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 ABSTRACT The article addresses a significant scientific problem – the development of identification methods 
for interval nonlinear models of static characteristics of complex objects with acceptable computational 
complexity. It examines the challenges associated with identifying the parameters and structure of nonlinear 
models of static characteristics. The proposed solutions reduce the complexity of the modelling process while 
ensuring the derivation of adequate models with guaranteed accuracy, determined by experimental results in the 
form of interval values of the modelled characteristics. A parameter identification approach for interval nonlinear 
models is presented, which reformulates the problem as minimizing the quadratic deviation between the modelled 
characteristics of a static object and the experimental intervals. Although this approach expands the optimization 
parameter space by introducing additional coefficients into the objective function to ensure consistency between 
experimental data and calculations, it also enables the development of efficient optimization procedures. For 
structural identification, a method based on analyzing the gradient of the objective function of the optimization 
problem is proposed, allowing for the directed selection of structural elements during the synthesis of an interval 
nonlinear model. A novel structural identification method for nonlinear interval models and an algorithm for its 
implementation have been developed. Experimental examples confirm the high convergence and efficiency of the 
proposed approach. The proposed methods for nonlinear model identification based on interval data analysis will 
contribute to the advancement of applied research in national security, environmental monitoring, medicine, and 
other fields where mathematical models serve as the foundation for decision-making. 
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I. INTRODUCTION 
athematical modelling is one of the most effective tools 
for conducting research and solving a wide range of 

applied problems where complex decisions need to be made, 
particularly with the help of intelligent decision support 
systems and expert systems [9, 17, 44, 45]. Proximity to the 
user and convenience in the application of mathematical 
modelling methods are implemented through the use of various 
software environments, which mainly integrate the spectrum of 
mathematical methods into a single concept of building tools 
that are understandable for practical users [3, 5, 8, 10, 41]. 
Examples of such environments are MATLAB, Mathematica, 
or Python programming libraries such as NumPy and SciPy. At 
the same time, the need to use specialized methods developed 
by some researchers, such as interval data analysis methods, 

requires additional processing to develop mathematical and 
algorithmic support for modelling software tools [23, 24, 35].  

The authors of the interval approach [12, 34] state that it has 
some advantages over the stochastic (probabilistic) approach 
[14, 36]. Among them is the absence of a requirement to study 
the statistical characteristics of the modelling object [2, 17]. As 
it is known, this reduces the number of experiments (selection 
and accumulation of data). Therefore, the interval approach is 
more useful for studying the characteristics of the complex 
object in the conditions of a limited data sample [33]. The main 
concepts of this approach should be considered in detail to 
develop decision support systems oriented to data, models, and 
knowledge. When researching objects and processes across 
different fields, it becomes a task to establish cause-and-effect 
relationships and dependencies for the complex objects’ static 
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characteristics and factors representing the external 
environment influence. In this case, these objects are often 
treated as static systems, disregarding transient processes, and 
constructed the “black box” type mathematical models [20]. 

Constructing models of static systems includes problems of 
parametric and structural identification. Many methods have 
been developed for the parametrical identification of interval 
models for dynamic and static systems [22, 26, 27, 43]. It’s 
worth noting that the interval models’ computational 
optimization parametric identification problem is an NP-
complex problem. The peculiarity in the parametric and 
structural identification of the static systems interval nonlinear 
models lies in the necessity of finding the objective function 
global minimum during optimization while navigating through 
numerous local minima. As a result, metaheuristic methods 
employing stochastic search techniques are predominantly 
used to address this challenge [6, 7, 11, 12, 15]. Among these 
methods, those grounded in swarm intelligence are currently 
considered the most computationally efficient. Specialized 
software tools tailored for these methods have been developed 
and are extensively utilized by researchers [13, 19, 21]. 
Additionally, established software solutions provided within 
standard application packages, such as the Global Optimization 
Toolbox of MATLAB, are widely utilized in this regard [28, 
31, 32, 39, 40]. Analysis of methods for nonlinear interval 
models’ structural identification has revealed that the primary 
issue contributing to the optimization stochastic and 
combinatorial nature is selecting structural elements from the 
set of all possible elements. The predominant approach 
involves optimizing parameters for each model structure 
formed through combination, selection, or mutation [21, 29, 
37]. 

The objective of the research is developing identification 
procedures for both parameters and structure of interval 
nonlinear models, aiming for an acceptable computational 
complexity in solving the structural identification problem. 
This entails developing a method for selecting structural 
elements that can significantly reduce the parametric 
identification procedures number during the model’s structure 
synthesis. 

II. MATERIAL AND METHODS  
A. STATEMENT OF THE TASK 
As a rule, static characteristics of the complex objects are 
described as functional dependencies for output values 
representing object characteristics from input values 
representing influencing factors in the system. These 
dependencies are written in the algebraic equations form [28]: 
 

𝑦(𝑋) =  𝑓ଵ൫𝛽, 𝑋൯ +  𝑓ଶ൫𝛽, 𝑋൯ + ···  + 𝑓൫𝛽, 𝑋൯, (1) 
where 𝑦(𝑋) is a simulated value of the object static 

characteristic; 𝛽 is a nonlinear parameters vector of the model, 
that needs to be estimated using experimental data; 𝜆 =

൛𝑓ଵ൫𝛽, 𝑋൯, 𝑓ଶ൫𝛽, 𝑋൯, … , 𝑓൫𝛽, 𝑋൯ൟis a basis nonlinear functions 
set relative to the input variables X and the model parameters 
vector, nonlinear functions can be used depending on the 
objects specifics being studied [39]: 

− indicators: 𝑓൫𝛽, 𝑋൯ = 𝛽ଵ ∙ 𝑋ఉమ;  

− Gaussian models: 𝑓൫𝛽, 𝑋൯ = 𝛽ଵ ∙ 𝑒
ቈିቀ

షഁమ
ഁయ

ቁ
మ


; 

− trigonometric Fourier series: 𝑓൫𝛽, 𝑋൯ = 𝛽ଵ ∙ 𝑐𝑜𝑠(𝛽ଷ ∙

𝑋) + 𝛽ଶ ∙ 𝑠𝑖𝑛(𝛽ଷ ∙ 𝑋), etc.,  
where m is the given number of basic functions of the model 
(structural elements). The experiment results that are used for 
the identifying of nonlinear (in general) models (1) are obtained 
in the such form: 
 

�⃗� = (𝑥ଵ ⋯ 𝑥)
  
ሱ⎯ሮ [𝑦

ି; 𝑦
ା], 𝑖 = 1, 𝑁തതതതത, (2) 

 
where [𝑦

ି; 𝑦
ା] is experimentally obtained static characteristics 

values of the nonlinear object, which are presented as the upper 
and lower limits in the ith measuring, 𝑖 = 1, 𝑁തതതതത, �⃗� is the 
influencing factors value (input variables) on the object 
characteristic in the i-th measuring; N is the total number of 
measurements of the experiment. 

Let’s give basis functions set 𝜆 for a model, and 

parameters vector 𝛽መ⃗ interval estimates are obtained. Then the 
dependence that describes the interval model of the static 
characteristics of the nonlinear objects from the input values 
will have such form of the nonlinear algebraic expression: 
 

ൣ�̑�൫�⃗�൯൧ = 𝑓ଵ ቀቂ𝛽መ⃗ଵቃ , �⃗�ቁ + ⋯ + 𝑓 ቀቂ𝛽መ⃗ቃ , �⃗�ቁ , 𝑖 = 1, 𝑁തതതതത, (3) 

 
where ൣ�̑�൫�⃗�൯൧ =  ൣ�̑�ି൫�⃗�൯; �̑�ା൫�⃗�൯൧ are the modelled 
characteristic interval estimates that are calculated based on 

input values X,  ቂ𝛽መ⃗ቃ = ቂ𝛽መ⃗ଵቃ , ቂ𝛽መ⃗ଶቃ , … , ቂ𝛽መ⃗୫ቃ is a model 

parameters interval estimates vector. 
Considering the condition belonging to the interval 

estimates ൣ�̑�൫�⃗�൯൧ to the interval values of object characteristics 
that are obtained experimentally, 
 

ൣ�̑�ି൫�⃗�൯; �̑�ା൫�⃗�൯൧ ⊂  [𝑦
ି; 𝑦

ା], 𝑖 = 1, 𝑁തതതതത, (4) 
 
a mathematical problem calculation interval estimates of the 

model parameters vector ቂ𝛽መ⃗ቃ we get [20]: 

 

{𝑦
ି ≤ 𝑓ଵ ቀቂ𝛽መ⃗ଵቃ , �⃗�ቁ + ⋯ + 𝑓 ቀቂ𝛽መ⃗ቃ , �⃗�ቁ ≤ 𝑦

ା, 𝑖 = 1, 𝑁തതതതത. (5) 

 
It’s an interval system of nonlinear algebraic equations 

(ISNAE) concerning model parameters vector ቂ𝛽መ⃗ቃ interval 

estimates. There’s solutions set ISNAE Ω determining interval 

estimates ቂ𝛽መ⃗ቃ of the model parameters vector. In practice, 

only point-based parameter estimates are calculated, which is 
connected with solving ISNAE high computational 
complexity. In this case, an optimization problem to point-
based estimate the parameters in the form is solving [24]: 

𝛿൫𝛽൯
ఉሬሬ⃗ ,   ఈෝሬሬ⃗  
ሱ⎯⎯⎯⎯ሮ 𝑚𝑖𝑛 (6) 

𝛼 ∈ [0,1], 𝑖 = 1, 𝑁തതതതത. (7) 
 
where 𝜆௦ is a set of elements that are used to synthesize the 
structure of the interval model and contains all possible given 
structural elements; s is a number of all possible elements of 
the structure; αi are the linear combination coefficients that are 
used for calculating a point that belongs to the experimental 
data limits. 
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The objective function 𝛿൫𝛽൯ in expression (6) is formed 
based on considering the constraints set by the ISNAE (5) [22]. 
The objective function is minimizing the point-based model 
quadratic error: 
 

�̑�൫�⃗�൯ = 𝑓ଵ ቀ𝛽መ⃗ଵ, �⃗�ቁ + ⋯ + 𝑓 ቀ𝛽መ⃗, �⃗�ቁ , 𝑖 = 1, 𝑁തതതതത, (8) 

 
and looks like this 
 

𝛿൫𝛽൯ = ∑ ቀ�̑�(�⃗�) – 𝑃([𝑦
ି; 𝑦

ା], 𝛼)ቁ
ଶ

ே
ୀଵ , (9) 

 
where 
 

𝑃([𝑦
ି; 𝑦

ା], 𝛼) = 𝛼 ⋅ 𝑦
ି + (1 − 𝛼) ⋅ 𝑦

ା, 𝑖 = 1, 𝑁തതതതത. (10) 
 

The suggested article [22] method for parametrically 
identifying static systems interval nonlinear models involve 
simplifying the identification task. Strategy based on 
expanding the parameter space of nonlinear models by 
incorporating extra coefficients into the objective function. 
Consequently, we encounter a nonlinear optimization task for 
which gradient methods with polynomial complexity are used. 
However, when the objective function becomes complicated, 
or discrete through the nonlinear parameters, there used 
alternative optimization techniques, such as stochastic, 
evolutionary, and metaheuristic approaches [1, 14, 19, 21]. 

Simultaneously, the structural identification task involves 
determining both model’s structure which represented by the 

structural elements set 𝜆 ∈ 𝜆௦, and parameters 𝛽መ⃗. Structural 
identification entails transforming the set 𝜆௦ to a vector form, 

𝜆௦ =  ቀ𝑙ଵ

ఒೞ(భ)
, 𝑙ଶ

ఒೞ(మ)
, . . . , 𝑙௦

ఒೞ(ೞ)
ቁ by binary, decimal coding or 

hashing. 
Let’s write the structural identification problem based on 

(6) in the following form: 
 

𝛿൫𝜆, 𝛽൯
ఒሬሬ⃗ , ఉሬሬሬ⃗ ,   ఈෝሬሬ⃗

ሱ⎯⎯⎯⎯⎯⎯ሮ 𝑚𝑖𝑛, (11) 
𝜆 ∈  𝜆௦, (12) 

𝛼 ∈ [0,1], 𝑖 = 1, 𝑁തതതതത. (13) 
 

Condition (4) is used as a stop-criterion during the 
optimization for the case of the point-based model [27]: 
 

�̑�൫�⃗�൯ ⊂  [𝑦
ି; 𝑦

ା], 𝑖 = 1, 𝑁തതതതത. (14) 
 

However, the challenge lies in the discrete nature of this 
function, as optimization relies on discrete values of vector, 
these discrete values originate from a specific coding scheme 
applied to elements within set 𝜆௦. Consequently, resolving this 
problem involves addressing multiple instances of the 
parametric identification problem (6) while selectively 
choosing sets 𝜆 from elements within set 𝜆௦. Now, selecting 
or developing computational methods and means for 
identifying static systems interval models based on 
optimization problems (11)-(13) is actual. Simultaneously, the 
quality criteria of such methods are independence from input 
data, low computational complexity, and finding a global 
minimum. 

B. THE METHOD OF IDENTIFYING INTERVAL 
NONLINEAR MODELS STRUCTURE USING THE 
OBJECTIVE FUNCTION GRADIENT ANALYSIS 
The smoothness of function (11) makes it possible to study it 
using gradient methods [4, 5, 25]. Consider a candidate model 
characterized by a structure defined by vector 𝜆 and a 

parameter vector  𝛽. To evaluate the candidate model 
structure quality, we suggest utilizing the objective function 

𝛿 ቀ𝜆መ⃗, 𝛽መ⃗ቁ anti-gradient at the point 𝛽መ⃗. The magnitude of the 

anti-gradient vector −∇ calculated based on the vector of the 

parameters 𝛽መ⃗ determines the direction for the objective 

function minimizing 𝛿൫𝜆, 𝛽൯ for the candidate model 

structure based on vector 𝜆. Thus, the anti-gradient vector for 
a structure 𝜆 we denote: 
 

−𝛻𝛿൫𝜆, 𝛽൯  =  ቆ
ௗఋቀఒሬሬ⃗ ,ఉሬሬ⃗ ቁ

ௗఉభ
 , . . . ,

ௗఋቀఒሬሬ⃗ ,ఉሬሬ⃗ ቁ

ௗఉ
 ቇ. (15) 

 
Utilizing the property of multidimensional functions 

derivative concerning its variables, we can formulate an 
optimality condition of the structural elements set 𝜆 for a 
candidate model, regarding the problem (11-13). Accordingly, 
the minimization of the anti-gradient vector norm 

ฮ−𝛻𝛿൫𝜆, 𝛽൯ฮ at the point 𝛽መ⃗ for the objective function (12) 
on the whole set 𝜆௦ testifies to the optimality of the set 𝜆. 

Following the condition, guidelines for selecting structural 
elements during the structure synthesis based on the objective 
function gradient within the implementation of the structural 
identification method are proposed. 

Principle 1. The optimality of the structural elements set 𝜆 
of the candidate model from the point view of the problem (11-
13) for a fixed parameters number determines the norm 
minimum of the objective function (11) anti-gradient vector 

ฮ−𝛻𝛿൫𝜆, 𝛽൯ฮ  at the point 𝛽መ⃗. 
If the rule is executing, we proceed with one of two courses 

of action: if condition (5) is met, the problem (11-13) solution 
has been discovered; otherwise, we increment the model 
dimension accordingly 𝑚 + 1. 

Principle 2. The best candidate for selection among all set 
elements 𝜆௦ is the element that provides an opportunity to 
minimize the objective function (11). The quality criterion will 
be the value of the derivative, which is determined based on the 
model, which includes the selected structural element. 
Accordingly, the largest norm value of the anti-gradient for the 
formed set 𝜆 will indicate the possibility of the best objective 
function minimization. The objective function derived value 

ௗ

ௗఉೡ
𝛿 ቆ𝛽መ௩

, 𝑓௪
௦ ቀ𝛽መ⃗, 𝑋ቁቇቤ

ఉୀఉೡ
,ఋୀ୫୧୬ ቀఒሬሬ⃗ ,ఉሬሬ⃗ ,ఈሬሬ⃗ ቁ

 based on the 

model, for which the objective function minimum is 
determined considering the new structural elements 

𝑓௪
௦ ቀ𝛽መ⃗, 𝑋ቁ ∈ 𝜆௦ ∧  𝑓௪

௦ ቀ𝛽መ⃗, 𝑋ቁ ∉ λ, 𝑤 = 1, 𝑠തതതത, is proposed to 

use for the quantitative evaluation of the new structural 
elements. 

In Figure 1 an example is illustrated, which demonstrates 
that this approach ensures the rejection of structural elements 
that worsen the quality of the model, since for them there is no 
value of the derivative at a given point and the possibility of 
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choosing the best structural element for the current model. At 
the same time, the value of the derivative will indicate the 
ability of the structural element to ensure the objective function 
minimization. Accordingly, it is necessary to choose a 
structural element with the maximum value of the norm of the 
derivative. In Figure 1(a) shows the graphs of the objective 
function based on three models with the structures 𝜆ଵ

ଵ , 𝜆ଵ
ଶ, 𝜆ଵ

ଷ.  

 

 

Figure 1. Illustration of the selection procedure of a structural 
element based on the evaluation of the objective function 

gradient 

At the same time, the objective function 𝛿 ቀ𝜆መ⃗, 𝛽መ⃗ቁ global 

minimum is determined based on the model with the structure 
𝜆ଵ

ଵ. The value of the minimum is used to find the derivative of 
the objective function in order to select new structural elements 
that will ensure its minimization. As we can see in Figure 1(b), 
the structural element that forms the structure 𝜆ଵ

ଶ does not 
ensure the minimization of the objective function and is not 
taken into account to form the current structure. Accordingly, 
the structural element forming the structure 𝜆ଵ

ଷ is a candidate 
for selection. 

The algorithm is proposed for nonlinear interval model 
structural identification that minimizes the objective function 
within the parameter space, employing discrete values-directed 
selection for the model’s structure. The algorithm pseudocode 
for nonlinear interval model structural identification is given in 
Figure 2. 

 

Figure 2. The algorithm pseudocode for nonlinear interval 
model structural identification 

To calculate the anti-gradient, we can use a numerical 
method or a partial derivatives analytical expression for a given 

structural elements at a point 𝛽መ⃗. 
 

𝑑

𝑑𝛽௩

𝛿 ቆ𝛽௩
 , 𝑓௪

௦ ቀ𝛽መ⃗, 𝑋ቁቇ = 

=
𝑑

𝑑𝛽௩

 ቆ𝑦ത൫�⃗�൯– 𝑃([𝑦
ି; 𝑦

ା], 𝛼) + 𝛽௩
 ∙ 𝑓௪

௦ ቀ𝛽መ⃗, �⃗�ቁቇ

ଶ

=

ே

ୀଵ

 

= 2 ∙  ቆ𝑦ത൫�⃗�൯– 𝑃([𝑦
ି; 𝑦

ା], 𝛼) + 𝛽௩
 ∙ 𝑓௪

௦ ቀ𝛽መ⃗ , �⃗�ቁቇ

ଶே

ୀଵ

× 

×
ௗ

ௗఉೡ
∑ ቆ𝛽௩

 ∙ 𝑓௪
௦ ቀ𝛽መ⃗, �⃗�ቁቇே

ୀଵ  (16) 

where 

𝑦ത൫�⃗�൯ =  𝛽
 ∙ 𝑓

 ቀ𝛽መ⃗
, �⃗�ቁ , 𝑞 ≠ 𝑣

ೖ

ୀଵ

; 

𝛽௩
 is parameter of the model according to which the 

differentiation of the objective function is carried out 𝛽௩
 ∈

 𝛽መ⃗ , 𝑓௪
௦ ቀ𝛽መ⃗ , 𝑋ቁ is a structural element candidate for selecting, 

𝑓௪
௦ ቀ𝛽መ⃗, �⃗�ቁ ∈ 𝜆௦ ∧ 𝑓௪

௦ ቀ𝛽መ⃗, �⃗�ቁ ∉ λ
 . 
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III. RESULTS AND DISCUSSION 
We will conduct experiments in modelling objects considered 
static systems to test the proposed structural and parametric 
identification approach. Let’s consider an example of using the 
structural identification method to simulate the daily electricity 
generation by a mini hydroelectric power plant (MHPP). We 
will also consider the case of applying the method of structural 
identification with a known basis, determined by the feature of 
the modeled object, using the example of modelling the 
distribution of the ground level of pollution from a point 
source, which, as is known, is described by Gaussian models 
[25, 38, 49]. 

A. MODELING OF THE GENERATED POWER BY MHPP 
The task of restoring existing and creating new mini 
hydroelectric plants is urgent, considering the potential of 
hydro resources in Ukraine. At the same time, developing 
mathematical models of hydropower plant characteristics is 
expedient to research and ensure the maximum efficiency of 
using hydropower resources [46, 47]. As an example of such 
studies, the “Topolky” MHPP, built on the Strypa River in the 
Ternopil region, was chosen. The specified MHPP has two 
turbines connected to generators with a 70 kW and 90 kW 
capacity. The operation of generators in the system requires a 
constant assessment of the state of the characteristics of hydro 
resources and forecasting of the possible generated electricity 
to use the plant’s equipment sparingly. In particular, it is 
necessary to forecast each time weather conditions change and 
seasonal fluctuations of available hydro resources to make 
decisions about the feasibility of using two turbines at the same 
time or whether using one of the two turbines is appropriate. In 
this case, we can take off one of the turbines for repair. Thus, 
there is a need to develop and use a model that relates the 
amount of potentially generated electricity depending on the 
characteristics of hydrotechnical equipment and available 
hydro resources. We will use the developed methods of 
structural identification of nonlinear models to identify this 
mathematical model. 

Experimental data were obtained as a result of the research 
of this MHPP. The amount of electricity produced per day is 
presented in an interval form due to errors in estimating this 
value by technical means. 

The reactive power of the turbine and the water pressure, 
which is determined by the biefs difference, and the height of 
the water level at the hydro post, are taken as the factors that 
shape the working conditions of the MHPP and, accordingly, 
affect the amount of generated power. The characteristic that is 
simulated is the generated power. Measurements were made 
daily. Accordingly, the task is to establish cause-and-effect 
relationships between the observed characteristics of the 
MHPP and influencing factors. 

The set of all potential structural elements for the model of 
the dependence of the generated power on the operating 
conditions of the MHPP is formed: 
 

𝜆௦ = ൞

𝛽ଵ ∙ 𝑥ଵ, 𝛽ଵ ∙ 𝑥ଶ, 𝛽ଵ ∙ 𝑥ଷ, 𝛽ଵ ∙ 𝑥ଵ
ఉమ , 𝛽ଵ ∙ 𝑥ଶ

ఉమ ,

𝛽ଵ ∙ 𝑥ଷ
ఉమ , 𝛽ଵ ∙ 𝑥ଵ ∙ 𝑥ଶ

ఉమ , 𝛽ଵ ∙ 𝑥ଵ ∙ 𝑥ଷ
ఉమ , 𝛽ଵ ∙ 𝑥ଶ ∙ 𝑥ଷ

ఉమ ,

𝛽ଵ ∙ 𝑥ଵ
ఉమ ∙ 𝑥ଶ

ఉయ , 𝛽ଵ ∙ 𝑥ଵ
ఉమ ∙ 𝑥ଷ

ఉయ , 𝛽ଵ ∙ 𝑥ଶ
ఉమ ∙ 𝑥ଷ

ఉయ .

ൢ (17) 

 

Using the method of structural identification given above, 
the following structure of the interval model of daily electricity 
generation was obtained: 
 

𝑦(𝜆ହ, 𝑋) = 𝛽ଵ ∙ 𝑥ଵ ∙ 𝑥ଶ
ఉమ + 𝛽ଶ ∙ 𝑥ଷ

ఉర , (18) 
 
and the results of parametric identification for the obtained 

model: 𝛽
መ  = (88.619, 0.4256, 2.5533, 0.4914), �⃗� = (0.1985, 

0.273, 0.1713, 0.0865, 0.6162, 0.9991, 0.8814, 0.397, 0.7368, 
0.5845, 0.5823, 0.4998, 0.4427, 0.5582, 0.2692, 0.1964, 
0.0002, 0.9202, 0.675, 0.3728, 0.4643, 0.7596, 0.9164, 0.9667, 
0.2294, 0.9564, 0.7288, 0.3038, 0.9127, 0.1438). 

According to this, a point model was built based on interval 
data and structure (18) in the following form: 
 

𝑦(𝑋) = 88.619 ∙ 𝑥ଵ ∙ 𝑥ଶ
.ସଶହ + 2.553 ∙ 𝑥ଷ

.ସଽଵସ. (19) 
 

Figure 3(a) shows a graphical representation of the satisfied 
condition (15) for the obtained model, that is, the inclusion of 
values predicted based on model (19) in the experimental 
corridor obtained based on measurements.  

 

 

Figure 3. Results: (a) graphic representation of the satisfied 
condition (15) for the obtained model, (b) convergence of the 

structural identification algorithm for model (19) 

The effectiveness of the proposed approach and the 
algorithm for its implementation demonstrates the convergence 
of this algorithm during the structural identification of the 
model (19) in Figure 3(b). As we can see, for the input set 𝜆௦ 
of 12 structural elements, the number of evaluated models was 
five, which indicates the effectiveness of this method despite 
the additional computational costs related to analyzing the 
derived objective function. 
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B. MODELLING OF THE GROUND LEVEL OF HARMFUL 
EMISSIONS SPREAD FROM THE POLLUTION SOURCE 
Modelling the ground level of the spread of harmful emissions 
from the source of pollution is an important tool for assessing 
the impact of pollution on the environment and human health. 
The main modelling steps include [48, 49]: 

− determination of the source of pollution; 
− determination of pollution characteristics; 
− considering meteorological and other conditions 

necessary to determine the path of the spread of 
pollution. 

The Figure 4(a) shows the principle of formation of the 
background level of pollution by harmful SO emissions based 
on the spread of the plume of pollution from the source of 
pollution, which is the pipe of an industrial facility, under dry 
weather conditions. Dry weather ensures the deposition of 
harmful substances along the spreading plume. Since high 
humidity causes a high level of SO fluctuation, for other 
weather conditions the formation of the ground level will have 
a different character [30]. 

An industrial object and experimental measurement data 
from the CECR research project were considered the research 
object [16]. Experimental data in Table 1 don’t include 
meteorological data. The modelling is based on the conditions 
that the spreading is carried out uniformly around the pollution 
source. 

Table 1. Experimental Data Measurement SO 

Measurement 
points 

Distance from 
source, m 

Interval lower 
limit, units/m3 

Interval upper 
limit, units/m3 

1 100 2.5803 3.1537 

2 200 247.86 302.94 

3 300 528.93 646.47 

4 400 569.79 696.41 

5 500 510.57 624.03 

6 600 432.63 528.77 

7 700 361.62 441.98 

8 800 302.94 370.26 

9 900 255.96 312.84 

10 1000 218.52 267.08 

11 1100 188.55 230.45 

12 1200 164.34 200.86 

13 1300 144.72 176.88 

14 1400 128.52 157.08 

15 1500 115.02 140.58 

16 1600 103.68 126.72 

17 1700 94.05 114.95 

18 1800 85.86 104.94 

19 1900 78.804 96.316 

20 2000 72.684 88.836 

 
In this case, the specificity of the problem determines the 

use of the model structure in the form of Gaussian models, 
since they are classically used for this type of problem. 
Accordingly, the task of structural identification is reduced to 
determining the model type and the number of structural 
elements within a given type. The formed set of all potential 
structural elements for the model will look like this: 
 

𝜆௦ = ൝൭𝑒
ቈି൬

ೣభషഁ

ഁ
൰

మ


൱



ൡ , 𝑘 = 1, … 𝑠. (20) 

 

In the course of building up the structure and parametric 
identification, we obtained a structure that satisfied the 
stopping criterion (14): 
 

𝑦(𝑋) = 𝛽ଵ ∙ 𝑒
ቈି൬

௫భିఉమ
ఉయ

൰
మ


+ 𝛽ସ ∙ 𝑒

ቈି൬
௫భିఉఱ

ఉల
൰

మ


+ 

+𝛽 ∙ 𝑒
ቈିቀ

ೣభషഁఴ
ഁవ

ቁ
మ


, (21) 

 
and the results of parametric identification for the obtained 

model: 𝛽
መ  = (419.8273, 57.4029, 692.11, 5.75∙1016, -70379.1, 

12357.3, -874.7416, 66.9348, 176.016), �⃗� = (0.7837, 0.9396, 
0.4033, 0.4695, 0.5511, 0.669, 0.7674, 0.8013, 0.7657, 0.6824, 
0.5777, 0.4751, 0.3848, 0.3165, 0.2645, 0.2203, 0.1812, 0.1323, 
0.0737, 0.0014). 

A graphical representation of the fulfilment of condition 
(11) for the obtained model, that is, the inclusion of values 
predicted based on model (21) in the experimental corridor 
obtained based on measurements is shown in Figure 4(b). 

 

 

Figure 4. Results of modelling of the ground level of harmful 
emissions spread 

Typically, models of this type are used to construct the 
distribution of concentrations of harmful emissions [50]. For a 
point source of pollution, let’s plot the distribution of 
concentrations around the point of the pollution source 
according to the radius of the experimental measurements in 
Figure 5(a). For ease of use, let’s build a 2D projection (Figure 
5(b)) of the ground level concentration distribution around the 
pollution source. Accordingly, the obtained distribution of 
concentrations of the ground level of pollution around an 
industrial object can serve as a tool to support decisions on 
ensuring environmental safety at the location of such objects. 
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Figure 5. Modelled concentration of the ground level around 
of the pollution source 

The examples presented confirm the effectiveness of the 
proposed methods of parametric and structural identification. 
However, it should be noted that their use is limited by the non-
differentiability of the objective function of the optimization 
problem (6)-(7). To apply the proposed methods, the selection 
of basis functions must be carried out in such a way as to ensure 
the differentiability of the specified objective function. 

IV. CONCLUSIONS 
This study examines approaches to the mathematical modeling 
of static objects. It is established that experimental data are 
primarily obtained from measuring instruments, which 
inherently introduce certain measurement errors. Therefore, it 
is essential to account for uncertainty in experimental data by 
employing interval data analysis methods. The study addresses 
the challenges of structural and parametric identification of 
static object models which can be formulated as optimization 
problems with nonlinear objective functions.  

A parametric identification approach for interval nonlinear 
models is proposed, which reformulates the problem as 
minimizing the mean squared deviation between the modeled 
characteristic values of the static object and the corresponding 
experimental intervals. This approach expands the parameter 
space of nonlinear models by introducing additional 
coefficients into the objective function, ensuring consistency 
between experimental data and model-based calculations. 
However, it also enables the development of efficient 
optimization procedures for the realization of methods of 
parametrical identification of these models. 

Furthermore, a structural identification method is 
presented, based on analyzing the gradient of the objective 
function in the optimization problem to guide the selection of 

structural elements during the synthesis of an interval nonlinear 
model, along with an algorithm for its implementation. 
Fundamental guidelines for selecting structural elements are 
formulated. This solution reduces the complexity of the 
modeling process while ensuring the derivation of adequate 
models with guaranteed accuracy.  

Experimental examples confirm the high convergence and 
efficiency of the proposed parametrical and structural 
identification methods. 
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