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 ABSTRACT This paper presents a comprehensive traffic sign recognition system designed to enhance advanced 
driver assistance systems (ADAS) and autonomous vehicles. The system employs a three-step algorithm 
comprising color segmentation, shape recognition, and a neural network-based classification to detect and identify 
various traffic signs in real time. Leveraging the advantages of color-based segmentation for rapid processing and 
combining it with sophisticated shape detection methods, our approach ensures high accuracy and precision even 
under challenging conditions such as varying illumination and occlusions. The integration of neural networks 
allows for effective classification across a broad range of sign types, addressing limitations seen in traditional 
methods. Our system’s ability to operate with standard onboard cameras, combined with its resilience to lighting 
variations, marks a significant advancement in traffic sign recognition technology. Extensive testing demonstrates 
its efficacy in real-world scenarios, highlighting its potential to enhance road safety and support autonomous 
driving technologies. 
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I. INTRODUCTION 
raffic sign recognition is a critical component of modern 
advanced driver assistance systems (ADAS) and 

autonomous vehicles. Accurate and timely recognition of 
traffic signs not only ensures compliance with road regulations 
but also significantly enhances road safety.  

Traditional methods of traffic sign detection and 
recognition often face challenges such as varying illumination, 
occlusions, and the need for real-time processing. To address 
these issues, this paper presents a novel traffic sign recognition 
system that leverages advanced AI techniques including color 
segmentation, shape recognition, scaling of the area of interest, 
and neural network-based classification. 

The proposed system begins with color segmentation, a 
crucial step that isolates the traffic signs from their 
surroundings. Utilizing the HSL (Hue, Saturation, Lightness) 
or HSV (Hue, Saturation, Value) color models, the system 
efficiently classifies the sign border frames based on their 
colors—grey, red, yellow, and blue—by focusing primarily on 
the hue component. This approach simplifies the color 

differentiation process, enabling rapid and reliable 
segmentation even under diverse lighting conditions (Fig. 2). 
 
 

 

Figure 1. Examples of common traffic signs used in traffic 
sign recognition systems. 

 

T
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Figure 2. Traffic sign examples illustrating segmentation 
under varying lighting conditions. 

Following color segmentation, the system employs robust 
shape recognition algorithms to identify the geometric shapes 
of the signs. This step is essential as traffic signs have 
standardized shapes, such as circles, triangles, rectangles, and 
octagons, which correspond to specific types of information 
and regulatory instructions. 

To ensure high accuracy in detection, the system scales up 
the area of interest around the detected shapes. This scaling 
process enhances the resolution of the potential sign regions, 
allowing for more precise analysis and reducing the risk of 
false positives. 

Finally, the system incorporates a neural network-based 
classifier that leverages deep learning techniques to 
distinguish between various types of traffic signs. This 
classifier is trained on a comprehensive dataset of traffic sign 
images, enabling it to learn and generalize across a wide range 
of sign types and conditions. The integration of neural 
networks ensures robust performance, addressing the 
limitations of traditional rule-based and template-matching 
methods. 

This paper details the development and evaluation of our 
traffic sign recognition system. Through extensive testing in 
real-world scenarios, we demonstrate the system’s efficacy in 
accurately detecting and classifying traffic signs, highlighting 
its potential to significantly improve the functionality of 
ADAS and autonomous driving technologies. 

II. ANALYSIS OF THE SUBJECT AREA 
A. BASIC CONCEPTS 
Traffic sign recognition is a critical component in the 
development of Advanced Driver Assistance Systems 
(ADAS) and autonomous vehicles [1]. It involves the 
automatic detection and identification of road signs using 
various technologies, ensuring compliance with traffic 
regulations and improving road safety. 

The process typically starts with isolating potential traffic 
signs from their surroundings through color segmentation, 
which uses models such as HSL (Hue, Saturation, Lightness) 
or HSV (Hue, Saturation, Value) to classify sign border frames 
by color (red, blue, yellow, and grey). This step is crucial for 
handling varying illumination conditions. 

Following segmentation, shape recognition algorithms 
identify the geometric shapes of signs—circles, triangles, 
rectangles, and octagons. These shapes provide clues about the 
type and intent of each sign. The Region of Interest (ROI) is 
scaled up for more precise analysis before passing the data to 

neural network classifiers, which use deep learning techniques 
to recognize and categorize signs accurately. 

In real-world scenarios, challenges include variations in 
lighting, occlusions, and environmental noise. Machine 
learning, particularly convolutional neural networks (CNNs), 
has emerged as the leading method to address these issues, 
offering robust solutions in classification tasks. 

B. REVIEW OF ANALOGS FROM THE LITERATURE 
Various approaches have been explored in the literature to 
improve traffic sign recognition: 

1. Color Segmentation and Shape Detection. 
Traditional methods focused on color segmentation and 

shape detection as the primary mechanisms for isolating and 
identifying traffic signs. Methods utilizing HSL or HSV color 
models, such as those described by Gonzalez and Woods in 
“Digital Image Processing,” [2] have been instrumental in 
addressing challenges related to diverse lighting conditions. 
The incorporation of adaptive thresholding methods for robust 
segmentation [3] further enhanced performance under 
complex scenarios. 

Hybrid approaches have also gained attention. Zaid et 
al. [4] demonstrated a method that integrates color-based 
segmentation with geometric shape validation to recognize 
traffic signs in adverse weather conditions, achieving 
significant robustness. Similarly, Marimuthu et al. [5] utilized 
frequency pattern mining combined with shape-based features 
to enhance the precision of traffic sign detection. 

2. Neural Network-Based Classification. 
The advent of convolutional neural networks (CNNs) has 

revolutionized traffic sign recognition. LeCun et al. [6] 
pioneered the application of CNNs for image recognition, and 
subsequent work has extended this success to traffic sign 
classification. Ahmed et al. [7] proposed a CNN architecture 
optimized for diverse real-world conditions, which 
significantly improved detection and classification accuracy. 
Gao et al. [8] emphasized the role of adaptive fusion and 
dictionary learning for improving generalization in neural 
networks, even under challenging conditions such as 
occlusions and motion blur. 

Recent studies have explored innovative neural network 
structures. Ishii et al. [9], Al-Salameh et al. [10], and Yu et al. 
[11] demonstrated deep learning models optimized for low-
power embedded devices, showcasing real-time performance 
capabilities. This advancement bridges the gap between high-
accuracy models and resource-constrained environments, a 
critical need for autonomous vehicles. 

3. Real-Time Processing. 
Real-time traffic sign recognition is crucial for applications 

in Advanced Driver Assistance Systems (ADAS) and 
autonomous driving [12]. Rodrigues et al. [13] and Wang et al. 
[14] developed edge-computing systems that efficiently 
handle traffic sign detection and classification. These systems 
reduce latency by processing data locally on devices, thus 
ensuring reliability in time-sensitive applications. 

YOLO-based models have further streamlined real-time 
detection. Zhang et al. [3] and Chen et al. [15] introduced 
optimized versions of YOLOv5 that achieve high accuracy and 
low latency, making them suitable for deployment in real-
world driving scenarios. 

4. Dataset Contributions 
Datasets play a pivotal role in the development and 

benchmarking of traffic sign recognition systems. The German 
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Traffic Sign Recognition Benchmark (GTSRB) [16] and the 
Belgium Traffic Sign Dataset (BTSD) [17] have been widely 
adopted as benchmarks, providing diverse examples under 
various conditions. 

More recently, Alhamadi et al. [18] and Zhang et al. [19] 
introduced synthetic datasets that simulate adverse conditions, 
such as poor lighting and motion blur, enabling researchers to 
train models for extreme scenarios. These datasets 
complement traditional benchmarks, ensuring robust model 
development. 

5. Application in Autonomous Driving 
Applications of traffic sign recognition systems in 

autonomous vehicles have seen a surge in interest. Zaid et al. 
[4] demonstrated real-time detection systems capable of 
operating in harsh environmental conditions, contributing to 
improved road safety. Similarly, Ahmed et al. [7] and Chen et 
al. [20] explored CNN-based classifiers for ADAS, achieving 
state-of-the-art accuracy with minimal inference time. 

These studies underline the importance of integrating AI 
techniques to overcome the limitations of traditional methods, 
such as susceptibility to environmental noise and reliance on 
handcrafted features. 

C. CONCLUSIONS 
The review confirms that CNNs and hybrid methodologies 
combining traditional and deep learning approaches offer 
substantial advancements in traffic sign recognition. The ability 
of CNN-based systems to handle variations in lighting, 
occlusions, and noise demonstrates their potential for real-time 
applications in ADAS and autonomous vehicles. Future work 
should focus on optimizing these models for low-power 
embedded systems to enhance their feasibility in practical 
deployments. 

III. BUILDING A MACHINE LEARNING MODEL 
The proposed traffic sign recognition system is composed of 
four main modules: Color Segmentation, Sign Shape 
Recognition, Area of Interest Scaling, and Classification. Each 
module is integral to the accurate and efficient detection and 
recognition of traffic signs in real-time environments. This 
chapter provides a detailed description of each module’s 
components, algorithms, and interactions within the system. 

A. COLOR SEGMENTATION 
Color segmentation is the initial step in the recognition process, 
focusing on isolating traffic signs based on their distinct border 
colors. The system uses either the HSL (Hue, Saturation, 
Lightness) or HSV (Hue, Saturation, Value) color model to 
simplify the segmentation process by concentrating on the hue 
component, which is less affected by lighting variations. 

To extract hue, the input image is converted to the HSL color 
space. The hue component is extracted as it provides a robust 
basis for color differentiation. 

The process of converting an RGB value to the HSL (Hue, 
Saturation, Lightness) color space begins with normalizing the 
RGB components. This involves scaling each RGB value to a 
range of 0 to 1 by dividing it by 255. 

For example, consider the RGB value (104, 153, 237): 
1. Normalize RGB values 
Convert the RGB values to a range of 0 to 1 by dividing 

each by 255: 

𝑹 =  
𝟏𝟎𝟒

𝟐𝟓𝟓
= 𝟎. 𝟒𝟏 

𝑮 =  
𝟏𝟓𝟑

𝟐𝟓𝟓
= 𝟎. 𝟔 

𝑩 =  
𝟐𝟑𝟕

𝟐𝟓𝟓
= 𝟎. 𝟗𝟑 

2. Determine Minimum and Maximum Values 
Identify the minimum and maximum values among the 

normalized R, G, and B: 
𝑚𝑖𝑛 = 0.41 (𝑅) 
𝑚𝑎𝑥 = 0.93 (𝐵) 

3. Calculate Luminance (L) 
Luminance is calculated as the average of the max and min 

values (9): 

𝐿 =
𝑚𝑎𝑥 +  𝑚𝑖𝑛

2
=

0.93 +  0.41

2
≈ 0.67 (𝑜𝑟 67%),                                     (1) 

4. Determine Saturation (S) 
Saturation depends on whether the max and min values are 

equal and the luminance value. If max equals min, saturation is 
0 (achromatic, gray). Otherwise: 

𝐼𝑓 𝐿 ≤  0.5: 

𝑆 =
𝑚𝑎𝑥 −  𝑚𝑖𝑛

𝑚𝑎𝑥 +  𝑚𝑖𝑛
,                      (2) 

𝐼𝑓 𝐿 >  0.5: 

𝑆 =
𝑚𝑎𝑥 −  𝑚𝑖𝑛

2 −  𝑚𝑎𝑥 −  𝑚𝑖𝑛
,                (3) 

Given L = 0.67 (which is greater than 0.5), we use the second 
formula: 

𝑆 =
0.93 − 0.41

2 − 0.93 − 0.41
=

0.52

0.66
≈ 0.788 (𝑜𝑟 79%),   (4) 

5. Calculate Hue (H) 
The Hue calculation is contingent on which RGB 

component is the maximum: 
𝐼𝑓 𝑚𝑖𝑛 =  𝑚𝑎𝑥: 

𝐻 = 0,                                          (5) 
𝐼𝑓 𝑚𝑎𝑥 =  𝑅: 

𝐻 =
𝐺 − 𝐵

𝑚𝑎𝑥 − 𝑚𝑖𝑛
,                                  (6) 

𝐼𝑓 𝑚𝑎𝑥 = 𝐺: 

𝐻 = 2 +
𝐵 − 𝑅

𝑚𝑎𝑥 − 𝑚𝑖𝑛
,                             (7) 

𝐼𝑓 𝑚𝑎𝑥 =  𝐵: 

𝐻 = 4 +
𝑅 − 𝐺

𝑚𝑎𝑥 − 𝑚𝑖𝑛
,                             (8) 

Since 𝑚𝑎𝑥 = 𝐵: 

𝐻 = 4 +
0.41 − 0.6

0.93 − 0.41
= 4 +

−0.19

0.52
≈ 4 − 0.365 ≈ 3.635 

Convert to degrees by multiplying by 60: 
𝐻 = 3.635 × 60 ≈ 217.2∘(𝑟𝑜𝑢𝑛𝑑𝑒𝑑 𝑡𝑜 217∘) 

For rgb(104, 153, 237), the HSL values are: 
– Hue (H): 217∘ 
– Saturation (S): 79% 
– Luminance (L): 67% 

B. THRESHOLDING 
Threshold values specific to grey, red, yellow, and blue are 
applied to the hue component to create binary masks. These 
masks highlight regions that potentially contain traffic signs 
[21]. 

1. Define Thresholds: 
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Based on hue, luminance, and saturation ranges specific to 
traffic sign colors: 
– Red: 𝐻 ∈ [0,10] ∪ [350,360], 𝑆 >  0.5, 𝐿 >  0.2 
– Yellow: 𝐻 ∈ [50,70], 𝑆 >  0.5, 𝐿 >  0.2 
– Blue: 𝐻 ∈ [200,240], 𝑆 >  0.5, 𝐿 >  0.2 
– Grey: 𝑆 < 0.1, 𝐿 ∈ [0.3,1] 

The aim of this stage is to accurately isolate potential traffic 
sign regions based on color characteristics. By defining specific 
thresholds for hue, saturation, and luminance values 
corresponding to typical traffic sign colors—such as red, 
yellow, blue, and grey—the system can create binary masks that 
highlight regions of interest (ROIs) where traffic signs are likely 
to appear. This color-based thresholding serves as a foundation 
for efficient and precise segmentation, even in varying lighting 
conditions, by focusing on the color profiles unique to traffic 
signs. Rahman et al. [22] demonstrated the effectiveness of real-
time traffic sign detection systems like TRD-YOLO in 
accurately identifying small or occluded traffic signs, as 
illustrated in Figure 5. 

 

 
Figure 3. Distribution of Colors on H (Hue) and S 

(Saturation). 

 
 

 

Figure 4. Distribution of colors on L (Luminance) and S 
(Saturation). 

 

 

Figure 5. Color segmentation for red traffic signs. 

 
2. Apply Thresholding: 
– Convert the image to HSL. 
– Create binary masks for each color range: 

𝑀𝑎𝑠𝑘ௗ

= ቄ
1 𝑖𝑓 (𝐻 ∈ [0,10] ∪ [350,360]) 𝑎𝑛𝑑 𝑆 > 0.5 𝑎𝑛𝑑 𝐿 > 0.2
0 𝑜𝑡ℎ𝑒𝑟𝑣𝑖𝑠𝑒                                                                                    

, (10) 

Similarly, masks for yellow, blue, and grey are created based 
on their respective thresholds. 

The purpose of this stage is to utilize the defined color 
thresholds to create binary masks for each target color (red, 
yellow, blue, and grey), effectively isolating potential traffic 
sign regions in the image. By converting the image to the HSL 
color space and applying the thresholds, the system highlights 
areas that match the specific color profiles of traffic signs. This 
thresholding process simplifies the image, enabling the system 
to focus on relevant regions for further shape recognition, and 
enhances the robustness of traffic sign detection in diverse 
lighting conditions. 

Morphological operations are applied to the binary masks to 
refine them by removing noise and enhancing the regions 
corresponding to traffic signs. 

1. Noise Reduction: 
Erosion: Removes small noise points by eroding the 

boundaries of the foreground (traffic sign regions). 
𝑀𝑎𝑠𝑘ௗௗ = 𝑒𝑟𝑜𝑑𝑒(𝑀𝑎𝑠𝑘, 𝐾𝑒𝑟𝑛𝑒𝑙),              (11) 

A common kernel is a 3×33×3 matrix of ones. 
Dilation: Expands the boundaries of the foreground, 

recovering the eroded regions and smoothing the shapes. 
𝑀𝑎𝑠𝑘ௗ௧ௗ = 𝑑𝑖𝑙𝑎𝑡𝑒(𝑀𝑎𝑠𝑘ௗௗ , 𝐾𝑒𝑟𝑛𝑒𝑙),       (12) 

2. Region Enhancement: 
Closing: A dilation followed by erosion. This operation fills 

small holes and connects disjointed regions within the masks. 
𝑀𝑎𝑠𝑘௦ௗ = 𝑑𝑖𝑙𝑎𝑡𝑒(𝑒𝑟𝑜𝑑𝑒(𝑀𝑎𝑠𝑘, 𝐾𝑒𝑟𝑛𝑒𝑙), 𝐾𝑒𝑟𝑛𝑒𝑙) 

Opening: An erosion followed by dilation. This operation 
removes small objects from the foreground while preserving the 
shape and size of larger objects. 

𝑀𝑎𝑠𝑘ௗ

= 𝑒𝑟𝑜𝑑𝑒(𝑑𝑖𝑙𝑎𝑡𝑒(𝑀𝑎𝑠𝑘, 𝐾𝑒𝑟𝑛𝑒𝑙), 𝐾𝑒𝑟𝑛𝑒𝑙), (13) 
3. Final Mask Preparation: 
After applying these morphological operations, the refined 

masks are combined if multiple colors are being segmented. 
This ensures that all potential traffic sign regions are captured. 

C. SHAPE RECOGNITION 
After isolating the potential traffic sign regions through color 
segmentation, the system employs shape recognition algorithms 
to identify specific geometric shapes that are characteristic of 
traffic signs. 



 Mykola Drobiniak et al. / International Journal of Computing, 24(1) 2025, 62-71 

66 VOLUME 24(1), 2025 

1. Hough Transform for Circles: 
The system uses the Hough Transform to detect circular 

shapes, which are common in many regulatory signs. 
Parameters such as the minimum and maximum radius are set 
to filter out irrelevant circles. 

2. Edge Detection (using modified Canny Edge Detection 
algorithm): 

The ROI searching in this system improves upon traditional 
Canny edge detection by integrating color information, which 
the Canny algorithm alone lacks. Canny edge detection is purely 
gradient-based, which can result in high sensitivity to noise and 
missing critical color-based features of road signs. Instead of 
solely relying on edges, the system in article uses a modified 
Canny edge detection algorithm combined with Hough 
Transform and shape approximation to better isolate sign shapes 
based on color and geometric properties, thereby enhancing 
reliability in real-world conditions. 

2.1. Grayscale Conversion 
– Convert the RGB image to a grayscale image using a 

weighted sum of the R, G, and B channels. This can be done 
using the formula: 

𝐺𝑟(𝐺𝑟𝑒𝑦𝑠𝑐𝑎𝑙𝑒) = 0.299 ∗ 𝑅 + +0.587 ∗ 𝐺 + 0.114 ∗ 𝐵, (14) 
– This reduces the image data to a single channel, 

simplifying further processing. 
2.2. Noise Reduction: 
Apply a Gaussian blur to the grayscale image to smooth out 

noise and reduce minor variations in pixel intensity. 
A Gaussian blur convolution can be applied using a 5x5 

kernel with a standard deviation (σ) adjusted based on the noise 
level in the image. 

2.3. Finding Intensity Gradient of the Image (Fig. 3) 
The smoothed image is subsequently filtered using a Sobel 

kernel applied in both the horizontal and vertical directions to 
obtain the first derivative in the horizontal direction (Gx) and 
the vertical direction (Gy).  

A – the source image that will be convolved with the Sober 
kernel 

𝐺௫ = 
1 0 −1
2 0 −2
1 0 −1

൩ ∗ 𝐴,                        (15) 

𝐺௬ = 
1 2 1
0 0 0

−1 −2 −1
൩ ∗ 𝐴,                     (16) 

 
From these derivative images, we can calculate the edge 

gradient magnitude (G) and direction (D) for each pixel as 
follows: 

𝐺 = ට𝐺௫
ଶ + 𝐺௬

ଶ,                              (17) 

 

Figure 6. Suppression of non-maximum edges in Sobel edge 
detection. 

𝐷 = 𝑎𝑟𝑐𝑡𝑔 ൬
𝐺௬

𝐺௫

൰,                           (18) 

Point A lies on the edge (in the vertical direction). The 
gradient direction is perpendicular to the edge. Points B and C 
are positioned along the gradient direction. To determine if 
Point A is a local maximum, it is compared with Points B and 
C. If it is a local maximum, it proceeds to the next stage; 
otherwise, it is suppressed (set to zero). 

2.4. Hysteresis Thresholding 
This stage determines which detected edges are genuine and 

which are not. Two threshold values, minVal and maxVal, are 
required for this process. Edges with an intensity gradient 
exceeding maxVal are definitely considered edges, while those 
below minVal are disregarded as non-edges. Edges falling 
between these two thresholds are classified based on their 
connectivity: if they are connected to “sure-edge” pixels, they 
are retained as part of the edges; otherwise, they are discarded 
(Fig 4). 

 

 

Figure 7. Hysteresis thresholding in edge detection. Edges 
above maxVal are confirmed, while those below minVal are 
discarded. Edges between the thresholds (e.g., Point B) are 

kept only if connected to strong edges (e.g., Point A); 
otherwise, they are discarded (e.g., Point C). 

 
Edge A exceeds the maxVal threshold, thus it is classified as 

a “sure-edge.” Despite edge B being below the maxVal, it is 
connected to edge A, making it a valid edge and allowing us to 
capture the entire curve. On the other hand, edge C, although 
above the minVal and located in the same region as edge B, is 
not connected to any “sure-edge” and is therefore discarded. It 
is crucial to carefully select the minVal and maxVal thresholds 
to achieve accurate results. 

This stage also removes small pixels noises on the 
assumption that edges are long lines 

2.5. Circle Detection using Hough Transform 
2.5.1. Accumulator Array Initialization 
Initialize a 3D accumulator array 𝐴(𝑎, 𝑏, 𝑟) where 𝑎 and 𝑏 

represent the coordinates of the circle centers and 𝑟 represents 
the radius of the circles. The dimensions of this array are 
determined by the possible ranges of 𝑎, 𝑏, and 𝑟. 

2.5.2. Voting Process: 
For each edge point (𝑥, 𝑦) and each possible radius 𝑟 within 

the specified minimum and maximum bounds: 
– Calculate the potential circle centers (𝑎, 𝑏) using the 

parametric equations of a circle: 
𝑎 = 𝑥 − 𝑟 ∗ cos(𝜃),                           (19) 
𝑏 = 𝑦 − 𝑟 ∗ cos(𝜃),                           (20) 

where 𝜃 ranges from 0 to 360 degrees. 
– Increment the corresponding cell in the accumulator array: 

𝐴(𝑎, 𝑏, 𝑟)+= 1,                              (21) 
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This process involves iterating over a range of angles 𝜃 
(commonly in steps of 1 degree) to vote for all possible circle 
centers for each edge point and radius. 

2.5.3. Post-Processing and Filtering: 
To refine the detected circles and eliminate false positives: 
– Radius Constraints: Ensure that the detected circles’ radii 

fall within the specific minimum and maximum bounds. 
– Shape Validation: Verify the circularity by checking the 

consistency of edge points around the detected circle’s 
perimeter. 

2.5.4. Transform for Circles 
Edge Point (𝑥, 𝑦): Suppose an edge point is located at (𝑥, 𝑦). 
Radius Range [𝑟 , 𝑟௫]: Consider a range of possible 

radii, for instance, from 10 to 50 pixels. 
Voting in the Accumulator Array: For each radius 𝑟 in the 

range and for each angle 𝜃 from 0 to 360 degrees: 
– Calculate potential centers 

𝑎 = 𝑥 − 𝑟 ∗ cos(𝜃),                           (22) 
𝑏 = 𝑦 − 𝑟 ∗ cos(𝜃),                           (23) 

– Increment the corresponding cell 𝐴(𝑎, 𝑏, 𝑟) in the 
accumulator array 

2.5.5. Identifying Circles 
– Analyze the accumulator array to find cells with high vote 

counts. 
– These cells indicate potential circles with parameters 

(𝑎, 𝑏, 𝑟). 
2.5.6. Filtering and Validation 
Apply thresholds and validate the circularity to ensure 

accurate detection. 
– Edge Detection and Polygon Approximation 
For polygonal shapes like triangles, rectangles, and 

octagons, edge detection techniques (e.g., Canny edge detector) 
are used. The detected edges are then approximated to polygons 
using algorithms like the Douglas-Peucker algorithm. 

The system employs shape detection algorithms to identify 
the geometric shapes of traffic signs. The Hough Transform is 
used for detecting circular shapes, while edge detection methods 
are applied for identifying polygons such as triangles, 
rectangles, and octagons [23]. 

– Geometric Filtering 
Detected shapes are validated based on their geometric 

properties, such as aspect ratio, area, number of sides, and 
perimeter. This step ensures that only shapes corresponding to 
actual traffic signs are retained. 

– ROI Extraction 
Bounding boxes around the validated shapes are extracted, 

defining the regions of interest (ROIs) for further processing. 
3. Scaling up the Area of Interest 
To improve the accuracy of classification, the identified 

ROIs are scaled up to provide better resolution and detail for the 
neural network classifier. 

3.1. ROI Enlargement 
The bounding boxes of the ROIs are expanded by a 

predefined scale factor. This enlargement increases the size of 
the potential sign regions, allowing for finer detail to be 
captured. 

3.2. Normalization 
The scaled-up ROIs are normalized to a standard size, 

ensuring consistent input dimensions for the neural network. 
This normalization helps maintain uniformity and enhances the 
classifier's performance. 

4. Classification 

The classification component of the proposed traffic sign 
recognition system uses a Region-based Convolutional Neural 
Network (RCNN) to identify and categorize detected regions of 
interest (ROIs) as specific types of traffic signs [24]. The 
classification process includes feature extraction, classification, 
and bounding box refinement for accurate sign identification 
and localization. 

4.1. Feature Extraction 
Each detected ROI from the previous stages (color 

segmentation and shape detection) is passed into a CNN for 
feature extraction. This stage involves convolutional and 
pooling layers to identify patterns that differentiate traffic sign 
types. 

4.1.1. Convolutional Layers 
The CNN applies convolutional layers with ReLU 

(Rectified Linear Unit) activation to introduce non-linearity, 
allowing the network to learn complex features such as edges, 
textures, and other distinct details of traffic signs [25]. ReLU is 
defined as: 

𝑓(𝑥) = max(0, 𝑥),                            (24) 
where 𝑥 is the input to the ReLU function. This function outputs 
zero for negative values and the input itself for positive values, 
effectively addressing the vanishing gradient problem and 
speeding up training. 

The convolution operation at each layer can be represented 
as: 

𝑓, = 𝜎 ൭ 𝑊, ∙ 𝑥ାା + 𝑏

,

൱,                (25) 

where: 
– 𝑓, is the resulting feature map value, 
– 𝑊, is the filter (weight) matrix, 
– 𝑥ାା represents the input pixels in the local receptive 

field, 
– 𝑏 is the bias term, 
– 𝜎 is the ReLU activation function 
4.1.2. Pooling Layers 
To reduce the spatial dimensions of the feature maps and 

make the network invariant to small translations, max pooling is 
used after convolutional layers. Max pooling outputs the 
maximum value from a specified window, which enhances 
computational efficiency and reduces the risk of overfitting. 

4.1.3. ROI Pooling 
Each ROI is resized to a fixed dimension through ROI 

pooling, ensuring consistent input size for subsequent fully 
connected layers. ROI pooling applies max pooling within each 
sub-region to yield a fixed-size output, represented as: 

𝑃, = max
(,)∈ோ,ೕ

𝑥, ,                             (26) 

where 𝑃, is the pooled feature map of region 𝑅,. 
4.2. Classification and Bounding Box Regression 
After feature extraction, the RCNN performs classification 

and bounding box regression to predict the sign type and refine 
its localization. 

4.2.1. Classification with Softmax: 
For each ROI feature map, fully connected layers calculate 

scores for each traffic sign class. The output layer applies 
the Softmax activation function, converting these scores into 
probabilities for each class. This is essential for multi-class 
classification, where the goal is to identify the most probable 
class for each ROI. 

The Softmax function for a class kk is given by: 
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𝑃(𝑦 = 𝑘|𝑥) =
𝑒௦ೖ

∑ 𝑒௦ೕ
ୀଵ

,                        (27) 

where: 
– 𝑠 is the raw score (logit) for class 𝑘, 
– 𝐶 is the number of traffic sign classes, 
– 𝑒௦ೖ transforms the score into a non-negative probability, 
– the sum in the denominator ensures all probabilities sum 

to 1. 
The classification error is minimized using cross-entropy 

loss, which compares the predicted probabilities to the actual 
labels: 

𝐿௦௦ = −  𝑦 log 𝑃(𝑦 = 𝑘|𝑥)



ୀଵ

,               (28) 

where 𝑦 is 1 if the ROI belongs to class 𝑘 and 0 otherwise 
4.2.2. Bounding Box Regression 
Besides classification, the RCNN refines each ROI’s 

bounding box using bounding box regression. This step adjusts 
the bounding box coordinates based on predicted offsets, 
ensuring precise localization of the detected signs. 

Let (𝑥, 𝑦, 𝑤, ℎ) be the initial bounding box coordinates, 
and (𝑥∗, 𝑦∗, 𝑤∗, ℎ∗) the ground truth values. The network 
predicts offset adjustments (∆𝑥, ∆𝑦, ∆𝑤, ∆ℎ) calculated as: 

Δ𝑥 =
𝑥∗ − 𝑥

𝑤
, (29)            Δ𝑦 =

𝑦∗ − 𝑦

ℎ
, (30) 

Δ𝑤 = 𝑙𝑜𝑔 ൬
𝑤∗

𝑤
൰ , (31)        Δℎ = 𝑙𝑜𝑔 ൬

ℎ∗

ℎ
൰ , (32) 

The bounding box regression is trained using the Smooth L1 
loss function: 

𝐿 =  𝑠𝑚𝑜𝑜𝑡ℎଵ(𝑡 − 𝑡
∗)

∈{௫,௬,௪,}

,             (33) 

where: 
– 𝑡 = (Δ𝑥, Δ𝑦, Δ𝑤, Δℎ) are the predicted bounding box 

transformations. 
– 𝑡 = (Δ𝑥∗, Δ𝑦∗, Δ𝑤∗, Δℎ∗) are the ground truth 

transformations. 
The Smooth L1 loss function is defined as: 

𝑠𝑚𝑜𝑜𝑡ℎଵ(𝑥) = ൜
0.5𝑥ଶ       𝑖𝑓 |𝑥| < 1
|𝑥| − 0.5 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

,          (34) 

Combined Loss Function 
The total loss for training the RCNN model, 𝐿௧௧, 

combines the classification and bounding box regression losses, 
with a balancing parameter λ: 

𝐿௧௧ = 𝐿௦ + 𝜆𝐿 ,                        (35) 
where 𝜆 is a hyperparameter that balances the contributions of 
classification and localization. This total loss guides the network 
to optimize both the accuracy of the road sign type prediction 
and the precision of the bounding box location. 

Inference Process 
During inference, each detected ROI is processed by the 

trained RCNN to generate both the predicted traffic sign class 
and a refined bounding box. Non-Maximum Suppression 
(NMS) is applied to remove redundant bounding boxes for the 
same sign, retaining only the highest-confidence prediction. 

D. BUILDING AND TESTING THE MODEL 
To validate the effectiveness of the proposed traffic sign 
recognition system, we conducted a series of experiments across 
well-known datasets, evaluated using standard metrics, and 
compared our approach with classic methods for both shape 
recognition and classification. This section presents the datasets 

used, experiment setup, evaluation metrics, performance results, 
and a comparison with traditional techniques. 

1. Dataset 
For our experiments, we used the German Traffic Sign 

Recognition Benchmark (GTSRB) dataset, a standard dataset in 
traffic sign recognition, which includes over 50,000 images 
across 43 distinct traffic sign classes. This dataset offers a 
diverse set of images, covering variations in size, rotation, 
illumination, and partial occlusions, which are representative of 
real-world driving conditions. 

To further evaluate the robustness of our system, we also 
tested it on synthetic images that simulate challenging 
conditions, including poor lighting, motion blur, and partial 
occlusions. 

2. Experiment Setup 
The experiments were conducted on a high-performance 

machine equipped with an Apple M3 Max 
chip featuring 128GB of unified RAM/VRAM. This setup 
provided substantial computational power, especially for 
handling large datasets and high-resolution image processing 
tasks, accelerating both the training and inference phases. 

Key training parameters included: 
Learning rate: 0.001 with a decay rate of 0.9 per epoch 
Batch size: 32 
Optimizer: Adam, chosen for its adaptive learning 

capabilities 
Number of epochs: 50 
The M3 Max's integrated GPU and memory allowed 

efficient data processing and model training, enabling us to 
conduct experiments with faster iterations and higher resolution 
input data. Data augmentation techniques, including random 
rotations, translations, and brightness adjustments, were applied 
to improve model generalizability. 

3. Evaluation Metrics 
The system’s performance was evaluated using the 

following metrics: 
Accuracy: Measures the overall correctness of sign 

recognition. 
Precision, Recall, and F1 Score: Provides insight into the 

system's ability to correctly classify traffic signs and handle 
class imbalances.Intersection over Union (IoU): Evaluates the 
quality of bounding box localization by comparing predicted 
and ground-truth boxes. 

Inference Time: Assesses the suitability of the system for 
real-time applications by measuring the average time taken to 
process each image. 

4. Results 
The proposed system showed excellent performance in sign 

recognition, achieving high accuracy, precision, recall, and F1 
scores across various conditions. Table 1 provides a summary 
of the performance metrics. 

Table 1. Performance of Proposed System on GTSRB 
Dataset 

Metric Value 
Accuracy 98.4% 
Precision 97.8% 
Recall 97.5% 
F1 Score 97.6% 
IoU (Bounding Box) 85.3% 
Average Inference Time 24 ms per image 

 
These results demonstrate that the proposed system is 

effective in accurately detecting and classifying traffic signs 
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with minimal false positives and negatives. The average 
inference time of 24 ms per image suggests the model's 
suitability for real-time applications, making it feasible for 
deployment in Advanced Driver Assistance Systems (ADAS) 
and autonomous vehicles. 

5. Comparison with Classic Methods 
To highlight the advancements of our proposed system, we 

compared it with traditional shape recognition and classification 
methods. This comparison provides insights into improvements 
in accuracy, robustness, and computational efficiency. 

5.1 Shape Recognition Comparison 
Classic Shape Recognition: Traditional approaches for 

shape recognition, such as the standard Canny edge detection 
and Hough Transform, are based on geometric features to 
identify common shapes (e.g., circles, triangles). These 
methods, while effective in controlled environments, tend to 
struggle with noise, lighting variations, and complex 
backgrounds, often resulting in false positives. 

Proposed Shape Recognition Method: Our approach 
improves upon traditional methods by incorporating color 
segmentation, modified Canny edge detection, and enhanced 
shape validation algorithms, which improve recognition 
accuracy in diverse lighting and occlusion conditions. 
 

Table 2. Shape Recognition Results Comparison: 

Metric Classic Method (Canny + 
Hough) 

Proposed 
Method 

Detection Accuracy 85.2% 94.5% 
False Positive Rate 14.8% 5.5% 
IoU (Bounding Box) 76.3% 85.3% 
Average Detection 
Time 

35 ms 24 ms 

 
The proposed method achieved a detection accuracy of 

94.5%, significantly higher than the classic method (85.2%). 
Ishaq et al. [26] showed that YOLOv5 could achieve high 

precision in traffic sign detection while maintaining real-time 
processing, a capability also demonstrated in our model. 

The IoU score, a measure of bounding box accuracy, was 
also higher at 85.3%, compared to 76.3% for the classic method. 
These improvements highlight the increased precision of our 
approach in detecting sign shapes, even in challenging 
environments. Additionally, the average detection time was 
lower, indicating enhanced suitability for real-time applications. 

The proposed system was compared to context-aware 
algorithms like those developed by Lee et al. [27], which 
incorporate environmental cues to improve detection accuracy. 
The results showed that our method achieves superior precision 
and inference time under similar real-world conditions. 

5.2. Classification Comparison 
– Classic Classification: 
Traditional classification techniques, including Support 

Vector Machines (SVM) and K-Nearest Neighbors (KNN) with 
handcrafted features (e.g., Histogram of Oriented Gradients 
(HOG) and Scale-Invariant Feature Transform (SIFT)), have 
been used in early traffic sign recognition. However, these 
approaches often require substantial feature engineering and 
struggle to handle diverse real-world variations. 

– Proposed Classification Method: 
Our model employs a Convolutional Neural Network 

(CNN) with ROI pooling and a Softmax classifier, enabling it to 
learn relevant features automatically, thereby handling 
variations in lighting, rotation, and occlusion more effectively. 

Table 3. Classification Results Comparison: 

Metric SVM + 
HOG 

KNN + 
SIFT 

Proposed CNN 
Classifier 

Classification 
Accuracy 

88.1% 82.5% 98.4% 

Precision 86.7% 80.2% 97.8% 
Recall 84.5% 78.9% 97.5% 
F1 Score 85.6% 79.5% 97.6% 
Inference Time 45 ms 40 ms 24 ms 

 

 

Figure 8. Recall vs. IoU (Intersection over Union) for SVM + 
HOG, KNN + SIFT, and Proposed CNN Classifier. 

The improved speed and accuracy of the proposed CNN 
model are achieved through the following key factors: 

– Speed (Inference Time): 
Automatic Feature Extraction: Unlike SVM with HOG and 

KNN with SIFT, which rely on computationally expensive 
manual feature extraction, CNNs automatically extract relevant 
features. This significantly reduces processing time. 

Efficient Architecture: Convolutional and pooling layers 
quickly reduce the dimensionality of the data while retaining 
critical information, lowering computational demands. 

– Accuracy: 
1. Preprocessing: Robust color segmentation and shape 

recognition improve ROI selection, minimizing irrelevant data 
passed to the classifier. 

2. End-to-end learning: Combines feature extraction and 
classification in one framework, avoiding the error propagation 
in SVM+HOG or KNN+SIFT pipelines. 

3. Generalization: CNN handles variations in lighting, size, 
and occlusion better due to deeper layers and diverse training 
data. 

4. Efficiency: CNN achieves higher precision and recall 
while being faster (24 ms) than SVM (45 ms) and KNN (40 ms). 

5. Class handling: Weighted loss functions allow CNN to 
handle imbalanced datasets, unlike traditional methods prone to 
bias. 

The CNN-based classifier achieved a classification accuracy 
of 98.4%, substantially outperforming both SVM (88.1%) and 
KNN (82.5%) classifiers. Precision and recall metrics were 
higher with the CNN, indicating superior handling of false 
positives and negatives. The lower inference time demonstrates 
the efficiency of the proposed model, which is crucial for real-
time deployment. 

To improve classification accuracy and handle distributed 
systems, Zhou et al. [28] proposed a federated learning approach 
with spike neural networks. This method enhances scalability 
and ensures efficient training across multiple edge devices, 
making it highly suitable for real-time traffic sign recognition. 

6. Analysis of Results 
6.1. Performance under Challenging Conditions 
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Our system maintained high accuracy and IoU scores even 
under conditions with occlusions and poor lighting, where 
traditional methods tended to fail or produce lower precision. 

6.2. Real-Time Feasibility 
The lower inference times in both shape recognition and 

classification highlight the real-time feasibility of the proposed 
system, making it well-suited for ADAS applications. 

6.3. Class-Specific Performance 
Analysis of class-specific results revealed that rare or 

partially occluded signs occasionally caused reduced precision 
in classic methods, whereas our CNN-based approach 
performed reliably across these cases. 

7. Visual Results 
Example Images: Figures 1-3 illustrate examples of 

successful traffic sign recognition under various conditions, 
including daylight, low-light, and partial occlusion. Bounding 
boxes and class labels show the system’s accuracy in detecting 
and classifying signs. 

IV. CONCLUSIONS 
This study addresses the critical challenge of accurate and 
efficient traffic sign recognition for Advanced Driver 
Assistance Systems (ADAS) and autonomous vehicles. We 
propose a comprehensive system combining robust 
preprocessing techniques with a convolutional neural network 
(CNN) for classification. The system incorporates color 
segmentation, geometric shape recognition, ROI scaling, and a 
CNN-based classifier designed to handle diverse real-world 
conditions. 

The proposed method ensures high-speed and high-accuracy 
recognition by leveraging an end-to-end learning approach. The 
CNN automatically extracts relevant features, eliminating the 
need for manual feature engineering as in traditional methods 
like SVM+HOG or KNN+SIFT. This integration allows the 
model to achieve exceptional performance, with an accuracy of 
98.4%, precision of 97.8%, and recall of 97.5%, while 
maintaining a low inference time of 24 ms per image. 

Experimental results demonstrate that the system 
outperforms classical methods both in accuracy and efficiency. 
For instance, the proposed CNN model surpasses traditional 
methods like SVM+HOG (88.1% accuracy) and KNN+SIFT 
(82.5% accuracy) while achieving faster inference. 
Additionally, the IoU score of 85.3% reflects precise 
localization of traffic signs, further confirming the model’s 
robustness under varying conditions. This research highlights 
the potential of integrating advanced preprocessing with deep 
learning techniques to enhance traffic sign recognition, making 
it a promising solution for real-time applications in ADAS and 
autonomous driving technologies. The integration of deep 
learning techniques, as highlighted by Li et al. [29], reinforces 
the potential of traffic sign recognition systems in enhancing 
ADAS and autonomous driving. 

Future work could explore further optimizations and expand 
the system’s applicability to other visual recognition tasks in 
intelligent transportation systems.  
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