

536 VOLUME 23(4), 2024

Date of publication DEC-31, 2024, date of current version MAY-18, 2024.
www.computingonline.net / computing@computingonline.net

Print ISSN 1727-6209
Online ISSN 2312-5381
DOI 10.47839/ijc.23.4.3753

Optimizing Multi-Layer Perceptron for
Predicting Learner Migration Patterns:

A Methodological Exploration
FRANS RAMPHELE1, ZENGHUI WANG2, ADEDAYO YUSUFF2

1Department, Department of Computer Science, University of South Africa, Florida, Johannesburg, South Africa,1709
2Department of Electrical Engineering, University of South Africa, Florida, Johannesburg, South Africa,1709

Corresponding author: Frans Ramphele (e-mail: letsukulo.ramphele@ gmail.com).

 ABSTRACT This research presents a novel approach to multilayer perceptron's (MLP) hyper-parameter
optimization in solving learner migration problems in Limpopo, South Africa. While acknowledging the presence
of various hyper-parameter optimization techniques, their applicability, strengths, and limitations differ. Our
approach utilizes meta-heuristics, offering an efficient and adaptable method for complex search spaces and global
exploration of optimal solution candidates. The social ski-driver (SSD) algorithm -originally designed for
optimizing support vector machines (SVMs)- and cultural algorithm (CA) were utilized to determine the optimal
hyper-parameter configuration for the MLP. The MLP was intended to predict the likelihood of a learner migrating,
the reasons for migration, and the distance the learner will migrate to the next school. The two optimizers were
run on sample data split into five folds, producing ten hyper-parameter sets (five pairs). The MLP was then built
with each parameter set and subsequently run on a new dataset partitioned into five folds. The model performance
results were compared using evaluation metrics such as the f1 score, variance analysis, and the Wilcoxon Signed-
Rank test. There were no significant performance differences between the SSD and CA hyper-parameters,
demonstrating the effectiveness of the SSD algorithm in optimizing neural networks. The CA-derived parameter
set was selected due to its lowest variances across the datasets and its strong alignment with the convergence
principles of the Berger-Tal multidisciplinary framework on the exploration-exploitation trade-off, providing a
solid foundation for our findings.

 KEYWORDS Multi-Layer Perceptron (MLP), Cultural algorithm (CA), Social Ski-driver (SSD), Multi-

Objective Optimization, Learner Migration, Exploration-Exploitation framework

I. INTRODUCTION
HE nature of human migration and displacement is
inherently complex, characterized by a combination of

predictable and unpredictable occurrences [1]. Education
planners face significant challenges in this space as they
navigate a planning landscape that is marked by volatility,
uncertainty, complexity, and ambiguity caused by spontaneous
learner migration phenomena. These challenges demand
optimized inputs into educational policies that clearly define the
problem and promote efficient learning and global
competitiveness [2], [3]. Developing such efficient solutions has
been of interest for a considerable period in EDM (Education
Data Mining) [2]. However, most of the optimization problems
are characterized by the presence of highly non-linear objective
and constraint functions with mixed types of variables. In
addition, real-world optimization problems lack a fixed form
and the objective and constraints functions as well as their
derivatives are not always available. Finding acceptable
solutions in this case is not always easy and remains an open

problem in this area [4]. Meta-heuristic algorithms have gained
popularity and acceptance among researchers in reducing the
uncertainty around optimization problems. This form of
algorithm is inspired by successful processes in nature which
among others include observable physical, ecological, and
social phenomena [4].

The Culture Algorithm (CA) and Social Ski-Driver
algorithms, which will serve as the foundation of this study,
drew inspiration from the evolutionary aspects of human culture
and the downhill behavior of ski drivers, respectively [5], [6].
Some of the meta-heuristic in this group include the Harmony
Search algorithm (HS) inspired by musicians’ harmony
improvisation act; the Fireworks Algorithm (FA) inspired by
observing fireworks explosions; Teaching learning-based
algorithm (TLBO) inspired by the interaction between a teacher
and students; Imperialist Competitive Algorithm (ICA);
Exchange Market Algorithm (EMA); Soccer League
Competition (SLC); Brainstorm Optimization (BSO) etc. [5].

T

Frans Ramphele et al. / International Journal of Computing, 23(4) 2024, 536-551

VOLUME 23(4), 2024 537

The human-inspired meta-heuristic have proven themselves and
gained recognition in numerous applications such as process
scheduling, fault tolerance scheduling, image processing,
engineering optimization problems, etc. [4], [7]. Nonetheless,
there are some challenges, mainly from a theoretical point of
view, related to the human-inspired meta-heuristic. First, the
precise circumstances in which these algorithms must be
deployed remain one of the greatest challenges. Second, the
human-inspired meta-heuristic includes parameters that
essentially rely on algorithms. The lack of a general mechanism
to methodically fine-tune the parameters to improve the
performance of the underlying algorithm is another challenge.
Lastly, the need to compare different algorithms for
performance forces researchers to look ahead before selecting
appropriate performance parameters [7].

Maheri et al. [4] undertook a detailed review of the Culture
Algorithm (CA) and its applications in science and engineering,
focusing on recent developments. The study argued that the CA
has demonstrated success in addressing diverse optimization
challenges across various engineering and science disciplines.
The study emphasized the heightened interest in CAs among
researchers. Notably, the review finds different types of CAs,
including hybridized, improved, multi-objective, multi-
population, chaotic, and fuzzy. Despite this maturity, the review
identified several critical issues that merit attention. First, the
study advocates exploring hybridization possibilities with
recently introduced CA variants beyond genetic algorithms
(GA), differential evolution (DE), and particle swarm
optimization (PSO). It was further argued that there is a need to
develop efficient influence and update functions to enhance the
utilization of knowledge sources and maintain population
diversity to prevent premature convergence. Furthermore, the
study highlighted the need for a rigorous examination of the
influence of different knowledge sources on CA performance
across various problem domains.

On the contrary, the social ski-driver algorithms represent a
relatively recent development with limited documented
applications and achievements in the existing literature. The
SSD was first created to improve the hyper-parameters of
Support Vector Machines (SVM) and class imbalance issues in
that area [8]. The SSD has recently been explored for novel
applications, especially in feature selection. Notably, a study has
emerged wherein the SSD was integrated with Late Acceptance
Hill Climbing (LAHC) for feature selection [9]. The findings
suggest that the SSD (LAHC) outperformed other meta-
heuristic wrapper-based feature selection methods, including
but not limited to Genetic Algorithm (GA), Particle Swarm
Optimization (PSO), Ant Lion Optimizer, Gray Wolf Optimizer
(GWO), Multi-Objective GA (HMOGA), Tribe Competition-
based GA (TCbGA), and Grasshopper Optimization Algorithm
(GOA) [9].

The study by Ahmad et al. [10] provides insights and a
comprehensive picture of potential challenges and prior
contributions in the EDM. The study reviewed 1497
publications from 1990 to 2022 (32 years) and found that most
of the contributions are in the form of recommendation systems
and students’ performance evaluation systems. There has been
very little effort to use meta-heuristics in solving multi-objective

optimization problems in the context of learner migration. The
focus of this study is to demonstrate the use of CA and SSD to
optimize the MLP (Multi-Layer Perceptron) hyper-parameters
and subsequently predict the likelihood of a learner to migrate,
the reasons for migration and the range of distance they will
migrate to the next school.

This paper advances the field of Education Data Mining
(EDM) research through innovative applications of meta-
heuristics to tackle intricate educational challenges. The
application of evolutionary algorithms for optimizing multilayer
perceptron (MLP) hyperparameters represents a significant
contribution, notably expanding the scope of SSD from its initial
focus on SVM hyperparameters optimization. Additionally, the
distinctive contribution is underscored by incorporating learner
migration data from Limpopo, South Africa, offering a context-
specific dimension to the optimization approach. The paper's
outline includes a literature review, theoretical framework,
methods and materials, experiment design and execution.
Furthermore, the findings are presented, and their implications
and future work are discussed.

II. THEORITICAL FRAMEWORK
A. HYPER-PARAMETER SELECTION
Hyper-parameter optimization is considered a key phase in
building effective machine learning models, especially for deep
neural networks and decision trees with inherently many hyper-
parameters [11]. In recent times, there have been numerous
techniques to optimize hyper-parameters. These techniques can
broadly be categorized into an estimation of generalization error,
numerical optimization methods, and non-numerical
optimization methods [12].

The estimation of generalization error is the most used
technique for hyperparameter optimization. What is core in its
architecture is the search space (candidate hyper-parameters)
and estimation strategy [13]. Typical search spaces include
manual search, random search, and grid search, which are
sometimes referred to as decision-theoretic search spaces. This
nomenclature stems from the intrinsic mechanism they employ,
connecting the concept of search space with the estimation
strategy[14]. Grid search (GS) explores a fixed domain, while
random search (RS) randomly selects combinations within time
and resource constraints. In this category of optimizers, we also
have Bayesian optimization (BO) models which determine the
next hyper-parameter value based on the previously tested
hyper-parameter results, reducing unnecessary evaluations, and
identifying optimal combinations in fewer iterations compared
to GS and RS [11]. The grid and manual search are the most
used search spaces due to their simplicity and independence
from prior information.

Gradient descent and quasi-Newton techniques are
numerical optimization methods used to find the minimum of a
function. They aim to adjust model parameters to minimize a
cost or objective function. Gradient descent moves toward the
steepest decrease, while quasi-Newton uses an approximation of
the Hessian matrix to determine step direction. These algorithms
are more sophisticated and can converge faster in some cases.

 Frans Ramphele et al. / International Journal of Computing, 23(4) 2024, 536-551

538 VOLUME 23(4), 2024

However, they also suffer issues such as local optima and are
dependent on a specific starting point [13], [15].

Non-numerical optimization methods like evolutionary
algorithms are effective for non-differentiable and non-convex
problems. However, these methods often have high time
complexities due to inefficient search strategies and require
significant processing power [12],[16]. Furthermore, each
presents distinct traits, making them appropriate for addressing
specific problems but not necessarily all. It is, therefore, crucial
to carry out comprehensive comparisons among these
techniques prior to their implementation [7], [11]. Algorithms in
this group include culture algorithm (CA), social ski-driver
(SSD), Genetic algorithms (GA) and Particle swarm
optimization (PSO).

B. CULTURE ALGORITHM
The culture algorithm belongs to the evolutionary computing
family. Algorithms in this family use metaphorical concepts,
principles, and mechanisms inspired by natural systems and
evolution to solve complex computing problems. Most work in
evolutionary computing focuses on the processes of natural
selection and genetics. However, there is a strong belief among
researchers that cultural evolution allows societies to evolve or
adapt to their environment faster than biological evolutionary
processes [17]. The culture algorithm (CA) was originally
developed by Reynolds as an extension of the genetic algorithm.
However, it has evolved to incorporate other evolutionary
algorithms as the basis of its framework [18]. Structurally, CA
aligns with Renfrew's THINK model in terms of a dual
inheritance framework that includes a belief space composed of
individual and group mappa and a trait-based population space
[19]. The two components are linked by communication
protocols. The belief space is shared amongst the population,
which exposes the principle of collective intelligence [20]. The
representation in Fig. 1 shows a basic computational framework
of the CA.

Figure 1. Culture Algorithm diagram [18]

The population space consists of autonomous solution
candidates, while the belief space is considered a repository for
evolutionary global knowledge. The evolutionary knowledge
stored in the belief space can influence agents in the population
of space through the influence function, and knowledge from the
population space can be transferred to belief through the
acceptance function. The population space in CAs can be

modelled by population-based evolutionary meta-heuristics
such as Genetic Algorithm (GA), Differential Evolution (DE),
and Particle Swarm Optimization (PSO) [21].

The process of CA evolution starts with the random
initialization of the population while simultaneously building
the initial knowledge base. Initially, the two spaces devolve
independently. Then selected agents from the population space
are used to update the belief space. Once the knowledge sources
are updated, the belief space will guide the development of the
population space in reverse. These procedures continue until the
termination state is reached [21], [22]. There are five categories
of knowledge sources in the CA that can be used to solve a range
of problems [21]:

Table 1. CA Knowledge Space

Knowledge
Space

Purpose

Situational Introduced by Chung to solve real-valued function
optimization problems in the static environment. The best
solutions of all the generations are stored in this
component

Normative The normative knowledge describes the range of
acceptable behaviour for solution candidates.

Topographic Topographic knowledge sources can articulate the spatial
pattern of individual behaviour

Domain Used to solve dynamic optimization problems through
dynamic monitoring of the environment and predicting the
evolutionary trend

Historical Is considered the log, in which important events are
recorded during the evolution of the population

The mathematical representation of the culture algorithm is

depicted below [19], [20]. The belief space is represented as:

𝐵 = (𝑆, 𝑁) (1)

where 𝑺 is the situational knowledge component which
consists of the best solutions from all generations, and 𝑵 is
the normative knowledge component. The 𝑺 and 𝑵 in (1) can
further be expressed as:

 𝑆 = {𝑦 : 𝑙 = 1, … , 𝑛௦} (2)
𝑁 = (𝑋ଵ, 𝑋ଶ, … 𝑋௫) (3)

where 𝒏𝒔 is the total number of solution candidates in the
situational knowledge component and 𝒏𝒙 is the total number
of dimensions in the normative knowledge component. Each
dimension 𝑿𝒋 stores the following information:

𝑋 = ൫𝐼 , 𝐿 , 𝑈൯ (4)

where 𝑰𝒋 signifies the closed interval for each solution, 𝐼 =

ൣ𝑥, , 𝑥௫,൧ = ൛𝑥: 𝑥, ≤ 𝑥 ≤ 𝑥௫,ൟ. 𝑳𝒋 and 𝑼𝒋

represent the scores of the lower and upper bound respectively.

The other knowledge spaces (e.g domain, historical,

topographic) can be accessed by updating 𝑥 and 𝑥௫ for
the 𝑗𝑡ℎ variable in each iteration to reach the new bounds. For
example, adjusting the normative knowledge components

Frans Ramphele et al. / International Journal of Computing, 23(4) 2024, 536-551

VOLUME 23(4), 2024 539

allows an accepted response like 𝒙𝟏,𝒋 to change the space as

follows:

𝑥,
௪ = ቊ

𝑥ଵ, 𝑥ଵ, ≤ 𝑥, 𝑜𝑟 𝑓൫𝑥ଵ,൯ ≤ 𝐿

𝑥, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (5)

𝑥௫,
௪ = ቊ

𝑥ଵ, 𝑥ଵ, ≤ 𝑥௫, 𝑜𝑟 𝑓൫𝑥ଵ,൯ ≤ 𝑈

𝑥௫, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (6)

𝐿
௪ = ቊ

𝑓൫𝑥ଵ,൯ 𝑥ଵ, ≤ 𝑥, 𝑜𝑟 𝑓൫𝑥ଵ,൯ ≤ 𝐿

𝐿 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (7)

𝑈
௪ = ቊ

𝑓൫𝑥ଵ,൯ 𝑥ଵ, ≤ 𝑥௫, 𝑜𝑟 𝑓൫𝑥ଵ,൯ ≤ 𝑈

𝑈 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (8)

where 𝑓(.) is the fitness function. Equations (5) and (6)
suggest that the new response is equal to the recently accepted
component OR otherwise is equal to the previous values.
Similarly, in (7) and (8), the new upper and lower cost
functions must be lower than the previous one to be accepted
or otherwise the previous values remain. Similar to the
formula mentioned earlier for normative knowledge
components, the situational knowledge component can be
modified as follows:

𝑆௪ = 𝑦௪

= ൜
𝑚𝑖𝑛ୀଵ,…,ಳ

{𝑥} 𝑖𝑓 𝑓(𝑚𝑖𝑛ୀଵ,…,ಳ
{𝑥} < 𝑓(𝑦)

𝑦 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (9)

where 𝑛 is the total number of accepted solutions. At each
iteration, the situational knowledge component - as shown in
(9) - keeps only one optimal solution. The acceptance function
is used to select the optimal solutions from the population to
guide the belief space.

The acceptance function can either be static or dynamic.
The static acceptance function will select the top n% (fixed) of
solutions. The utilization of dynamic selection allows for the
establishment of diverse methodologies to determine the
appropriate number of individuals through the implementation
of a dynamic acceptance function. The belief space can be
updated by the situational and normative knowledge
components for the accepted individuals. Similarly, the belief
space must update population space through the influence
function. The influence function can be updated using three
strategies outlined in (10), (11) and (12) based on the
knowledge component. The first option involves using the
normative knowledge component to determine the step sizes
in the offspring generation process and is expressed as
follows:

𝑥,
௪ = 𝑥, + 𝛿. 𝑁(0,1) (10)

where 𝛿 = 𝛼൫𝑥௫, − 𝑥,൯ is the step size, 𝑁 is a

random value and α is a coefficient, both between 0 and 1.

The second option involves using the situational
knowledge component to determine the change in direction. In
this situation, the direction of the response is calculated as:

𝑥,
௪ = ቐ

𝑥, + 𝛿. |𝑁(0,1)|𝑥, < 𝑦

𝑥, − 𝛿. |𝑁(0,1)|𝑥, < 𝑦

𝑥, + 𝛿. 𝑁(0,1)𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (11)

And lastly, the normative knowledge component is used

for both search direction and step size and can be expressed as
follows:

𝑥,
௪ = ቐ

𝑥, + 𝛿. |𝑁(0,1)|𝑥, ≤ 𝑥,

𝑥, − 𝛿. |𝑁(0,1)|𝑥, ≥ 𝑥௫,

𝑥, + 𝛿 . 𝑁(0,1)𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(12)

where the step size is equal to equation (10).

C. SOCIAL SKI-DRIVER (SSD) ALGORITHM
The social ski-driver (SSD) optimization algorithm is a human-
based evolutionary metaheuristic inspired by PSO (Particle
Swarm Optimizer, GWO (Gray wolf optimizer) and SCA (Sine
cosine algorithm) evolutionary algorithms [23]. The algorithm
adopts an iterative approach to search for optimal solutions,
emulating the behaviour of ski drivers when they go downhill
[6]. The algorithm was initially developed with the sole purpose
of optimizing the parameters of SVMs and dealing with class-
imbalanced datasets in that space [8]. The SSD algorithm uses
the following parameters in its computational framework [8],
[23].

•Agent position represented as (𝑥 𝜖 ℛௗ), where d is a
dimensional search space and 𝑥 is an agent occupying a
position in the search space

•Previous best position represented as 𝑃 .As the SSD
executes, all the solutions are at some point evaluated for their
fitness. Each agent's fitness value is compared with the fitness
value associated with its current position. The position that
demonstrates the superior fitness value is stored in the 𝑃 .

•Mean global solution represented as M: The M
represents either a convergence point or optimal solution and
is calculated as follows:

𝑀௧ =
𝑥ఈ + 𝑥ఉ + 𝑥ఊ

3
 (13)

where 𝑥ఈ , 𝑥ఉ , 𝑥ఊ indicate the best three solutions and 𝑀௧

indicates the mean of the best three solutions in the current
iteration t.

The velocity of the agents is represented as 𝑣. The ‘agents’
positions are adjusted by adding the velocity (𝑣) to the
current position of the agent using the following equation:

 Frans Ramphele et al. / International Journal of Computing, 23(4) 2024, 536-551

540 VOLUME 23(4), 2024

𝑥

௧ାଵ = 𝑥
௧ + 𝑣

௧ (14)
where

𝑣ଵ
௧ାଵ = ቊ

𝑐 sin(𝑟ଵ) (𝑝
௧ − 𝑥

௧) + sin(𝑟ଵ) (𝑀௧ − 𝑥
௧) 𝑖𝑓 𝑟ଶ ≤ 0.5

𝑐 cos(𝑟ଵ) (𝑝
௧ − 𝑥

௧) + cos(𝑟ଵ) (𝑀௧ − 𝑥
௧) 𝑖𝑓 𝑟ଶ > 0.5

 (15)

 where

𝑣 is the velocity of the agent 𝑥
𝑟ଵ , 𝑟ଶ are random numbers in the interval [0,1]
𝑝

௧ is the best solution of the tth iteration
c is the parameter that controls the balance between exploration
and exploitation

Fig. 2 depicts a movement of agents in the SSD proximal
space. The movement of agents towards the convergence point
(M) is not linear because of the sin and cos functions. The SSD
resembles the PSO logic when calculating the previous position
of the agent and the GWO when the agents converge to the
global minima [23].

The algorithm begins by creating agents and randomly
initializing parameters such as the agent positions (𝑥) and
velocities (𝑣). The maximum number of iterations (epoch) and
the population size are derived from the defined problem.
During processing, the agents update their position in (14) and
adjust their velocity in (15).

Figure 2. Demonstration of agent movement in the SSD space [23]

The agents update velocity (𝑣) on two terms; the distance
between the previous best position and the current position
(𝑝

௧ − 𝑥
௧) ; and the distance between the mean global solution

and the current position (𝑀௧ − 𝑥
௧). The algorithm adapts a

parameter c linearly over iterations. Agents within the
population move in search of optimal solutions through a
combination of exploration and exploitation which is controlled
by the parameter c. The algorithm employs sine and cosine
functions based on a random selection criterion (𝑟ଵ or 𝑟ଶ) to
decide on the movement strategy for each agent. With the sine

function active, the algorithm updates the velocity, considering
the best local and global solutions, and adjusts the agent's
movement accordingly. With the cosine function active, the
algorithm adjusts the velocity using a different movement
strategy to balance exploration and exploitation. Agents
generate new positions by combining their velocity vectors
with random elements. The newly generated positions are
corrected to fit within the problem's solution space. The
algorithm evaluates the fitness of the new positions and
replaces the existing solutions in the population. The process
continues for a specified number of iterations or until a
termination criterion is met [6], [8], [23].

D. MULTILAYER PERCEPTRON
Neural networks are a subset of machine learning algorithms
inspired by the logic that governs the human brain. They have
gained considerable attention in multidisciplinary areas like
economics, logistics, medicine, security, and finance, as well as
in diverse, active research spaces. Neural networks present
promising prospects in addressing challenges around
handwriting and speech recognition, natural language
processing, image recognition and compression [24], [25].
There are different types of Neural networks, e.g.,
Convolutional Neural Networks (CNNs), Recurrent Neural
Networks (RNNs), and Multilayer Perceptron (MLP). These
networks differ in their architecture and learning strategies,
among others. Henceforth, the discussion will be limited to
Multilayer Perceptron (MLP). Fig. 3 shows a computational
framework of a simple MLP.

Figure 3. Multilayer Perceptron [26]

MLP is composed of three or more layers of fully
interconnected neurons that compute and transmit information
across the network [24], [27], [28]. The calculations
performed on each neuron are informed by parameters such as
weights and biases [28]. Specifically, in the key formula that
drives the computation of an MLP, the goal is to minimize the
error function 𝒆(𝒘) in relation to the weights of the
connections [26]. The operation of the multilayer perceptron
illustrated in Fig. 3 can be outlined in the following steps: [29]

Step 1: MLP Initialization. The weights and thresholds

are initialized using random values. The gradients of weights
and current error are also initialized (𝛥𝑤 = 0 ; 𝐸 = 0),

Frans Ramphele et al. / International Journal of Computing, 23(4) 2024, 536-551

VOLUME 23(4), 2024 541

where 𝛥𝑤 is the gradient of the weight and 𝐸 is the

current error.
Step 2: Training the MLP. Data observations are fed into

the model. During processing, the gradient of the weights are
memorized and adjusted after each model in the training set
and at the end of a training epoch. After processing the entire
test set, the model will appropriately adjust the weights.

Step 3: The forward propagation of the signals. Each
neuron processes the input data, resulting in the following
output :

𝑦(𝑝) = 𝑓 ൭ 𝑥

ୀଵ

(𝑝). 𝑤 − 𝜃൱ (13)

where 𝒏 is the number of hidden layer inputs for neuron 𝒋 and
𝒇 is the activation function. On the output layer, (14) signifies
the results of the entire network:

𝑦(𝑝) = 𝑓 ൭ 𝑥

ୀଵ

(𝑝). 𝑤(𝑝) − 𝜃൱ (14)

where 𝒎 is the number of inputs for the neuron 𝒌 from the
output layer. The error per epoch is calculated as follows:

𝐸 = 𝐸
(𝑒 (𝑝))ଶ

2
 (15)

Step 4: Backpropagation and weight adjustments.
Artificial neural networks learn continuously by using
corrective feedback loops called backpropagation. This
process allows the neural network to adjust the weights and
minimize the loss function to improve their predictive and
generalization ability [28], [30], [31]. After the error is
calculated in (15), its gradient is computed and fed back -
through backpropagation- into the network to modify the
weights. The gradient of the error is then calculated as follows:

𝛿(𝑝) = 𝑓ᇱ. 𝑒(𝑝) (16)

 where 𝑓ᇱ is a derivative of the activation function, and the
error

𝑒(𝑝) = 𝑦ௗ,(𝑝) − 𝑦 (𝑝) (17)

The computational power of MLP comes from the
activation functions. Specifically, activation functions in
neural networks are used to introduce non-linearity into the
output of a neuron. Without activation functions, a neural
network would only be able to learn linear functions, which
would limit its ability to learn more complex patterns in the
data. Common activation functions include the sigmoid
function, the ReLU (Rectified Linear Unit) function and the
tanh (hyperbolic tangent) function and their formulas are
represented below [28], [32].

Table 2. Activation Functions

Sigmoid

𝑓(𝑥) =
1

1 + 𝑒ି௫

Leaky ReLU

max (0.1𝑥, 𝑥)
Tanh

𝐭𝐚𝐧𝐡 (𝒙)

Maxout

𝐦𝐚𝐱 (𝒘𝟏
𝑻𝒙 + 𝒃𝟏, 𝒘𝟐

𝑻𝒙 + 𝒃𝟐)

ReLU

𝑀𝑎𝑥(0, 𝑥)

ELU

൜
𝑥 𝑥 ≥ 0
𝛼(𝑒௫ − 1) 𝑥 < 0

say the sigmoid activation function is used; the derivative

of its equation is written as follows,

𝑓′(𝑥) =
షೣ

(ଵାషೣ)మ = 𝑓(𝑥). ൫1 − 𝑓(𝑥)൯ (18)

 equation (16) can therefore be written as follows,

𝛿(𝑝) = 𝑦 (𝑝). (1 − 𝑦).𝑒(𝑝) (19)

at this point, the gradients of the weights between the hidden
and output layers can be updated as follows,

∆𝑤(𝑝) = ∆𝑤(𝑝) + 𝑦 (𝑝). 𝛿 (𝑝) (20)

the gradients of errors for neurons in the hidden layer can be
calculated as follows,

𝛿(𝑝) = 𝑦(𝑝). ቀ𝑙 − 𝑦 (𝑝)ቁ . 𝛿

ୀଵ

(𝑝). 𝑤(𝑝) (21)

where 𝒍 is the number of outputs for the network. The
gradients of the weights connecting the input and output layer
are then updated as follows:

∆𝑤(𝑝) = ∆𝑤(𝑝) + 𝑥 (𝑝). 𝛿 (𝑝) (22)

Step 5: New Iteration. If there are still test vectors in the

current training epoch, proceed to step 3. If not, the weights of
all the connections will be updated based on the gradients of
the weights in (23):

𝑤 = 𝑤 + ŋ. ∆𝑤 (23)

where ŋ is the learning rate. If the epoch is completed, it is
then tested to determine if it fulfills the criterion for
termination (E<Emax or a maximum number of training
epochs has been reached). If not, proceed to step 2; else, the
algorithm ends.

Training neural networks require a substantial

computational capacity, particularly when dealing with large
data sets or networks with numerous layers. This is due to the
large number of parameters that need to be optimized during
training [28]. Neural networks have a finite capacity to
represent and model relationships in the data. If the capacity

 Frans Ramphele et al. / International Journal of Computing, 23(4) 2024, 536-551

542 VOLUME 23(4), 2024

of the network is too small, it may not be able to accurately
represent the underlying patterns in the data. On the other
hand, if the capacity is too large, it may overfit the training
data and perform poorly on unseen data. The theory of
capacity of neural networks states that a neural network with
enough capacity can approximate any continuous function to
arbitrary accuracy [28].

The ability of a neural network to generalize from the
examples in the training set to new cases is an important
property. A neural network that has memorized the training
examples but does not generalize well to new cases is said to
have high variance and low bias. Generalization can be
improved by techniques such as regularization, early stopping
or dropout. The choice of model architecture, learning rate,
and other hyper-parameters can greatly affect the performance
of a neural network. These hyperparameters must be carefully
chosen and tuned to achieve optimal performance. Hyper-
parameter tuning can be done using grid search, random
search, or Bayesian optimization. The theory of
hyperparameter optimization in neural networks states that
there exists a set of hyperparameters that can be found by
optimization techniques that will achieve the best performance
on a given task [27], [33].

E. MULTI-OBJECTIVE OPTIMIZATION
Multi-Objective Optimization (MOO) is a method used to
optimize a system with multiple conflicting objectives. These
objectives are typically quantified as mathematical functions,
and the goal of MOO is to find the best solution that balances
the conflicting objectives [34]. An optimization problem can
generally be written in the following generic form [35].

𝑚𝑖𝑛𝑖𝑚𝑖𝑠𝑒௫ఢℛ 𝑓(𝑥), (𝑖 = 1,2, … , 𝑀)
𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ℎ(𝑥) = 0, (𝑗 = 1,2, … , 𝐽)

 𝑔(𝑥) ≤ 0, (𝑘 = 1,2, … , 𝑘)

where 𝑓(𝑥), ℎ(𝑥)𝑎𝑛𝑑 𝑔(𝑥) are functions of the vector,

𝑥 = (𝑥ଵ , 𝑥ଶ, … , 𝑥)்

The variable 𝑥 of 𝑥 are called decision variables. The

function 𝑓(𝑥) where 𝑖 = 1,2, … , 𝑀 is called the objective or
cost function, and 𝑀 is the number of objectives. The space
spanned by the decision variables is called the search space 𝑅
while the space formed by the objective function is called the
solution space. The ℎ and 𝑔 are called constraints.

Multiple objective optimization (MOO) problems are often

characterized by complexity and challenge due to the presence
of competing objectives. Researchers use various solution
philosophies and goals to address MOO problems, depending
on their specific perspective and the nature of the problem.
Common goals include identifying a representative set of
Pareto optimal solutions, comprehending the trade-offs among

various objectives, and finding a single solution that aligns
with decision-makers preferences [34], [36].A solution is
considered pareto optimal, pareto efficient, non-inferior, or
nondominated when no other objective can be improved
without reducing the value of other objectives [37]. Given the
absence of additional information, there may be an infinite
number of solutions that are all deemed good. Researchers
tackle these problems from different perspectives and have
different goals when solving them. These goals may include
identifying a representative set of pareto optimal solutions,
comprehending the trade-offs among various objectives, and
finding a single solution that aligns with decision-makers
preferences [36].

F. EXPLORATION-EXPLOITATION DILEMMA and OPTIMAL
CONTRACTION THEOREM
The exploration-exploitation dilemma is a fundamental
problem in data-driven decision-making processes. It involves
the delicate balance between two conflicting strategies.
Berger-Tal et al. [38] proposed a multidisciplinary framework
to guide discussions on the exploration-exploitation trade-off
in assessing the performance of decision-making processes,
including machine learning algorithms. The framework
provides four knowledge phases: knowledge establishment,
knowledge accumulation, knowledge maintenance, and
knowledge exploitation. In the knowledge establishment
phase, an entity acquires basic information about the
environment and resources, relying on internal reserves. In
knowledge accumulation, the entity prioritizes obtaining new
information while exploiting existing knowledge at a minimal
rate. The knowledge maintenance phase focuses on utilizing
resources while maintaining knowledge at an optimal level.
The final phase, knowledge exploitation, occurs towards the
end of an entity's lifespan, shifting focus to exploiting
accumulated knowledge at 100 % with zero exploitation. The
lifespan of the entity, environmental predictability, learning
effectiveness, and temporal unpredictability all have an impact
on the length and intensity of these phases. The framework
offers insights into the interplay between exploration and
exploitation strategies, emphasizing their adaptive roles across
different life stages and environmental conditions.

On the other hand, the Optimum Contraction Theorem by
Jie Chen et al [39] posits that the complexity of an optimization
problem significantly influences the trade-off between
exploration and exploitation, consequently affecting the
optimizer's behavior. The theorem states that if the problem is
difficult for an optimizer, the exploration-exploitation trade-off
will lean towards exploration. It further states that the
optimizer's strategy can either be exploration-dominated or
exploitation-dominated. The exploration-dominated optimizers
outperform exploitation-dominated optimizers when the
optimization problem becomes complex. The theorem
encourages that one needs to have a prior knowledge of the
optimizers and particularities of the problem. It argues that
such knowledge can assist in transforming a complex problem
into a relatively simple one, and assist one in selecting the
correct optimizer.

Frans Ramphele et al. / International Journal of Computing, 23(4) 2024, 536-551

VOLUME 23(4), 2024 543

The two frameworks will be used to guide discussions on
the convergence behaviour of the two optimizers selected for
the study.

III. METHODS AND MATERIALS

A. KNOWLEDGE DISCOVERY IN DATABASES (KDD)
The Knowledge Discovery in Databases (KDD) methodology
was employed to guide the development of the MLP and
address the objectives of the study. Theoretically, the KDD
process is iterative and requires one to follow a machine-
learning exercise in a specific order. First, a clear understanding
of the problem and its domain is essential. The data
preprocessing phase (data cleaning and integration) follows,
during which data sources are identified and integrated if
necessary, and issues such as missing values, data
inconsistencies, duplicates, and outliers are handled. Once the
data is preprocessed, it is served into the feature selection and
dimensionality reduction phase, where domain knowledge and
machine learning techniques are used to select valuable features
for the data mining phase. The data transformation phase
follows, where the data of the selected features is transformed
into form and shape ready for the actual data mining phase. The
data mining phase involves applying machine learning
algorithms to expose hidden patterns (discovered knowledge) in
the data, which is then interpreted, evaluated, and validated to
ensure the relevance and reliability [40].

B. DATA ASSEMBLY
The EMIS database has over 400 tables and thousands of
attributes describing a learner, an educator, and a school
inventory [41]. The research employed Ravenstein's theory of
migration as a conceptual framework [42], [43]. The tenets of
the theoretical framework were applied to direct the data
assembly process from the Education Management
Information System (EMIS) database. Features which broadly
conformed to the principles in the theoretical framework were
selected (Table 4). Table 3 outlines Raveistein's laws of
migration.

Table 3. Ravenstein laws of migration [42]

The Ravenstein laws of migration
o Most migrations are over short distances.
o Migration happens in stages and as distance increases, the volume

of migration decreases.
o In general, long-range migrants move into urban areas.
o Each migration produces a reverse movement, although not

necessarily in the same volume.
o Rural inhabitants are more migratory than urban inhabitants,
o Women are more migratory than men within their own country, but

males are more migratory over long distances.
o Migrants are mostly adults. Families seldom migrate from their

country of birth.
o Large towns grow more through migration than through natural

growth.
o Migration increases with economic development.
o Migration is mostly due to economic causes

Table 4. Features selected for study (Additional details of
the features can be found in Appendix A1)

 Description

f01 Learner age at the time of first admission
f02 Learner age when leaving the school
f03 Identifies if a learner is in a school hostel or not
f04 Identifies if a learner has deceased parents
f05 Learner Gender
f06 Grade of a learner
f07 Number of years a learner is admitted to the school
f08 The last grade of the schools
f09 Number of years a learner was in a grade
f10 The home language of a learner
f11 School language of learning and teaching
f12 Identifies if a learner has a disability or not
f13 Number of years in a phase
f14 Language a learner prefers to be taught with
f15 Identifies if a learner was progressed/condoned to a grade or not
f16 Identifies if a learner is benefitting from School Food

Programmes
f17 Race of a learner
f18 Type of the transport a learner is using to school
f19 District of the school a learner is enrolling
f20 Type of the school a learner is enrolling
f21 The sector of the school a learner is enrolling in
f22 Poverty ranking of the school a learner is enrolling
f23 Average school performance
f24 Frequency of displacement
c25 response class to assess the possibility of learner displacement

(1= “displacement”. 2= “no displacement”)
c26 response class indicating the reason for learner displacement

(1=graduated, 2= drop out,3=transfer, 4= no movement)
c27 response class indicating distance range a learner will displace

(0km = 0, 0><6 =1, 6+=2)

Ravenstein's theory of migration has been widely
recognized as a seminal work in the field of migration studies
and provides a comprehensive framework for understanding
patterns of human migration [42]. The Ravenstein migration
theory is determined by push-pull factors [42]. The theory
refers to push factors as unfavourable conditions from the
point of origin, while pull factors are favourable conditions at
the destination. The theory further posits that the push and pull
forces are from economic, social, and cultural space [42], [44].
The research undertaken by Raveistein established a strong
foundation for subsequent studies, including the work of Lee
Everett. Lee supported Raveistein and argued that the decision
to migrate is influenced by various factors, such as place of
origin, intended destination, intervening obstacles, and
personal characteristics [43]. Lee further asserts that the
migration process is selective for differentials such as gender,
age, education, social class, etc., and these factors affect how
one responds to push-pull factors, and the ability to overcome
intervening obstacles. The systematic review by [45], [46]
examined several studies exploring different factors that
contribute to learner migration in South African schools and
ways to mitigate their negative effects. This review found that
the migration of learners from one school to another is
influenced by several factors, including legal frameworks in
the education system, school management and leadership
practices of schools, school efficiency, infrastructure, and
socio-economic factors, among others. The findings of this
research align with the Ravenstein's migration theory. These
findings offer empirical evidence that supports the ongoing

 Frans Ramphele et al. / International Journal of Computing, 23(4) 2024, 536-551

544 VOLUME 23(4), 2024

significance of Ravenstein's migration theory in understanding
learner migration dynamics

C. DATA PREPARATION
Data preparation involves several activities, such as data
cleaning, integration, selection, and transformation, as
discussed in the KDD process. This task is challenging, as it
involves transforming raw data into a format suitable for data
mining without altering its underlying structure or meaning
[40], [46] .In practice, this often requires addressing issues in
the raw data, such as missing or inconsistent values, outliers,
non-standard attributes, duplicate records, and conducting
data normalization or discretization and related mappings
[40], [46], [47] . Among the 24 predictor variables in Table 4,
f01, f02, f07, f23 and f24 were derived from pre-existing
features within the dataset [41]. These features were created
to capture additional information relevant to learner
demographics and academic progress. Feature f23 was
derived by combining two features related to the school
promotion rate in order to decrease the complexity of the
dimensions. Furthermore, the target class c27 was discretized
into three intervals to enhance the model's performance and
convergence. Duplicate records and records that could not be
uniquely identified were removed to ensure data integrity. The
labels of all the categorical data were encoded to improve
compatibility with the target model, improve performance and
reduce the memory footprint of the dataset. Overall, these
steps were essential to ensure that the data was suitable for
machine-learning exercises [47].

D. FEATURE SELECTION

The sampled data was subjected to a feature selection process
to optimize training time, feature performance, and model
stability. Boruta, RPART, J48, and Adaboost.M1 were utilized
to generate optimal feature sets [41]. The standard deviation of

each feature set was calculated and compared. The literature
asserts that a low standard deviation or variance is a crucial
factor in selecting feature sets, as it suggests reduced
variability, indicating greater consistency and stability. It
further states that stable features (with a low standard
deviation) produce more straightforward and interpretable
models, which can mitigate the risk of overfitting and enhance
the model's performance [48]. The feature set produced through
Boruta had a relatively lower standard deviation and aligned
with learner migration traits supported by the literature [45],
[49], [50], and the Ravenstein theory of migration [42], [43],
[51] underpinning this study. This feature set was deemed
optimal, with f17 (learner race) and f20 (school type) being
rejected. Table 4 shows the final feature set for the study.

E. SAMPLING METHOD
A sample comprising 10% of the total observations (𝒏 =

𝟏𝟐, 𝟖𝟒𝟗) with 25 features (excluding f17 and f20), was
obtained using the simple random sampling technique. This
basic sampling methodology ensures that each member of the
population has an equal chance of being included in the
sample. In machine learning, class imbalanced data can lead

to classifiers that demonstrate bias towards the dominant class,
leading to increased generalization error [52]. Given the
complexity of the multi-objective problem the study intends
to address, our approach involved focusing solely on the
primary response class (c25) to address the issue of class
imbalance. The data was partitioned into training and test set
using a 70% training and 30% test split, respectively. The
Random Forest classifier was used to predict the response
class (c25) in the test data, and the following performance
information was generated [41], [53].

Table 5. Sample performance metrics

Confusion matrix Other Performance Metrics

Reference
Prediction 1 2
1 1896 0
2 0 1920
##Accuracy: 1
##95% CI: (0.999, 1)
##No Information Rate: 0.5031
##P-Value [Acc > NIR] : < 2.2e-16
Kappa: 1

##Sensitivity: 1.000
##Specificity: 1.000
##Pos Pred Value: 1.000
##Neg Pred Value: 1.000
##Prevalence: 0.497
##Detection Rate: 0.497
##Detection Prevalence: 0.497
##Balanced Accuracy: 1.000

The model correctly recognized all observations in the

primary response class (c25). The accuracy, kappa and
sensitivity of the model are optimal, which means that the
model works well and can recognize all instances of the
classes equally [54].

E. EXPERIMENT DESIGN

The study used a Multilayer Perceptron (MLP) to predict three
distinct objectives (c25, c26, and c27). The initial phase of the
experiment involved optimizing hyper-parameters for the
MLP. The Scikit Python package was used to implement the
MLP. A range of hyper-parameters were identified for
optimization. These hyper-parameters include the activation
function (identity, logistic, tanh, ReLU); the number of hidden
layers; maximum iteration bounds ranging from 200 to 500;
alpha, which represents the strength of L2 regularization;
varying batch sizes (2, 4, 8, 16, 32); optimization functions
(LBFGS, SGD, Adam); and learning rates (constant,
invscaling, adaptive). The Culture Algorithm (CA) and Social
Ski-Driver (SSD) from the Mealpy Python package were used
to optimize the hyperparameters of the MLP. The tuner utility
in the Mealpy package was implemented to allow the two
optimizers to choose their parameters, e.g., the acceptance
rate in the case of CA, while keeping the epoch and population
size the same in both optimizers. The epoch and population
size were set to 30 and 25, respectively. The cleansed dataset
from the EMIS system was partitioned into DatasetA and
DatasetB, containing 128,495 and 314,635 learner records,
respectively. DatasetA contained learner records spanning
admissions from 2011 to 2016 and was used to generate a 10%
sample. The sample was split into 5 folds (dataset_a1,
dataset_a2, dataset_a3, dataset_a4, and dataset_a5), with
approximately 2,570 observations in each fold. Both
optimizers were run on the five folds using a 70/30 train/test
split, producing ten sets of what are considered, pareto optimal
hyper-parameters: ca_dataset_a1, ca_dataset_a2,

Frans Ramphele et al. / International Journal of Computing, 23(4) 2024, 536-551

VOLUME 23(4), 2024 545

ca_dataset_a3, ca_dataset_a4, ca_dataset_a5,
ssd_dataset_a1, ssd_dataset_a2, ssd_dataset_a3,
ssd_dataset_a4, and ssd_dataset_a5. Dataset B contained
learner records with admissions from 2017 to 2021. It was split
into five folds (dataset_b1, dataset_b2, dataset_b3,
dataset_b4, and dataset_b5), each containing approximately
62,927 observations. These five folds were used to assess the
performance of ten sets of hyper-parameters using a 20/80
train/test split. Considering that all the parameter sets are
pareto optimal solutions, it was difficult to randomly select the
optimal parameter set for the study. Given this, the ten hyper-
parameter sets were assessed using the algorithm's log data to
evaluate various performance metrics, including fitness,
diversity, the exploration vs. exploitation trade-off, and epoch
time. The F1 score was then used to calculate the variability,
or standard deviation, of the F1 weights across datasets for
each hyper-parameter set (Table 7). The hyper-parameter set
with low variability was given a higher ranking. The Wilcoxon
Signed-Rank test was further conducted on performance
values (F1 score weight of three objectives) derived from the
evaluation of ten sets of hyper-parameters. The test was
intended to assess whether there are statistically significant
differences in performance among the pairs of optimizers (CA
and SSD) in each fold of DatasetB.

IV. RESULTS AND DISCUSSION
A. MODEL’S PERFORMANCE
The results offer insight into the functionality and behaviour
of the CA and SSD algorithms across multiple aspects.
Existing literature and theoretical frameworks were used to
understand each model's subtle strategies in optimizing the
multi-layer perceptron's hyper-parameters and to address the
learner migration problem discussed earlier. One critical
concept in the performance of meta-heuristics is convergence
analysis. The theoretical development of population-based
meta-heuristics is still maturing and the mathematical analysis
of the rate of convergence is very difficult to formulate, if not
impossible. In many cases, the performance analysis is either

done through a comparison of the algorithms and applications
on the known problems or through the analysis of the
exploration-exploitation tradeoff [55]. Exploration-
exploitation trade-off is fundamental in meta-heuristics as it
guides the algorithm into the global space where optimum
convergence should occur. Aspects such as population
diversity, the spread of solutions, epoch time and the
algorithm's ability to escape local optima collectively capture
the exploration-exploitation trade-off and are integral in
understanding how well a meta-heuristic performed [39].

Table 6 compares the CA and SSD across the five-folds of
the sample, each with approximately 2570 observations. The
two optimizers performed well with an average difference of
0.007 calculated as the average of the absolute difference from
the mean performance of the optimizers. The two algorithms
selected the activation function randomly based on the
emerging patterns in the data, but have all agreed on
LBFGS(Limited-memory Broyden-Fletcher-Goldfarb-Shanno)
as the choice of the solver/optimizer (Table 6). The alpha
values, representing the strength of L2 regularization, vary
between CA and SSD, with both adapting the parameter to
dataset-specific needs. The learning rate parameter also varies,
with invscaling and adaptive being frequently favoured. The
preliminary results show that CA configured with relu
activation function, LBFGS optimizer and Invscalling learning
rate achieved a higher performance in dataset_a5 (Table 6).
Table 7 comparatively shows the mean f1 score performance of
the parameter sets and the related ranking based on the standard
deviations of the performance values and mean f1 scores across
the datasets. Once more, the hyper-parameter set
"ca_dataset_a3" from CA with the LBFGS optimizer,
invscalling learning rate, and ReLU activation function
achieved a higher mean performance across the five folds of
DatasetB and had a low standard deviation (Table 7).
Interestingly, the hidden layers of the parameter set
“ca_dataset_a5” are double that of “ca_dataset_a3” while the
activation function, solver and learning rate are the same.

Table 6. Hyper-Parameters for global best and worst solutions

dataset dataset_a1 dataset_a1 dataset_a2 dataset_a2 dataset_a3 dataset_a3 dataset_a4 dataset_a4 dataset_a5 dataset_a5
model CA SSD CA SSD CA SSD CA SSD CA SSD

Parameter setid ca
_d

at
as

et
_a

1

ss
d_

da
ta

se
t_

a1

ca
_d

at
as

et
_a

2

ss
d_

da
ta

se
t_

a2

ca
_d

at
as

et
_a

3

ss
d_

da
ta

se
t_

a3

ca
_d

at
as

et
_a

4

ss
d_

da
ta

se
t_

a4

ca
_d

at
as

et
_a

5

ss
d_

da
ta

se
t_

a5

model fitness 2.6397 2.6448 2.6314 2.6346 2.6466 2.6479 2.6508 2.6430 2.6703 2.6492
best hidden layer size 68 11 41 41 44 10 86 20 88 31
best activation function identity logistic relu logistic relu logistic relu tanh relu tanh
best solver lbfgs lbfgs lbfgs lbfgs lbfgs lbfgs lbfgs lbfgs lbfgs lbfgs
best alpha 0.0563 0.1000 0.0891 0.1000 0.0395 0.1000 0.0465 0.1000 0.0211 0.1000
best learning rate invscaling adaptive constant adaptive invscaling adaptive constant invscaling invscaling invscaling
best max iteration 575 250 775 325 475 500 400 625 575 200
best batch size 8 2 16 32 4 2 2 2 4 32

Table 7. Parameter set ranking from F1 score weight of three response variables

 Frans Ramphele et al. / International Journal of Computing, 23(4) 2024, 536-551

546 VOLUME 23(4), 2024

Dataset

ca
_d

at
as

et
_a

1

ss
d_

da
ta

se
t_

a1

ca
_d

at
as

et
_a

2

ss
d_

da
ta

se
t_

a2

ca
_d

at
as

et
_a

3

ss
d_

da
ta

se
t_

a3

ca
_d

at
as

et
_a

4

ss
d_

da
ta

se
t_

a4

ca
_d

at
as

et
_a

5

ss
d_

da
ta

se
t_

a5

dataset_b1 2.6119 2.5493 2.5968 2.5476 2.5941 2.5662 2.5733 2.5803 2.5443 2.5793
dataset_b2 2.5957 2.5674 2.6083 2.5628 2.5989 2.5324 2.5683 2.5929 2.5758 2.5958
dataset_b3 2.6125 2.5499 2.5657 2.5664 2.6012 2.5879 2.6131 2.5704 2.6061 2.5683
dataset_b4 2.5894 2.5651 2.6012 2.5649 2.6094 2.5631 2.5837 2.5424 2.5807 2.5844
dataset_b5 2.5906 2.5952 2.6027 2.5538 2.6063 2.5597 2.6313 2.6025 2.5793 2.5763
mean 2.6000 2.5654 2.5949 2.5591 2.6020 2.5618 2.5939 2.5777 2.5772 2.5808
variance 0.0001 0.0003 0.0003 0.0001 0.0000 0.0004 0.0007 0.0005 0.0005 0.0001
standard deviation 0.0114 0.0186 0.0169 0.0081 0.0060 0.0198 0.0272 0.0232 0.0220 0.0102

ranking by mean f1
weight

2 8 3 10 1 9 4 6 7 5

ranking by std of the
f1 weight

4 6 5 2 1 7 10 9 8 3

Table 8. Wilcoxon Signed-Rank Test of paired parameter set

Paired parameter set Test statistic P-value Outcome

1. (ca_dataset_a1, ssd_dataset_a1) 1 0.125 There is no evidence of a significant difference between paired groups.
2. (ca_dataset_a2, ssd_dataset_a2) 1 0.125 There is no evidence of a significant difference between paired groups.
3. (ca_dataset_a3, ssd_dataset_a3) 0 0.0625 There is no evidence of a significant difference between paired groups.
4. (ca_dataset_a4, ssd_dataset_a4) 3 0.3125 There is no evidence of a significant difference between paired groups.
5. (ca_dataset_a5, ssd_dataset_a5) 6 0.8125 There is no evidence of a significant difference between paired groups.

B. EXPLORATION-EXPLOITATION TRADEOFF
Fig. 4 shows an exploration-exploitation graph, which is
crucial for one to understand at which stage the model
searches for new solutions or uses the existing ones. This
succinctly explains the model's internal dynamics and
processing. In the initial epochs, both CA and SSD showed
heightened exploration to establish new knowledge of the
solution space. This exploration is crucial for understanding
the landscape and identifying potential areas of interest within
the given dataset. As training progresses, there is a discernible
shift in behaviour. The culture algorithm transitioned
smoothly from exploration to exploitation, where it started to
leverage accumulated knowledge more efficiently and
allocate less time and resources to exploration. On the
contrary, SSD maintained a relatively higher level of
exploration than CA.

The exploration-exploitation dynamics, illustrated in Fig. 4,
can be discussed in the context of the multi-disciplinary
framework on the exploration-exploitation dilemma and the
optimal contraction theorem [38], [39]. The concept of the
"exploration-exploitation tradeoff" describes the ideal
equilibrium between the search for new solutions and the
exploitation of existing ones. Achieving an optimal balance is
a complex task due to the potential drawbacks associated with
both excessive exploration and excessive exploitation.
Excessive exploration can lead to inefficiency and slower
convergence, while excessive exploitation may result in
premature convergence to suboptimal solutions [38],[56].

Figure 4. Exploration -Exploitation graph

Berger-Tal et al. [38] suggested a novel multidisciplinary
framework to guide discussions around the exploration-

Frans Ramphele et al. / International Journal of Computing, 23(4) 2024, 536-551

VOLUME 23(4), 2024 547

exploitation trade-off in assessing the performance of the
algorithms. A particular emphasis was placed on the expected
performance of the two optimizers in the knowledge
establishment phase, where exploration is expected to be at
100 and exploitation at 0. Both CA and SSD exhibited
heightened exploration in the initial epochs, contributing to
knowledge establishment as required. Based on the Berger-
Tal et al framework, the SSD did not reach full exploitation in
the 30 epochs provided compared to the CA. The SSD model
seems trapped in the knowledge maintenance phase, which
focuses on utilizing existing knowledge while maintaining
constant exploration. On the other hand, CA seems to have
gone through all the phases and increasingly relying on
exploitation to generate new solutions. It reached the stage
where exploitation is at 100 and exploration at 0, which is the
ultimate goal in the exploration-exploitation dilemma. This
suggests that the CA was able to effectively use the
information from the best solutions found to guide the search
space toward better solutions. The stagnation of SSD in the
knowledge maintenance phase can be explained in the context
of the optimal contraction theorem. The SSD's sustained
exploration over the 30 epochs resonates with the complexity
of the problem on the optimizer, especially in datasets with
temporal unpredictability. The behaviour of SSD suggests that
it employed a strategy of continuous learning to adapt to
changing conditions in the dataset. Approaching the final
epochs, CA appears to shift predominantly towards
exploitation and focuses solely on exploiting the knowledge it
has acquired, while the SSD continues to explore the search
space.

C. POPULATION DIVERSITY

Fig. 5 shows the diversity graph which illustrates the degree
of variation or spread among the solution candidates found by
the two algorithms. The CA algorithm tends to converge to
zero diversity, especially from the 13th epoch, indicating that,
it either found a stable solution quickly or stuck in local
optima. Unlike the CA, the SSD maintained reasonable
diversity, decreasing at a very low rate throughout the 30
epochs, indicating its resilience to finding better solutions.

Figure 5. Diversity

The diversity metric of CA diminished early in all the folds
compared to SSD which consistently tried to maintain the
diversity over the 30 epochs. Although diversity is
acknowledged as important in evolutionary algorithms for
managing exploration-exploitation tradeoffs, the concept of
productive diversity target exists, which is sufficient to
produce optimal fitness [57]. The latter suggests that higher
and prolonged diversity does not always convert to optimal
solutions, but could also suggest that the problem is hard for
the optimizer [39]. The diversity of CA diminished early in
all folds as it did not see any need to extend its investment in
exploration. This behaviour was necessary to balance
exploration and exploitation at the culmination of its lifespan
in the knowledge exploitation phase [38].

D. EPOCH TIME

Fig. 6 shows the epoch time graph. The SSD model
demonstrated higher efficiency in epoch processing time. The
model took approximately 609 seconds (average= 122/fold) to
complete 5 folds of data with 30 epochs each, compared to CA's
which took 1421 (average=284/fold) seconds. The CA showed
stable processing time in all epochs, while the SSD varied
significantly.

 Frans Ramphele et al. / International Journal of Computing, 23(4) 2024, 536-551

548 VOLUME 23(4), 2024

Figure 6. Epoch Time

The fluctuations in epoch processing time suggest
variations in learning complexity. The SSD's efficient time
utilization, high variability in epoch processing time and
consistent diversity as discussed earlier, suggest flexibility in
search strategy while the CA behaviour suggests a consistent
approach to problem solving. The SSD demonstrated
efficiency in epoch time compared to CA (Fig. 6). This trait is
more common in metaheuristics based on swarm intelligence
(inclusive of SSD), as it allows them to adapt to dynamic
environments and avoid premature convergence [58].This
stability and efficiency in epoch time position SSD as a
potential candidate for real-time scenarios where quick
adaptation to changing solution spaces is paramount. On the
other hand, CA's consistent convergence fitness aligns with
stability-focused algorithms.[58]

E.GLOBAL FITNESS

Fig. 7 shows the global fitness graph. The analysis of the
global fitness for CA and SSD across 30 epochs in 5 folds
reveals distinct patterns. The performance of the CA and SSD
varied across the five folds. SSD demonstrated slight
advantages over CA in folds dataset_a1, dataset_a2, and
dataset_a3, while CA outperformed SSD in folds dataset_a4
and dataset_a5.

Figure 7. Global Fitness

It is worth noting that the two models achieved comparable

global fitness levels. The suitability of each algorithm depends
on the optimization problem's characteristics. The CA
algorithm potentially fits tasks with consistent solution
landscapes, while SSD's adaptability may be advantageous in
more varied or changing environments.

The Wilcoxon Signed-Rank test was also conducted to
assess whether there is any evidence of statistically significant
differences between the pairs of optimizers (CA and SSD) and
their associated hyperparameter sets. Table 8 shows the results
of the Wilcoxon Signed-Rank test. The results suggest no
significant difference between the parameter sets generated by
CA and SSD across all folds (Table 8). The lack of statistically
significant performance difference between CA and SSD
makes it more arduous to attribute performance solely to
specific hyperparameter configurations. It is therefore
important to use task-specific characteristics to inform
algorithm selection[39]. Factors such as computational
efficiency, robustness, ease of implementation, or specific
application requirements may determine the decision [59].

Table 7 shows the analysis of f1 fitness weights, the f1
weight mean, f1 weight standard deviations and related
rankings. Parameter set “ca_dataset_a3” has the highest
mean of f1 weight score and low variance across the five folds.
These positive attributes suggest a commendable degree of
generalization, indicating that the models' (MLP) performance
will remain robust and effective across diverse datasets.

Frans Ramphele et al. / International Journal of Computing, 23(4) 2024, 536-551

VOLUME 23(4), 2024 549

VI. CONCLUSION
In conclusion, the findings of this paper enrich our
understanding of the strengths and limitations of CA and SSD.
The theoretical lens provided by Berger-Tal et al.'s framework
enhances our grasp of how exploration and exploitation
strategies contribute to the convergence behaviour of these
optimization algorithms. The results of the study showed
statistically insignificant performance differences to the
parameters produced by CA and SSD models. This highlights
the effectiveness of the SSD algorithm in optimizing neural
networks. The behaviour of SSD concerning its efficiency in
epoch time, maintaining diversity and adaptability position it
as a potential candidate for real-time scenarios where quick
adaptation to changing solution spaces is paramount.

The hyper-parameter set “ca_dataset_a3” produced by
culture algorithm (CA) yielded the highest mean of f1 weight
score and low variance across the five folds and was therefore
selected as optimal. These positive attributes suggest a
commendable degree of generalization, indicating that the
models' (MLP) performance will remain robust and effective
across diverse datasets. Researchers and practitioners need to
consider these findings when considering the application of
machine learning and predictive models to solve learner
migration problems.

VII. LIMITATION OF THE STUDY AND FUTURE WORK
The SSD model did not complete the exploration-exploitation
tradeoff dynamics suggested by Berger-Tal et al in the 30
epochs provided. Although it is acknowledged that the SSD
model performed comparatively well, with a fitness score
similar to the CA, which was fully aligned with the model
convergence characteristics and principles outlined in the
Berger-Tal framework on the exploration-exploitation tradeoff.

While the results of SSD are promising, they may not fully
represent the model's capabilities when subjected to a more
intensive analysis. Future research directions could include
analyzing the SSD's behavior against Berger-Tal et al.'s
exploration-exploitation framework in the learner migration
context and investigating the transferability of learned
knowledge across diverse domains. Additionally, future studies
might explore the effects of varying the number of epochs,
adjusting parameter settings, and experimenting with different
model initialization strategies to gain deeper insights into the
SSD's convergence dynamics.

VII. SOFTWARE
The experiments in the study were conducted using R Studio
(R editor) and Wing (python editor). R Studio was used for
feature selection, while Wing IDE with mealpy and scikit
libraries were used for MLP hyperparameter optimization.

VIII. DATA AVAILABILITY STATEMENT
This article is accompanied by the data used in the study, the
reports generated during model processing, data analysis
reports, and source codes to ensure replicability

APPENDIX A1: META-DATA

ID Type Category List Values
f01 numeric derived continues variable
f02 numeric derived continues variable

f03 nominal
learner
biographic 0=not specified; 1=yes; 2=no

f04 nominal
learner
biographic 0=no specified; 1=single parent; 2=both parents; 3=

f05 nominal
learner
biographic 1=male; 2=female

f06 nominal
learner
biographic 10=grade 10; 11=grade 11; 12=grade 12

f07 numeric biographic
f08 nominal school 10=grade 10; 11=grade 11; 12=grade 12
f09 numeric biographic continues variable

f10 nominal
learner
biographic

0=not specified; 1=afrikaans; 2=english;
3=isindebele; 4=siswati; 5=isixhosa; 6=isizulu;
7=sesotho; 8=sepedi; 9=setswana; 10=tshivenda;
11=xitsonga; 12=sign; 13=other

f11 nominal
learner
biographic

0=not specified; 1=afrikaans; 2=english;
3=isindebele; 4=siswati; 5=isixhosa; 6=isizulu;
7=sesotho; 8=sepedi; 9=setswana; 10=tshivenda;
11=xitsonga; 12=sign; 13=other

f12 nominal biographic 0=not specified; 1=no; 2=yes; 3=unknown
f13 numeric biographic

f14 nominal biographic

0=not specified; 1=afrikaans; 2=english;
3=isindebele; 4=siswati; 5=isixhosa; 6=isizulu;
7=sesotho; 8=sepedi; 9=setswana; 10=tshivenda;
11=xitsonga; 12=sign; 13=other

f15 nominal biographic 1=true; 2=false
f16 nominal biographic 0=not applicable; 1=yes; 2=no

f17 nominal biographic
1=african/black; 2=asian/indian; 3=coloured;
5=other; 4=white

f18 nominal
learner
biographic

0=not specified; 1=by foot 2km less; 10=hostel;
11=train; 12=by foot 5km to 10km; 13=private bus
transport; 2=by foot 2km to 5km; 3=by foot 10km +;
4=bicycle; 5=motor cycle; 6=motor car; 7=taxi;
8=employer bus; 9=government bus (transport
scheme)

f19 nominal
school
demographic

1=capricorn north; 2=capricorn south;
3=mogalakwena; 4=mopani east; 5=mopani west;
6=sekhukhune east; 7=sekhukhune south; 8=vhembe
east; 9=vhembe west; 10=waterberg

f20 nominal school 1=ordinary school; 2=special needs education centre
f21 nominal school 1=public; 2=independent

f22 nominal school

0=not specified; 1=poverty index 1; 2=poverty index
2; 3=poverty index 3; 4=poverty index 4; 5=poverty
index 5

f23 numeric school
1=0 - 29; 2=30 - 39; 3=40 - 49; 4=50 - 59; 5=60 -
69; 6=70 - 79; 7=80 - 100

f24 numeric biographic continues variable
c25 nominal biographic 1=displacement; 2=no displacement

c26 nominal
learner
biographic

1=graduated; 2=dropped out; 3=transfer to another
school; 4=no reason; 5=no movement

c27 nominal
learner
biographic

0=0km; 1=between 0km and 1km; 2=between 1km
and 2km; 3=between 2km and 3km; 4=between 3km
and 4km; 5=between 4km and 5km; 6=above 5km

References

[1] A. Mountz and S. Mohan, “Human migration in a new era of mobility:
intersectional and transnational approaches,” Global Social Challenges
Journal, vol. 1, no. 1, pp. 59–75, 2022,
https://doi.org/10.1332/RFXW5601.

[2] A. Algarni, “Data mining in Education,” (IJACSA) International Journal
of Advanced Computer Science and Applications, vol. 7, no. 6, pp. 58–
77, 2016, https://doi.org/10.4018/978-1-5225-1877-8.ch005.

 Frans Ramphele et al. / International Journal of Computing, 23(4) 2024, 536-551

550 VOLUME 23(4), 2024

[3] D. Hrehová and K. Teplická, “The informational communication
technology is a tool of global education,” in Globalization and its Socio-
Economic Consequences, Slovakia: Sciences, EDP, 2020, pp. 1–6.
https://doi.org/10.1051/shsconf/20207406008.

[4] A. Maheri, S. Jalili, Y. Hosseinzadeh, R. Khani, and M. Miryahyavi, “A
comprehensive survey on cultural algorithms,” Swarm Evol Comput, vol.
62, pp. 4–63, 2021, https://doi.org/10.1016/j.swevo.2021.100846.

[5] Y. Abdi and Y. Seyfari, “Search manager: A framework for hybridizing
different search strategies,” International Journal of Advanced Computer
Science and Applications, vol. 9, no. 5, pp. 525–540, 2018,
https://doi.org/10.14569/IJACSA.2018.090568.

[6] P. Pramanik, S. Mukhopadhyay, S. Mirjalili, and R. Sarkar, “Deep feature
selection using local search embedded social ski-driver optimization
algorithm for breast cancer detection in mammograms,” Neural Comput
Appl, vol. 35, no. 7, pp. 5479–5499, Mar. 2023,
https://doi.org/10.1007/s00521-022-07895-x.

[7] Z. Shao, H. Sun, X. Wang, and Z. Sun, “An optimized mining algorithm
for analyzing students’ learning degree based on dynamic data,” IEEE
Access, vol. 8, pp. 1–16, 2020,
https://doi.org/10.1109/ACCESS.2020.3001749.

[8] A. Tharwat and T. Gabel, “Parameters optimization of support vector
machines for imbalanced data using social ski driver algorithm,” Neural
Comput Appl, vol. 32, no. 11, pp. 6925–6938, Jun. 2020,
https://doi.org/10.1007/s00521-019-04159-z.

[9] B. Chatterjee, T. Bhattacharyya, K. K. Ghosh, P. K. Singh, Z. W. Geem,
and R. Sarkar, “Late Acceptance Hill Climbing Based Social Ski Driver
Algorithm for Feature Selection,” IEEE Access, vol. 8, pp. 75393–75408,
2020, https://doi.org/10.1109/ACCESS.2020.2988157.

[10] S. Ahmad, M. A. El-Affendi, M. S. Anwar, and R. Iqbal, “Potential
Future Directions in Optimization of Students’ Performance Prediction
System,” Comput Intell Neurosci, vol. 2022, 2022,
https://doi.org/10.1155/2022/6864955.

[11] L. Yang and A. Shami, “On hyperparameter optimization of machine
learning algorithms: Theory and practice,” Neurocomputing, vol. 415, pp.
295–316, Nov. 2020, https://doi.org/10.1016/j.neucom.2020.07.061.

[12] Y. Shi, H. Qi, X. Qi, and X. Mu, “An efficient hyper-parameter
optimization method for supervised learning,” Appl Soft Comput, vol.
126, p. 109266, Sep. 2022, https://doi.org/10.1016/j.asoc.2022.109266.

[13] G. Moore, C. Bergeron, and K. P. Bennett, “Model selection for primal
SVM,” Mach Learn, vol. 85, no. 1–2, pp. 175–208, Oct. 2011,
https://doi.org/10.1007/s10994-011-5246-7.

[14] Lei Xu, “Ying-Yang Learning [from:The Handbook f Brain Theory and
Neural Networks],” 2002.

[15] D. Maclaurin, D. Duvenaud, and R. P. Adams, “Gradient-based
Hyperparameter Optimization through Reversible Learning,” Journal of
Machine Learning Research, vol. 37, pp. 2113–2122, 2015.

[16] Y. Bao, Z. Hu, and T. Xiong, “A PSO and pattern search based memetic
algorithm for SVMs parameters optimization,” Neurocomputing, vol.
117, pp. 98–106, Oct. 2013,
https://doi.org/10.1016/j.neucom.2013.01.027.

[17] G. A. Galanti, “An introduction to cultural differences,” Western Journal
of Medicine, vol. 172, no. 5, pp. 335–336, 2000,
https://doi.org/10.1136/ewjm.172.5.335.

[18] S. Jalili and Y. Hosseinzadeh, “A cultural algorithm for optimal design
of truss structures,” Latin American Journal of Solids and Structures, vol.
12, no. 9, pp. 1721–1747, 2015, https://doi.org/10.1590/1679-78251547.

[19] R. G. Reynolds, “An introduction to cultural algorithms,” in An
Introduction to Cultural Algorithms, ResearchGate, 2014, p. 10.
Accessed: Sep. 04, 2023. [Online]. Available at:
https://www.researchgate.net/publication/201976967

[20] Y. Khorrami, D. Fathi, and R. Rumpf, “Fast optimal design of optical
components using the cultural algorithm,” Opt Express, vol. 28, no. 11,
p. 15954, 2020, https://doi.org/10.1364/OE.391354.

[21] Y. Xuesong, L. Wei, C. Wei, L. Wenjing, C. Zhang, and L. Hanmin,
“Cultural algorithm for engineering design problems,” Int J Comp Sci,
vol. 9, no. 6, pp. 53–61, 2012.

[22] S. Upadhyayula, “Dominance in multi-population cultural algorithm,”
Thesis, University of Windsor, 2015.
https://doi.org/10.1109/ICMLA.2015.102.

[23] A. Tharwat, A. Darwish, and A. E. Hassanien, “Rough sets and social ski-
driver optimization for drug toxicity analysis,” Comput Methods

Programs Biomed, vol. 197, p. 105702, Dec. 2020,
https://doi.org/10.1016/j.cmpb.2020.105702.

[24] H. Su-Hyun, K. Ko Woon, K. SangYun, and Y. Young Chul, “Artificial
Neural Network: Understanding the Basic Concepts without
Mathematics,” Dement Neurocogn Disord, vol. 17, no. 3, p. 83, 2018,
https://doi.org/10.12779/dnd.2018.17.3.83.

[25] K. Shiruru, “An introduction to artificial neural network,” International
Journal of Advance Research And Innovative Ideas In Education, vol. 1,
no. 5, pp. 27–30, 2016, [Online]. Available at:
https://www.researchgate.net/publication/319903816

[26] R. Keim, “How to Create a Multilayer Perceptron Neural Network in
Python,” Technical Article. Accessed: Aug. 04, 2024. [Online]. Available
at: https://www.allaboutcircuits.com/technical-articles/

[27] I. Goodfellow, Y. Bengio, and A. Courville, “Deep Learning,” Foreign
Affairs, vol. 91, no. 5, pp. 1689–1699, 2016.

[28] L. Vanneschi and M. Castelli, Multilayer perceptrons, vol. 1–3. 2018.
https://doi.org/10.1016/B978-0-12-809633-8.20339-7.

[29] V. E. Balas, N. E. Mastorakis, M.-C. Popescu, and V. E. Balas,
“Multilayer perceptron and neural networks HISTORICAL
PHOTOGRAPHS View project BioCell-NanoART = Novel Bio-inspired
Cellular Nano-Architectures-For Digital Integrated Circuits View project
Multilayer Perceptron and Neural Networks,” 2009. [Online]. Available
at: https://www.researchgate.net/publication/228340819

[30] Y. Lecun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436–444, 2015, https://doi.org/10.1038/nature14539.

[31] D. Rumelhart, G. Hinton, and R. Williams, “Learning representations by
back-propagating errors,” Nature, vol. 323, no. 6088, pp. 533–536, 1986,
https://doi.org/10.1038/323533a0.

[32] H. Wang, R. Czerminski, and A. C. Jamieson, “Neural Networks and
Deep Learning,” The Machine Age of Customer Insight, pp. 91–101,
2021, https://doi.org/10.1108/978-1-83909-694-520211010.

[33] T. Hastie, R. Tibshirani, and J. Friedman, The elements of statistical
Learning, vol. 26, no. 4. 1967.

[34] E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2: Improving the strength
pareto evolutionary algorithm,” ETH Zurich Research Collection, pp. 95–
100, 2001, doi: 10.1.1.28.7571.

[35] Wikipedia Contributors., “Multi Objective Optimization,” Wikipedia.
Wikepidia, 2023.

[36] C. A. C. Coello, G. B. Lamont, and D. A. Van Veldhuizen, Evolutionary
algorithms for solving multi-objective problems. 2007.
https://doi.org/10.1007/978-0-387-36797-2.

[37] J. Reddy and N. Kumar, “Multi-Objective optimization using
evolutionary algorithms,” Water Resources Management, vol. 20, no. 6,
pp. 861–878, 2006. https://doi.org/10.1007/s11269-005-9011-1.

[38] O. Berger-Tal, J. Nathan, E. Meron, and D. Saltz, “The exploration-
exploitation dilemma: A multidisciplinary framework,” PLoS One, vol.
9, no. 4, p. 95693, 2014,
https://doi.org/10.1371/journal.pone.0095693.t001.

[39] Jie Chen, Bin Xin, Zhihong Peng, Lihua Dou, and Juan Zhang, “Optimal
Contraction Theorem for Exploration–Exploitation Tradeoff in Search
and Optimization,” IEEE Transactions on Systems, Man, and Cybernetics
- Part A: Systems and Humans, vol. 39, no. 3, pp. 680–691, May 2009,
https://doi.org/10.1109/TSMCA.2009.2012436.

[40] S. Akanmu and S. Jaja, “Knowledge Discovery in Database: A
knowledge management strategic approach,” Oct. 2012.

[41] F. Ramphele, Z. Wang, and A. Yusuff, “Determination of the Best
Feature Subset for Learner Migration in Limpopo,” International Journal
of Computing, vol. 23, no. 2, pp. 165–176, Jul. 2024,
https://doi.org/10.47839/ijc.23.2.3534.

[42] D. B. Grigg, “E . G . Ravenstein and the ‘ laws of migration ,’” J Hist
Geogr, vol. 3, no. 1, pp. 41–54, 1977. https://doi.org/10.1016/0305-
7488(77)90143-8.

[43] E. S. Lee, “A Theory of Migration,” Demography, vol. 3, no. 1, pp. 47–
57, 1996, Accessed: Sep. 04, 2023. https://doi.org/10.2307/2060063

[44] E. G. Raveinstein, “The Lawas of Migration,” Journal of Statistical
Society of London, vol. 48, no. 2, pp. 167–235, 1885.
https://doi.org/10.2307/2979181.

[45] R. J. Botha and T. G. Neluvhola, “An investigation into factors that
contribute to learner migration in South African schools,” The Journal of
Social Sciences Research, vol. 6, no. 63, pp. 224–235, 2020,
https://doi.org/10.32861/jssr.63.224.235.

Frans Ramphele et al. / International Journal of Computing, 23(4) 2024, 536-551

VOLUME 23(4), 2024 551

[46] S. Zhang, C. Zhang, and Q. Yang, “Data preparation for data mining,”
Applied Artificial Intelligence, vol. 17, no. 5–6, pp. 375–381, May 2003,
https://doi.org/10.1080/713827180.

[47] A. Kochański, “Data preparation,” Computer Methods In Materials
Science, vol. 10, no. 1, 2010, Accessed: Sep. 04, 2023. [Online].
Available at: https://www.researchgate.net/publication/299350639

[48] I. Guyon and A. Elisseeff, “An Introduction to Variable and Feature
Selection,” Journal of Machine Learning Research, vol. 3, pp. 1157–
1182, 2003.

[49] I. C. Simelani, “Learner migration and its Impact on rural schools : A case
study of two rural schools in Kwazulu- Natal (Publication No.12637),”
Masters Thesis, University of Kwazulu-Natal, Durban, 2016. Accessed:
Aug. 25, 2023. [Online]. Available at:
https://researchspace.ukzn.ac.za/handle/10413/12637

[50] H. Van der Merwe, “Migration patterns in rural schools in South Africa:
Moving away from poor quality education,” Education as Change, vol.
15, no. 1, pp. 107–120, 2011,
https://doi.org/10.1080/16823206.2011.576652.

[51] S. Gregor, “A Theory of Theories in Information Systems,” Information
Systems Foundations, pp. 1–18, 2002.
https://doi.org/10.3127/ajis.v10i1.439.

[52] H. Patel, D. S. Rajput, G. T. Reddy, C. Iwendi, K. A. Bashir, and O. Jo,
“A review on classification of imbalanced data for wireless sensor
networks,” Int J Distrib Sens Netw, vol. 16, no. 4, pp. 1–15, 2020,
https://doi.org/10.1177/1550147720916404.

[53] P. Thereza P. P., G. Lumacad, and R. Catrambone, “Predicting Student
Performance Using Feature Selection Algorithms for Deep Learning
Models,” in 2021 XVI Latin American Conference on Learning
Technologies (LACLO), IEEE, Oct. 2021, pp. 1–7.
https://doi.org/10.1109/LACLO54177.2021.00009.

[54] F. Afghah, A. Razi, R. Soroushmehr, H. Ghanbari, and K. Najarian,
“Game theoretic approach for systematic feature selection: Application
in false alarm detection in intensive care units,” Entropy, vol. 20, pp. 1–
16, 2018, https://doi.org/10.3390/e20030190.

[55] X.-S. Yang, “Metaheuristic Optimization: Algorithm Analysis and Open
Problems,” Dec. 2012. https://doi.org/10.1007/978-3-642-20662-7_2.

[56] V. Osuna-Enciso, E. Cuevas, and B. Morales Castañeda, “A diversity
metric for population-based metaheuristic algorithms,” Inf Sci (N Y), vol.
586, pp. 192–208, Mar. 2022, https://doi.org/10.1016/j.ins.2021.11.073.

[57] T. Gabor, T. Phan, and C. Linnhoff-Popien, “Productive fitness in
diversity-aware evolutionary algorithms,” Nat Comput, vol. 20, no. 3, pp.
363–376, Sep. 2021, https://doi.org/10.1007/s11047-021-09853-3.

[58] A. E. Ezugwu et al., “Metaheuristics: a comprehensive overview and
classification along with bibliometric analysis,” Artif Intell Rev, vol. 54,
no. 6, pp. 4237–4316, Aug. 2021, https://doi.org/10.1007/s10462-020-
09952-0.

[59] Z. Raziei, R. Tavakkoli-Moghaddam, and S. Tabrizian, “Performance
Analysis of Meta-heuristic Algorithms for a Quadratic Assignment
Problem,” Jul. 2020.

FRANS RAMPHELE (MPHIL, University
of Cape Town) is currently a Director in
the Limpopo Department responsible for
the Education Management Information
System (EMIS). He has considerable
knowledge and experience in the areas
of ICT/IS management, software
development, business intelligence,
artificial intelligence and machine
learning, data mining and database
management Among other things, he is a
member of the South African Higher

Education Committee (HEDCOM) for e-Education, which oversees
the development of ICT guidelines for e-Education.

ZENGHUI WANG (PhD, Nankai
University, China) is a National
Research Foundation (NRF) C2-rated
researcher in Electrical Engineering. He
is currently a Professor at the University
of South Africa (Unisa) in the
Department of Electrical and Mining
Engineering. Prof Wang specialises in
Electrical Engineering and Computer
Science. He is the leader of Intelligent
System research group/laboratory. He

has been involved in more than ten major research projects in
South Africa and China. Up until February 2022, he has
approximately 180 papers published or accepted, including 90 ISI
master indexed journal papers.

ADEDAYO YUSUFF (D.Tech.) is a
lecturer and a researcher in Electrical
Engineering. He is currently a Professor
at the University of South Africa (Unisa)
in the Department of Electrical and
Mining Engineering. Adedayo Yusuff
has extensive experience in the industry
in the areas of signal processing and
control, network optimisation, and
machine translation. Prof Yusuff
specialises in adaptive electric power

transmission networks; application of computational intelligence
schemes for operation, control, and protection of advanced power
grid; and integration of intermittent and renewable energy sources
to power grid. He has been involved in research projects in South
Africa and Nigeria.

