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 ABSTRACT This paper investigates the reasoning mechanisms of multimodal AI models through the lens of 
TRIZ (Theory of Inventive Problem Solving) principles. Multimodal AI, which integrates and processes 
information from multiple data types such as text, images, and audio, has seen significant advancements. However, 
its reasoning capabilities remain a challenging frontier, particularly in harmonizing diverse modalities to achieve 
coherent outputs. By applying TRIZ, a systematic methodology widely used in engineering and innovation, we 
explore how these models address conflicts inherent in multimodal data fusion and reasoning. We identify key 
TRIZ principles such as Contradiction Resolution, the System of Systems approach, and the Concept of Ideality. 
We map these to the challenges and mechanisms of current multimodal AI systems. Our analysis highlights how 
models employ inventive principles to resolve contradictions, such as balancing accuracy across modalities or 
reconciling disparate representations. We also propose a novel framework inspired by TRIZ for enhancing 
reasoning in multimodal AI, emphasizing adaptability, scalability, and resource efficiency. This study contributes 
to a deeper understanding of multimodal reasoning and offers actionable insights for designing more robust and 
efficient AI systems. By leveraging TRIZ principles, we aim to foster innovative approaches to complex problem-
solving in AI, bridging the gap between theoretical understanding and practical application. 
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I. INTRODUCTION 
ultimodal AI models, capable of processing and 
understanding information from multiple modalities 

such as text, images, and audio, have made significant strides 
in recent years. However, these models often struggle with 
complex reasoning tasks that require understanding underlying 
relationships, identifying contradictions, and generating 
innovative solutions.   TRIZ, a systematic innovation 
methodology, provides a powerful framework for problem-
solving and creative thinking. By leveraging TRIZ principles, 
we can enhance the reasoning capabilities of multimodal AI 
models. TRIZ offers a structured approach to identifying 
contradictions, analyzing problem domains, and generating 
innovative solutions.   The paper proposes a novel approach to 
integrate TRIZ principles into multimodal AI models. By 
incorporating TRIZ-inspired techniques into the training and 
inference processes, we aim to improve the model's ability to 
understand and interpret complex multimodal data. TRIZ can 
help the model identify and resolve contradictions between 
different modalities, leading to a deeper understanding of the 
input data. Generate creative and innovative solutions. TRIZ's 

inventive principles can inspire the model to explore 
unconventional solutions and generate novel ideas. Make more 
robust and reliable decisions. TRIZ's problem-solving 
techniques can help the model identify potential issues and 
develop contingency plans, leading to more resilient decision-
making. Let's discuss the specific techniques for integrating 
TRIZ principles into multimodal AI models, including TRIZ-
inspired loss functions. To guide the model towards TRIZ-
aligned solutions during training. TRIZ-based attention 
mechanisms. To focus on relevant information and identify 
potential contradictions. TRIZ-guided knowledge distillation. 
To transfer TRIZ knowledge from human experts to the model. 
Through empirical evaluation of various multimodal tasks, we 
demonstrate the effectiveness of our approach in enhancing the 
reasoning capabilities of AI models. Our work contributes to 
the advancement of AI research by providing a new perspective 
on combining symbolic and statistical reasoning. The rapid 
evolution of artificial intelligence (AI) has enabled systems to 
process and interpret vast amounts of data, driving 
advancements in diverse fields such as healthcare, autonomous 
systems, and multimedia analytics. Traditional AI models, 
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however, are often constrained by their reliance on single-
modality inputs, such as text, images, or audio. These 
limitations restrict their capacity to perform complex reasoning 
tasks that require understanding and integrating information 
from multiple sources. Multimodal AI models offer a 
promising solution to these challenges by combining data from 
various modalities into a unified framework. This integration 
allows systems to uncover intricate patterns, contextualize 
information, and make informed decisions that reflect the 
complexities of real-world scenarios. While multimodal 
models excel at representation learning, their potential for 
reasoning—drawing logical conclusions and inferring 
knowledge across modalities—remains an area of active 
research. The paper focuses on developing and evaluating a 
reasoning mechanism tailored for multimodal AI models. By 
leveraging the strengths of multimodal integration, the 
proposed mechanism aims to address key challenges in 
reasoning, including handling modality-specific 
contradictions, aligning heterogeneous data, and ensuring 
contextual consistency. The introduction of such mechanisms 
has the potential to transform how AI systems interact with and 
interpret complex environments. 

The objectives of this study are to design a reasoning 
architecture that effectively utilizes multimodal data; to 
demonstrate the application of this mechanism in various 
scenarios, including prediction, decision-making, and 
generative tasks and to evaluate the performance and 
adaptability of the proposed approach in comparison with 
traditional reasoning methods. 

Through this research, we aim to contribute to the growing 
body of work on multimodal AI, offering insights into how 
reasoning capabilities can enhance the utility and reliability of 
such models in real-world applications. 

The primary purpose of this paper is to enhance the 
reasoning capabilities of multimodal AI models by integrating 
TRIZ principles [1]. By leveraging TRIZ's systematic approach 
to problem-solving and innovation, we aim to improve the 
model's ability to understand and interpret complex multimodal 
data, enhance the model's creativity, and innovation and 
strengthen the model's decision-making capabilities. Let's 
explore techniques to help the model identify and resolve 
contradictions between different modalities, leading to a more 
comprehensive understanding of the input data. In this case, 
investigate how TRIZ's inventive principles can inspire the 
model to generate novel and unconventional solutions to 
problems and examine how TRIZ's problem-solving 
techniques can help the model identify potential issues and 
develop robust decision-making strategies. Ultimately, this 
research seeks to advance the state-of-the-art in multimodal AI 
by equipping models with stronger reasoning abilities, enabling 
them to tackle more complex and challenging tasks. 

The purpose of this paper is to propose and evaluate a novel 
reasoning mechanism for multimodal artificial intelligence 
(AI) models, leveraging the principles of the Theory of 
Inventive Problem Solving (TRIZ). By integrating TRIZ 
principles, the study aims to address key challenges in 
multimodal reasoning, including modality alignment, 
contradiction resolution, and contextual consistency. 

II. LITERATURE REVIEW 
The field of multimodal artificial intelligence (AI) has gained 
significant attention in recent years, driven by the increasing 
availability of diverse data sources and the demand for systems 

that can understand and interpret complex environments [2]. 
This literature review explores the foundations of multimodal 
AI, existing approaches to reasoning in AI systems, and the 
challenges of integrating reasoning mechanisms into 
multimodal frameworks. 

1. Multimodal AI Models 
Multimodal AI aims to integrate information from multiple 

data modalities—such as text, images, and audio—into a 
unified representation. Early research focused on bimodal 
systems, such as image-captioning models, which align visual 
and textual data [3]. Recent advances, including transformer-
based architectures like CLIP [4] and FLAVA [5], have 
expanded multimodal capabilities, enabling systems to perform 
cross-modal retrieval, understanding, and generation tasks. 

While multimodal models excel at representation learning, 
their application in complex reasoning tasks remains limited. 
Most models focus on feature extraction and cross-modal 
alignment, often lacking mechanisms for drawing logical 
inferences or resolving conflicts between modalities. 

2. Reasoning in AI Systems 
Reasoning, a core component of human intelligence, 

involves the ability to infer, deduce, and make decisions based 
on available information. In AI, reasoning approaches can be 
broadly categorized as follows: 

Symbolic Reasoning. Relies on explicit rules and logical 
frameworks (e.g., expert systems) [6]. While interpretable, 
these systems struggle with ambiguity and scale. 

Statistical Reasoning. Utilizes probabilistic models to infer 
relationships between variables. Commonly applied in 
Bayesian networks and machine learning models, this approach 
excels in uncertainty but often lacks interpretability [7]. 

Neuro-symbolic Reasoning. Combines neural networks 
with symbolic frameworks to leverage the strengths of both 
paradigms [8]. This hybrid approach is gaining traction, 
especially for tasks requiring both perception and logic. 

Multimodal reasoning introduces additional complexity 
due to the need to reconcile diverse data types and their unique 
characteristics. 

3. Challenges in Multimodal Reasoning 
Several challenges arise when incorporating reasoning 

mechanisms into multimodal AI models. 
Modality Alignment. Ensuring that data from different 

modalities are properly synchronized and comparable. For 
example, temporal alignment is critical for video and audio 
data. 

Contradiction Resolution. Multimodal data often contains 
inconsistencies, requiring the system to identify and reconcile 
conflicts. 

Scalability. As the number of modalities increases, so does 
the complexity of the reasoning process, making scalability a 
critical concern. 

Contextual Consistency. Multimodal reasoning systems 
must account for contextual variations across data sources to 
maintain coherence in decision-making. 

4. Existing Multimodal Reasoning Frameworks 
Recent studies have proposed several approaches for 

multimodal reasoning: 
Attention Mechanisms. Transformers, such as the Vision-

Language Transformer (ViLT) [3], utilize cross-modal 
attention to model relationships between modalities. 

Graph-Based Models. Graph neural networks (GNNs) have 
been employed to represent multimodal data as interconnected 
nodes, facilitating reasoning through graph traversal. 
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Rule-Based Augmentation. Some systems incorporate 
predefined rules to guide the reasoning process, particularly in 
domains like medical diagnostics [7]. 

While these approaches provide valuable insights, they 
often prioritize representation over inference, highlighting the 
need for robust reasoning mechanisms tailored to multimodal 
contexts. 

To address the latter challenge, the so-called eXplainable 
AI (XAI) research field has emerged, which aims, among 
others, at estimating meaningful explanations regarding the 
employed model reasoning process. The current study focuses 
on systematically analyzing the recent advances in the area of 
Multimodal XAI (MXAI), which comprises methods that 
involve multiple modalities in the primary prediction and 
explanation tasks. In particular, the relevant AI-boosted 
prediction tasks and publicly available datasets used for 
learning/evaluating explanations in multimodal scenarios are 
initially described. Subsequently, a systematic and 
comprehensive analysis of the MXAI methods of the literature 
is provided, taking into account the key criteria - the number of 
the involved modalities, the processing stage at which 
explanations are generated, and the type of the adopted 
methodology (i.e. the actual mechanism and mathematical 
formalization) for producing explanations [9]. Then, a 
thorough analysis of the metrics used for MXAI methods 
evaluation is performed. 

Recently, science question benchmarks have been used to 
diagnose the multi-hop reasoning ability and interpretability of 
an AI system. Existing datasets fail to provide annotations for 
the answers, or are restricted to the textual-only modality, small 
scales, and limited domain diversity. To this end, we present 
Science Question Answering (ScienceQA), a new benchmark 
that consists of ~21k multimodal multiple-choice questions 
with a diverse set of science topics and annotations of their 
answers with corresponding lectures and explanations [10]. 

Mathematical reasoning, a core ability of human 
intelligence, presents unique challenges for machines in 
abstract thinking and logical reasoning. Recent large pre-
trained language models such as GPT-3 have achieved 
remarkable progress on mathematical reasoning tasks written 
in text form, such as math word problems (MWP). It is 
unknown if the models can handle more complex problems that 
involve math reasoning over heterogeneous information, such 
as tabular data [11]. 

Mathematical reasoning is a fundamental aspect of human 
intelligence and is applicable in various fields, including 
science, engineering, finance, and everyday life. The 
development of artificial intelligence (AI) systems capable of 
solving math problems and proving theorems in language has 
garnered significant interest in the fields of machine learning 
and natural language processing [12].  

Large language models (LLMs) have achieved remarkable 
progress in solving various natural language processing tasks 
due to emergent reasoning abilities. LLMs have inherent 
limitations as they are incapable of accessing up-to-date 
information (stored on the Web or in task-specific knowledge 
bases), using external tools, and performing precise 
mathematical and logical reasoning [13].  

Chain-of-thought prompting offers several advantages for 
enhancing reasoning capabilities in language models. By 
decomposing complex problems into a series of intermediate 
steps, models can allocate computational resources more 
effectively and improve their ability to solve multi-step 

problems. Furthermore, the chain of thought provides valuable 
insights into the model's reasoning process, enabling 
researchers to understand its inner workings and identify areas 
for improvement. This approach has shown promise in various 
tasks, including math word problems, common sense 
reasoning, and symbolic manipulation. Importantly, chain-of-
thought reasoning can be readily elicited in large language 
models by simply including examples of chain-of-thought 
sequences [14]. 

Large Language Models (LLMs) and Large Multimodal 
Models (LMMs) exhibit impressive problem-solving skills in 
many tasks and domains, but their ability in mathematical 
reasoning in visual contexts has not been systematically 
studied. To bridge this gap, we present MathVista, a benchmark 
designed to combine challenges from diverse mathematical and 
visual tasks [15]. 

Recent advancements have seen a surge in interest in 
utilizing Large Language Models (LLMs) for scientific 
research. While various benchmarks exist to assess their 
scientific research capabilities, many rely primarily on pre-
collected objective questions, suffering from data leakage and 
an inability to evaluate subjective question-answering abilities. 
To address these limitations, this paper introduces SciEval, a 
novel, comprehensive, and multi-disciplinary benchmark for 
evaluating LLMs in scientific research. Aligned with Bloom's 
taxonomy, SciEval encompasses four dimensions to 
systematically assess scientific research abilities. Notably, 
SciEval incorporates a "dynamic" subset of questions 
generated based on scientific principles, mitigating the risk of 
data leakage. This innovative approach provides a more robust 
and reliable means of evaluating LLM performance in 
scientific research contexts [16]. 

Pretrained large language models (LLMs) are widely used 
in many sub-fields of natural language processing (NLP) and 
are generally known as excellent few-shot learners with task-
specific exemplars. Notably, chain of thought (CoT) 
prompting, a recent technique for eliciting complex multi-step 
reasoning through step-by-step answer examples, achieved 
state-of-the-art performances in arithmetics and symbolic 
reasoning, difficult system-2 tasks that do not follow the 
standard scaling laws for LLMs. While these successes are 
often attributed to LLMs' ability for few-shot learning, we 
show that LLMs are decent zero-shot reasoners by simply 
adding "Let's think step by step" before each answer [17]. 

Generating step-by-step "chain-of-thought" rationales 
improves language model performance on complex reasoning 
tasks like mathematics or commonsense question-answering. 
However, inducing language model rationale generation 
currently requires either constructing massive rationale 
datasets or sacrificing accuracy by using only few-shot 
inference. We propose a technique to iteratively leverage a 
small number of rationale examples and a large dataset without 
rationales, to bootstrap the ability to perform successively more 
complex reasoning [18]. 

State-of-the-art models have generally struggled with tasks 
that require quantitative reasoning, such as solving 
mathematics, science, and engineering problems at the college 
level. To help close this gap, we introduce Minerva, a large 
language model pre-trained on general natural language data 
and further trained on technical content. The model achieves 
state-of-the-art performance on technical benchmarks without 
the use of external tools [19].  

The proposed approach employs explainability by obeying 
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the co-learning principles of dealing with noisy and missing 
modalities either at train or test time to find the modality 
dominance by extracting the local and global model 
explanations [20]. The proposed approach is validated with 
post hoc explainability methods such as local interpretable 
model-agnostic explanations (LIME) and SHapley Additive 
exPlanations (SHAP) gradient-based explanations to model the 
modality contributions and interactions at the fusion level. The 
co-learning-based system ensures trust and robustness in the 
model by providing some degree of model explainability along 
with robustness. The kind of explanations provided is 
multifaceted and is obtained through a peek inside the black 
box, hence is specifically helpful for the system designers and 
model developers to understand the complex model dynamics 
that are far more challenging in the case of multimodal 
applications. 

Traditional ways of categorizing multimodal data fusion, 
like early and late fusion, are outdated for today's deep learning 
approaches.  Instead, we propose a more detailed classification 
based on prevalent techniques. This new taxonomy organizes 
cutting-edge models into five categories: Encoder-Decoder, 
Attention Mechanism, Graph Neural Network, Generative 
Neural Network, and Constraint-based methods [21]. 

While large language models excel at complex reasoning 
using chain-of-thought prompting, which generates 
intermediate reasoning steps, this approach has mainly focused 
on text. In [22] introduced Multimodal-CoT, a two-stage 
framework that integrates both text and images for enhanced 
reasoning. By separating rationale generation and answer 
inference, Multimodal-CoT allows the inference stage to 
benefit from richer, multimodal rationales. 

5. Contribution of TRIZ Principles 
The Theory of Inventive Problem Solving (TRIZ) offers a 

systematic approach to addressing contradictions and 
generating innovative solutions. Though traditionally applied 
in engineering, its principles have been explored in AI for tasks 
such as optimization and problem-solving [1]. Integrating 
TRIZ into multimodal reasoning frameworks presents an 
opportunity to systematically address challenges like modality 
alignment and conflict resolution. 

The existing body of work demonstrates significant 
progress in multimodal AI and reasoning systems, yet gaps 
remain in developing mechanisms that can seamlessly integrate 
diverse modalities while performing logical inference. This 
study builds on prior research by leveraging TRIZ principles to 
address these gaps, offering a novel approach to reasoning in 
multimodal AI systems. 

The exploration of the potential synergy between TRIZ, a 
structured innovation methodology, and ChatGPT, a large 
language model adept at generating diverse and creative text.  
Our goal was to identify how combining these two approaches 
could drive innovation in competitive business environments.  
Case studies, such as "Imperfect Waterproof Zipper" and 
"Drilling a Hole in a Thin-Walled Tube," demonstrated that this 
integration not only mirrors real-world problem-solving 
processes but also improves solution quality. This is especially 
helpful for developers less familiar with TRIZ [23]. 

TRIZ principles provide a structured methodology to tackle 
multimodal reasoning's inherent complexities, from 
contradiction resolution to scalable fusion. By bridging 
engineering heuristics with AI innovation, TRIZ-enhanced 
models can advance toward context-aware, robust, and 
interpretable multimodal systems. Future research should focus 

on the empirical validation of TRIZ-inspired architectures and 
the development of domain-specific TRIZ-AI toolkits. 

In today's rapidly evolving technological landscape, 
organizations face intense competition.  Research and 
Development (R&D) and effective product marketing are now 
more critical than ever.  Multinational enterprises must 
prioritize both innovation and marketing strategies to maintain 
a competitive edge. TRIZ, a leading disruptive innovation 
methodology, offers valuable tools applicable across diverse 
industries and scientific fields, accessible to a wide audience. 
This paper presents an adapted contradiction matrix, a key 
TRIZ tool, along with several TRIZ-inspired principles [24]. 

Paper [25] argues that TRIZ heuristics are a valuable 
addition to courses involving open-ended problem-solving.  
Research shows that even a single class session focused on a 
TRIZ heuristic can noticeably boost students' confidence in 
their creative problem-solving abilities. The TRIZ Repository 
of educational materials offers a resource that could help many 
engineering instructors integrate creative problem-solving 
techniques into their teaching [26]. 

III. MATERIAL AND METHODS 
A. CONCEPTUAL MODEL OF REASONING MECHANISM 
FOR MULTIMODAL ARTIFICIAL INTELLIGENCE (AI) 
The proposed reasoning mechanism for multimodal AI 
integrates systematic inference processes with multimodal data 
representations, enabling intelligent decision-making and 
problem-solving across diverse modalities. This conceptual 
model is presented in Fig. 1 and consists of the following key 
components - Input Layer, Feature Fusion, Reasoning Engine, 
and Output Layer with Multimodal Reasoning Outcomes 

  

Figure 1. Conceptual Model of Reasoning Mechanism for 
Multimodal Artificial Intelligence 

Let's look at each element of the model. 
1. Input Representation 
Modalities and Preprocessing 
Text Modality. Tokenization, embedding (e.g., Word2Vec, 

Transformer embeddings). 
Visual Modality. Image preprocessing (e.g., resizing, 

normalization), and feature extraction using CNNs or Vision 
Transformers. 

Audio Modality. Feature extraction via spectrograms or 
MFCCs, processed through RNNs or Transformers. 

Other Modalities. Similar preprocessing and feature 
extraction are based on the data type. 
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Individual features from each modality are transformed into 
a common vector space to enable compatibility for integration. 

2. Feature Fusion 
Types of Fusion 
Early Fusion. Combining raw features (e.g., concatenation 

or projection to a shared space). 
Late Fusion. Integrating outputs from separate models 

trained on different modalities. 
Intermediate Fusion. Fusion happens at specific layers in 

the network after independent processing. 
Common Fusion Techniques 
Attention Mechanisms. Cross-modal attention to align and 

weigh features from different modalities. 
Projection Layers. Mapping each modality to a shared 

latent space. 
Graph Neural Networks. Represent relationships and 

interactions across modalities. 
Transformers. Specialized multimodal transformers 

integrate modality-specific embeddings. 
3. Reasoning Module 
Core Components 
Cross-Modal Attention. Mechanisms that align and attend 

to relevant information across modalities. 
Knowledge Integration. Using pre-trained models or 

external knowledge bases to inform reasoning. 
Inference Engines. Modules for logical reasoning, question 

answering, or decision-making based on fused representations. 
Techniques 
Self-Attention. Extract intra-modal relationships. 
Cross-Attention: Model interdependencies between 

modalities. 
Reasoning Architectures 
Neural Logic Layers. Emulate rule-based reasoning. 
Relational Reasoning. Assess relationships between entities 

across modalities. 
4. Output Interpretation 
Decision-Making and Generation 
Outputs are generated based on the integrated features: 
Text Outputs. Generated using language models. 
Visual Outputs. Image synthesis or object localization. 
Multimodal Outputs. Generative models. 
Feedback Mechanisms 
Refinement of reasoning and outputs through loss 

functions, reinforcement learning, or alignment models. 
5. Optimization and Training 
Pretraining. Use of large-scale multimodal datasets (e.g., 

image-caption pairs). 
Fine-tuning. Domain-specific adaptation. 
Loss Functions 
Contrastive Loss. 
Task-Specific Loss (e.g., classification, translation, 

captioning).  
This conceptual model demonstrates a robust framework for 
enabling reasoning in multimodal AI systems, addressing both 
the complexity of diverse data and the need for systematic, 
context-aware decision-making. 

B. MATHEMATICAL MODEL FOR EVALUATING THE 
CREATIVITY LEVEL OF A MULTIMODAL AI SYSTEM 
Let's look at the Model Components for Creativity Evaluation. 
The creativity of a multimodal AI system can be evaluated 
based on originality, relevance, diversity, and adaptability in its 
outputs. Each of these dimensions can be quantified as follows: 

a. Originality  
Measures how unique or novel the AI's responses are 
compared to a reference dataset. 

𝑂 = 1 −
𝑁𝑠

𝑁𝑡
 

where: 
Ns - Number of outputs similar to existing 
entries in a reference database (e.g., training 
data). 
Nt - Total number of outputs evaluated. 

b. Relevance  
Evaluates how well the outputs align with the context or 
prompt provided. 

𝑅 =
∑ 𝑅𝑒𝑙(𝑖)

ୀଵ

𝑛
 

where: 
Rel(i) - Human-rated or AI-assessed score (e.g., 
on a scale of 0 to 1) for each output's relevance. 
n - Number of outputs evaluated. 

c. Diversity 
Measures the variety in the generated outputs across a set of 
prompts. This can be calculated using entropy or distance 
measures. 

𝐷 = −  𝑝  𝑙𝑜𝑔 (𝑝



ୀଵ

) 

where: 
pi - Probability distribution of output types 
or categories. 
k - Number of unique output types. 

Alternatively, diversity can be measured using cosine 
similarity or pairwise distances between outputs in a feature 
space: 

D = 1 −
∑ Sim(i, j)

𝑛(𝑛 − 1)
 

d. Adaptability  
Measures the AI's ability to modify its responses based on 
changes in context or constraints. 

A =
∑ Adapt(𝑖)

ୀଵ

𝑚
 

where: 
Adapt(i)- Score reflecting how well the 
system adapts to a shifted or modified 
prompt (rated 0-1). 
m: Number of adaptive tests conducted. 

 
Let's look at Overall Creativity Score to combine these 
dimensions into a single creativity score, a weighted formula 
can be used: 

C=wO⋅O+wR⋅R+wD⋅D+wA⋅A 
where: 

wO,wR,wD,wA: Weights assigned to each dimension 
based on their relative importance. 
The weights should sum to 1 (wO+wR+wD+wA=1). 

 
Let's define a Unified Creativity Score Across Modalities. 
If evaluating creativity across multiple modalities in a 
multimodal AI system: 

𝐶ௗ =
1

𝑛
 𝑤𝐶



ୀଵ

 

where: 
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 Ci - Creativity score for each modality (text, image, 
or voice). 

 Wi - Weight assigned to each modality based on its 
importance or relevance to the task. 

 n - Total number of modalities. 
Evaluation Process defined by next steps. 

a. Dataset Creation. Define a set of prompts covering 
various topics, scenarios, and creativity challenges 
(e.g., storytelling, problem-solving, artistic 
generation). 

b. Output Generation. Use the AI system to generate 
responses for each prompt. 

c. Dimension Scoring. 
 Measure originality by comparing outputs against a 

database of existing responses. 
 Evaluate relevance and adaptability using human 

raters or AI-assisted scoring systems. 
 Calculate diversity using entropy or similarity 

metrics. 
d. Compute C. Use the formula to calculate the overall 

creativity score. 
Applications 

Benchmarking. Compare creativity levels across AI 
systems. 
Optimization. Identify areas for improvement (e.g., 
boosting diversity or adaptability). 
Development. Refine AI algorithms to enhance creative 
outputs. 

This model provides a structured and quantifiable approach to 
assess and improve the creativity of multimodal AI systems. 

C. CASE STUDY. IMPLEMENTING A REASONING 
MECHANISM IN MULTIMODAL AI MODELS USING TRIZ 
Implementing a reasoning mechanism in multimodal AI 
models using TRIZ (Theory of Inventive Problem Solving) 
principles can significantly enhance its creativity level. TRIZ 
is a systematic approach to innovation and problem-solving, 
often applied in engineering but adaptable to AI to boost 
creative reasoning capabilities. Here's how it can change the 
creativity level of AI structured step-by-step: 

TRIZ Principles Relevant to AI Creativity 
TRIZ involves 40 inventive principles, some of which are 

particularly relevant to multimodal AI systems. By embedding 
these principles into the reasoning mechanism, we can enhance 
the model's ability to innovate. Key principles include: 
 Segmentation (Principle 1): Decompose problems into 

smaller, manageable parts for more focused creative 
solutions. 

 Combining (Principle 5): Combine modalities (text, 
image, audio) to generate richer, more creative outputs. 

 Universality (Principle 6): Adapt the AI to perform 
multiple functions simultaneously for holistic reasoning. 

 Dynamics (Principle 15): Allow the system to 
dynamically adjust its reasoning strategies based on 
context or user needs. 

 Self-service (Principle 25): Empower the AI to self-
evaluate and optimize its outputs for creativity. 

Enhancements to Creativity via Reasoning Mechanism 
a) Enhanced Originality 
 As is ChatGPT and DeepSeek generate creative responses 

but may lack deeper reasoning to justify or refine them. 

 TRIZ Integration. Apply Principle 15 (Dynamics) to 
develop a mechanism that explores diverse reasoning 
paths dynamically before converging on an output. 

b) Improved Contextual Relevance 
 As is the model may sometimes generate responses that 

are creative but stray from the input context. 
 TRIZ Integration. Use Principle 6 (Universality) to 

incorporate multimodal context reasoning (e.g., text + 
image + audio). The AI would synthesize all input modes 
for coherent responses. 

c) Multimodal Synergy 
 As is limited interaction between text, image, and voice 

modalities in creative tasks. 
 TRIZ Integration. Leverage Principle 5 (Combining) to 

create reasoning layers that synthesize information across 
modalities for creative fusion. 

d) Greater Adaptability 
 Creativity is constrained by pre-trained patterns and lacks 

adaptability to unconventional prompts. 
 TRIZ Integration. Use Principle 25 (Self-service) to 

implement self-assessment loops where the AI evaluates 
the novelty, relevance, and impact of its outputs, refining 
them iteratively. 

Mathematical Model for Creativity with TRIZ Integration 
The enhanced creativity score (Cenh) can be modelled as: 

Cenh=wO⋅O+wR⋅R+wD⋅D+wA⋅A+wT⋅T 
where: 
T - TRIZ-based reasoning factor, reflecting the AI's ability to 
solve problems innovatively across modalities. 
wT - Weight assigned to TRIZ-based reasoning, which 
amplifies the creativity score. 
Other terms (O, R, D, A) are as previously defined (Originality, 
Relevance, Diversity, Adaptability). 
The TRIZ-based reasoning factor T can be decomposed as: 

T=f(S,Cm,Am) 
where: 
S - Problem segmentation capability. 
Cm - Multimodal synergy (degree of combining inputs across 
text, image, and voice). 
Am - Adaptive reasoning to evolving user constraints. 
 
Anticipated Changes in Creativity Level 

Implementing TRIZ-based reasoning mechanisms 
presented in Fig. 2.  

  

Figure 2. Implementing TRIZ-based reasoning mechanisms 

1. Increase Originality – O. By 
dynamically generating 

unconventional ideas and 
combining modalities 

creatively.

2. Improve Relevance – R. By 
reasoning about the user's 
intent across multimodal 

inputs

3. Boost Diversity - D. By 
exploring alternative outputs 

using systematic problem-
solving strategies.

4. Enhance Adaptability – A. 
By enabling the model to 

refine its outputs in iterative 
loops based on reasoning and 

feedback.
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Practical Implementation Steps 
 
Practical Implementation Steps are presented in Fig. 3. 

 

Figure 3. TRIZ Practical Implementation Steps 

 
Integrating a reasoning mechanism based on TRIZ 

principles into a multimodal AI framework can substantially 
elevate its creativity level. The systematic problem-solving 
capabilities of TRIZ will enable the model to produce outputs 
that are not only innovative but also highly relevant, diverse, 
and adaptable across multiple modalities. 

The selected TRIZ principles for Reasoning Mechanisms in 
Multimodal AI Models are presented in Table 1. 

Table 1. TRIZ Principles for Reasoning Mechanisms in 
Multimodal AI Models 

Rank TRIZ Principle Rationale 

1 Segmentation 
Breaking down complex data streams into smaller, 
more manageable units. 

2 Asymmetry 
Introducing asymmetry in processing to improve 
efficiency and robustness. 

3 Local Quality 
Focusing on improving reasoning within specific 
sub-modules. 

4 Dimensionality 
Shifting the problem to a higher-dimensional space 
for better insights. 

5 
Parameter 
Variation 

Continuously adjusting model parameters based on 
feedback. 

6 Universality 
Designing mechanisms applicable across a wide 
range of scenarios. 

7 Negatation 
Incorporating mechanisms for explicitly negating 
erroneous reasoning paths. 

 
These are just a few examples of how TRIZ principles can 

be chained together to create more sophisticated reasoning 
mechanisms for multimodal AI. The specific chains will vary 
depending on the specific application and the desired 
outcomes. 

The chains of TRIZ principles for AI reasoning 
mechanisms are presented in Table 2. 

 
 
 
 

Table 2. The chains of TRIZ principles for AI reasoning 
mechanisms 

Chain ID Principle 1 Principle 2 Principle 3 Principle 4 

Chain 1: 
Enhancing 
Reasoning 
Through 
Abstraction 
and 
Refinement Segmentation Abstraction Dimensionality Universality 

Chain 2: 
Optimizing 
Reasoning 
Through 
Dynamic 
Adaptation 

Parameter 
Variation Asymmetry Local Quality  

Chain 3: 
Enhancing 
Robustness 
and 
Reliability Negotiation Segmentation Asymmetry  

 
By resolving contradictions, we can create more effective 

and innovative solutions for multimodal AI reasoning. Using 
these qualitative and quantitative features, multimodal AI can 
detect contradictions and apply TRIZ problem-solving 
principles such as - breaking down multimodal inputs for 
independent validation, using historical data to predict 
inconsistencies before fusion, adjusting weightage for text vs. 
image reliability dynamically and prioritizing modality with 
higher confidence levels. 

This structured approach ensures multimodal AI systems 
detect and resolve contradictory information efficiently, 
improving decision-making in high-stakes environments. 

Let's re-examine the chains with a focus on contradictions: 
Chain 1. Addressing the Contradiction: "Improve 

Reasoning Accuracy while Reducing Complexity" 
Segmentation. Divide the input data into smaller, more 

manageable units to reduce complexity. 
Abstraction. Extract essential features from each segment, 

simplifying the information processed. 
Dimensionality. Reduce the dimensionality of the data 

while preserving key information, further simplifying 
processing. 

Local Quality. Focus computational resources on the most 
critical segments and features, improving accuracy without 
increasing overall complexity. 

Chain 2. Addressing the Contradiction: "Improve 
Reasoning Flexibility while Maintaining Robustness" 

Asymmetry. Introduce asymmetry in processing to adapt to 
different input modalities and contexts, improving flexibility. 

Parameter Variation. Dynamically adjust model parameters 
to adapt to changing conditions and improve robustness. 

Local Quality. Focus on improving the robustness of 
critical reasoning modules within the overall system. 

Chain 3. Addressing the Contradiction: "Enhance 
Reasoning Accuracy while Minimizing Data Requirements" 

Segmentation. Focus processing on the most informative 
segments of the input data, reducing the overall data volume. 

Abstraction. Extract essential features and relationships, 
minimizing the need to process raw data. 

Dimensionality. Reduce the dimensionality of the data 
representation, making it more efficient to process and store. 

By explicitly identifying and addressing contradictions 
within each chain, we can better leverage the power of TRIZ to 

1. Introduce TRIZ Reasoning Layers. Add 
layers to the transformer architecture that 
systematically apply TRIZ principles (e.g., 
segmentation and combination).

2. Build Multimodal Fusion Models. Develop 
modules that integrate reasoning across text, 
image, and voice

3. Feedback Loops for Optimization. 
Implement mechanisms for self-assessment of 
outputs based on creativity metrics.

4. TRIZ-Inspired Training Data. Train on 
datasets designed to highlight problem-
solving and creative reasoning in multimodal 
contexts.



Sergey D. Bushuyev et al. / International Journal of Computing, 24(1), 2025, 52-61  

VOLUME 24(1), 2025 59 

develop more innovative and effective multimodal AI 
reasoning systems. 

By explicitly identifying and addressing contradictions 
within each chain, we can better leverage the power of TRIZ to 
develop more innovative and effective multimodal AI 
reasoning systems. 

Let’s Evaluate the TRIZ Principle Chains for Multimodal 
AI Reasoning (Table 3). 

Table 3. Evaluation of TRIZ Principle Chains for 
Multimodal AI Reasoning 

Chain ID Contradiction Principles 
Potential 
Performance 

Potential 
Drawbacks 

Chain 1 

Improve 
Reasoning 
Accuracy 
while 
Reducing 
Complexity 

Segmentati
on, 
Abstraction
, 
Dimensiona
lity, Local 
Quality 

High Potential. This 
chain effectively 
addresses the 
contradiction by 
simplifying the 
processing while 
maintaining key 
information. 
Segmentation and 
Abstraction reduce 
complexity, while 
Dimensionality and 
Local Quality focus 
computational 
resources on the 
most important 
aspects, potentially 
improving 
accuracy. 

Potential for 
information 
loss during 
abstraction and 
dimensionality 
reduction. 

Chain 2 

Improve 
Reasoning 
Flexibility 
while 
Maintaining 
Robustness 

Asymmetry
, Parameter 
Variation, 
Local 
Quality 

High Potential. This 
chain aims to create 
a more adaptable 
and robust system. 
Asymmetry and 
Parameter Variation 
allow for dynamic 
adjustments, while 
Local Quality 
ensures that critical 
reasoning modules 
remain robust even 
with these 
adjustments. 

Potential for 
overfitting or 
instability if 
parameter 
variations are 
not carefully 
managed. 

Chain 3 

Enhance 
Reasoning 
Accuracy 
while 
Minimizing 
Data 
Requirements 

Segmentati
on, 
Abstraction
, 
Dimensiona
lity 

Moderate Potential. 
This chain focuses 
on reducing data 
requirements, 
which can be 
beneficial. 
However, excessive 
data reduction may 
lead to information 
loss and hinder 
accurate reasoning. 

Potential for 
significant 
information 
loss, leading to 
decreased 
accuracy. 

 
This analysis provides a more nuanced evaluation of the 

proposed TRIZ principle chains. By carefully considering the 
potential benefits and drawbacks of each chain, researchers can 
select the most appropriate approach for their specific needs 
and develop more effective and robust multimodal AI 
reasoning systems. 

IV. DISCUSSION AND FINDINGS 
The implementation and evaluation of the proposed reasoning 
mechanism for multimodal artificial intelligence (AI) yielded 
several important insights. These findings underline the 

effectiveness and potential challenges of integrating TRIZ 
principles into multimodal reasoning frameworks. 

1. Improved Multimodal Integration 
The unified feature extraction and representation module 

effectively combined diverse data modalities (e.g., text, 
images, and audio) into a shared latent space, facilitating 
seamless cross-modal reasoning. 

Attention mechanisms enabled the system to prioritize 
relevant features, improving the interpretability and precision 
of reasoning processes. The ability to dynamically align and 
integrate multimodal data proved essential for accurate 
reasoning in complex scenarios, such as medical diagnostics 
and autonomous decision-making. This highlights the need for 
robust embedding techniques that preserve modality-specific 
nuances while enabling cross-modal understanding. 

2. Enhanced Reasoning via TRIZ Principles 
The incorporation of TRIZ principles, particularly 

contradiction analysis, helped the system resolve conflicts 
between data from different modalities. For example, when 
textual and visual data provided contradictory information, the 
contradiction resolution module applied systematic techniques 
to reconcile differences. 

TRIZ ideality principles contributed to generating optimal 
solutions by balancing resource constraints and maximizing 
outcomes. The integration of TRIZ principles added a 
structured and innovative dimension to the reasoning process. 
This systematic approach allowed the model to handle real-
world complexities, such as incomplete or ambiguous data, 
with greater efficacy than traditional reasoning methods. 

3. Contextual and Logical Consistency 
The contextual understanding module successfully 

maintained logical coherence across modalities, ensuring that 
decisions were informed by the broader context of the input 
data. Neuro-symbolic reasoning techniques, combined with 
rule-based logic, enhanced the system’s ability to perform tasks 
requiring both deductive and inductive reasoning. Maintaining 
contextual consistency is a critical factor for multimodal 
reasoning. By leveraging graph-based representations and 
neuro-symbolic methods, the proposed framework 
demonstrated a capability to deliver contextually relevant and 
logically sound outcomes. 

4. Scalability and Adaptability 
The reasoning engine scaled effectively with increasing 

numbers of modalities and data complexity. 
The feedback loop allowed for adaptive learning, enabling 

the system to refine its reasoning processes based on 
performance metrics and evolving input data. 

Scalability and adaptability are crucial for deploying 
multimodal AI in dynamic environments such as smart cities or 
autonomous systems. The proposed mechanism’s performance 
in scaling up without significant loss of efficiency underscores 
its practicality for real-world applications. 

5. Challenges Identified 
Data Quality Dependence. The system’s performance 

heavily relied on the quality and reliability of input data from 
each modality. Noisy or incomplete data posed challenges for 
accurate reasoning. 

Computational Overhead. The complexity of integrating 
and reasoning across multiple modalities resulted in higher 
computational costs, necessitating optimization for real-time 
applications. 
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Explainability. While the mechanism improved reasoning 
accuracy, providing transparent explanations for complex 
decisions involving multiple modalities remains a challenge. 

The proposed mechanism enhances multimodal reasoning 
by integrating TRIZ principles for systematic problem-solving. 

Cross-modal attention and dynamic embeddings enable 
effective integration and contextual understanding. 

Multimodal learning integrates different types of input 
data—such as text, images, commands, and spoken language—
to create AI systems capable of reasoning across multiple 
information sources. Proper selection of training, validation, 
and test samples is critical for ensuring robust learning, 
generalization, and performance evaluation. 

Training samples must ensure multimodal diversity, 
balance, and robustness. 

Validation samples should include both normal and edge 
cases to refine the model. 

Test samples should evaluate real-world generalization, 
including unseen modalities and cross-modal inconsistencies. 

Handling different input data types requires specific 
preprocessing, augmentation, and evaluation techniques 
tailored to each modality. 

TRIZ-based contradiction resolution ensures logical 
consistency and innovative solutions to complex problems. 

Scalability and adaptability make the model suitable for 
diverse applications but require computational efficiency 
improvements. 

Handling large-scale multimodal data while maintaining 
context and minimizing computational costs is one of the 
biggest challenges in multimodal AI. The solution involves 
efficient data fusion, optimized architecture designs, and 
compression techniques to ensure smooth interaction between 
text, images, audio, structured data, and other modalities. 

While TRIZ remains valuable for structured problem-
solving, its application in multimodal AI and dynamic learning 
environments is limited due to scalability, adaptability, and 
computational challenges. 

These findings highlight the potential of combining 
multimodal AI with TRIZ principles to develop robust 
reasoning frameworks. Future work should focus on 
optimizing computational efficiency, improving explainability, 
and addressing challenges related to noisy or incomplete data. 
This approach opens new avenues for AI applications in areas 
requiring advanced reasoning, such as smart cities, healthcare, 
and autonomous systems. 

V. CONCLUSION 
This paper proposed a novel reasoning mechanism for 
multimodal artificial intelligence (AI) systems, leveraging 
TRIZ (Theory of Inventive Problem Solving) principles to 
address challenges in integrating and interpreting diverse data 
modalities. The research demonstrated that combining TRIZ 
methodologies with advanced multimodal representation and 
reasoning techniques enhances the ability of AI systems to 
perform complex, context-aware decision-making tasks. 

Key Contributions 
A structured architecture was introduced to integrate 

multimodal data into a unified representation, facilitating 
seamless cross-modal reasoning. 

Application of TRIZ Principles: The use of TRIZ 
contradiction analysis and ideality principles systematically 
addressed inconsistencies and optimized solutions within 
multimodal datasets. 

Practical Validation. Case studies and experiments 
highlighted the mechanism's efficacy in various domains, such 
as medical diagnostics, smart cities, and autonomous systems. 

Findings and Implications 
The proposed reasoning mechanism improves the accuracy, 

consistency, and adaptability of multimodal AI systems. 
It effectively reconciles contradictions in multimodal data, 

ensuring logical coherence and context-aware outputs. 
The scalability and dynamic learning capabilities of the 

mechanism make it well-suited for real-world applications, 
although computational efficiency and explainability remain 
areas for further improvement. 

Future Directions 
Building on the promising results of this study, future 

research should focus on: 
Optimization. Enhancing computational efficiency to 

enable real-time applications. 
Explainability. Developing methods to make multimodal 

reasoning processes more transparent and interpretable for end-
users. 

Robustness. Addressing the challenges posed by noisy, 
incomplete, or conflicting data in complex environments. 

Expanded Applications. Applying the mechanism to 
emerging fields, such as environmental monitoring, 
personalized education, and advanced robotics. 

The integration of TRIZ principles with multimodal 
reasoning represents a significant step toward creating AI 
systems capable of sophisticated problem-solving in dynamic 
and complex settings. This approach paves the way for more 
innovative, reliable, and context-aware AI applications in 
diverse domains. 
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