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 ABSTRACT Although the Global Positioning System (GPS) is a cornerstone of modern navigation, its accuracy 
can diminish in urban areas, indoors, and intentionally jammed locations. This poses significant challenges for 
Unmanned Aerial Vehicles (UAVs) operating autonomously in these "GPS-denied" environments. In this context, 
multi-sensor data fusion (MSDF) is suggested as a viable technique, as it integrates inputs from various sensors to 
create a more robust and reliable navigation solution. In this paper, a system has been developed that enables an 
AUAV flying along a predetermined route to reliably detect both fixed and moving obstacles in challenging 
environments where GPS signals are weak or absent, and to perform effective avoidance maneuvers to prevent 
potential collisions, offering superior situational awareness and operational efficiency. The results obtained 
demonstrate that the AUAV can navigate safely and accurately in complex and continuously changing 
environments. The findings reveal that the proposed system has the ability to reliably detect both stationary and 
moving obstacles in challenging environments where GPS signals are absent or weak, and to perform effective 
avoidance maneuvers to prevent potential collisions in real time. 
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I. INTRODUCTION 
NMANNED Aerial Vehicles (UAVs) have an intense 
impact on various industries, including disaster control, 

monitoring, farming, and transportation. UAVs use a Global 
Positioning System (GPS) for navigational purposes. 
Nevertheless, depending solely on GPS signals limits their 
capability in an environment where the signals are feeble or 
non-existent. This environment is called GPS-denied and has 
many obstacles that impede UAV flight [1]. Multi-sensor data 
fusion (MSDF) has been proposed as a solution to address these 
issues [2, 3]. These are referred to as GPS environments that 
are denied; their range can range from a high-rise cityscape to 
a remote and barren locale in which the ground itself poses a 
problem [4, 5]. In all of these instances, GPS navigation may 
be impossible or dangerous because the signal is low or 
lacking. This issue not only adversely affects the performance 
and versatility of Unmanned Aerial Vehicles (UAVs), but also 
increases their susceptibility and damage to the operational 
area. Consequently, the capacity to control independently, 
without relying on GPS receivers is invaluable. This is 

particularly important in environments in which GPS signals 
are unavailable. 

The term MSDF is used to combine information from 
multiple sensors to obtain a more accurate, reliable, and 
complete set of data than that of individual sensors. Combining 
the benefits of various sensors can result in a high degree of 
situational awareness and operational efficiency for GPS-
disabled UAVs. 

MSDF approaches can be described at three different 
levels: low-level, mid-level, and high-level integration. Low-
level fusion, also known as data fusion, is the direct 
combination of raw data from various sensors. Middle, or 
average-level fusion combines traits that are separated from the 
sensor information, which are then added to the data to improve 
the recognition of patterns or attributes that are difficult to 
understand in the raw data. The high level of fusion, or 
decision-level fusion, combines separate readings from sensors 
intended to measure different aspects of a problem, resulting in 
a reliable method of addressing complex issues when the real 
world is not entirely clear. 

U
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A wide range of sensors are used for UAVs navigation, 
including Inertial Navigation Systems (INS), Light Detection 
and Ranging (LiDAR), radar, and visual cameras. Every sensor 
addresses the shortcomings of another sensor, which results in 
a complex environment that guarantees precise guidance 
without the need for GPS. 

The obstacles are located in the fact that although it is 
obvious that the MSDF has a bright future, there are multiple 
difficulties in executing the system during UAVs' flight in 
GPS-disabled and deep-rooted environments. These obstacles 
include noise and errors in the sensors, computational 
complexity, and the dynamic nature of frequently altered 
outdoor environments. These issues cannot be resolved without 
additional research that focuses on important areas, such as 
advanced sensors for fusion, machine-learning-based methods 
for pattern recognition, and lightweight, energy-efficient 
sensors. Current research concentrates on the concept of the 
MSDF in the domain of UAV travel in GPS-disabled 
environments. This was performed to highlight the importance, 
methodology, and issues. The reminder of this paper is 
organized as follows. The first part of the section explores 
various sensor systems and their contributions to UAV 
navigation with a relevant literature review. Subsequently, the 
proposed system is introduced, detailing its design and 
functionality. The third section presents a comprehensive 
validation of the system through simulations and real-world 
testing. Finally, the article is presented in the concluding 
section. 

II. SENSOR SYSTEMS EMPLOYED IN UAV NAVIGATION 
In the UAV world, many sensors are used for various 
applications, including navigation, obstacle avoidance, target 
tracking, altitude sensing, and speed tracking. Inertial sensors, 
including accelerometers and gyroscopes, form the backbone 
of UAV navigation systems by providing crucial data on the 
linear acceleration and rotational movement of a drones, 
respectively. These sensors enable UAVs to maintain stability 
and orientation, particularly in environments in which external 
navigation aids may be unreliable or unavailable. The strength 
of inertial sensors lies in their ability to function independently 
of external references, making them indispensable for initial 
flight stabilization and situations in which GPS signals are 
weak or obstructed. However, their primary limitation is the 
accumulation of errors over time, which is a phenomenon 
known as drifting. Without external correction, the accuracy of 
inertial navigation systems degrades rapidly, limiting their 
utility in long-duration missions. 

The criticality of these data for the path planning and 
control modules underscores the need for accurate and reliable 
navigational inputs [6]. However, the reliance on GPS, while 
prevalent owing to its accuracy and ubiquity, is fraught with 
challenges, such as signal disruption in dense urban 
environments or intentional jamming [7]. These limitations 
have propelled research into alternative navigation methods 
and the enhancement of sensor technologies. 

Although uncommon, INS, which uses accelerometers and 
gyroscopes as a fall-back to GPS, provides measures of motion, 
position, and direction independent of any external signals 
from outside [8]. In terms of their usefulness, the drift error 
contained in the INS proves corrective as an integral 

requirement over extended GPS non-availability, thus 
showcasing a significant disadvantage [9]. 

The establishment of micro-electromechanical systems 
(MEMS) technology is a vital step forward for low-cost, high-
performance IMUs and other sensors [10] These developments 
play a critical role in providing UAVs with better navigation 
capabilities to ensure their successful operation in challenging 
environments. 

The INS can deliver instant position, velocity, and 
orientation without any external reference. Groves [11] 
includes a comprehensive account of INS, focusing on their 
autonomy from external signals as a significant benefit. 
However, the INS's Achilles’ heel lies in drift, which has been 
characteristically termed as error accumulation over time, as 
evident by [12]. In his work, [11] made a comprehensive 
description of an INS capable of providing instantaneous 
location, speed, and orientation without any external signals. 

Satellite navigation systems, such as the Global Positioning 
System (GPS), GLONASS (Globalnaya Navigatsionnaya 
Sputnikovaya Sistema or Global Navigation Satellite System), 
and so-called Galileo (the European Global Navigation 
Satellite System (GNSS)), provide global coverage and have 
become ubiquitous in UAVs navigation. These systems offer 
precise positional information by triangulating signals from a 
constellation of satellites, thereby enabling UAVs to perform 
tasks that require high positional accuracy, such as surveying 
and targeted payload delivery. The principal strength of 
satellite navigation systems is their ability to provide accurate 
real-time location data over vast geographical areas. However, 
their effectiveness is constrained by their dependence on the 
unobstructed lines of sight from satellites. In urban canyons, 
dense forests, or indoors, satellite signals can be blocked or 
reflected, leading to significant inaccuracies or loss of 
positioning capability. 

Atmospheric conditions, including ionospheric and 
tropospheric delays, can adversely affect the accuracy of the 
GPS data. In their studies [13], the impact of ionospheric 
disturbances on GPS signals was examined, and dual-
frequency GPS receivers were proposed for correcting 
ionospheric errors. Furthermore, [14] we investigated the 
effects of tropospheric delays on GPS accuracy, suggesting the 
incorporation of real-time weather data into GPS algorithms to 
adjust for atmospheric conditions, thereby improving the 
positioning accuracy. 

Signal blockage, primarily in urban canyons and heavily 
forested areas, poses a significant challenge for UAV 
navigation. García et al. [15] discussed the impact of signal 
blockage on GPS reliability and proposed the use of auxiliary 
sensors, including IMUs and barometers, to compensate for 
GPS signal loss. Their research showed that a sensor-fusion 
approach can significantly enhance the navigation accuracy in 
environments where GPS signals are obstructed. 

Optical sensors, including cameras and LiDAR systems, 
offer rich environmental data by capturing detailed visual and 
topographic information. Both visible and infrared cameras, are 
versatile tools for navigation, object detection, and 
environmental monitoring, providing both real-time imagery 
and the basis for photogrammetry. LiDAR sensors, on the other 
hand, emit laser pulses to measure distances to objects, creating 
precise three-dimensional maps of the UAV’s surroundings. 
The strength of optical sensors lies in their ability to generate 
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high-resolution data that is invaluable for obstacle avoidance, 
terrain following, and detailed environmental analysis. 
However, their performance is heavily influenced by 
environmental conditions; for example, cameras may be less 
effective in low light or adverse weather conditions, while 
LiDAR systems can struggle with reflective surfaces or 
atmospheric obscurants such as fog. 

In addition, the primary sensor types, UAVs often 
incorporate additional sensing technologies such as radar and 
ultrasonic sensors to enhance their navigational capabilities. 
Radar systems, particularly Synthetic Aperture Radar (SAR), 
can penetrate cloud cover and provide all-weather and, day, 
night operational capabilities, making them valuable for 
surveillance and earth observation missions. Ultrasonic sensors 
that emit high-frequency sound waves for detecting nearby 
objects are particularly useful for close-range obstacle 
detection and avoidance. Although these sensors significantly 
augment UAV navigation by filling the gaps left by optical and 
satellite systems, they also have limitations. Radar systems can 
be bulky and power-intensive, whereas ultrasonic sensors have 
a limited range and are susceptible to interference from 
environmental noise. 

To overcome the limitations of individual navigation 
systems, researchers have proposed sensor fusion techniques. 
Sensor fusion involves integrating data from multiple sources, 
such as IMUs, cameras, LiDAR, and radar, to achieve more 
accurate and reliable navigation outcomes. The Kalman Filter 
(KF) and the Particle Filter (PF) are among the most widely 
used algorithms for this purpose. 

EK, as discussed by Welch and Bishop [16], provides a 
means of fusing data in a linear, Gaussian error context, making 
it suitable for combining the INS and GPS data. However, in 
GPS-denied environments, the focus shifts towards integrating 
INS with Visual Odometry (VO) or Simultaneous Localization 
and Mapping (SLAM). In these scenarios, the Extended 
Kalman Filter (EKF) and Unscented Kalman Filter (UKF) are 
adapted to handle the nonlinearities associated with these 
technologies [17]. 

The PF offers an alternative approach that is particularly 
advantageous for dealing with non-Gaussian noise and 
nonlinear systems [18]. They have been effectively used in 
SLAM applications, allowing for robust estimation of the 
position and orientation in complex environments [19]. 

Recent advancements have also seen the incorporation of 
deep learning techniques in sensor fusion, aiming to leverage 
the pattern recognition capabilities of neural networks to 
further enhance the navigation accuracy in GPS-denied 
environments [20]. 

The integration of sensor fusion methods has become a 
powerful solution for addressing the limitations of individual 
sensors, thereby increasing the accuracy and reliability of 
navigation. By combining data from various sensors with 
different spatial resolutions, such as combining GPS and INS, 
the combination can correct INS drift while still providing a 
complete picture of the location, which guarantees the 
continued ability to navigate GPS-disabled environments [21]. 

Advances in algorithmic approaches to data processing, 
particularly the implementation of EK and PF, have 
demonstrated the potential of UAVs to have more accurate and 
robust navigation systems [22]. These algorithms have a 
superior capacity to deal with the nonlinearity and uncertainty 

present in sensor data; they provide more refined estimates of 
the state of a vehicle. 

The MSDF is an active area of research for enabling 
navigation of UAVs in environments where GPS signals are 
unavailable or unreliable. When GPS is unavailable, UAVs 
must rely on alternative sensors and data fusion algorithms to 
estimate their position and orientation [23]. The sensors 
commonly used for this application include cameras, laser 
rangefinders, radar, and IMUs comprising accelerometers and 
gyroscopes. 

Data fusion combines data from multiple sensors to achieve 
better accuracy and robustness than that of any individual 
sensor [2]. For UAVs, the tight integration of IMU outputs with 
other proprioceptive and exteroceptive sensors can enable the 
accurate state estimation required for waypoint following and 
obstacle avoidance. Seliquini [24] developed an EKF 
framework to fuse IMU, magnetometer, GPS, and barometric 
sensor data, demonstrating an improved navigation 
performance in GPS-denied areas. Vision-aided inertial 
navigation is an active research direction that uses cameras to 
provide velocity and orientation constraints. For example, 
Weiss and Siegwart [25] combined an IMU with a monocular 
camera to estimate the metric scale and achieve an accurate 
state estimation. 

Laser rangefinders and radar are useful for obstacle 
detection, mapping, and localization. Laser scan matching 
against an a priori map can enable localization in the absence 
of GPS [26]. Radar provides direct position measurements and 
can characterize the dynamics of moving obstacles. The fusion 
of radar and onboard sensors can enhance the situational 
awareness. The MSDF remains an open challenge owing to 
computational complexity, scale, synchronization, calibration, 
and registration issues across different modalities [3]. 

VO and SLAM represent a paradigm shift in navigation 
technology, by leveraging visual information from the 
environment. Scaramuzza and Fraundorfer [27] described VO 
as the process of estimating the ego-motion of a robot by 
analyzing the changes in images taken from its on-board 
cameras. In contrast, SLAM not only tracks the UAV’s location 
but also builds a map of the environment simultaneously [28]. 
Although VO and SLAM offer solutions to the drift problem 
inherent in INS, they are still challenging. Both technologies 
require significant computational resources and are sensitive to 
environmental conditions such as lighting and texture [29]. 

Deep learning techniques have also been integrated into 
sensor fusion to take advantage of the pattern recognition 
capabilities of neural networks and improve GPS-denied 
navigation precision, as demonstrated in [3]. 

The adoption of sensor fusion methodologies has been 
recognized as an effective countermeasure to the drawbacks 
experienced by single sensors, increasing navigation accuracy 
and reliability. By blending information from different sensors, 
such as combining GPS with INS, sensor fusion can rectify INS 
drift using GPS data or vice versa, ensuring continued 
navigation capacity in GPS-denied environments [21]. 

In data analysis, research advancements in algorithmic 
techniques for data processing, such as the application of EK 
and PF, have the potential to make UAV navigation systems 
more robust and precise. The aforementioned algorithms cope 
well with the nonlinear dynamics and uncertainties usually 
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detected in sensor readings, thereby yielding enhanced 
information on the vehicle state. 

Furthermore, the importance of external infrastructure, such 
as ground-based beacons and satellite-based augmentation 
systems, in improving UAV navigation is highly significant 
[30]. These systems provide supplementary points for 
navigation, such that an increase in precision and reliability can 
occur. 

III. PROPOSED UNMANNED AERIAL VEHICLE SYSTEM 
In this paper, an UAV that enables it to operate independently 
is presented. Fig. 1 illustrates the block diagram of the system, 
offering a detailed view of the essential components and their 

interconnections that allow the UAV to function without 
human intervention. This system generally comprises UAV 
propulsion systems, guidance, navigation and control systems, 
communication modules, sensors, and power supply units. 

The system can be divided into four blocks: namely 
obstacle avoidance, navigation sensors, trajectory planning and 
guidance, and control units. Each block represents a distinct 
subsystem or component that plays a vital role in UAV’s 
functionality of the UAV, from ensuring stable flight to 
processing the data collected during its mission. Understanding 
this diagram is crucial for understanding how various hardware 
elements contribute to UAV’ capabilities. 
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Figure 1. The block diagram of the proposed system. 

 
A. OBSTACLE AVOIDANCE UNIT 
The first line of defense against potential collisions for a UAV 
is its Obstacle Avoidance Unit. This unit is crucial for ensuring 
the safety of UAV’s and the environment in which they 
operate. It is equipped with an array of sensors designed to 
detect both dynamic (moving) and static (stationary) obstacles 
that may lie on UAV’s path of the UAV. These sensors include 
a Light Detection and Ranging (LiDAR) and an Optical Sensor 
(OF). 

The Obstacle Avoidance Unit follows a set of waypoints for 
the UAV by using a look-ahead point. It utilizes data from 
LiDAR, OF, and predefined threshold values for altitude and 
acceleration set by the system operator to prevent the UAV 
from colliding with obstacles or from crashing. Consequently, 
the system calculates the pattern length, look-ahead point, 
desired course, yaw, speed, and altitude based on the UAV 
position, set of waypoints, and look-ahead distance; detects the 

nearest obstacle from the current UAV position; and compares 
it to both thresholds. 

B. NAVIGATION SENSORS UNIT 
For a UAV to effectively navigate its position, orientation, and 
velocity must be known at all times. This occur when the 
Navigation Sensors Unit comes into play. This unit is equipped 
with sensors, such as a GPS module, Inertial Measurement Unit 
(IMU), and Digital Compass (DC). 

The GPS module provides precise location data by 
communicating with satellites, thereby allowing the UAV to 
determine its exact global position. An IMU, which typically 
consists of accelerometers and gyroscopes, tracks the UAV’s 
movements and orientation and provide data on its 
acceleration, rotation, and direction. The DC, much like a 
traditional compass, offers information on the heading of the 
UAV, further aiding navigation. 
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C. TRAJECTORY PLANNING AND GUIDANCE UNIT 
Once the UAV knows where it is and what obstacles it should 
avoid, it must plan its path to its destination. This is the role of 
the Trajectory Planning and Guidance Unit. This unit involves 
both hardware and software components, including a control 
station and various trajectory planning and guidance 
subsystems. 

Trajectory planning can be classified as either offline or 
online (real-time) path planners. Offline path planners calculate 
drone routes before launching. Consequently, these path 
planners require information about the environment prior to 
travel. Information regarding obstacles and no-fly zones is 
accessible to these path planners, resulting in accurate paths. 
One benefit of offline path planners is that they have the ability 
to utilize models of drone behavior to ensure that the path is 
possible. However, these algorithms lack the ability to 
dynamically adapt to environmental changes. Moving 
obstacles, such as birds, wind, and other aircraft, may deviate 
from the original path, and a competent path planner must be 
able to re-compute a new path to avoid these obstacles [31]. 

Online path planners utilize sensor data to recognize 
obstacles and respond to environmental changes. However, 
online path planners are often incapable of ensuring that paths 
that are near the optimal length are generated. Some online path 
planners use feasible initial path and alter their paths when 
dynamic obstacles are encountered. Other online path planners 
use probability functions to create paths to obtain new 
information about the environment. Depending on the specific 
scenario, an approach may be superior. For instance, in 
applications that involve drones delivering goods, the first 
approach facilitates a shorter flight path than the second one. 
However, because it is impossible to use predefined paths in 
tracking applications with a target, the path planner must create 
a path. 

Several studies have attempted to reduce the three-
dimensional planning issue to two -dimensions. By limiting the 
motion of a drone to a horizontal plane (at a specific elevation), 
the complexity of the problem can be significantly reduced, and 
the proposed methods for other ground vehicles can be directly 
applied to drones [32]. However, there are numerous benefits 
to using the vertical motion of drones. A unique benefit of this 
method is the avoidance of obstacles and maneuvers. 

In this study, the drone path planning problem refers to 
creating a minimum cost (considering the total path length, 
flight time, flight altitude and drone speed) and a collision-free 
path between the starting and target points. Online planning of 
paths for UAV in a 2D/3D environment that navigates through 
stationary polygonal obstacles was considered. O = {O1, O2,..., 
On}, which begins at the designated starting position and ends 
at the target position [33]. The environment was a constructed 
rural area with solid and rectangular obstacles. In addition, it's 
assumed that the knowledge of the entire or partial 
environment, such as the configurations, dimensions, and 
locations of obstacles, is already known and generated during 
each microsecond according to sensors such as LiDAR and, 
cameras. The resultant path must be collision-free and consists 
of waypoints W = {W0,..., Wn}, which are defined by the 

positions Wi = {xi, yi} in R2 or Wi = {xi, yi, zi} in R3, where i = 
0,..., n. Piece-wise linear segments connect Pcurrent to Ptarget. 
Once the UAV begins its mission by following a planned 
2D/3D path, the environment may be altered to include pop-
ups or previously unknown obstacles along the path. UAV are 
equipped with sensors that have a limited detection range, and 
this information is then used to deduce information about the 
environment, such as popups or previously unknown obstacles. 
The information gathered from the sensors must be used to plan 
new motion to avoid collisions with nearby obstacles. 

The control station is typically operated by a human who 
can manually guide the UAV if necessary. However, the 
majority of trajectory planning is performed autonomously by 
the UAV’s on-board systems. These systems analyze the data 
from the Obstacle Avoidance and Navigation Sensors Units to 
plot a safe and efficient course to the UAV’s destination, taking 
into account factors such as wind speed, no-fly zones, and UAV 
capabilities. 

D. CONTROL UNIT 
The core of a UAV system is the Control Unit. This unit is 
tasked with processing all the data gathered by the UAV’s 
sensors, executing fusion algorithms, and determining the 
position and orientation necessary for navigation. It comprises 
processing, navigation, and Flight Control subsystems. 

 PROCESSING SUBSYSTEM 
At the core of the system is the MSDF algorithm, which 
integrates pre-processed data from all sensors to estimate the 
UAV’s position, velocity, and orientation. The MSDF 
algorithm combines information from different sensors to 
produce a more accurate and legitimate estimate of a vehicle’s 
condition. EK, PF, and EKF commonly use data fusion in 
environments with well-documented noise and errors 
associated with the sensor data. These data can be modelled as 
Gaussian distributions. Particle filters are more versatile and 
can handle problems that are not Gaussian or nonlinear, making 
them ideal for complex UAV navigational tasks. Sensor 
weighting algorithms facilitate the alteration of the importance 
of each sensor's data based on the current environmental 
situation and the performance of the sensor. 

Data fusion for UAVs involves a combination of data from 
multiple sources, including a GPS module, IMU module, and 
DC, which is more accurate, reliable, and comprehensive than 
the information available from any single sensor. By taking 
advantage of the strengths of each sensor and addressing their 
individual weaknesses, the MSDF amplifies the quality of 
navigational data, which in turn increases the efficiency and 
safety of UAVs. Raw data from each sensor underwent pre-
processing to enhance the quality and compatibility of the 
fusion. This includes noise reduction, calibration, scaling, and 
conversion of the data into a common format. Pre-processing 
is crucial for removing sensor biases and ensuring that data 
from different sensors can be effectively combined. The 
functional block diagram of MSDF for the UAV is presented 
in Fig. 2. 
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Figure 2. The block diagram of the proposed system. 

 
In the proposed system, sensor data are refined and 

integrated using the EKF algorithm to derive the UAV’s real-
time position and orientation. UAV’s motion, of the UAV, 
characterized by six degrees of freedom, is represented by its 
state 𝑋ത, which includes the position vector 𝑃ത௘௧

௧ , spatial velocity 
vector 𝑉ത௘௧

௧ , orientation quaternion 𝑞ത, and gyroscope rotation 
vector 𝑏തఠ

௧  in the spatial coordinate system. This can be 
described as follows [34]: 

 
𝑋ത=[𝑃ത௘௧

௧        𝑉ത௘௧
௧       𝑞ത       𝑏തఠ

௧  ], (1) 
 
where 𝑃ത௘௧

௧ , 𝑉ത௘௧
௧ , 𝑞ത and 𝑏തఠ

௧  are acquired as follows:  
 

⎩
⎪
⎨

⎪
⎧

  

𝑃ത௘௧
௧ = [𝑃௫

௧ 𝑃௬
௧ 𝑃௭

௧]

𝑉ത௘௧
௧ = [𝑉௫

௧ 𝑉௬
௧ 𝑉௭

௧]

𝑞ത = [𝑞଴ 𝑞ଵ    𝑞ଶ 𝑞ଷ]

𝑏തఠ
௧ = [𝑏ఠ௫

௧ 𝑏ఠ௬
௧ 𝑏ఠ௭

௧ ]

.  (2) 

 
Given the presence of ambient noise from the four elements 

in the space motion velocity vector and the attitude 
representation when the sensor collects data, it is essential to 
first perform noise reduction processing. This can be described 
as follows: 

ቊ
𝑉෠௘௧

௧ = 𝐷௕
௧ 𝑓ି௕ + 𝑔̅ି௧ + 𝐷௕

௧𝛿௔̅
௕

𝑔ො = భ

మ
Ω 𝑞ത ൫𝜔ഥ௜௕

௕ − 𝑏തఠ
௕ + 𝛿ఠ̅

௕ ൯
௧ , (3) 

 where, 𝛿௔̅
௕ represents the environmental noise detected by the 

acceleration sensor, 𝑓̅௕ denotes the specific force measurement 
value, 𝛿ఠ̅

௕  is the environmental noise measured by the 
gyroscope, 𝑏തఠ

௕  is the gyroscope's measured value, and 𝜔ഥ௜௕
௕  is 

the gyroscope's measurement deviation correction value. The 
UAV state representation equation in Equation (1) can be 
transformed into; 

   𝑋ത = ൣ𝑃ത௘௧
௧    𝑉෠௘௧

௧    𝑞ො    𝑃തఠ
௧൧    (4) 

Setting 𝛿̅ = ൣ𝛿ఠ̅
௕௧   𝛿௔̅

௕௧    𝛿௕̅
௕௧൧  as the system noise, Equation 

(4) can be simplified as: 

𝑋ത = 𝑓൫𝑋ത, 𝑈ഥ, 𝛿̅൯ .  (5) 

Owing to the nonlinear characteristics of the UAV multi-
sensor fusion localization system, Equation (5) requires 
linearization. The Taylor series expansion is utilized and 
represented by the Jacobian matrix [34]. 
 

⎩
⎪
⎨

⎪
⎧      𝐹 =

డ௙൫௑ത,௎ഥ,ఋഥ൯

డ௑ത
ቓ

𝑋ത = 𝑋෠௞ିଵ

𝛿̅ = 0

      𝐺 =
డ௙൫௑ത,௎ഥ,ఋഥ൯

డఋഥ
ቓ

𝑋ത = 𝑋෠௞ିଵ

𝛿̅ = 0

𝐻 =
డ௙(௑ത)

డ௑ത
ቓ 𝑋ത = 𝑋෠௞,௞ିଵ

 , (6) 

where 𝐹 is the external force vector, 𝐺 is the acceleration 
vector, and 𝐻 is the horizontal direction vector. 
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The motion state is represented by the position vector 𝑃ത௘௧
௧  in 

the spatial coordinate system, velocity vector 𝑉ത௘௧
௧ , four 

components of attitude representation 𝑞ത, and gyro rotation 
vector 𝑏തఠ

௧ . The EKF algorithm was employed for the state 
estimation, yielding a covariance matrix that was utilized to 
adjust the state parameters. 

 FLIGHT CONTROL 
The Flight Control (FC) obtains the coordinates of the target 
point and waypoints as an input parameter and then outputs the 
UAV’s movement towards the target position. The target 
coordinate data type is confined to a two-dimensional Cartesian 
map; the 𝑥-axis represents the east-west position relative to the 
UAV, and the 𝑦-axis represents the north-south position. By 
using the Waypoint Tracker, the UAV can follow a series of 
waypoints according to the forward point. Based on the UAV 
position, waypoints, and forward distance, the forward view 
point, desired route, desired yaw, speed, and altitude were 
calculated. A flow chart of the FC is shown in Fig. 3. 
 

Start

Get current UAV position

Map LiDAR data
into 2D map

Read LiDAR 
data Read OF data

If not landig

Get altitude and 
Safety threshold

Read data form Trajectory 
Planning and Guidance Unit

Extract patterns to smooth 
UAV movement

Adjust yaw, speed, and 
altitude for the next segment

Perform landing

End
 

Figure 3. The flow chart of the flight control. 

To compute the trajectory plan, the first step is to locate the 
current position of the UAV (0; 0) on the discretized map, as 
well as the data regarding the altitude and coordinates of the 
waypoints. This is performed using a hash map with a key-
value pair mechanism, where the key is the node position (NP) 
associated with the waypoint and UAV, and the data are 
computed using Equation (7). 

𝑁𝑃 = 𝑚𝑟 × 𝑥 + 𝑦 . (7) 

The variable 𝑚𝑟, is the maximum width of the discretized 
map, 𝑥 and 𝑦 represent the 𝑥-axis and 𝑦-axis coordinates of 
the waypoints respectively. 

IV. VALIDATION OF THE SYSTEM 
The system comprises an extensive collection of software and 
hardware elements that are, meticulously crafted to fulfil 
distinct tasks and synergistically enhance the system's overall 
efficiency. Fig. 4 provides, a detailed visual representation of 
the UAV, showing both its external architecture and the 
integrated systems crucial for its operation. 

Simulations and real-world tests are conducted to evaluate 
the effectiveness and efficiency of the proposed system. The 
tests were meticulously designed to provide a holistic 
understanding of the system performance under various 
conditions. 
 

LiDAR

Camera

GPS

Compass
IMU

 

Figure 4. The comprehensive external representation of the 
UAV. 

A. SIMULATION TESTS 
The proposed EKF-based multi-sensor data fusion system, and 
the functionality of the UAV were studied in a real 
environment. The investigation included a series of tests 
designed to assess the capabilities of UAV for a variety of key 
parameters, including waypoint tracking, obstacle avoidance, 
immunity to signal interference, and general maneuverability. 
Tests were conducted based on three different scenarios, each 
carefully designed to reflect the complexity of the real-world 
environment depicted on the corresponding map. This 
comprehensive testing approach helps to verify UAV’s 
operational effectiveness and adaptability of UAVs to 
unforeseen challenges, highlighting their potential applicability 
in diverse and complex operational environments. 
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In this study, the time period of the system was 1 s, which 
is the same as the typical sampling frequency of a GPS module. 
Consequently, the sampling frequency of the DC was set to 1 
s. The IMU typically provides readings at a higher rate; for 
example, 0. 02 s, and the average of these values within 1 s is 
incorporated into the system. Measures derived from different 
sensors used for navigational purposes, including GPS, DC, 
and IMU, were augmented with noise to represent true values. 
The test area was based on the existing environment of Gölbaşı 
district (Ankara, Türkiye). 

SCENARIO 1: SIMULATION STUDIES 
In Scenario 2, the UAV was tested on a waypoint tracking 
mission and two obstacle avoidance maneuvers, and the system 
performance was evaluated when the GPS signal was blocked 
in two areas. 

In the simulation, the UAV trajectory was initiated from the 
starting point (100 m, 100 m) and embarked on a mission to 
navigate through three waypoints (100 m, 900 m), (900 m, 900 
m), and (900 m, 100 m), aiming for a target point (100 m, 100 
m) while avoiding two obstacles (900 m, 300 m) and (100 m, 
300 m) in Gölbaşı district. 

To assess the reliability of the system, GPS signals were 
intentionally blocked during the time intervals 𝑘 205 𝑡𝑜 245 𝑠 
and 𝑘 645 𝑡𝑜 685 𝑠. The trajectory outcomes are depicted in 
Fig. 5, where two black rectangles emphasize the durations of 
GPS signal lost. As illustrated in Fig. 5, the GPS-measured 
positions are absent during these intervals, yet the fusion 
outcomes, represented by the red line, remain in close 
approximation to the actual trajectory (black line). This 
demonstrates the algorithm's capability to accurately estimate 
UAV’s position and effectively reconstruct UAV’s trajectory 
amidst GPS signal interruptions. 

The actual environmental influences, such as the wind, 
altered the trajectory of the UAV, as shown in Fig. 5. The blue 
line shows raw GPS data collected during the trial. The results 
show that the UAV successfully navigated through the three 
waypoints in sequence and arrived at the target point despite 
encountering two obstacles as planned. 
 

 

Figure 5. Simulation results of the recovered trajectory of 
UAV navigation with two short-term GPS blockages. 

The positions of the UAV on the X-Y-Z axes are shown in 
Fig. 6. The position information at which the UAV reached the 
predetermined waypoints is shown in Fig. 6 (a). The difference 
between the desired and actual positions is shown in Fig. 6 (b). 
The yaw angle is shown in Fig. 7. 

 

 

(a) Real positions 

 

(b) Difference between real and desired positions 

Figure 6. (a) UAV’s position information (b) UAV’s desired 
and real positions differences. 

 

 

Figure 7. UAV’s yaw angle. 

The desired course, as shown in Fig. 8, indicates the 
intended direction of UAV movement, which aligns with its 
velocity vector. Expressed as an angle measured clockwise 
from north, the desired course ranged from -π to π rad. It is 
important to note that the desired course differs from the 
desired yaw, which refers to the UAV’s intended orientation 
along the vertical axis. 
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Figure 8. UAV’s desired course. 

The cross-tracking error (CTE) from the UAV’s location to 
the road measures the deviation of the UAV from the specified 
route. This error is the perpendicular distance from the current 
position of the UAV to its’ closest point on its designated route. 
If the error returns to a positive numerical value, the UAV 
deviates from its course to the right. The measured distance is 
expressed in meters. It is important for a UAV to follow its 
route accurately, and the cross-tracking error is used to 
determine the deviation from the route, and correct the route, if 
necessary. In this manner, it is ensured that the UAV performs 
its mission effectively and accurately to explore the desired 
area. A cross-track error appeared, as shown in Fig. 9. 
Deviations appear after waypoints. During the waypoint 
transitions, deviations were observed because the UAV 
adjusted its position and orientation. 

 

 

Figure 9. UAV’s Cross track error. 

The yaw pitch roll and thrust values required for the 
movement of UAV engines during flight are shown in Fig. 10. 

 

 

Figure 10. Yaw, pitch, roll and thrust values during the flight 
of UAV. 

The velocity error values along the X-Y- Z axes of the UAV 
are shown in Fig. 11. 

 

 

(a) UAV’s Velocity X – axis error 

 

(b) UAV’s Velocity Y – axis error 

 

(c) UAV’s Velocity Z – axis error  

Figure 11. UAV’s X-Y-Z Axes Velocity error values. 

SCENARIO 2: SIMULATION STUDIES WITH REAL-WORLD 
DATA 
This section addresses simulation studies carried out using real-
world data for a more realistic approach. This allows for a more 
detailed analysis of how well the system adapts to real-world 
conditions and how it responds to unexpected situations. 
Simulations conducted with real data provide the opportunity 
to evaluate the system's performance more realistically and 
identify potential problems in advance. These studies, in 
particular, have played a significant role in evaluating 
parameters such as immunity to signal interference and overall 
maneuverability. 
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To form the basis of these studies, data collected from 
previous flights (GPS coordinates, Inertial Measurement Unit 
data, weather information, etc.) were recorded from the UAV 
flying along a specific route. Subsequently, MATLAB objects 
that behave like GPS and IMU sensors were developed using 
these data. For a realistic offline simulation, a mission scenario 
incorporating 24 waypoint points over a 6000 m long route was 
designed. This route consists of eight fixed and four randomly 
placed moving obstacles. This environment provides an ideal 
ground for testing the UAV's navigation and obstacle 
recognition capabilities. 

In the offline simulation studies, data from a point located 
in the Gölbaşı district of Ankara/Türkiye province were taken 
as the initial position. The initial position is expressed in terms 
of latitude, longitude, and altitude. The coordinates of the initial 
position used in the simulation are 39° 42.705' North - 32° 
41.483' East, and the altitude is 59.33350583 m. 

Since the GPS sensor requires a reference position to obtain 
accurate location information, the latitude, longitude, and 
altitude data specifying the initial position were used in 
degrees, degrees, and meters, respectively. This reference 
location is a reference point used in processing sensor data. 
Therefore, changing the reference point will alter the predicted 
position and orientation information in the simulation. The 
GPS data utilize the difference between the reference location 
and the sensor's current location when making location 
predictions. Thus, changing the initial location affects this 
difference and, consequently, the location prediction. Fig. 12 
shows the orientation data related to the flight information of 
the UAV in a three-dimensional offline simulation 
environment. 

 

 

Figure 12. Orientation values in XYZ Axis. 

 

Fig.13 and Fig.14 show the position and speed data of the 
UAV in a 3D offline simulation environment, respectively. 
Fig.15 shows the position error and the orientation difference 
value, which is the quaternion distance, in the XYZ axes of the 
UAV in a 3D offline simulation environment. 

 

Figure 13. Position values on the XYZ axes regarding the 
flight data in the offline simulation environment. 

 

Figure 14. Speed values on the XYZ axes related to the flight 
data in the offline simulation environment. 

 

Figure 15. Error and quaternion distance values in XYZ axes. 

A total of 15 offline simulation studies were conducted to 
test the performance of the developed UAV. In all simulations, 
it completed its movement on a route containing 3D location 
data of approximately 6000 meters in 3 axes. The comparison 
of the test results obtained in the offline simulations on the 
performance of EKF and UAV is given in Table 1. 
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Table 1. Offline simulation results of EKF and UAV 
location estimation 

Sim. 
No 

𝑬(𝒙ෝ − 𝒙) σ (𝒙ෝ − 𝒙) 𝑬(𝒚ෝ − 𝒚) σ (𝒚ෝ − 𝒚) E(𝒅෩) σ(𝒅෩) 

1 8,46688 40,28857 -9,93420 35,53813 34,85081 45,54685 

2 7,01288 39,70097 -10,68822 34,64707 33,39099 45,28227 

3 8,73760 41,42601 -10,79378 35,93120 35,21182 47,01834 

4 8,14672 54,11383 -11,23677 37,35274 35,01597 61,30886 

5 6,99696 43,60014 -11,04640 36,58327 35,39591 49,30191 

6 7,42344 39,55290 -9,90417 35,34048 34,92325 44,28903 

7 7,87600 48,23384 -11,00681 36,84619 36,06344 54,00581 

8 5,82736 40,61038 -11,12693 33,73748 34,48783 44,48786 

9 7,39352 39,99494 -11,21311 35,21293 35,27438 44,67197 

10 6,91040 45,73955 -11,25643 37,16775 36,00672 51,53078 

11 6,87262 36,44549 -10,88061 35,61719 33,73425 43,51753 

12 6,85702 40,02493 -11,24523 37,60760 35,75978 47,38051 

13 7,71848 44,27867 -11,20494 37,87788 36,43418 51,90109 

14 5,71081 37,28033 -11,32722 34,68213 34,84237 42,75408 

15 7,24565 36,71536 -11,41495 36,19890 35,63700 42,93101 

Ave-
rage 

7,27976 41,86706 -10,95198 36,02273 35,13525 47,72853 

The offline simulation results are evaluated by considering 
the mean error of the state estimates, 𝐸(𝑥ො − 𝑥) and 𝐸(𝑦ො − 𝑦), 
the standard deviations of the errors (σ), and the mean 
difference between the estimated position and the actual GPS 
position. Two important measures of the location estimation 
accuracy are the mean value of the distance between the 
estimated position and the actual position, E(𝑑ሚ), and the 
standard deviation of this distance, σ(𝑑ሚ). Here 𝑑ሚ is calculated 
by the equation in Equation (8). 

𝑑ሚ = ඥ(𝑥ො − 𝑥)ଶ + (𝑦ො − 𝑦)ଶ  (8) 

These values are used to evaluate the accuracy of the 
location estimation algorithms; a lower value indicates higher 
accuracy. 

SCENARIO 3: REAL-WORLD TESTS 
In Scenario 3, the performance of the UAV in tracking 
waypoints and its maneuverability in the absence of GPS 
signals in the two regions were evaluated in a real-world 
setting. 

After the simulation results were successfully validated, the 
UAV system was subjected to comprehensive real-world 
testing to evaluate its practical capabilities under actual 
scenarios. These tests cover the full spectrum of basic 
navigation in uncluttered areas for more intricate maneuvers. 
The tests involved navigating the UAV through pre-designed 
routes, with the multiple-sensor data fusion system combining 
information from the IMU and other sensors to determine the 
UAV’s position and orientation. Real-world tests are crucial for 
proving the system's capacity in GPS-disabled environments, 
where traditional navigators would have difficulty. 

The experimental data stored in the UAV trial were used to 
evaluate system capabilities. By applying the scenario, the 
UAV was assigned a mission to track three waypoints. During 
the operation, the GPS raw measurements were set to be 
blocked for two short time periods, and the updated trajectory 
result is shown in Fig. 16, where the two periods when the GPS 
signal was lost are highlighted by black rectangles. The results 

indicate that the system recovers trajectories when a GPS signal 
is unavailable and provides a continuous estimation of the 
position. 
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Figure 16. Trajectory fusion results with two blockages of 
GPS signal. 

The findings from both the simulation and experimental 
validation underscore the potential of MSDF techniques to 
overcome the limitations of GPS-dependent navigation for 
UAVs. By leveraging the complementary strengths of different 
sensors, UAVs can achieve improved operational robustness 
and versatility, paving the way for deployment in a wide range 
of applications. 

V. CONCLUSION 
In this study, a system has been developed to enable an AUAV 
to fly along a predetermined route while reliably detecting both 
fixed and moving obstacles in challenging environments where 
GPS signals are weak or unavailable, and to perform effective 
avoidance maneuvers to prevent potential collisions, thereby 
enhancing situational awareness and operational efficiency. To 
evaluate the proposed systems, the functionality of the UAV 
was studied in a real environment The investigation included a 
series of tests designed to assess the capabilities of UAV for a 
variety of key parameters, including waypoint tracking, 
obstacle avoidance, immunity to signal interference, and 
general maneuverability. Tests were conducted based on three 
different scenarios, each carefully designed to reflect the 
complexity of the real-world environment depicted on the 
corresponding map. This comprehensive testing approach 
helps to verify UAV’s operational effectiveness and 
adaptability of UAVs to unforeseen challenges, highlighting 
their potential applicability in diverse and complex operational 
environments. The findings from both the simulation and 
experimental validation underscore the potential of MSDF 
techniques to overcome the limitations of GPS-dependent 
navigation for UAVs. The results also indicate that by 
leveraging the complementary strengths of different sensors, 
UAVs can achieve improved operational robustness and 
versatility, thereby paving the way for deployment in a wide 
range of applications. 

The increasing use of UAVs presents significant ethical and 
legal challenges. Autonomous operation raises privacy 
concerns due to the potential for unauthorized surveillance. 
Determining accountability in accidents or misuse becomes 
complicated without GPS data, relying instead on less 
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established sensor fusion. Proactive engagement with these 
issues is crucial for responsible technological development. 

Further research should explore the integration of artificial 
intelligence for intelligent decision-making and predictive 
navigation, which presents promising avenues for 
improvement. Additionally, investigating novel sensor 
modalities, such as bio-inspired sensors or advanced vision 
systems, could further enhance UAV autonomy and resilience 
in GPS-denied environments. 
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