

VOLUME 23(4), 2024 663

Date of publication DEC-31, 2024, date of current version AUG-16, 2024.
www.computingonline.net / computing@computingonline.net

Print ISSN 1727-6209
Online ISSN 2312-5381
DOI 10.47839/ijc.23.4.3765

Detection of Windows Portable Executable
Malware using NLP Techniques

and Proxy-server
MAKSYM MISHCHENKO, MARIIA DOROSH

Department of Information Technology and Software Engineering, Chernihiv Polytechnic National University,
Chernihiv, Ukraine

(e-mail: max.mishchenko771@gmail.com, mariyaya5536@gmail.com)

Corresponding author: Maksym Mishchenko (e-mail: max.mishchenko771@gmail.com)

 ABSTRACT This paper aims to investigate the effectiveness of virus detection in Windows Portable Executable
file using NLP, machine learning and a computer network proxy. Selected classification performance metrics are
the accuracy and F1-score of the virus type classification in a specific file and the average time spent on analyzing
the file. To classify viruses, a static analysis of the Optional Header Directories section in PE file is conducted.
The list of imported libraries is vectorized using the word2vec model and submitted for classification by the
Random Forest Classifier, Support Vector Machine and Multilayer Perceptron models. As a result, the best training
mean accuracy of 94% and F1 score of 0.94 for the Random Forest Classifier model is achieved. To determine the
effectiveness of virus file detection, a local area network (LAN) of three computers and a proxy server is
configured. The conducted experiments on the detection of malicious files with the use of a proxy shows request
time of 2.3 seconds for Support Vector Machine, 2.28 seconds for Multilayer Perceptron and 2.6 seconds for
Random Forest Classifier. For reducing delay, ssdeep based cache is introduced, which reduces delay to 2.1
seconds for Random Forest Classifier and 2.15 seconds delay for Multilayer Perceptron. The proxy classification
F1 score obtained on the evaluation proxy data confirmed and outperformed the F1 score obtained on the training
dataset. This gives grounds for asserting the feasibility of using a proxy server and NLP techniques to detect
Windows Portable Executable malware.

 KEYWORDS cybersecurity; NLP; word2vec; proxy-server; machine learning; Windows Portable Executable;
malware; ssdeep; LAN.

I. INTRODUCTION
N today's world, most businesses use computer networks for
their operations. The main advantages of corporate networks

are the collection of corporate information in one place,
ensuring the functioning of web servers, mail servers, and DNS
servers, convenient search and communication between
employees and, as a result, faster performance of corporate
tasks by employees. The main threat to a corporate computer
network is the leakage of confidential data, virus infection or
hacking by third parties. For example, in the report on the
security results of Cisco [1], it was indicated that 51.5% of the
respondents' companies faced cyber-attacks that led to the
leakage of network data; 51.1% also encountered a system or
network outage; 46.7% were also victims of ransomware
viruses. From the report, it can be seen that a certain percentage
of companies faced several cyber attacks at the same time,
which led to such consequences as interruption of IT

communications (62.6%), disruption of supply chains (43%)
and disruption of internal operations (41.4%). According to a
report from the VirusTotal website [30], as of 2023, the most
popular sources of attacks include email attachments, files such
as excel, word, pdf, iso, exe, etc. Stable during 2020 - 2023,
Windows Portable Executable file format, which can be EXE
and DLL types, is common malware source.

A firewall or a proxy server is usually used to protect
corporate computer networks from malware and other types of
attacks. Firewall allows to prevent cyber threats thanks to the
filtering of unwanted traffic based on set rules, analysis of
anomalies, in-depth packet inspection, and more. Modern
firewalls - Next Generation Firewall, are also integrated with
the intrusion prevention system (IPS). Despite the advantages,
the main disadvantage of firewalls is the high cost of purchase
and maintenance.

I

 Maksym Mishchenko et al. / International Journal of Computing, 23(4) 2024, 663-672

664 VOLUME 23(4), 2024

An alternative to a firewall can be a proxy server, the main
function of which is to redirect and analyze traffic from the
client or organization to the server. Unlike a firewall, a proxy
server does not have built-in features to protect against cyber
threats, so the implementation of protection methods is left to
a cyber security specialist. However, a proxy server can have
advantages such as the ability to integrate with various custom
traffic checks, client address masking, and traffic caching.

Thus, the motivation for conducting this study is to validate
the possibility of using a proxy server to protect the computer
network from malicious software - malware of the Windows
Portable Executable type, and to determine the effectiveness of
this method.

II. RELATED WORKS
Scanning network traffic, in particular files, entering corporate
computer networks, is a necessary factor in ensuring the
security of internal data and preventing the failure of network
components. Proxy servers or firewalls with a given set of rules
or signatures are usually used to filter files. A relatively new
method of detecting and neutralizing malicious files is to detect
the threat using machine learning methods before it enters the
corporate network. Such approaches are effective in combating
zero-day attacks, but are resource intensive.

In our work, we analyzed the conducted studies in which
the proxy server is used to analyze network traffic and detect
threats in it. For example, Mamoru M. [2] developed a method
for detecting malicious traffic based on lexical analysis of
campus network proxy server logs and MTA and D3M datasets
[3], which are about 1Gb pcap files with different types of
threats, such as Blackhole Exploit Kit, Elenore, and Mpack. As
a result, the best F-measure of 0.96 was obtained and it was
concluded that the developed method can detect new malicious
traffic in proxy server logs.

Another example of using a proxy server is the work of
Alexander Moshchuk, Tanya Bragin et al. [4], that presented a
methodology for detecting malicious Web content before it
reaches the user's Web browser. Detection of malicious web
content was carried out by interception of web content by a
proxy server and execution in a dedicated virtual machine. If
the download resulted in unauthorized additional actions, the
web content was considered threatening. As a result, the
authors managed to develop and optimize a proxy prototype for
detecting malicious web content, which on average adds 600
ms of delay per request, which is insignificant, considering the
average request time.

The main difficulty in implementing network traffic
analysis is the fact that the vast majority of traffic is encrypted
using SSL or TLS protocols, which makes it impossible to read
its content without access to the encryption keys. To analyze
and modify encrypted network traffic, cyber analysts can use a
MITM (Men In The Middle) approach, in which the cyber
analyst creates a new SSL session for the client, and the
network clients are issued SSL certificates to be used by them
for https connections.

At the same time, a proxy can be used by attackers,
including for MITM attacks and competitive attacks. For
example, in their work [5], Carlos Novo and Ricardo Morla
investigated and modeled adversarial attacks in which attackers
create additional delay in Command and Control (C2) traffic
by adding or delaying TCP packets on a proxy server to avoid
detection a C2 attack by IDS systems. In our work, the MITM

approach is used to scan files at the entrance to the computer
network, in order to detect and block malicious software.

As a method of detecting malicious software files at the
entrance to the network, static analysis of malware is
conducted. Static analysis consists of analyzing a file without
running it and monitoring the execution results. A set of
imported libraries in the file is analyzed. Thus, the task of
analysis is reduced to solving the problem of supervised text
classification. To solve this problem, the existing techniques of
natural language processing (NLP) are analyzed.

In our previous work, we used the TF-IDF statistic in
combination with the n-gram method to vectorize disassembly
opcodes in ELF files [7]. The vectorized opcodes were fed as
input to different models for classification, resulting in a best
performance of 84% accuracy and F1-score 0.84 for the
stochastic gradient descent support vector model.

Among the existing architectures of neural networks for the
classification of text data, the Encoder-Decoder architecture
and Transformers can be distinguished. The Encoder-Decoder
architecture was created on the basis of the Recurrent Neural
Network architecture and is used to perform machine
translation [8], sentiment analysis of text [9] and image to
textual description [10]. The transformers architecture was
proposed in 2017 by Ashish Vaswani, Noam Shazeer et al. and
showed better results compared to encoder-decoder models:
less time for training and more parallelization in solving the
problem of machine translation of text [11]. The architecture of
transformers has also gained popularity in research aimed at
analyzing and classifying malicious software, especially static
file analysis. For example, Khan S. and Nauman M in their
study [24] created a model based on the transformers
architecture, which was able to achieve an accuracy of 90% to
97% in the classification of various types of malicious
Windows PE files. In their work authors used transformers to
process PE file opcodes, in our work on other hand only import
table section from Optional Headers of PE file is being used.

The Bidirectional Encoder Representations from
Transformers (BERT) model was built on the basis of the
transformers architecture. BERT receives a sequence of digital
representations of tokens or words and generates a
corresponding sequence of semantically encoded vectors
representing the text. The model uses the Masked language
model (MLM), which consists in predicting randomly masked
words based on the context of the document. BERT can be used
not only for text vectorization, but also for solving NLP tasks
in general, provided that suitable final neural layers are added
to the model. A special feature of BERT is that it can accept
texts with a length of no more than 512 characters [12].

As an improvement of the model, RoBERTa [13] and
ELECTRA [14] were developed. In the RoBERTa model, a
modified MLM was presented, consisting in a dynamic change
of the masking pattern applied to the input text. In the
ELECTRA model, MLM was modified so that the words were
not hidden, but replaced by synthetically generated
alternatives. Thus, the task of the model is not to predict
omitted words, but substituted words.

A significant breakthrough was the construction of the
Generative Pre-trained Transformer (GPT) model [25], whose
authors proposed an approach to training on a large volume of
unlabeled data, in which fine-tuning of the model is performed
separately for each task. This made it possible to obtain an
effective transfer of knowledge without significant
restructuring of the model.

Author et al. / International Journal of Computing, 23(4) 2024, 1-2

VOLUME 23(4), 2024 665

In his study [15] Jan Sawicki et al. made a comparative
review of many modern NLP techniques. They mentioned that
statistical approaches, such as bag of words, require a carefully
cleaned text to be entered. More modern word embedding
techniques, on the other hand, can work with raw original text.
One of the word embedding techniques is the word2vec
technique.

The word2vec technique was proposed by Tomas Mikolov
et al. in [16] and [17] as the latest architecture for word
vectorization as an alternative to the already existing Neural
Net Language Models and n-gram models. Within word2vec,
2 architectures were proposed: continuous bag of words model
(CBOW) and continuous skip-gram model. The results of the
comparison of the created models showed an advantage in
accuracy over the already existing Neural Network Language
Models (NNLM) and Recurrent Neural Network Language
Models (RNNLM).

The essence of the CBOW method is to use the context
surrounding the word to predict the word in the middle of the
context. The skip-gram model, on the other hand, predicts
surrounding words based on an existing word. Given a
sequence of words, the goal of the Skip-gram model is to
maximize the mean log-likelihood of surrounding words. So
the cost function goal will be minimizing a negative log-
likelihood, which is the same, as maximizing the positive log-
likelihood:

0
1 , 0

1
log (|)

T

t j t
t c j c j

J p w w
T

 , (1)

where J0 – the cost function for skip-gram model, T – the corpus
size, c - the size of the training context (the larger the context,
the more instances for training, leading to increased accuracy),
wt – the center word, log p(wt+j|wt) – log likelihood of occurring
surrounding word wt+j given center word wt.

As a result of analyzing existing methods of classification
malware WPE files, it can be concluded, that proposed method
for detection of Windows Portable Executable malware using
NLP techniques differs from existing ones by using:

 “Import Table” data directories from “Optional
headers” section of WPE file instead of opcodes;

 word2vec models for vectorization of “Import Table” of
WPE file, instead of transformer models or TF-IDF
methods;

 proxy-server for malware detection.
As presented in Section 4 of this paper, our method shows

improvement in F1 score and time of WPE malware
classification over some of the existing methods.

III. MATERIAL AND METHODS
A. PE FILE STATIC ANALYSIS APPROACH
In this work, attention is focused on the classification of PE
files - the most common format of executable files for systems
on the Windows operating system. PE files consist of several
structures, the main ones are MS-DOS stub, PE signature,
COFF file header, Optional header and Section header [6]. A
typical structure of a PE file is shown in Figure 1. Optional
Header Directories, a structure that stores imported and
exported libraries and functions used to execute a PE file, were
chosen for the static analysis of the malware. Import Table will
be used for this work.

Figure 1. Illustrative PE file structure

Considering the fact that this section may be missing in
some files, the system will mark such files as potentially
dangerous during operation. Such files will not be involved in
training process. In the training, test and validation dataset, all
files have Import Table section. In the input set of files, a
sequence of functions imported by PE files is taken for
analysis. For each function, a word of the form is generated:

i ijw library function , (2)

where ilibrary - library, that is imported in Import table of PE

file, ijfunction - function, that belongs to ilibrary and is used

in PE file. In Figure 2, an example of parsed and processed
Import Table section for PE file is presented that is marked as
Trojan.

Figure 2. Truncated text with parsed Optional Header
Directories of Trojan PE file

Thus, the input dataset is a set of text documents - a
sequence of imported libraries for each file. Each of these
documents should be classified by the type of virus the file
carries, or not a virus if the file is safe. The NLP techniques,
described in the second section of this paper, are analyzed to
vectorize the input set of documents. The TF-IDF and n-gram
statistics had already been used in our previous research, so it
was decided to use another NLP model to compare the results
and find a better solution. As a result, it was decided to use the
word2vec technique based on the skip-gram model for
vectorization of the parsed PE files. The word2vec model uses
shallow neural networks, which speeds up model training and
requires fewer resources to perform real-time file
classification. In our case, when resources for detecting
malicious files are limited, this is one of the key factors for
choosing a model.

 Maksym Mishchenko et al. / International Journal of Computing, 23(4) 2024, 663-672

666 VOLUME 23(4), 2024

B. CLASSIFICATION MODEL SELECTION
To perform file classification, vectorized text is passed as an
input to machine learning models. Support Vector Machine,
Random Forest and Multilayer Perceptron models are
compared to obtain the best result.

The Support Vector Machine method consists in
constructing a hyperplane to separate points of different classes
in a multidimensional space. The method can be divided into 2
approaches: linear separation and nonlinear separation. With
linear separation, the input data does not undergo any
transformations – the classes can be immediately separated by
constructing a hyperplane. A non-linear approach that uses
kernel functions to construct a class partition consists in
transforming the input data into a space with a higher
dimension, which makes it easier to distinguish similar data
that belong to different classes. In our work, we use the most
popular Radial Basis Function (RBF) kernel function for
constructing hyperplanes:

2

(,) x zk x z e ,
(3)

where 0 - a parameter that controls the influence of each

instance from the sample on the decision boundary, ,x z -
sample instances [19]. The greater the Euclidean distance
between sample instances, the closer the function value is to
zero. This means that such instances most likely belong to
different classes.

The Random Forest algorithm is a machine learning method
that consists in creating a set of decision trees during training.
In the case of classification, the element class is determined by
the most frequent result of training the decision tree. Random
Forest is often used to classify malicious files using the static
textual information of the file. For example, Trung Kien Tran
and Hiroshi Sato in their work [18], used a vectorized
command API set as input data for a Random Forest model,
obtaining the best accuracy of 98% for a 2-class dataset and
95% for a 4-class dataset. In our work, a model with the
following hyperparameters is used:

 number_of_trees = 100 – amount of trees in the forest;
 criterion = ‘Gini’ – Gini Impurity criterion, which is

function that measures amount of impurity in the split.
The closer value to 0, means less impurity and more
quality of the split:

2

1

1 ()
n

i

Gini p i

 , (4)

where p(i) probability of samples in node, belonging to class i;
n – amount of classes.

The Multilayer Perceptron algorithm is a feed forward
neural network with various possible activation functions. In
our work, the ReLU activation function is used:

() (0,)f x max x , (5)

where x- input signal. In our work, a multilayer perceptron
model with first hidden layer of 100 neurons, second hidden
layer of 50 neurons, and third hidden layer with 25 neurons is
built.

As an optimization method for Multilayer Perceptron, the
Adam algorithm [20] is used, which consists in calculating the

learning rate for each weight of the neural network and
adjusting it during training.

To evaluate and compare the classification results of the
models, the Receiver Operating Characteristics curve (ROC),
that is, a graph showing the efficiency of the classification
model at all classification thresholds is used. The curve shows
the ratio of True Positive to False Positive - the closer this value
is to one, the better the model performs.

C. DATASET CREATION
Much attention was paid to the selection and processing of

the dataset for training and validation of the PE file
classification model. Datasets such as Mal-API-2019 [21],
BODMAS [22] and VirusShare [26] were analyzed. Among the
analyzed datasets, the VirusShare dataset was selected, which
represents static information about malicious files obtained
from the VirusShare website. Static information about
Windows PE files was generated using the manalyze program
[27].

The dataset includes 3 types of malicious EXE and DLL
files and a separate type of benign files:

- Trojans - viruses that are disguised as bening
software. Different types of ransomware and spyware.
According to Microsoft worldwide top threat
statistics, on May 2024, 2 out of 5 top threats were
types of Trojan. [23].

- Adware – viruses that are installed in obscured
manner and replace search engine results, add
advertisement banners to the desktop of OS, etc. Also
known as PUA – potentially unwanted application.

- Worms - viruses that infect a system and spread to
another computer through a network. Worms can
encrypt or remove files, sending spam, or can start
DDoS attacks, etc.

- Benign - not a virus program. It is represented by
4328 examples, that are fetched from “Windows”
directory and “Program Files” directory on clean
Windows 7 and Windows 10 setups.

The amount of types of malicious and safe software that are
used to train machine learning models is shown in Table 1. The
percentage distribution of types is shown in Figure 3. Data was
splitted - for training we used 80% of dataset, for validation –
20% of dataset.

Table 1. Amount of each virus type in input dataset.

Virus type Amount in the dataset
Trojan 4628
Adware 4031
Worm 3875
Benign (not a virus) 4328

Figure 3. Pie chart with percentage of each type of PE files
presented in dataset

27%

23%24%

26%

PE file type

Trojan

Worm

Adware

Bening

Author et al. / International Journal of Computing, 23(4) 2024, 1-2

VOLUME 23(4), 2024 667

D. PROXY SETUP
As an environment for deployment and retraining machine
learning models, a server application was created in Python,
which was deployed on the same server with a proxy server.
The application is launched before the start of the proxy server,
trains the model on the training data, and serializes it in the pkl
format for further use in the proxy server. This has an
advantage over using classic ML-OPS environments, where
additional latency is added to model training and inference
process due to the need to make API requests or make other
network connections.

An opaque proxy server for malware detection was written
in Python using the mitmproxy library [28]. The proxy server
is deployed on a separate machine with Linux OS, intercepts
traffic entering the network, extracts and sends PE files for
classification to the trained model. Parsing of the import table
PE file is performed on the side of the proxy server using the
pefile library [29].

Receiving the prediction result from the model, the proxy
server writes the malware type in the headers of the response to
the intercepted request and blocks the file in case the file turns
out to be malicious. Requests and responses that go from the
network and to the network through the proxy server and do not
contain PE files are not checked.

All devices in the network are connected to the proxy
server. To do this, the IP address of the machine, running the
proxy server, and its port are specified in the Internet options
of each of the devices on the network as proxy server settings.
A trusted SSL certificate signed by the mitmproxy library is
installed on each device. This makes it possible to decrypt and
analyze the content of protected network traffic on the proxy
server. The experimental environment designed for the study is
depicted in Figure 4.

Figure 4 – Diagram of created experimental environment for
detection and classification of Windows PE malware in

proxy-server

IV. RESULTS
A. CLASSIFICATION MODEL EVALUATION
We used following metrics for evaluation of classification
performance of PE files:

1. Precision (formula 6) – measures the part of the real
true positives among all positives classified.

2. Recall (formula 7) – measures the part of true
positives among false negatives and true positives.

3. F1-score (formula 8) – harmonic mean of precision
and recall.

4. Accuracy (formula 9) – mean accuracy for all
predictions made by a model.

()
Precision(class=a)

() ()

TP class a

TP class a FP class a

, (6)

where TP – true positive, FN – false negative.

()
Recall(class=a)=

() ()

TP class a

TP class a FN class a

, (7)

where TP – true positive, FN – false negative.

2×Precision(class=a)×Recall(class=a)
1()

Precision(class=a)+Recall(class=a)
F class a , (8)

where Precision (class=a) – precision for class a,
Recall(class=a) – recall for class a.

TP TN
Accuracy

TP TN FP FN

, (9)

where TP – true positives, TN – true negatives, FP – false
positives, FN – false negatives.

To evaluate overall performance across all classes, macro
average and weighted average values for mentioned metrics are
calculated. Macro average – the average value of the metric
value for each class is calculated for precision, recall and F1-
score. Weighted average - the average value of the metric value
for each class multiplied by proportion of true instances for the
class is computed for precision, recall and F1-score.

A Receiver Operating Curve (ROC) is constructed to
evaluate the learning quality of the models. The curve builds
the dependence of two parameters: True positive rate (TPR)
and False positive rate (FPR).

TP

TPR
TP FN

, (10)

where TP - true positive, FN - false negative.

FP
FPR

FP TN

, (11)

where FP - false positive, TN - true negative.

To adapt the curve for the case of non-binary classification,
we use the OVR technique (One-vs-Rest), in which a curve is
constructed for each class, taking into account that a correctly
classified specific class is positive, and all other classes are
negative. Also, additional curves are plotted: micro ROC curve,
for which TPR and FPR are calculated using the sum of all TP,
FP, TN, FN for all classes; macro ROC curve, for which TPR
and FPR are calculated separately for each of the classes and
divided by the number of classes.

To avoid overfitting, the sample is divided into training and
validation in the proportion of 80% to 20%. For each estimator,
cross-validation is performed on different hyperparameter
values and the best performing hyperparameters are selected.

Cross-validation tuning of regularization parameter C on 5
train-test splits is conducted for Support Vector Machine,
which shows the best mean cv test score of 0.926 for C=600.

 Maksym Mishchenko et al. / International Journal of Computing, 23(4) 2024, 663-672

668 VOLUME 23(4), 2024

Results of tuning are presented in Table 2. As a result, the
following hyperparameters are chosen for the Support Vector
Machine model: C=600, kernel='rbf' - radial basis function.

Table 2. Cross validation tuning of regularization
parameter C for Support Vector Machine model

Value of
parameter C

Mean cv test score
(num_splits=5)

Mean fit time
(seconds)

Mean score
time
(seconds)

0.1 0.838 77.66 4.7
0.5 0.873 31.71 2.12
1 0.876 26.83 2.07
4 0.903 22.14 1.56
10 0.912 16.07 1.21
50 0.92 15.72 1.09
100 0.922 17.28 1.14
500 0.925 24.56 1.18
600 0.926 30.39 1.29
1000 0.925 28.07 1.13
2000 0.924 31.22 1.17

The results of the SVM model evaluation are shown in

Table 3. From the table, we can see that the model classified
adware the most accurately – 0.97 precision, 0.9 F1-score. The
trojan was classified the least accurately – 0.87 precision, 0.88
F1-score. Macro precision was 0.93, weighted precision was
also 0.93, macro score and weighted F1-score were both 0.93.
ROC curves, plotted for Support Vector Machine, which are
displayed in Figure 5, shows high area under curve (AUC) –
from 0.97 for Benign ROC and up to 1.00 for Adware ROC. It
means that SVM model is capable of correctly classifying each
class.

Table 3. Resulted metrics of classification malware and
benign PE files using Support Vector Machine classifier.

 Precision Recall F1-score
adware 0.97 0.97 0.97
benign 0.96 0.98 0.97
trojan 0.87 0.89 0.88
worm 0.92 0.87 0.90
Macro average 0.93 0.93 0.93
Weighted average 0.93 0.93 0.93
Mean accuracy, % 93
Average WPE file
classification time, s

0.03

Figure 5. ROC curves for Support vector machine
classification of PE files

Next, a classifier based on the Random Forest algorithm
was created and validated. The results of model training are
presented in Table 4.

Table 4. Resulted metrics of classification malware and
benign PE files using Random Forest classifier.

 Precision Recall F1-score
adware 0.99 0.97 0.98
benign 0.96 0.98 0.97
trojan 0.88 0.90 0.89
worm 0.92 0.89 0.90
Macro average 0.94 0.94 0.94
Weighted average 0.94 0.94 0.94
Mean accuracy, % 94
Average WPE file
classification time, s

0.04

The Random Forest algorithm showed average accuracy -

94%, macro F1-score - 0.94, weighted F1-score - 0.94. Adware
threats were classified best – 0.99 precision, 0.97 recall. ROC
curves for the Random Forest Classifier algorithm are shown
in Figure 6. After analyzing the ROC curves for the Random
Forest algorithm, we can conclude that the ability of the model
to correctly classify PE files is confirmed by the AUC value for
micro ROC – 0.99, macro ROC – 0.99 and for the ROC of each
individual class.

Figure 6. ROC curves for Random Forest classification of PE
files

The third analyzed model is the Multi Layer Perceptron,
which uses the ReLU activation function and the adam
optimizer of the best model weights. The results of model
training are presented in Table 5.

Table 5. Resulted metrics of classification malware and
benign PE files using Multilayer Perceptron classifier.

 Precision Recall F1-score
adware 0.99 0.96 0.97
benign 0.96 0.98 0.97
trojan 0.83 0.86 0.86
worm 0.91 0.85 0.88
Macro average 0.92 0.92 0.92
Weighted average 0.92 0.92 0.92
Mean accuracy, % 92
Average WPE file
classification time, s

0.1

As we can see from Table 5, the Multilayer Perceptron

model did the best job of classifying adware files - 99%
accuracy, 96% recall, F1 score 0.97, the average accuracy of
the model is 92%. Macro and weighted average of F1-score for
the model are both 0.92. ROC curves for the Multilayer
Perceptron model are shown in Figure 7.

Author et al. / International Journal of Computing, 23(4) 2024, 1-2

VOLUME 23(4), 2024 669

Figure 7. ROC curves for Multilayer Perceptron classification
of PE files

Each of the models showed lower F1-score for Trojan-type
viruses than for other types of viruses. This may be due to the
fact that the Trojan family includes many different sub-types of
threats – such as ransomware, spyware, etc. Accordingly,
malicious PE Trojan files may have more differences than
malicious files of other types, making it more difficult for the
models to draw generalization conclusions.

The comparison of the proposed models with existing
models for classification WPE files, suggested in works [31-
33], are displayed in Table 6.

We compared our results with the works that aim to classify
WPE malware using different approaches and data. In work of
Lad Sumit et. al. [31], DNN model on the EMBER 2018 dataset
with 5 types of features was used: general file information
(virtual size, number of imported and exported functions, etc.),
header information, imported functions, exported functions,
section information. Authors achieved 94.09% of accuracy and
88.66 F1-score. Ye et. al. [32] used Chi-square to classify
malicious WPE files by their API calls sequences and achieved
67.5% accuracy and 0.09 seconds of inference time. Koçak,
Aynur et al. [33] used IBk algorithms to detect WPE malware
by analyzing WPE activity network packets and achieved
accuracy of 90.47%, F1-score of 90.4 and average inference
time of 0.05 seconds per sample. It can be concluded that our
word2vec and Random Forest WPE classification method
shows improvements over existing analyzed methods in
accuracy, F1-score and inference time.

Table 6. Comparison of created WPE classification model
performance with existing models

Method Input Accuracy F1-
score

Inference
time, seconds

Lad, Sumit &
Adamuthe,
Amol [31]
(DNN)

EMBER
2018
dataset

94.09 88.66 -

Ye et al. [32]
(Chi-square)

API
calls

67.5 - 0.09

Koçak, Aynur et
al. [33] (IBk
algorithm)

WPE
activity
network
packets

90.47 90.4 0.05

Our model
(word2vec and
Random forest
classifier)

WPE
import
table

94 94 0.04

B. PROXY PERFORMANCE EVALUATION
To evaluate the effectiveness of detection of malicious files
using a proxy server, an environment was created simulating
the operation of a small network and the proxy server located
at the entrance to this network. For this purpose, 3 machines
running on Windows 10 operating system within one local area
network (LAN) were started. In the same LAN we also started
one machine running on Linux Ubuntu, on which the proxy
server was running. Support Vector Machine, Random Forest
Classifier, and Multilayer Perceptron models were trained and
deployed on the proxy machine for malware classification.

The dataset for evaluating the effectiveness of the
developed environment is 1646 files, 3 batches of 550, 550 and
546 files, respectively, the average file size is about 1 MB, each
file is marked with the type of virus or the absence of a virus.
Virus types are distributed not evenly: for the first batch Trojan
– 27, Worm – 111, Adware – 100, Benign – 312; for the second
batch: Trojan – 42, Worm – 119, Adware – 101, Benign 288;
for the third batch: Trojan – 31, Worm – 130, Adware – 99,
Benign – 286. Benign files are represented with the largest
amount of samples in each batch, which is close to real life. All
three batches are located in the S3 bucket. Each of the machines
in the experiment made a request to its batch. Internet speed
was 100 Mbit/s. On each machine, the address and port of the
proxy server were configured and SSL certificates were
installed, allowing the proxy server to decrypt HTTPS requests.
Scripts were simultaneously launched on the machines that
iteratively download the file from the S3 bucket, the request
was redirected through the proxy server, the proxy server made
inference with the trained model to detect the virus type and
returned the predicted virus type in the response headers. All
performance metrics were calculated as an arithmetic average
for all requests from all machines. To determine the delay time
added by the virus classification module, requests were made
without redirection to the proxy server and inference with the
ML model - we received an arithmetic average time per request
of 1.4 seconds.

For improving request time with proxy server we decided
to adapt cache mechanism, using ssdeep fuzzy hashing
algorithm - context-piecewise triggered hashing. This
algorithm allows us to compare and measure similarity in
percent of two files. In our case, unvectorized, sanitized strings
with imported libraries of each input file from test batch are
compared before making classification. If we find file in cache
with the similarity more or equal than defined threshold, we
will output predicted type from cache and set cache flag in
response to 1. Otherwise we make classification with model,
save ssdeep hash with the predicted type to cache and output
predicted type, setting cache flag to 0. We have conducted
experiments with 85%, 90% and 95% similarity thresholds to
investigate the impact on resulted F1 score and request delay.
Results of conducted experiments are shown in Table 7. A plot
with the experiment results is presented in Figure 8.

 Maksym Mishchenko et al. / International Journal of Computing, 23(4) 2024, 663-672

670 VOLUME 23(4), 2024

Table 7. Results of virus classification in proxy server

 Random Forest
Classifier

Support Vector
Machine

Multilayer Perceptron

Average accuracy, % 98 97 98
F1-score 0.98 0.97 0.98

Average request time with proxy, s 2.6 2.3 2.28
Request delay, s 1.2 0.9 0.88

Average request time with proxy and ssdeep
cache (85% similarity), s

2.4 2.3 2.11

F1-score (ssdeep cache, 85% similarity) 0.98 0.97 0.98
Cache hits (ssdeep cache, 85% similarity), % 39%

Request delay (ssdeep cache, 85% similarity), s 1.2 0.9 0.71

Average request time with proxy and ssdeep
cache (90% similarity), s

2.3 2.3 2.21

F1-score with ssdeep cache (90% similarity) 0.98 0.97 0.98

Cache hits (ssdeep cache, 90% similarity), % 37%
Request delay (ssdeep cache, 90% similarity), s 0.9 0.9 0.81

Average request time with proxy and ssdeep
cache (95% similarity), s

2.1 2.3 2.15

F1-score with ssdeep cache (95% similarity) 0.98 0.97 0.98
Cache hits (ssdeep cache, 95% similarity), % 35%

Request delay (ssdeep cache, 95% similarity), s 0.7 0.9 0.75

Average file size, Mb 1

Average request time without proxy, s 1.4

Figure 8. Results of proxy PE malware detection with and without ssdeep cache

As we can see, the best accuracy and F1-score were

obtained for Random Forest Classifier and Multilayer
Perceptron. Average time of request for Random Forest
Classifier is 2.6 seconds, for Multilayer Perceptron – 2.28
seconds, which is not much bigger than average time of request
without proxy-server – 1.4 seconds. To summarize, average
time delay for classification with Random Forest is 2.6 seconds

– 1.2 seconds slower compared to original time of request; for
Support Vector Machine is 2.3 seconds – 0.9 seconds slower
compared to original time of request; for Multilayer Perceptron
is 2.28 seconds – 0.88 seconds slower compared to original
time of request.

Introducing of ssdeep cache mechanism insignificantly
improved request time delay. With the threshold of 85% ssdeep

0,00

0,50

1,00

1,50

2,00

2,50

3,00

ssdeep cache 85%
similarity

ssdeep cache 90%
similarity

ssdeep cache 95%
similarity

Without cache
0,964

0,966

0,968

0,97

0,972

0,974

0,976

0,978

0,98

0,982

R
E

Q
U

E
S

T
 T

IM
E

, S

F1
-S

CO
RE

Results of proxy PE malware detection with and without ssdeep cache

F1, Random Forest Classifier F1, Support vector Machine

F1, Multilayer Perceptron Request time Random Forest Classifier, s

Request time Support Vector Machine, s Request time Multilayer Perceptron, s

Request time without proxy, s

Author et al. / International Journal of Computing, 23(4) 2024, 1-2

VOLUME 23(4), 2024 671

similarity, we achieved 2.4 seconds request time for Random
Forest Classifier compared to 2.6 seconds request time without
caching mechanism. Caching mechanism does not affect F1-
scores of predictions.

V. CONCLUSIONS
This study shows that a proxy server and machine learning
models can be used to detect and neutralize malicious PE files
before they enter a small local area network. The approach with
vectorization of the import table section in Windows PE files,
using the word2vec NLP model, and subsequent classification
of files in the dataset, showed a minimum classification
accuracy of 92% and F1-score of 0.92 for the support vector
model, 92% accuracy and 0.92 F1-score for the multilayer
perceptron, 94% accuracy and 0.94 F1-score for the Random
Forest. This proves the feasibility of using the chosen approach
to detect malicious PE files. Measurements of the effectiveness
of the classification of malicious PE files in the proxy server
showed a time delay for proxy requests (the difference between
the request time without a proxy and the request time with a
proxy): 1.2 seconds for the Random Forest Classifier model,
0.9 seconds for the Support Vector Machine model, and 0.88
seconds for the Multilayer Perceptron model. We decided to
use ssdeep-based similarity cache to improve obtained request
time. Results show that the best improvement was gained for
95% similarity threshold – 2.1 seconds compared to 2.6
seconds request time for Random Forest Classifier and 2.15
seconds compared to 2.28 seconds delay for Multilayer
Perceptron. The classification F1 score obtained on the proxy
evaluation data confirmed and outperformed the F1 score
obtained on the training dataset. This proves that the developed
module, consisting of a proxy server and machine learning
models, shows sufficiently high accuracy in the classification
of malicious PE files and does not significantly slow down the
operation of a local area network.

To investigate the use of a proxy server with networks of a
larger scale, future experiments are planned with the use of a
larger number of machines. To improve accuracy results, it is
planned to add real-time training of trained models with new
files, using open virus databases.

References

[1] S. Shankar, “Security Outcomes Report Volume 3”, Cisco, 2022,
[Online]. Available at:
https://www.cisco.com/c/dam/en/us/products/collateral/security/security
-outcomes-vol-3-
report.pdf?utm_medium=email&utm_source=prospect&utm_campaign
=UMB-FY23-Q2-Content-Ebook-Security-Outcomes-Report-
V3&utm_term=confirmation&utm_content=UMB-FY23-Q2-Content-
Ebook-Security-Outcomes-Report-V3.

[2] M. Mamoru, “Adjusting lexical features of actual proxy logs for intrusion
detection,” Journal of Information Security and Applications, vol. 50,
2020. DOI: https://doi.org/10.1016/j.jisa.2019.102408.

[3] M. Hatada, M. Akiyama, T. Matsuki, T. Kasama, “Empowering anti-
malware research in Japan by sharing the MWS datasets,” Journal of
Information Processing, vol. 23, pp. 579–588, 2015. DOI:
https://doi.org/10.2197/ipsjjip.23.579.

[4] A. Moshchuk, T. Bragin, D. Deville, S. Gribble, H. Levy, “Spyproxy:
Execution-based detection of malicious web content,” Department of
Computer Science & Engineering, University of Washington, 2007.

[5] C. Novo, R. Morla, “Flow-based detection and proxy-based evasion of
encrypted malware C2 traffic,” Proceedings of the 13th ACM Workshop
on Artificial Intelligence and Security, New York, United States,
November 13, 2020, pp. 83-91. DOI:
https://doi.org/10.48550/arXiv.2009.01122.

[6] “PE Format,” Microsoft Learn, 2024, [Online]. Available at:
https://learn.microsoft.com/en-us/windows/win32/debug/pe-format.

[7] M. V. Mishchenko, M. S. Dorosh, “Semantic analysis and classification
of malware for UNIX-like operating systems with the use of machine
learning methods,” Applied Aspects of Information Technology, vol. 5,
no. 4, 371, 2022. DOI: https://doi.org/10.15276/aait.05.2022.25.

[8] K. Cho, B. van Merrienboer, D. Bahdanau, Y. Bengio, “On the properties
of neural machine translation: Encoder-decoder approaches,”
Proceedings of SSST-8, Eighth Workshop on Syntax, Semantics and
Structure in Statistical Translation, Doha, Qatar, October 2014, pp. 103-
111. DOI: https://doi.org/10.48550/arXiv.1409.1259.

[9] Q. Qi, L. Lin, R. Zhang and C. Xue, “MEDT: Using multimodal
encoding-decoding network as in transformer for multimodal sentiment
analysis,” IEEE Access, vol. 10, pp. 28750-28759, 2022. DOI:
https://doi.org/10.1109/ACCESS.2022.3157712.

[10] X. Xiao, L. Wang, K. Ding, S. Xiang and C. Pan, “Deep hierarchical
encoder–decoder network for image captioning,” IEEE Transactions on
Multimedia, vol. 21, no. 11, pp. 2942-2956, 2019. DOI:
https://doi.org/10.1109/TMM.2019.2915033.

[11] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, I. Polosukhin, “Attention is all you need,” Proceedings of the
Advances in Neural Information Processing Systems (NIPS), 2017. DOI:
https://doi.org/10.48550/arXiv.1706.03762.

[12] D. Tsirmpas, I. Gkionis, G. Th. Papadopoulos, I. Mademlis, “Neural
natural language processing for long texts: A survey on classification and
summarization,” Engineering Applications of Artificial Intelligence, vol.
133, 2024. https://doi.org/10.1016/j.engappai.2024.108231.

[13] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, V. Stoyanov, “RoBERTa: A robustly optimized BERT
pretraining approach,” 2019. https://doi.org/10.48550/arXiv.1907.11692.

[14] K. Clark, M. Luong, Q. V. Le, C. D. Manning, “ELECTRA: pre-training
text encoders as discriminators rather than generators,” Proceedings of
the International Conference on Learning Representations (ICLR), 2020.
https://doi.org/10.48550/arXiv.2003.10555.

[15] J. Sawicki, M.Ganzha, M. Paprzycki, “The state of the art of natural
language processing – A Systematic automated review of NLP literature
using NLP techniques,” Data Intelligence, vol. 5, issue 3, pp. 707–749,
2023. https://doi.org/10.1162/dint_a_00213.

[16] T. Mikolov, K. Chen, G. Corrado, J. Dean, “Efficient estimation of word
representations in vector space,” Proceedings of Workshop at ICLR,
January 2013. https://doi.org/10.48550/arXiv.1301.3781.

[17] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, J. Dean, “Distributed
representations of words and phrases and their compositionality,”
Advances in Neural Information Processing Systems, vol. 26, 2013.
https://doi.org/10.48550/arXiv.1310.4546.

[18] T. Kien, S. Hiroshi, “NLP-based approaches for malware classification
from API sequences,” Proceedings of the 2017 21st Asia Pacific
Symposium on Intelligent and Evolutionary Systems (IES), 2017, pp. 101-
105. https://doi.org/10.1109/IESYS.2017.8233569.

[19] C. Hui, N. Takashi, N. Yoshiki, “Approximate RBF Kernel SVM and its
applications in pedestrian classification,” 2008, pp. 1-9.
https://doi.org/10.1007/978-1-4020-8450-8_1.

[20] D. P. Kingma, J. Ba, “Adam: A Method for Stochastic Optimization,”
Proceedings of the International Conference on Learning
Representations, December 2014. DOI:
https://doi.org/10.48550/arXiv.1412.6980.

[21] C. F. Ozgur, A. Javed, S. Kevser, K. Z. Hussain, “Data augmentation
based malware detection using convolutional neural networks,” Peer J
Computer Science, vol. 7, 2021. DOI:
https://doi.org/10.48550/arXiv.2010.01862.

[22] L. Yang, A. Ciptadi, I. Laziuk, A. Ahmadzadeh, G. Wang, “BODMAS:
An open dataset for learning based temporal analysis of PE malware,”
Proceedings of the 4th Deep Learning and Security Workshop, San
Francisco, CA, USA, 2021, pp. 78-84. DOI:
https://doi.org/10.1109/SPW53761.2021.00020.

[23] Global Threat Activity, Microsoft, 10 May 2024, [Online]. Available at:
https://www.microsoft.com/en-us/wdsi/threats.

[24] S. Khan, M. Nauman, “Interpretable detection of malicious behavior in
windows portable executables using multi-head 2D transformers,” Big
Data Mining and Analytics, vol. 7, pp. 485–499, 2024. DOI:
https://doi.org/10.26599/BDMA.2023.9020025.

[25] A. Radford, and K. Narasimhan, “Improving language understanding by
generative pre-training,” 2018. [Online]. Available at:
https://api.semanticscholar.org/CorpusID:49313245.

[26] VirusShare, GitHub, Sep 2, 2020, [Online]. Available at:
https://github.com/seifreed/VirusShare.

[27] Manalyze, GitHub, Jan 3, 2024, [Online]. Available at:
https://github.com/JusticeRage/Manalyze.

 Maksym Mishchenko et al. / International Journal of Computing, 23(4) 2024, 663-672

672 VOLUME 23(4), 2024

[28] A. Cortesi, M. Hils, T. Kriechbaumer, “{mitmproxy}: A free and open
source interactive {HTTPS} proxy,” 10 May 2024, [Online]. Available
at: https://mitmproxy.org/.

[29] E. Carrera Ventura, “pefile (Version 2023.2.7),” GitHub. [Online].
Available at: https://github.com/erocarrera/pefile.

[30] V. Diaz, “VirusTotal malware trends report: Emerging formats and
delivery techniques,” July 26, 2023, [Online]. Available at:
https://blog.virustotal.com/2023/07/virustotal-malware-trends-
report.html.

[31] S. Lad, & A. Adamuthe, “Improved deep learning model for static PE
files malware detection and classification,” International Journal of
Computer Network and Information Security, vol. 14, pp. 14-26, 2022.
https://doi.org/10.5815/ijcnis.2022.02.02.

[32] Y. Ye, T. Li, Q. Jiang, Y. Wang, “CIMDS: Adapting postprocessing
techniques of associative classification for malware detection,” IEEE
Transactions on Systems, Man, and Cybernetics, Part C: Applications
and Reviews, vol. 40, pp. 298–307, 2010.
https://doi.org/10.1109/TSMCC.2009.2037978.

[33] A. Koçak, E. Söğüt, M. Alkan, O. Ayhan Erdem, “Detection of different
windows PE malware using machine learning methods,” Journal of
Polytechnic, vol. 26, issue 3, pp. 1185-1197, 2023.
https://doi.org/10.2339/politeknik.1207704.

MAKSYM V. MISHCHENKO,
Postgraduate, PhD student in
Information Technology and Software
Engineering Department. Chernihiv
Polytechnic National University, 95,
Shevchenko Street. Chernihiv, 14035,
Ukraine. Research fields:
Cybersecurity; machine learning; NLP;
operating systems; software
engineering.

MARIIA S. DOROSH, Dr. Sc. (Eng), a
Professor of Information Technology
and Software Engineering
Department, Chernihiv Polytechnic
National University, 95, Shevchenko
Str. Chernihiv, 14035, Ukraine.
Research fields: Modeling and
design of intelligent systems;
knowledge management;
convergence of project management
systems; human factor in
information security systems of
organizations and projects

