmentation model training or to find and classify
skin/wound areas on large, complex, and non-typical images.
There may be applications in vision transformer models or
others still to be found. In this paper, we analyzed this topic,
evaluated a few deep-learning-based feature vector generation
methods, and generated options for further research.

VI. ACKNOWLEDGEMENTS
We express our respect and gratitude to all the brave ones
defending Ukraine in the war with the russian federation.

VI. REFERENCES
[1] Z. Sanchez, A. Alva, M. Zimic, and C. del Carpio, “An algorithm for

characterizing skin moles using image processing and machine learning,”
International Journal of Electrical and Computer Engineering (IJECE),
vol. 11, no. 4, p. 3539, Aug. 2021, doi:
https://doi.org/10.11591/ijece.v11i4.pp3539-3550.

[2] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional
Networks for Biomedical Image Segmentation,” Lecture Notes in
Computer Science, vol. 9351, pp. 234–241, 2015, doi:
https://doi.org/10.1007/978-3-319-24574-4_28.

[3] C. Wang et al., “FUSeg: The Foot Ulcer Segmentation Challenge,”
arXiv:2201.00414 [cs, eess], Jan. 2022, Available:
https://arxiv.org/abs/2201.00414

[4] Héctor Carrión, M. Jafari, M. D. Bagood, H.-L. Yang, Roslyn Rivkah
Isseroff, and M. M. Gomez, “Automatic wound detection and size
estimation using deep learning algorithms,” vol. 18, no. 3, pp. e1009852–
e1009852, Mar. 2022, doi: https://doi.org/10.1371/journal.pcbi.1009852.

[5] T. Deng, S. Gulati, A. Kumar, W. Rodriguez, Benoit Dawant, and A.
Langerman, “Automated detection of surgical wounds in videos of open
neck procedures using a mask R-CNN,” Feb. 2021, doi:
https://doi.org/10.1117/12.2580908.

[6] G. Scebba et al., “Detect-and-segment: A deep learning approach to
automate wound image segmentation,” Informatics in Medicine
Unlocked, vol. 29, p. 100884, 2022, doi:
https://doi.org/10.1016/j.imu.2022.100884.

[7] C. Wang et al., “Fully automatic wound segmentation with deep
convolutional neural networks,” Scientific Reports, vol. 10, no. 1, Dec.
2020, doi: https://doi.org/10.1038/s41598-020-78799-w.

[8] N. Jaworski, Ihor Farmaha, Uliana Marikutsa, Taras Farmaha, and Vasyl
Savchyn, “Implementation features of wounds visual comparison
subsystem,” International Conference on Perspective Technologies and
Methods in MEMS Design, Apr. 2018, doi:
https://doi.org/10.1109/memstech.2018.8365714.

[9] U. Şevik, E. Karakullukçu, T. Berber, Y. Akbaş, and S. Türkyılmaz,
“Automatic classification of skin burn colour images using texture-based
feature extraction,” IET Image Processing, vol. 13, no. 11, pp. 2018–
2028, Sep. 2019, doi: https://doi.org/10.1049/iet-ipr.2018.5899.

[10] Z. Wu, Y. Xiong, S. Yu, and D. Lin, “Unsupervised Feature Learning via
Non-Parametric Instance-level Discrimination,” arXiv:1805.01978 [cs],
May 2018, Available: https://arxiv.org/abs/1805.01978

[11] R. D. Hjelm et al., “Learning deep representations by mutual information
estimation and maximization,” arXiv:1808.06670 [cs, stat], Feb. 2019,
Accessed: Apr. 23, 2023. [Online]. Available:
https://arxiv.org/abs/1808.06670

[12] P. Bachman, R. D. Hjelm, and W. Buchwalter, “Learning
Representations by Maximizing Mutual Information Across Views,”
arXiv:1906.00910 [cs, stat], Jul. 2019, Accessed: Mar. 27, 2021.
[Online]. Available: https://arxiv.org/abs/1906.00910

[13] N. Pal and T. T. Johnson, “Work In Progress: Safety and Robustness
Verification of Autoencoder-Based Regression Models using the NNV
Tool,” Electronic Proceedings in Theoretical Computer Science, vol.
361, pp. 79–88, Jul. 2022, doi: https://doi.org/10.4204/eptcs.361.8.

[14] D.-M. Tsai and P.-H. Jen, “Autoencoder-based anomaly detection for
surface defect inspection,” Advanced Engineering Informatics, vol. 48, p.
101272, Apr. 2021, doi: https://doi.org/10.1016/j.aei.2021.101272.

[15] J. K. Chow, Z. Su, J. Wu, P. S. Tan, X. Mao, and Y. H. Wang, “Anomaly
detection of defects on concrete structures with the convolutional
autoencoder,” Advanced Engineering Informatics, vol. 45, p. 101105,
Aug. 2020, doi: https://doi.org/10.1016/j.aei.2020.101105.

[16] L. Theis, W. Shi, A. Cunningham, and F. Huszár, “Lossy Image
Compression with Compressive Autoencoders,” arXiv:1703.00395 [cs,

Bohdan Lukashchuk et al. / International Journal of Computing, 23(3) 2024, 486-497

VOLUME 23(3), 2024 497

stat], Mar. 2017, Accessed: Apr. 23, 2023. [Online]. Available:
https://arxiv.org/abs/1703.00395

[17] Z. Cheng, H. Sun, M. Takeuchi, and J. Katto, “Deep Convolutional
AutoEncoder-based Lossy Image Compression,” 2018 Picture Coding
Symposium (PCS), Jun. 2018, doi:
https://doi.org/10.1109/pcs.2018.8456308.

[18] N. Khare, Poornima Singh Thakur, P. Khanna, and A. Ojha, “Analysis of
Loss Functions for Image Reconstruction Using Convolutional
Autoencoder,” Communications in computer and information science,
pp. 338–349, Jan. 2022, doi: https://doi.org/10.1007/978-3-031-11349-
9_30.

[19] T. Spinner, J. Körner, J. Görtler, and O. Deussen, “Towards an
Interpretable Latent Space – An Intuitive Comparison of Autoencoders
with Variational Autoencoders,” thilospinner.com, Oct. 22, 2018.
https://thilospinner.com/towards-an-interpretable-latent-space/ (accessed
Apr. 23, 2023).

[20] Li Deng, “The MNIST Database of Handwritten Digit Images for
Machine Learning Research [Best of the Web],” IEEE Signal Processing
Magazine, vol. 29, no. 6, pp. 141–142, Nov. 2012, doi:
https://doi.org/10.1109/msp.2012.2211477.

[21] K. Pearson, “On Lines and Planes of Closest Fit to Systems of Points in
Space,” The London, Edinburgh, and Dublin Philosophical Magazine
and Journal of Science, vol. 2, no. 11, pp. 559–572, Nov. 1901, doi:
https://doi.org/10.1080/14786440109462720.

[22] D. P. Kingma and M. Welling, “Auto-Encoding Variational Bayes,”
arXiv.org, 2013. https://arxiv.org/abs/1312.6114

[23] D. P. Kingma and M. Welling, “An Introduction to Variational
Autoencoders,” Foundations and Trends® in Machine Learning, vol. 12,
no. 4, pp. 307–392, 2019, doi: https://doi.org/10.1561/2200000056.

[24] K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick, “Momentum Contrast for
Unsupervised Visual Representation Learning,” arXiv:1911.05722 [cs],
Mar. 2020, Available: https://arxiv.org/abs/1911.05722

[25] A. Dosovitskiy, P. Fischer, J. T. Springenberg, M. Riedmiller, and T.
Brox, “Discriminative Unsupervised Feature Learning with Exemplar
Convolutional Neural Networks,” arXiv:1406.6909 [cs], Jun. 2015,
Accessed: Apr. 23, 2023. [Online]. Available:
https://arxiv.org/abs/1406.6909

[26] A. van den Oord, Y. Li, and O. Vinyals, “Representation Learning with
Contrastive Predictive Coding,” arXiv:1807.03748 [cs, stat], Jan. 2019,
Available: https://arxiv.org/abs/1807.03748

[27] Y. Sun, K. Fu, Z. Wang, C. Zhang, and J. Ye, “Road Network Metric
Learning for Estimated Time of Arrival,” arXiv:2006.13477 [cs, stat],
Jun. 2020, Accessed: Apr. 23, 2023. [Online]. Available:
https://arxiv.org/abs/2006.13477

[28] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A Simple Framework
for Contrastive Learning of Visual Representations,” arXiv:2002.05709
[cs, stat], Jun. 2020, Available: https://arxiv.org/abs/2002.05709

[29] G. Koch, R. Zemel, and R. Salakhutdinov, “Siamese Neural Networks for
One-shot Image Recognition.” Available:
https://www.cs.cmu.edu/~rsalakhu/papers/oneshot1.pdf

[30] “SFA - Human Skin Image Database - SEL/EESC/USP,”
www1.sel.eesc.usp.br. http://www1.sel.eesc.usp.br/sfa/

[31] I. Goodfellow, Y. Bengio, and A. Courville, “Deep Learning,”
Deeplearningbook.org, 2016. https://www.deeplearningbook.org/

[32] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image
Recognition,” 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 770–778, Jun. 2016, doi:
https://doi.org/10.1109/cvpr.2016.90.

[33] W. Luo, Y. Li, R. Urtasun, and R. Zemel, “Understanding the Effective
Receptive Field in Deep Convolutional Neural Networks,”
arXiv:1701.04128 [cs], Jan. 2017, Available:
https://arxiv.org/abs/1701.04128

[34] F. Yu and V. Koltun, “Multi-Scale Context Aggregation by Dilated
Convolutions,” arXiv:1511.07122 [cs], Apr. 2016, Available:
https://arxiv.org/abs/1511.07122

[35] A. Araujo, W. Norris, and J. Sim, “Computing Receptive Fields of
Convolutional Neural Networks,” Distill, vol. 4, no. 11, Nov. 2019, doi:
https://doi.org/10.23915/distill.00021.

[36] A. Odena, V. Dumoulin, and C. Olah, “Deconvolution and Checkerboard
Artifacts,” Distill, vol. 1, no. 10, Oct. 2016, doi:
https://doi.org/10.23915/distill.00003.

[37] F. Wang and H. Liu, “Understanding the Behaviour of Contrastive Loss.”
Accessed: Apr. 23, 2023. [Online]. Available:
https://openaccess.thecvf.com/content/CVPR2021/papers/Wang_Unders
tanding_the_Behaviour_of_Contrastive_Loss_CVPR_2021_paper.pdf

[38] L. McInnes, J. Healy, and J. Melville, “UMAP: Uniform Manifold
Approximation and Projection for Dimension Reduction,” arXiv.org,
2018. https://arxiv.org/abs/1802.03426

BOHDAN LUKASHCHUK is a machine
learning engineer at Binariks, a
teaching assistant, and a
Postgraduate student in the Ukrainian
National Forestry University CS
department. He earned Bachelors's
and Masters's degrees in computer
science at Lviv National Polytechnic
University, CAD department.

Main research interests: natural language and image
processing using deep learning.
Email: bohdan.lukashchuk@gmail.com
Linkedin: https://www.linkedin.com/in/blukash/

