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 ABSTRACT This research presents a novel approach to multilayer perceptron's (MLP) hyper-parameter 
optimization in solving learner migration problems in Limpopo, South Africa. While acknowledging the presence 
of various hyper-parameter optimization techniques, their applicability, strengths, and limitations differ. Our 
approach utilizes meta-heuristics, offering an efficient and adaptable method for complex search spaces and global 
exploration of optimal solution candidates. The social ski-driver (SSD) algorithm -originally designed for 
optimizing support vector machines (SVMs)- and cultural algorithm (CA) were utilized to determine the optimal 
hyper-parameter configuration for the MLP. The MLP was intended to predict the likelihood of a learner migrating, 
the reasons for migration, and the distance the learner will migrate to the next school. The two optimizers were 
run on sample data split into five folds, producing ten hyper-parameter sets (five pairs). The MLP was then built 
with each parameter set and subsequently run on a new dataset partitioned into five folds. The model performance 
results were compared using evaluation metrics such as the f1 score, variance analysis, and the Wilcoxon Signed-
Rank test. There were no significant performance differences between the SSD and CA hyper-parameters, 
demonstrating the effectiveness of the SSD algorithm in optimizing neural networks. The CA-derived parameter 
set was selected due to its lowest variances across the datasets and its strong alignment with the convergence 
principles of the Berger-Tal multidisciplinary framework on the exploration-exploitation trade-off, providing a 
solid foundation for our findings. 
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I. INTRODUCTION 
HE nature of human migration and displacement is 
inherently complex, characterized by a combination of 

predictable and unpredictable occurrences [1]. Education 
planners face significant challenges in this space as they 
navigate a planning landscape that is marked by volatility, 
uncertainty, complexity, and ambiguity caused by spontaneous 
learner migration phenomena.  These challenges demand 
optimized inputs into educational policies that clearly define the 
problem and promote efficient learning and global 
competitiveness [2], [3]. Developing such efficient solutions has 
been of interest for a considerable period in EDM (Education 
Data Mining) [2]. However, most of the optimization problems 
are characterized by the presence of highly non-linear objective 
and constraint functions with mixed types of variables. In 
addition, real-world optimization problems lack a fixed form 
and the objective and constraints functions as well as their 
derivatives are not always available. Finding acceptable 
solutions in this case is not always easy and remains an open 

problem in this area [4]. Meta-heuristic algorithms have gained 
popularity and acceptance among researchers in reducing the 
uncertainty around optimization problems.  This form of 
algorithm is inspired by successful processes in nature which 
among others include observable physical, ecological, and 
social phenomena [4]. 

The Culture Algorithm (CA) and Social Ski-Driver 
algorithms, which will serve as the foundation of this study, 
drew inspiration from the evolutionary aspects of human culture 
and the downhill behavior of ski drivers, respectively [5], [6]. 
Some of the meta-heuristic in this group include the Harmony 
Search algorithm (HS) inspired by musicians’ harmony 
improvisation act; the Fireworks Algorithm (FA) inspired by 
observing fireworks explosions; Teaching learning-based 
algorithm (TLBO) inspired by the interaction between a teacher 
and students; Imperialist Competitive Algorithm (ICA); 
Exchange Market Algorithm (EMA); Soccer League 
Competition (SLC); Brainstorm Optimization (BSO) etc. [5]. 

T
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The human-inspired meta-heuristic have proven themselves and 
gained recognition in numerous applications such as process 
scheduling, fault tolerance scheduling, image processing, 
engineering optimization problems, etc. [4], [7]. Nonetheless, 
there are some challenges, mainly from a theoretical point of 
view, related to the human-inspired meta-heuristic. First, the 
precise circumstances in which these algorithms must be 
deployed remain one of the greatest challenges. Second, the 
human-inspired meta-heuristic includes parameters that 
essentially rely on algorithms. The lack of a general mechanism 
to methodically fine-tune the parameters to improve the 
performance of the underlying algorithm is another challenge. 
Lastly, the need to compare different algorithms for 
performance forces researchers to look ahead before selecting 
appropriate performance parameters [7].  

Maheri et al. [4] undertook a detailed review of the Culture 
Algorithm (CA) and its applications in science and engineering, 
focusing on recent developments. The study argued that the CA 
has demonstrated success in addressing diverse optimization 
challenges across various engineering and science disciplines. 
The study emphasized the heightened interest in CAs among 
researchers. Notably, the review finds different types of CAs, 
including hybridized, improved, multi-objective, multi-
population, chaotic, and fuzzy. Despite this maturity, the review 
identified several critical issues that merit attention. First, the 
study advocates exploring hybridization possibilities with 
recently introduced CA variants beyond genetic algorithms 
(GA), differential evolution (DE), and particle swarm 
optimization (PSO). It was further argued that there is a need to 
develop efficient influence and update functions to enhance the 
utilization of knowledge sources and maintain population 
diversity to prevent premature convergence. Furthermore, the 
study highlighted the need for a rigorous examination of the 
influence of different knowledge sources on CA performance 
across various problem domains.  

On the contrary, the social ski-driver algorithms represent a 
relatively recent development with limited documented 
applications and achievements in the existing literature. The 
SSD was first created to improve the hyper-parameters of 
Support Vector Machines (SVM) and class imbalance issues in 
that area [8]. The SSD has recently been explored for novel 
applications, especially in feature selection. Notably, a study has 
emerged wherein the SSD was integrated with Late Acceptance 
Hill Climbing (LAHC) for feature selection [9]. The findings 
suggest that the SSD (LAHC) outperformed other meta-
heuristic wrapper-based feature selection methods, including 
but not limited to Genetic Algorithm (GA), Particle Swarm 
Optimization (PSO), Ant Lion Optimizer, Gray Wolf Optimizer 
(GWO), Multi-Objective GA (HMOGA), Tribe Competition-
based GA (TCbGA), and Grasshopper Optimization Algorithm 
(GOA) [9]. 

The study by Ahmad et al. [10] provides insights and a 
comprehensive picture of potential challenges and prior 
contributions in the EDM. The study reviewed  1497 
publications from 1990 to 2022 (32 years) and found that most 
of the contributions are in the form of recommendation systems 
and students’ performance evaluation systems. There has been 
very little effort to use meta-heuristics in solving multi-objective 

optimization problems in the context of learner migration. The 
focus of this study is to demonstrate the use of CA and SSD to 
optimize the MLP (Multi-Layer Perceptron) hyper-parameters 
and subsequently predict the likelihood of a learner to migrate, 
the reasons for migration and the range of distance they will 
migrate to the next school. 

This paper advances the field of Education Data Mining 
(EDM) research through innovative applications of meta-
heuristics to tackle intricate educational challenges. The 
application of evolutionary algorithms for optimizing multilayer 
perceptron (MLP) hyperparameters represents a significant 
contribution, notably expanding the scope of SSD from its initial 
focus on SVM hyperparameters optimization. Additionally, the 
distinctive contribution is underscored by incorporating learner 
migration data from Limpopo, South Africa, offering a context-
specific dimension to the optimization approach. The paper's 
outline includes a literature review, theoretical framework, 
methods and materials, experiment design and execution. 
Furthermore, the findings are presented, and their implications 
and future work are discussed.  
 
II. THEORITICAL FRAMEWORK 
A. HYPER-PARAMETER SELECTION 
Hyper-parameter optimization is considered a key phase in 
building effective machine learning models, especially for deep 
neural networks and decision trees with inherently many hyper-
parameters [11]. In recent times, there have been numerous 
techniques to optimize hyper-parameters. These techniques can 
broadly be categorized into an estimation of generalization error, 
numerical optimization methods, and non-numerical 
optimization methods [12].  

The estimation of generalization error is the most used 
technique for hyperparameter optimization. What is core in its 
architecture is the search space (candidate hyper-parameters) 
and estimation strategy [13]. Typical search spaces include 
manual search, random search, and grid search, which are 
sometimes referred to as decision-theoretic search spaces. This 
nomenclature stems from the intrinsic mechanism they employ, 
connecting the concept of search space with the estimation 
strategy[14]. Grid search (GS) explores a fixed domain, while 
random search (RS) randomly selects combinations within time 
and resource constraints. In this category of optimizers, we also 
have Bayesian optimization (BO) models which determine the 
next hyper-parameter value based on the previously tested 
hyper-parameter results, reducing unnecessary evaluations, and 
identifying optimal combinations in fewer iterations compared 
to GS and RS [11]. The grid and manual search are the most 
used search spaces due to their simplicity and independence 
from prior information. 

Gradient descent and quasi-Newton techniques are 
numerical optimization methods used to find the minimum of a 
function. They aim to adjust model parameters to minimize a 
cost or objective function. Gradient descent moves toward the 
steepest decrease, while quasi-Newton uses an approximation of 
the Hessian matrix to determine step direction. These algorithms 
are more sophisticated and can converge faster in some cases. 
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However, they also suffer issues such as local optima and are 
dependent on a specific starting point [13], [15]. 

Non-numerical optimization methods like evolutionary 
algorithms are effective for non-differentiable and non-convex 
problems. However, these methods often have high time 
complexities due to inefficient search strategies and require 
significant processing power [12],[16]. Furthermore,  each 
presents distinct traits, making them appropriate for addressing 
specific problems but not necessarily all. It is, therefore, crucial 
to carry out comprehensive comparisons among these 
techniques prior to their implementation [7], [11]. Algorithms in 
this group include culture algorithm (CA), social ski-driver 
(SSD), Genetic algorithms (GA) and Particle swarm 
optimization (PSO). 

B. CULTURE ALGORITHM 
The culture algorithm belongs to the evolutionary computing 
family. Algorithms in this family use metaphorical concepts, 
principles, and mechanisms inspired by natural systems and 
evolution to solve complex computing problems. Most work in 
evolutionary computing focuses on the processes of natural 
selection and genetics. However, there is a strong belief among 
researchers that cultural evolution allows societies to evolve or 
adapt to their environment faster than biological evolutionary 
processes [17]. The culture algorithm (CA) was originally 
developed by Reynolds as an extension of the genetic algorithm. 
However, it has evolved to incorporate other evolutionary 
algorithms as the basis of its framework [18]. Structurally, CA 
aligns with Renfrew's THINK model in terms of a dual 
inheritance framework that includes a belief space composed of 
individual and group mappa and a trait-based population space 
[19]. The two components are linked by communication 
protocols. The belief space is shared amongst the population, 
which exposes the principle of collective intelligence [20]. The 
representation in Fig. 1 shows a basic computational framework 
of the CA. 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 1. Culture Algorithm diagram [18] 

The population space consists of autonomous solution 
candidates, while the belief space is considered a repository for 
evolutionary global knowledge. The evolutionary knowledge 
stored in the belief space can influence agents in the population 
of space through the influence function, and knowledge from the 
population space can be transferred to belief through the 
acceptance function. The population space in CAs can be 

modelled by population-based evolutionary meta-heuristics 
such as Genetic Algorithm (GA), Differential Evolution (DE), 
and Particle Swarm Optimization (PSO) [21]. 

The process of CA evolution starts with the random 
initialization of the population while simultaneously building 
the initial knowledge base. Initially, the two spaces devolve 
independently. Then selected agents from the population space 
are used to update the belief space. Once the knowledge sources 
are updated, the belief space will guide the development of the 
population space in reverse. These procedures continue until the 
termination state is reached [21], [22]. There are five categories 
of knowledge sources in the CA that can be used to solve a range 
of problems [21]: 

 

Table 1. CA Knowledge Space 

Knowledge 
Space 

Purpose  

Situational  Introduced by Chung to solve real-valued function 
optimization problems in the static environment. The best 
solutions of all the generations are stored in this 
component  

Normative  The normative knowledge describes the range of 
acceptable behaviour for solution candidates. 

Topographic  Topographic knowledge sources can articulate the spatial 
pattern of individual behaviour 

Domain  Used to solve dynamic optimization problems through 
dynamic monitoring of the environment and predicting the 
evolutionary trend 

Historical  Is considered the log, in which important events are 
recorded during the evolution of the population 

 
The mathematical representation of the culture algorithm is 

depicted below [19], [20]. The belief space is represented as: 
 

𝐵 = (𝑆, 𝑁)                                      (1) 

where 𝑺 is the situational knowledge component  which 
consists of the best solutions from all generations, and  𝑵 is 
the normative knowledge component. The 𝑺 and 𝑵 in (1) can  
further be expressed as: 
 

 𝑆 = {𝑦 : 𝑙 = 1, … , 𝑛௦}                      (2) 
𝑁 = (𝑋ଵ, 𝑋ଶ, … 𝑋௫)                         (3) 

where 𝒏𝒔 is the total number of solution candidates in the 
situational knowledge component and 𝒏𝒙 is the total number 
of dimensions in the normative knowledge component. Each 
dimension 𝑿𝒋 stores the following information: 

 

𝑋 = ൫𝐼 , 𝐿 , 𝑈൯                            (4) 

where 𝑰𝒋 signifies the closed interval for each solution, 𝐼 =

ൣ𝑥, , 𝑥௫,൧ = ൛𝑥: 𝑥, ≤ 𝑥 ≤ 𝑥௫,ൟ. 𝑳𝒋  and 𝑼𝒋  

represent the scores of the lower and upper bound respectively. 
 
The other knowledge spaces (e.g domain, historical, 

topographic) can be accessed by updating 𝑥 and 𝑥௫  for 
the 𝑗𝑡ℎ variable in each iteration to reach the new bounds. For 
example, adjusting the normative knowledge components 
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allows an accepted response like 𝒙𝟏,𝒋  to change the space as 

follows: 

 

𝑥,
௪ = ቊ

𝑥ଵ,       𝑥ଵ, ≤ 𝑥,  𝑜𝑟 𝑓൫𝑥ଵ,൯ ≤ 𝐿

𝑥,                               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
       (5) 

 

𝑥௫,
௪ = ቊ

𝑥ଵ,      𝑥ଵ, ≤ 𝑥௫,  𝑜𝑟 𝑓൫𝑥ଵ,൯ ≤ 𝑈

𝑥௫,                               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
      (6) 

 

𝐿
௪ = ቊ

𝑓൫𝑥ଵ,൯ 𝑥ଵ, ≤ 𝑥,  𝑜𝑟 𝑓൫𝑥ଵ,൯ ≤ 𝐿

𝐿                                     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
   (7) 

 

𝑈
௪ = ቊ

𝑓൫𝑥ଵ,൯ 𝑥ଵ, ≤ 𝑥௫,  𝑜𝑟 𝑓൫𝑥ଵ,൯ ≤ 𝑈

𝑈                                     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
   (8) 

where 𝑓(. ) is the fitness function. Equations (5) and (6) 
suggest that the new response is equal to the recently accepted 
component OR otherwise is equal to the previous values. 
Similarly, in (7) and (8), the new upper and lower cost 
functions must be lower than the previous one to be accepted 
or otherwise the previous values remain. Similar to the 
formula mentioned earlier for normative knowledge 
components, the situational knowledge component can be 
modified as follows: 

 
𝑆௪ = 𝑦௪

= ൜
𝑚𝑖𝑛ୀଵ,…,ಳ

{𝑥}   𝑖𝑓 𝑓(𝑚𝑖𝑛ୀଵ,…,ಳ
{𝑥} <  𝑓(𝑦)

𝑦                                                         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  (9)  

 
where  𝑛  is the total number of accepted solutions. At each 
iteration, the situational knowledge component - as shown in 
(9) - keeps only one optimal solution. The acceptance function 
is used to select the optimal solutions from the population to 
guide the belief space.  
 

The acceptance function can either be static or dynamic. 
The static acceptance function will select the top n% (fixed) of 
solutions. The utilization of dynamic selection allows for the 
establishment of diverse methodologies to determine the 
appropriate number of individuals through the implementation 
of a dynamic acceptance function. The belief space can be 
updated by the situational and normative knowledge 
components for the accepted individuals. Similarly, the belief 
space must update population space through the influence 
function. The influence function can be updated using three 
strategies outlined in (10), (11) and (12) based on the 
knowledge component. The first option involves using the 
normative knowledge component to determine the step sizes 
in the offspring generation process and is expressed as 
follows: 
 

𝑥,
௪ = 𝑥, + 𝛿. 𝑁(0,1)                       (10) 

 

where 𝛿 = 𝛼൫𝑥௫, −  𝑥,൯ is the step size, 𝑁 is a 

random value and α is a coefficient, both between 0 and 1.  
 

The second option involves using the situational 
knowledge component to determine the change in direction. In 
this situation, the direction of the response is calculated as: 
 

𝑥,
௪  = ቐ

𝑥,  + 𝛿. |𝑁(0,1)|𝑥, < 𝑦           

𝑥,    −    𝛿. |𝑁(0,1)|𝑥, < 𝑦         

𝑥, +   𝛿. 𝑁(0,1)𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒     

  (11) 

 
And lastly, the normative knowledge component is used 

for both search direction and step size and can be expressed as 
follows: 

 

𝑥,
௪  = ቐ

𝑥,  + 𝛿. |𝑁(0,1)|𝑥, ≤ 𝑥,           

𝑥,    −    𝛿. |𝑁(0,1)|𝑥, ≥ 𝑥௫,     

𝑥, +   𝛿 . 𝑁(0,1)𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒             

(12) 

where the step size is equal to equation (10). 

C.  SOCIAL SKI-DRIVER (SSD) ALGORITHM 
The social ski-driver (SSD) optimization algorithm is a human-
based evolutionary metaheuristic inspired by PSO (Particle 
Swarm Optimizer, GWO (Gray wolf optimizer) and SCA (Sine 
cosine algorithm) evolutionary algorithms [23]. The algorithm 
adopts an iterative approach to search for optimal solutions, 
emulating the behaviour of ski drivers when they go downhill 
[6]. The algorithm was initially developed with the sole purpose 
of optimizing the parameters of SVMs and dealing with class-
imbalanced datasets in that space [8]. The SSD algorithm uses 
the following parameters in its computational framework [8], 
[23]. 

•Agent position represented as (𝑥  𝜖 ℛௗ), where d  is a 
dimensional search space and 𝑥 is an agent occupying a 
position in  the search space  

•Previous best position represented as 𝑃 .As the SSD 
executes, all the solutions are at some point evaluated for their 
fitness. Each agent's fitness value is compared with the fitness 
value associated with its current position. The position that 
demonstrates the superior fitness value is stored in the 𝑃 . 

•Mean global solution represented as  M: The  M 
represents either a convergence point or optimal solution  and 
is calculated as follows: 
 

𝑀௧ =
𝑥ఈ + 𝑥ఉ + 𝑥ఊ

3
                            (13) 

 
where 𝑥ఈ , 𝑥ఉ , 𝑥ఊ  indicate the best three solutions and 𝑀௧  

indicates the mean of the best three solutions in the current 
iteration t.  
 

The velocity of the agents is represented as 𝑣. The ‘agents’ 
positions are adjusted by adding the velocity (𝑣) to the 
current position of the agent using the following equation: 
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𝑥

௧ାଵ = 𝑥
௧ + 𝑣

௧                              (14) 
where 
 

𝑣ଵ
௧ାଵ = ቊ

𝑐 sin(𝑟ଵ) (𝑝
௧ − 𝑥

௧) + sin(𝑟ଵ) (𝑀௧ − 𝑥
௧) 𝑖𝑓 𝑟ଶ ≤ 0.5

𝑐 cos(𝑟ଵ) (𝑝
௧ − 𝑥

௧) + cos(𝑟ଵ) (𝑀௧ − 𝑥
௧) 𝑖𝑓 𝑟ଶ > 0.5

  (15) 

 
 where 
 
𝑣   is the velocity of the agent 𝑥  
𝑟ଵ , 𝑟ଶ  are  random numbers in the interval [0,1] 
𝑝

௧  is the best solution of the tth  iteration  
c is the parameter that controls the balance between exploration 
and exploitation  
 

Fig. 2 depicts a movement of agents in the SSD proximal 
space.  The movement of agents towards the convergence point 
(M) is not linear because of the sin and cos functions. The SSD 
resembles the PSO logic when calculating the previous position 
of the agent and the GWO when the agents converge to the 
global minima [23]. 
 

The algorithm begins by creating agents and randomly 
initializing parameters such as the agent positions (𝑥) and 
velocities (𝑣). The maximum number of iterations (epoch) and 
the population size are derived from the defined problem. 
During processing, the agents update their position in (14) and 
adjust their velocity in (15). 
 

Figure 2. Demonstration of agent movement in the SSD space [23] 

The agents update velocity (𝑣) on two terms;  the distance 
between the previous best position and the current position 
(𝑝

௧ − 𝑥
௧) ; and the distance between the mean global solution 

and the current position ( 𝑀௧ − 𝑥
௧). The algorithm adapts a 

parameter c linearly over iterations. Agents within the 
population move in search of optimal solutions through a 
combination of exploration and exploitation which is controlled 
by the parameter c. The algorithm employs sine and cosine 
functions based on a random selection criterion (𝑟ଵ or 𝑟ଶ ) to 
decide on the movement strategy for each agent. With the sine 

function active, the algorithm updates the velocity, considering 
the best local and global solutions, and adjusts the agent's 
movement accordingly. With the cosine function active, the 
algorithm adjusts the velocity using a different movement 
strategy to balance exploration and exploitation. Agents 
generate new positions by combining their velocity vectors 
with random elements. The newly generated positions are 
corrected to fit within the problem's solution space. The 
algorithm evaluates the fitness of the new positions and 
replaces the existing solutions in the population. The process 
continues for a specified number of iterations or until a 
termination criterion is met [6], [8], [23]. 

D.  MULTILAYER PERCEPTRON 
Neural networks are a subset of machine learning algorithms 
inspired by the logic that governs the human brain. They have 
gained considerable attention in multidisciplinary areas like 
economics, logistics, medicine, security, and finance, as well as 
in diverse, active research spaces. Neural networks present 
promising prospects in addressing challenges around 
handwriting and speech recognition, natural language 
processing, image recognition and compression [24], [25]. 
There are different types of Neural networks, e.g., 
Convolutional Neural Networks (CNNs), Recurrent Neural 
Networks (RNNs), and Multilayer Perceptron (MLP). These 
networks differ in their architecture and learning strategies, 
among others. Henceforth, the discussion will be limited to 
Multilayer Perceptron (MLP). Fig. 3 shows a computational 
framework of a simple MLP. 

 

 
Figure 3. Multilayer Perceptron [26] 

MLP is composed of three or more layers of fully 
interconnected neurons that compute and transmit information 
across the network [24], [27], [28]. The calculations 
performed on each neuron are informed by parameters such as 
weights and biases [28]. Specifically, in the key formula that 
drives the computation of an MLP, the goal is to minimize the 
error function 𝒆(𝒘) in relation to the weights of the 
connections [26]. The operation of the multilayer perceptron 
illustrated in Fig. 3 can be outlined in the following steps: [29] 

 
Step 1: MLP Initialization. The weights and thresholds 

are initialized using random values. The gradients of weights 
and current error are also initialized ( 𝛥𝑤  =  0 ; 𝐸 =  0), 
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where 𝛥𝑤  is the gradient of the weight  and 𝐸 is the 

current error. 
Step 2: Training the MLP. Data observations are fed into 

the model. During processing, the gradient of the weights are 
memorized and adjusted after each model in the training set 
and at the end of a training epoch. After processing the entire 
test set, the model will appropriately adjust the weights. 

Step 3: The forward propagation of the signals. Each 
neuron processes the input data, resulting in the following 
output : 

 

𝑦(𝑝) = 𝑓 ൭ 𝑥



ୀଵ

(𝑝). 𝑤 − 𝜃൱       (13) 

 
where 𝒏 is the number of hidden layer inputs for neuron 𝒋 and 
𝒇 is the activation function. On the output layer, (14) signifies 
the results of the entire network: 

 

𝑦(𝑝) = 𝑓 ൭ 𝑥



ୀଵ

(𝑝). 𝑤(𝑝) − 𝜃൱         (14) 

 
where 𝒎 is the number of inputs for the neuron 𝒌 from the 
output layer. The error per epoch is calculated as follows: 
 

𝐸 =  𝐸
(𝑒 (𝑝))ଶ

2
                   (15) 

 
 

Step 4: Backpropagation and weight adjustments. 
Artificial neural networks learn continuously by using 
corrective feedback loops called backpropagation. This 
process allows the neural network to adjust the weights and 
minimize the loss function to improve their predictive and 
generalization ability [28], [30], [31]. After the error is 
calculated in (15), its gradient is computed and fed back -
through backpropagation- into the network to modify the 
weights. The gradient of the error is then calculated as follows: 

 
𝛿(𝑝) = 𝑓ᇱ. 𝑒(𝑝)                      (16) 

 
 where 𝑓ᇱ is a derivative of the activation function, and the 
error  

𝑒(𝑝) = 𝑦ௗ,(𝑝) − 𝑦  (𝑝)               (17) 
 

The computational power of MLP comes from the 
activation functions. Specifically, activation functions in 
neural networks are used to introduce non-linearity into the 
output of a neuron. Without activation functions, a neural 
network would only be able to learn linear functions, which 
would limit its ability to learn more complex patterns in the 
data. Common activation functions include the sigmoid 
function, the ReLU (Rectified Linear Unit) function and the 
tanh (hyperbolic tangent) function and their formulas are 
represented below [28], [32]. 

Table 2. Activation Functions 

Sigmoid 

𝑓(𝑥) =
1

1 + 𝑒ି௫
 

Leaky ReLU 
 

max (0.1𝑥, 𝑥) 
Tanh 
 

𝐭𝐚𝐧𝐡 (𝒙) 

Maxout 
 

𝐦𝐚𝐱 (𝒘𝟏
𝑻𝒙 + 𝒃𝟏, 𝒘𝟐

𝑻𝒙 + 𝒃𝟐) 
 

ReLU 
 

𝑀𝑎𝑥(0, 𝑥) 

ELU 

൜
𝑥                        𝑥 ≥ 0
𝛼(𝑒௫ − 1)         𝑥 < 0

 

 
say the sigmoid activation function is used; the derivative 

of its equation is written as follows, 

 

𝑓′(𝑥) =
షೣ

(ଵାషೣ)మ = 𝑓(𝑥). ൫1 − 𝑓(𝑥)൯          (18) 

 equation (16) can therefore be written as follows, 
 

𝛿(𝑝) = 𝑦 (𝑝). (1 − 𝑦).𝑒(𝑝)           (19) 

at this point, the gradients of the weights between the hidden 
and output layers can be updated as follows, 

 
∆𝑤(𝑝) = ∆𝑤(𝑝) + 𝑦     (𝑝). 𝛿   (𝑝)          (20) 

 
the gradients of errors for neurons in the hidden layer can be 
calculated as follows, 

𝛿(𝑝) = 𝑦(𝑝). ቀ𝑙 − 𝑦  (𝑝)ቁ .  𝛿



ୀଵ

(𝑝). 𝑤(𝑝)        (21) 

 
where 𝒍 is the number of outputs for the network. The 
gradients of the weights connecting the input and output layer 
are then updated as follows: 

 
∆𝑤(𝑝) = ∆𝑤(𝑝) + 𝑥    (𝑝). 𝛿 (𝑝)   (22)  

 
Step 5: New Iteration. If there are still test vectors in the 

current training epoch, proceed to step 3. If not, the weights of 
all the connections will be updated based on the gradients of 
the weights in (23):  

 
𝑤 = 𝑤 + ŋ. ∆𝑤               (23)   

 
where ŋ  is the learning rate. If the epoch is completed, it is 
then tested to determine if it fulfills the criterion for 
termination (E<Emax or a maximum number of training 
epochs has been reached). If not, proceed to step 2; else, the 
algorithm ends. 

 
Training neural networks require a substantial 

computational capacity, particularly when dealing with large 
data sets or networks with numerous layers. This is due to the 
large number of parameters that need to be optimized during 
training [28]. Neural networks have a finite capacity to 
represent and model relationships in the data. If the capacity 
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of the network is too small, it may not be able to accurately 
represent the underlying patterns in the data. On the other 
hand, if the capacity is too large, it may overfit the training 
data and perform poorly on unseen data. The theory of 
capacity of neural networks states that a neural network with 
enough capacity can approximate any continuous function to 
arbitrary accuracy [28]. 

The ability of a neural network to generalize from the 
examples in the training set to new cases is an important 
property. A neural network that has memorized the training 
examples but does not generalize well to new cases is said to 
have high variance and low bias. Generalization can be 
improved by techniques such as regularization, early stopping 
or dropout. The choice of model architecture, learning rate, 
and other hyper-parameters can greatly affect the performance 
of a neural network. These hyperparameters must be carefully 
chosen and tuned to achieve optimal performance. Hyper-
parameter tuning can be done using grid search, random 
search, or Bayesian optimization. The theory of 
hyperparameter optimization in neural networks states that 
there exists a set of hyperparameters that can be found by 
optimization techniques that will achieve the best performance 
on a given task  [27], [33]. 

E. MULTI-OBJECTIVE OPTIMIZATION 
Multi-Objective Optimization (MOO) is a method used to 
optimize a system with multiple conflicting objectives. These 
objectives are typically quantified as mathematical functions, 
and the goal of MOO is to find the best solution that balances 
the conflicting objectives [34]. An optimization problem can 
generally be written in the following generic form [35]. 
 
 
 

𝑚𝑖𝑛𝑖𝑚𝑖𝑠𝑒௫ఢℛ  𝑓(𝑥),   (𝑖 = 1,2, … , 𝑀) 
𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  ℎ(𝑥) = 0,   (𝑗 = 1,2, … , 𝐽) 

 𝑔(𝑥) ≤ 0,   (𝑘 = 1,2, … , 𝑘) 
 
where 𝑓(𝑥),   ℎ(𝑥)𝑎𝑛𝑑  𝑔(𝑥) are functions of the vector, 

 
𝑥 = (𝑥ଵ , 𝑥ଶ, … , 𝑥)் 

 
The variable 𝑥  of 𝑥 are called decision variables. The 

function 𝑓(𝑥) where 𝑖 =  1,2, … , 𝑀 is called the objective or 
cost function, and  𝑀 is the number of objectives. The space 
spanned by the decision variables is called the search space 𝑅 
while the space formed by the objective function is called the 
solution space. The ℎ and 𝑔 are called constraints. 

 
Multiple objective optimization (MOO) problems are often 

characterized by complexity and challenge due to the presence 
of competing objectives. Researchers use various solution 
philosophies and goals to address MOO problems, depending 
on their specific perspective and the nature of the problem. 
Common goals include identifying a representative set of 
Pareto optimal solutions, comprehending the trade-offs among 

various objectives, and finding a single solution that aligns 
with decision-makers preferences [34], [36].A solution is 
considered pareto optimal, pareto efficient, non-inferior, or 
nondominated when no other objective can be improved 
without reducing the value of other objectives [37]. Given the 
absence of additional information, there may be an infinite 
number of solutions that are all deemed good. Researchers 
tackle these problems from different perspectives and have 
different goals when solving them. These goals may include 
identifying a representative set of pareto optimal solutions, 
comprehending the trade-offs among various objectives, and 
finding a single solution that aligns with decision-makers 
preferences [36]. 

F. EXPLORATION-EXPLOITATION DILEMMA and OPTIMAL 
CONTRACTION THEOREM 
The exploration-exploitation dilemma is a fundamental 
problem in data-driven decision-making processes. It involves 
the delicate balance between two conflicting strategies. 
Berger-Tal et al. [38] proposed a multidisciplinary framework 
to guide discussions on the exploration-exploitation trade-off 
in assessing the performance of decision-making processes, 
including machine learning algorithms. The framework 
provides four knowledge phases: knowledge establishment, 
knowledge accumulation, knowledge maintenance, and 
knowledge exploitation. In the knowledge establishment 
phase, an entity acquires basic information about the 
environment and resources, relying on internal reserves. In 
knowledge accumulation, the entity prioritizes obtaining new 
information while exploiting existing knowledge at a minimal 
rate. The knowledge maintenance phase focuses on utilizing 
resources while maintaining knowledge at an optimal level. 
The final phase, knowledge exploitation, occurs towards the 
end of an entity's lifespan, shifting focus to exploiting 
accumulated knowledge at 100 % with zero exploitation. The 
lifespan of the entity, environmental predictability, learning 
effectiveness, and temporal unpredictability all have an impact 
on the length and intensity of these phases. The framework 
offers insights into the interplay between exploration and 
exploitation strategies, emphasizing their adaptive roles across 
different life stages and environmental conditions. 

On the other hand, the Optimum Contraction Theorem by 
Jie Chen et al [39] posits that the complexity of an optimization 
problem significantly influences the trade-off between 
exploration and exploitation, consequently affecting the 
optimizer's behavior. The theorem states that if the problem is 
difficult for an optimizer, the exploration-exploitation trade-off 
will lean towards exploration. It further states that the 
optimizer's strategy can either be exploration-dominated or 
exploitation-dominated. The exploration-dominated optimizers 
outperform exploitation-dominated optimizers when the 
optimization problem becomes complex. The theorem 
encourages that one needs to have a prior knowledge of the 
optimizers and particularities of the problem. It argues that  
such knowledge can assist in transforming a complex problem 
into a relatively simple one,  and assist one in selecting the 
correct optimizer.  
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The two frameworks will be used to guide discussions on 
the convergence behaviour of the two optimizers selected for 
the study. 

 
III. METHODS AND MATERIALS 

A. KNOWLEDGE DISCOVERY IN DATABASES (KDD) 
The Knowledge Discovery in Databases (KDD) methodology 
was employed to guide the development of the MLP and 
address the objectives of the study. Theoretically, the KDD 
process is iterative and requires one to follow a machine-
learning exercise in a specific order. First, a clear understanding 
of the problem and its domain is essential. The data 
preprocessing phase (data cleaning and integration) follows, 
during which data sources are identified and integrated if 
necessary, and issues such as missing values, data 
inconsistencies, duplicates, and outliers are handled. Once the 
data is preprocessed, it is served into the feature selection and 
dimensionality reduction phase, where domain knowledge and 
machine learning techniques are used to select valuable features 
for the data mining phase. The data transformation phase 
follows, where the data of the selected features is transformed 
into form and shape ready for the actual data mining phase. The 
data mining phase involves applying machine learning 
algorithms to expose hidden patterns (discovered knowledge) in 
the data, which is then interpreted, evaluated, and validated to 
ensure the relevance and reliability [40]. 

B. DATA ASSEMBLY  
The EMIS database has over 400 tables and thousands of 
attributes describing a learner, an educator, and a school 
inventory [41]. The research employed Ravenstein's theory of 
migration as a conceptual framework [42], [43]. The tenets of 
the theoretical framework were applied to direct the data 
assembly process from the Education Management 
Information System (EMIS) database. Features which broadly 
conformed to the principles in the theoretical framework were 
selected (Table 4). Table 3 outlines Raveistein's laws of 
migration. 
 

Table 3. Ravenstein laws of migration [42] 

The Ravenstein laws of migration 
o Most migrations are over short distances. 
o Migration happens in stages and as distance increases, the volume 

of migration decreases. 
o In general, long-range migrants move into urban areas. 
o Each migration produces a reverse movement, although not 

necessarily in the same volume. 
o Rural inhabitants are more migratory than urban inhabitants, 
o Women are more migratory than men within their own country, but 

males are more migratory over long distances. 
o Migrants are mostly adults. Families seldom migrate from their 

country of birth. 
o Large towns grow more through migration than through natural 

growth. 
o Migration increases with economic development. 
o Migration is mostly due to economic causes 

Table 4. Features selected for study (Additional details of 
the features can be found in Appendix A1)  

 Description 

f01 Learner age at the time of first admission 
f02 Learner age when leaving the school  
f03 Identifies if a learner is in a school hostel or not 
f04 Identifies if a learner has deceased parents 
f05 Learner Gender 
f06 Grade of a learner 
f07 Number of years a learner is admitted to the school 
f08 The  last grade of the schools 
f09 Number of years a learner was in a grade 
f10 The home language of a learner 
f11 School language of learning and teaching 
f12 Identifies if a learner has a disability or not 
f13 Number of years in a phase 
f14 Language a learner prefers to be taught with 
f15 Identifies if a learner was progressed/condoned to a grade or not 
f16 Identifies if a learner is benefitting from School Food 

Programmes 
f17 Race of a learner 
f18 Type of the transport a learner is using to school 
f19 District of the school a learner is enrolling 
f20 Type of the school a learner is enrolling 
f21 The sector of the school a learner is enrolling in 
f22 Poverty ranking of the school a learner is enrolling 
f23 Average school performance  
f24 Frequency of displacement  
c25 response class  to assess the possibility of learner displacement  

(1= “displacement”. 2= “no displacement”)  
c26 response class indicating  the reason for learner displacement 

(1=graduated, 2= drop out,3=transfer, 4= no movement)  
c27 response class indicating distance range a learner will displace  

(0km = 0, 0><6 =1, 6+=2)  
 

Ravenstein's theory of migration has been widely 
recognized as a seminal work in the field of migration studies 
and provides a comprehensive framework for understanding 
patterns of human migration [42]. The Ravenstein migration 
theory is determined by push-pull factors [42]. The theory 
refers to push factors as unfavourable conditions from the 
point of origin, while pull factors are favourable conditions at 
the destination. The theory further posits that the push and pull 
forces are from economic, social, and cultural space [42], [44]. 
The research undertaken by Raveistein established a strong 
foundation for subsequent studies, including the work of Lee 
Everett. Lee supported Raveistein and argued that the decision 
to migrate is influenced by various factors, such as place of 
origin, intended destination, intervening obstacles, and 
personal characteristics [43]. Lee further asserts that the 
migration process is selective for differentials such as gender, 
age, education, social class, etc., and these factors affect how 
one responds to push-pull factors, and the ability to overcome 
intervening obstacles. The systematic review by  [45], [46] 
examined several studies exploring different factors that 
contribute to learner migration in South African schools and 
ways to mitigate their negative effects. This review found that 
the migration of learners from one school to another is 
influenced by several factors, including legal frameworks in 
the education system, school management and leadership 
practices of schools, school efficiency, infrastructure, and 
socio-economic factors, among others. The findings of this 
research align with the Ravenstein's migration theory. These 
findings offer empirical evidence that supports the ongoing 
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significance of Ravenstein's migration theory in understanding 
learner migration dynamics 
 
C. DATA PREPARATION   
Data preparation involves several activities, such as data 
cleaning, integration, selection, and transformation, as 
discussed in the KDD process. This task is challenging, as it 
involves transforming raw data into a format suitable for data 
mining without altering its underlying structure or meaning 
[40], [46]  .In practice, this often requires addressing issues in 
the raw data, such as missing or inconsistent values, outliers, 
non-standard attributes, duplicate records, and conducting 
data normalization or discretization and related mappings 
[40], [46], [47] . Among the 24 predictor variables in Table 4, 
f01, f02, f07, f23 and f24 were derived from pre-existing 
features within the dataset [41]. These features were created 
to capture additional information relevant to learner 
demographics and academic progress. Feature f23 was 
derived by combining two features related to the school 
promotion rate in order to decrease the complexity of the 
dimensions. Furthermore, the target class c27 was discretized 
into three intervals to enhance the model's performance and 
convergence. Duplicate records and records that could not be 
uniquely identified were removed to ensure data integrity. The 
labels of all the categorical data were encoded to improve 
compatibility with the target model, improve performance and 
reduce the memory footprint of the dataset. Overall, these 
steps were essential to ensure that the data was suitable for 
machine-learning exercises [47].  

D.  FEATURE SELECTION 

The sampled data was subjected to a feature selection process 
to optimize training time, feature performance, and model 
stability. Boruta, RPART, J48, and Adaboost.M1 were utilized 
to generate optimal feature sets [41]. The standard deviation of 

each feature set was calculated and compared. The literature 
asserts that a low standard deviation or variance is a crucial 
factor in selecting feature sets, as it suggests reduced 
variability, indicating greater consistency and stability. It 
further states that stable features (with a low standard 
deviation) produce more straightforward and interpretable 
models, which can mitigate the risk of overfitting and enhance 
the model's performance [48]. The feature set produced through 
Boruta had a relatively lower standard deviation and aligned 
with learner migration traits supported by the literature [45], 
[49], [50], and the Ravenstein theory of migration [42], [43], 
[51] underpinning this study. This feature set was deemed 
optimal, with f17 (learner race) and  f20 (school type) being  
rejected. Table 4 shows the final feature set for the study. 

E. SAMPLING METHOD 
A sample comprising 10% of the total observations (𝒏 =

𝟏𝟐, 𝟖𝟒𝟗) with 25 features (excluding f17 and f20), was 
obtained using the simple random sampling technique. This 
basic sampling methodology ensures that each member of the 
population has an equal chance of being included in the 
sample. In machine learning, class imbalanced data can lead 

to classifiers that demonstrate bias towards the dominant class, 
leading to increased generalization error [52]. Given the 
complexity of the multi-objective problem the study intends 
to address, our approach involved focusing solely on the 
primary response class (c25) to address the issue of class 
imbalance. The data was partitioned into training and test set 
using a 70% training and 30% test split, respectively. The 
Random Forest classifier was used to predict the response 
class (c25) in the test data, and the following performance 
information was generated [41], [53]. 

Table 5. Sample performance metrics 

Confusion matrix Other Performance Metrics 

##                   Reference 
## Prediction        1       2 
##                    1 1896    0 
##                    2    0    1920           
##Accuracy: 1          
##95% CI: (0.999, 1) 
##No Information Rate: 0.5031     
##P-Value [Acc > NIR] : < 2.2e-16  
## Kappa: 1          

##Sensitivity: 1.000    
##Specificity: 1.000    
##Pos Pred Value: 1.000    
##Neg Pred Value: 1.000    
##Prevalence: 0.497    
##Detection Rate: 0.497    
##Detection Prevalence: 0.497    
##Balanced Accuracy: 1.000 

 
The model correctly recognized all observations in the 

primary response class (c25). The accuracy, kappa and 
sensitivity of the model are optimal, which means that the 
model works well and can recognize all instances of the 
classes equally [54]. 

E. EXPERIMENT DESIGN 

The study used a Multilayer Perceptron (MLP) to predict three 
distinct objectives (c25, c26, and c27). The initial phase of the 
experiment involved optimizing hyper-parameters for the 
MLP. The Scikit Python package was used to implement the 
MLP. A range of hyper-parameters were identified for 
optimization. These hyper-parameters include the activation 
function (identity, logistic, tanh, ReLU); the number of hidden 
layers; maximum iteration bounds ranging from 200 to 500; 
alpha, which represents the strength of L2 regularization; 
varying batch sizes (2, 4, 8, 16, 32); optimization functions 
(LBFGS, SGD, Adam); and learning rates (constant, 
invscaling, adaptive). The Culture Algorithm (CA) and Social 
Ski-Driver (SSD) from the Mealpy Python package were used 
to optimize the hyperparameters of the MLP. The tuner utility 
in the Mealpy package was implemented to allow the two 
optimizers to choose their parameters, e.g., the acceptance 
rate in the case of CA, while keeping the epoch and population 
size the same in both optimizers. The epoch and population 
size were set to 30 and 25, respectively. The cleansed dataset 
from the EMIS system was partitioned into DatasetA and 
DatasetB, containing 128,495 and 314,635 learner records, 
respectively. DatasetA contained learner records spanning 
admissions from 2011 to 2016 and was used to generate a 10% 
sample. The sample was split into 5 folds (dataset_a1, 
dataset_a2, dataset_a3, dataset_a4, and dataset_a5), with 
approximately 2,570 observations in each fold. Both 
optimizers were run on the five folds using a 70/30 train/test 
split, producing ten sets of what are considered, pareto optimal 
hyper-parameters: ca_dataset_a1, ca_dataset_a2, 
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ca_dataset_a3, ca_dataset_a4, ca_dataset_a5, 
ssd_dataset_a1, ssd_dataset_a2, ssd_dataset_a3, 
ssd_dataset_a4, and ssd_dataset_a5. Dataset B contained 
learner records with admissions from 2017 to 2021. It was split 
into five folds (dataset_b1, dataset_b2, dataset_b3, 
dataset_b4, and dataset_b5), each containing approximately 
62,927 observations. These five folds were used to assess the 
performance of ten sets of hyper-parameters using a 20/80 
train/test split. Considering that all the parameter sets are 
pareto optimal solutions, it was difficult to randomly select the 
optimal parameter set for the study. Given this, the ten hyper-
parameter sets were assessed using the algorithm's log data to 
evaluate various performance metrics, including fitness, 
diversity, the exploration vs. exploitation trade-off, and epoch 
time. The F1 score was then used to calculate the variability, 
or standard deviation, of the F1 weights across datasets for 
each hyper-parameter set (Table 7). The hyper-parameter set 
with low variability was given a higher ranking. The Wilcoxon 
Signed-Rank test was further conducted on performance 
values (F1 score weight of three objectives) derived from the 
evaluation of ten sets of hyper-parameters. The test was 
intended to assess whether there are statistically significant 
differences in performance among the pairs of optimizers (CA 
and SSD) in each fold of DatasetB. 
 
IV. RESULTS AND DISCUSSION 
A. MODEL’S PERFORMANCE 
The results offer insight into the functionality and behaviour 
of the CA and SSD algorithms across multiple aspects. 
Existing literature and theoretical frameworks were used to 
understand each model's subtle strategies in optimizing the 
multi-layer perceptron's hyper-parameters and to address the 
learner migration problem discussed earlier. One critical 
concept in the performance of meta-heuristics is convergence 
analysis. The theoretical development of population-based 
meta-heuristics is still maturing and the mathematical analysis 
of the rate of convergence is very difficult to formulate, if not 
impossible. In many cases, the performance analysis is either 

done through a comparison of the algorithms and applications 
on the known problems or through the analysis of the 
exploration-exploitation tradeoff [55]. Exploration-
exploitation trade-off is fundamental in meta-heuristics as it 
guides the algorithm into the global space where optimum 
convergence should occur. Aspects such as population 
diversity, the spread of solutions, epoch time and the 
algorithm's ability to escape local optima collectively capture 
the exploration-exploitation trade-off and are integral in 
understanding how well a meta-heuristic performed [39]. 

Table 6 compares the CA and SSD across the five-folds of 
the sample, each with approximately 2570 observations.  The 
two optimizers performed well with an average difference of 
0.007 calculated as the average of the absolute difference from 
the mean performance of the optimizers. The two algorithms 
selected the activation function randomly based on the 
emerging patterns in the data, but have all agreed on 
LBFGS(Limited-memory Broyden-Fletcher-Goldfarb-Shanno)  
as the choice of the solver/optimizer (Table 6). The alpha 
values, representing the strength of L2 regularization, vary 
between CA and SSD, with both adapting the parameter to 
dataset-specific needs. The learning rate parameter also varies, 
with invscaling and adaptive being frequently favoured. The 
preliminary results show that CA configured with relu 
activation function, LBFGS optimizer and Invscalling learning 
rate achieved a higher performance in dataset_a5 (Table 6). 
Table 7 comparatively shows the mean f1 score performance of 
the parameter sets and the related ranking based on the standard 
deviations of the performance values and mean f1 scores across 
the datasets. Once more, the hyper-parameter set 
"ca_dataset_a3" from CA with the LBFGS optimizer, 
invscalling learning rate, and ReLU activation function 
achieved a higher mean performance across the five folds of 
DatasetB and had a low standard deviation (Table 7). 
Interestingly, the hidden layers of the parameter set 
“ca_dataset_a5”  are double that of “ca_dataset_a3” while the  
activation function, solver and learning rate are the same.

Table 6. Hyper-Parameters for global best and worst solutions 

dataset dataset_a1 dataset_a1 dataset_a2 dataset_a2 dataset_a3 dataset_a3 dataset_a4 dataset_a4 dataset_a5 dataset_a5 
model CA SSD CA SSD CA SSD CA SSD CA SSD 
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model fitness 2.6397 2.6448 2.6314 2.6346 2.6466 2.6479 2.6508 2.6430 2.6703 2.6492 
best hidden layer size 68 11 41 41 44 10 86 20 88 31 
best activation function identity logistic relu logistic relu logistic relu tanh relu tanh 
best solver lbfgs lbfgs lbfgs lbfgs lbfgs lbfgs lbfgs lbfgs lbfgs lbfgs 
best alpha 0.0563 0.1000 0.0891 0.1000 0.0395 0.1000 0.0465 0.1000 0.0211 0.1000 
best learning rate invscaling adaptive constant adaptive invscaling adaptive constant invscaling invscaling invscaling 
best max iteration 575 250 775 325 475 500 400 625 575 200 
best batch size 8 2 16 32 4 2 2 2 4 32 

 

Table 7. Parameter set ranking from F1 score weight of three response variables  



 Frans Ramphele et al. / International Journal of Computing, 23(4) 2024, 536-551 

546 VOLUME 23(4), 2024 

Dataset  
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dataset_b1 2.6119 2.5493 2.5968 2.5476 2.5941 2.5662 2.5733 2.5803 2.5443 2.5793 
dataset_b2 2.5957 2.5674 2.6083 2.5628 2.5989 2.5324 2.5683 2.5929 2.5758 2.5958 
dataset_b3 2.6125 2.5499 2.5657 2.5664 2.6012 2.5879 2.6131 2.5704 2.6061 2.5683 
dataset_b4 2.5894 2.5651 2.6012 2.5649 2.6094 2.5631 2.5837 2.5424 2.5807 2.5844 
dataset_b5 2.5906 2.5952 2.6027 2.5538 2.6063 2.5597 2.6313 2.6025 2.5793 2.5763 
mean 2.6000 2.5654 2.5949 2.5591 2.6020 2.5618 2.5939 2.5777 2.5772 2.5808 
variance 0.0001 0.0003 0.0003 0.0001 0.0000 0.0004 0.0007 0.0005 0.0005 0.0001 
standard deviation 0.0114 0.0186 0.0169 0.0081 0.0060 0.0198 0.0272 0.0232 0.0220 0.0102 

ranking by mean f1 
weight 

2 8 3 10 1 9 4 6 7 5 

ranking by std of the 
f1 weight  

4 6 5 2 1 7 10 9 8 3 

 

Table 8. Wilcoxon Signed-Rank Test of paired parameter set 

Paired parameter set Test statistic P-value Outcome 

1. (ca_dataset_a1, ssd_dataset_a1) 1 0.125 There is no evidence of a significant difference between paired groups. 
2. (ca_dataset_a2, ssd_dataset_a2) 1 0.125 There is no evidence of a significant difference between paired groups. 
3. (ca_dataset_a3, ssd_dataset_a3) 0 0.0625 There is no evidence of a significant difference between paired groups. 
4. (ca_dataset_a4, ssd_dataset_a4) 3 0.3125 There is no evidence of a significant difference between paired groups. 
5. (ca_dataset_a5, ssd_dataset_a5) 6 0.8125 There is no evidence of a significant difference between paired groups. 

 
 
B. EXPLORATION-EXPLOITATION TRADEOFF 
Fig. 4 shows an exploration-exploitation graph, which is 
crucial for one to understand at which stage the model 
searches for new solutions or uses the existing ones. This 
succinctly explains the model's internal dynamics and 
processing. In the initial epochs, both CA and SSD showed 
heightened exploration to establish new knowledge of the 
solution space. This exploration is crucial for understanding 
the landscape and identifying potential areas of interest within 
the given dataset. As training progresses, there is a discernible 
shift in behaviour. The culture algorithm transitioned 
smoothly from exploration to exploitation, where it started to 
leverage accumulated knowledge more efficiently and 
allocate less time and resources to exploration. On the 
contrary, SSD maintained a relatively higher level of 
exploration than CA. 

The exploration-exploitation dynamics, illustrated in Fig. 4, 
can be discussed in the context of the multi-disciplinary 
framework on the exploration-exploitation dilemma and the 
optimal contraction theorem [38], [39]. The concept of the 
"exploration-exploitation tradeoff" describes the ideal 
equilibrium between the search for new solutions and the 
exploitation of existing ones. Achieving an optimal balance is 
a complex task due to the potential drawbacks associated with 
both excessive exploration and excessive exploitation. 
Excessive exploration can lead to inefficiency and slower 
convergence, while excessive exploitation may result in 
premature convergence to suboptimal solutions [38],[56].  
 

 

Figure 4. Exploration -Exploitation graph 

 
 

Berger-Tal et al. [38] suggested a novel multidisciplinary 
framework to guide discussions around the exploration-
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exploitation trade-off in assessing the performance of the 
algorithms. A particular emphasis was placed on the expected 
performance of the two optimizers in the knowledge 
establishment phase, where exploration is expected to be at 
100 and exploitation at 0. Both CA and SSD exhibited 
heightened exploration in the initial epochs, contributing to 
knowledge establishment as required. Based on the Berger-
Tal et al framework, the SSD did not reach full exploitation in 
the 30 epochs provided compared to the CA. The SSD model 
seems trapped in the knowledge maintenance phase, which 
focuses on utilizing existing knowledge while maintaining 
constant exploration. On the other hand, CA seems to have 
gone through all the phases and increasingly relying on 
exploitation to generate new solutions. It reached the stage 
where exploitation is at 100 and exploration at 0, which is the 
ultimate goal in the exploration-exploitation dilemma. This 
suggests that the CA was able to effectively use the 
information from the best solutions found to guide the search 
space toward better solutions.   The stagnation of SSD in the 
knowledge maintenance phase can be explained in the context 
of the optimal contraction theorem. The SSD's sustained 
exploration over the 30 epochs resonates with the complexity 
of the problem on the optimizer, especially in datasets with 
temporal unpredictability. The behaviour of SSD suggests that 
it employed a strategy of continuous learning to adapt to 
changing conditions in the dataset. Approaching the final 
epochs, CA appears to shift predominantly towards 
exploitation and focuses solely on exploiting the knowledge it 
has acquired, while the SSD continues to explore the search 
space.   

C. POPULATION DIVERSITY 

Fig. 5 shows the diversity graph which illustrates the degree 
of variation or spread among the solution candidates found by 
the two algorithms. The CA algorithm tends to converge to 
zero diversity, especially from the 13th epoch, indicating that, 
it either found a stable solution quickly or stuck in local 
optima. Unlike the CA, the SSD maintained reasonable 
diversity, decreasing at a very low rate throughout the 30 
epochs, indicating its resilience to finding better solutions. 

 

 

Figure 5. Diversity 

The diversity metric of CA diminished early in all the folds 
compared to SSD  which consistently tried to maintain the 
diversity over the 30 epochs. Although diversity is 
acknowledged as important in evolutionary algorithms for 
managing exploration-exploitation tradeoffs, the concept of 
productive diversity target exists, which is sufficient to 
produce optimal fitness [57]. The latter suggests that higher 
and prolonged diversity does not always convert to optimal 
solutions, but could also suggest that the problem is hard for 
the optimizer [39]. The diversity of  CA diminished early in 
all folds as it did not see any need to extend its investment in 
exploration. This behaviour was necessary to balance 
exploration and exploitation at the culmination of its lifespan 
in the knowledge exploitation phase [38]. 

D. EPOCH TIME  

Fig. 6 shows the epoch time graph. The SSD model 
demonstrated higher efficiency in epoch processing time. The 
model took approximately 609 seconds (average= 122/fold)  to 
complete 5 folds of data with 30 epochs each, compared to CA's 
which took 1421 (average=284/fold) seconds. The CA showed 
stable processing time in all epochs, while the SSD varied 
significantly. 
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Figure 6. Epoch Time 

The fluctuations in epoch processing time suggest 
variations in learning complexity. The SSD's efficient time 
utilization, high variability in epoch processing time and 
consistent diversity as discussed earlier, suggest flexibility in 
search strategy while the CA behaviour suggests a consistent 
approach to problem solving. The SSD demonstrated 
efficiency in epoch time compared to CA (Fig. 6). This trait is 
more common in metaheuristics based on swarm intelligence 
(inclusive of SSD), as it allows them to adapt to dynamic 
environments and avoid premature convergence [58].This 
stability and efficiency in epoch time position SSD as a 
potential candidate for real-time scenarios where quick 
adaptation to changing solution spaces is paramount. On the 
other hand, CA's consistent convergence fitness aligns with 
stability-focused algorithms.[58] 

E.GLOBAL FITNESS  

Fig. 7 shows the global fitness graph. The analysis of the 
global fitness for CA and SSD across 30 epochs in 5 folds 
reveals distinct patterns. The performance of the CA and SSD 
varied across the five folds. SSD demonstrated slight 
advantages over CA in folds dataset_a1, dataset_a2, and 
dataset_a3, while CA outperformed SSD in folds dataset_a4 
and dataset_a5. 

 

Figure 7. Global Fitness 

 
It is worth noting that the two models achieved comparable 

global fitness levels. The suitability of each algorithm depends 
on the optimization problem's characteristics. The CA 
algorithm potentially fits tasks with consistent solution 
landscapes, while SSD's adaptability may be advantageous in 
more varied or changing environments. 
 

The Wilcoxon Signed-Rank test was also conducted to 
assess whether there is any evidence of statistically significant 
differences between the pairs of optimizers (CA and SSD) and 
their associated hyperparameter sets. Table 8 shows the results 
of the Wilcoxon Signed-Rank test. The results suggest no 
significant difference between the parameter sets generated by 
CA and SSD across all folds (Table 8). The lack of statistically 
significant performance difference between CA and SSD 
makes it more arduous to attribute performance solely to 
specific hyperparameter configurations. It is therefore 
important to use task-specific characteristics to inform 
algorithm selection[39]. Factors such as computational 
efficiency, robustness, ease of implementation, or specific 
application requirements may determine the decision [59]. 

Table 7 shows the analysis of f1 fitness weights, the f1 
weight mean, f1 weight standard deviations and related 
rankings. Parameter set “ca_dataset_a3” has the highest 
mean of f1 weight score and low variance across the five folds. 
These positive attributes suggest a commendable degree of 
generalization, indicating that the models' (MLP) performance 
will remain robust and effective across diverse datasets.  



Frans Ramphele et al. / International Journal of Computing, 23(4) 2024, 536-551  

VOLUME 23(4), 2024 549 

VI. CONCLUSION 
In conclusion, the findings of this paper enrich our 
understanding of the strengths and limitations of CA and SSD. 
The theoretical lens provided by Berger-Tal et al.'s framework 
enhances our grasp of how exploration and exploitation 
strategies contribute to the convergence behaviour of these 
optimization algorithms. The results of the study showed 
statistically insignificant performance differences to the 
parameters produced by CA and SSD models. This highlights 
the effectiveness of the SSD algorithm in optimizing neural 
networks. The behaviour of SSD concerning its efficiency in 
epoch time, maintaining diversity and adaptability position it 
as a potential candidate for real-time scenarios where quick 
adaptation to changing solution spaces is paramount. 

The hyper-parameter set “ca_dataset_a3” produced by 
culture algorithm (CA) yielded the highest mean of f1 weight 
score and low variance across the five folds and was therefore 
selected as optimal. These positive attributes suggest a 
commendable degree of generalization, indicating that the 
models' (MLP) performance will remain robust and effective 
across diverse datasets. Researchers and practitioners need to 
consider these findings when considering the application of 
machine learning and predictive models to solve learner 
migration problems.  
 
VII. LIMITATION OF THE STUDY AND FUTURE WORK 
The SSD model did not complete the exploration-exploitation 
tradeoff dynamics suggested by Berger-Tal et al in the 30 
epochs provided. Although it is acknowledged that the SSD 
model performed comparatively well, with a fitness score 
similar to the CA, which was fully aligned with the model 
convergence characteristics and principles outlined in the 
Berger-Tal framework on the exploration-exploitation tradeoff. 

While the results of SSD are promising, they may not fully 
represent the model's capabilities when subjected to a more 
intensive analysis. Future research directions could include 
analyzing the SSD's behavior against Berger-Tal et al.'s 
exploration-exploitation framework in the learner migration 
context and investigating the transferability of learned 
knowledge across diverse domains. Additionally, future studies 
might explore the effects of varying the number of epochs, 
adjusting parameter settings, and experimenting with different 
model initialization strategies to gain deeper insights into the 
SSD's convergence dynamics.  

 
VII. SOFTWARE 
The experiments in the study were conducted using R Studio 
(R editor) and Wing ( python editor). R Studio was used for 
feature selection, while Wing IDE with mealpy and scikit 
libraries were used for MLP hyperparameter optimization. 
 
VIII. DATA AVAILABILITY STATEMENT 
This article is accompanied by the data used in the study, the 
reports generated during model processing, data analysis 
reports, and source codes to ensure replicability 
 
 

APPENDIX A1: META-DATA 

ID Type Category List Values 
f01 numeric derived  continues variable 
f02 numeric derived  continues variable 

f03 nominal 
learner 
biographic 0=not specified; 1=yes; 2=no 

f04 nominal 
learner 
biographic 0=no specified; 1=single parent; 2=both parents; 3= 

f05 nominal 
learner 
biographic 1=male; 2=female 

f06 nominal 
learner 
biographic 10=grade 10; 11=grade 11; 12=grade 12 

f07 numeric biographic   
f08 nominal school 10=grade 10; 11=grade 11; 12=grade 12 
f09 numeric biographic  continues variable 

f10 nominal 
learner 
biographic 

0=not specified; 1=afrikaans; 2=english; 
3=isindebele; 4=siswati; 5=isixhosa; 6=isizulu; 
7=sesotho; 8=sepedi; 9=setswana; 10=tshivenda; 
11=xitsonga; 12=sign; 13=other 

f11 nominal 
learner 
biographic 

0=not specified; 1=afrikaans; 2=english; 
3=isindebele; 4=siswati; 5=isixhosa; 6=isizulu; 
7=sesotho; 8=sepedi; 9=setswana; 10=tshivenda; 
11=xitsonga; 12=sign; 13=other 

f12 nominal biographic 0=not specified; 1=no; 2=yes; 3=unknown 
f13 numeric biographic   

f14 nominal biographic 

0=not specified; 1=afrikaans; 2=english; 
3=isindebele; 4=siswati; 5=isixhosa; 6=isizulu; 
7=sesotho; 8=sepedi; 9=setswana; 10=tshivenda; 
11=xitsonga; 12=sign; 13=other 

f15 nominal biographic 1=true; 2=false 
f16 nominal biographic 0=not applicable; 1=yes; 2=no 

f17 nominal biographic 
1=african/black; 2=asian/indian; 3=coloured; 
5=other; 4=white 

f18 nominal 
learner 
biographic 

0=not specified; 1=by foot 2km less; 10=hostel; 
11=train; 12=by foot 5km to 10km; 13=private bus 
transport; 2=by foot 2km to 5km; 3=by foot 10km +; 
4=bicycle; 5=motor cycle; 6=motor car; 7=taxi; 
8=employer bus; 9=government bus (transport 
scheme) 

f19 nominal 
school 
demographic 

1=capricorn north; 2=capricorn south; 
3=mogalakwena; 4=mopani east; 5=mopani west; 
6=sekhukhune east; 7=sekhukhune south; 8=vhembe 
east; 9=vhembe west; 10=waterberg 

f20 nominal school 1=ordinary school; 2=special needs education centre 
f21 nominal school 1=public; 2=independent 

f22 nominal school 

0=not specified; 1=poverty index 1; 2=poverty index 
2; 3=poverty index 3; 4=poverty index 4; 5=poverty 
index 5 

f23 numeric school 
1=0 - 29; 2=30 - 39; 3=40 - 49; 4=50 - 59; 5=60 - 
69; 6=70 - 79; 7=80 - 100 

f24 numeric biographic  continues variable 
c25 nominal biographic 1=displacement; 2=no displacement 

c26 nominal 
learner 
biographic 

1=graduated; 2=dropped out; 3=transfer to another 
school; 4=no reason; 5=no movement 

c27 nominal 
learner 
biographic 

0=0km; 1=between 0km and 1km; 2=between 1km 
and 2km; 3=between 2km and 3km; 4=between 3km 
and 4km; 5=between 4km and 5km; 6=above 5km 
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