

62 VOLUME 24(1), 2025

Date of publication MAR-31, 2025, date of current version FEB-07, 2025.
www.computingonline.net / computing@computingonline.net

Print ISSN 1727-6209
Online ISSN 2312-5381
DOI 10.47839/ijc.24.1.3877

Traffic Sign Recognition for Advanced
Driver Assistance Systems: A Neural

Network and Computer Vision Approach
MYKOLA DROBINIAK, SERGEY SUBBOTIN, DANYLO BOROVYK, АNDRII OLIINYK, TETIANA

KOLPAKOVA
Department of Software Tools, National University «Zaporizhzhia Polytechnic», 64 Zhukovskoho str., Zaporizhzhya, Ukraine, 69063.

Email: ndrobiniak@gmail.com, subbotin.csit@gmail.com, daniilborovik1999@ukr.net, olejnikaa@gmail.com, t.o.kolpakova@gmail.com

Corresponding author: Sergey Subbotin (e-mail: subbotin.csit@gmail.com).

The work was carried out with the support of the state budget research projects of the state budget of the National University "Zaporozhzhia
Polytechnic" “Information technologies of intelligent computing” (state registration number 0124U004188) and “Intelligent information
processing methods and tools for decision-making in the military and civilian industries” (state registration number 0124U000250).

 ABSTRACT This paper presents a comprehensive traffic sign recognition system designed to enhance advanced
driver assistance systems (ADAS) and autonomous vehicles. The system employs a three-step algorithm
comprising color segmentation, shape recognition, and a neural network-based classification to detect and identify
various traffic signs in real time. Leveraging the advantages of color-based segmentation for rapid processing and
combining it with sophisticated shape detection methods, our approach ensures high accuracy and precision even
under challenging conditions such as varying illumination and occlusions. The integration of neural networks
allows for effective classification across a broad range of sign types, addressing limitations seen in traditional
methods. Our system’s ability to operate with standard onboard cameras, combined with its resilience to lighting
variations, marks a significant advancement in traffic sign recognition technology. Extensive testing demonstrates
its efficacy in real-world scenarios, highlighting its potential to enhance road safety and support autonomous
driving technologies.

 KEYWORDS artificial intelligence; computer vision; machine learning; neural networks; pattern recognition.

I. INTRODUCTION
raffic sign recognition is a critical component of modern
advanced driver assistance systems (ADAS) and

autonomous vehicles. Accurate and timely recognition of
traffic signs not only ensures compliance with road regulations
but also significantly enhances road safety.

Traditional methods of traffic sign detection and
recognition often face challenges such as varying illumination,
occlusions, and the need for real-time processing. To address
these issues, this paper presents a novel traffic sign recognition
system that leverages advanced AI techniques including color
segmentation, shape recognition, scaling of the area of interest,
and neural network-based classification.

The proposed system begins with color segmentation, a
crucial step that isolates the traffic signs from their
surroundings. Utilizing the HSL (Hue, Saturation, Lightness)
or HSV (Hue, Saturation, Value) color models, the system
efficiently classifies the sign border frames based on their
colors—grey, red, yellow, and blue—by focusing primarily on
the hue component. This approach simplifies the color

differentiation process, enabling rapid and reliable
segmentation even under diverse lighting conditions (Fig. 2).

Figure 1. Examples of common traffic signs used in traffic
sign recognition systems.

T

Mykola Drobiniak et al. / International Journal of Computing, 24(1) 2025, 62-71

VOLUME 24(1), 2025 63

Figure 2. Traffic sign examples illustrating segmentation
under varying lighting conditions.

Following color segmentation, the system employs robust
shape recognition algorithms to identify the geometric shapes
of the signs. This step is essential as traffic signs have
standardized shapes, such as circles, triangles, rectangles, and
octagons, which correspond to specific types of information
and regulatory instructions.

To ensure high accuracy in detection, the system scales up
the area of interest around the detected shapes. This scaling
process enhances the resolution of the potential sign regions,
allowing for more precise analysis and reducing the risk of
false positives.

Finally, the system incorporates a neural network-based
classifier that leverages deep learning techniques to
distinguish between various types of traffic signs. This
classifier is trained on a comprehensive dataset of traffic sign
images, enabling it to learn and generalize across a wide range
of sign types and conditions. The integration of neural
networks ensures robust performance, addressing the
limitations of traditional rule-based and template-matching
methods.

This paper details the development and evaluation of our
traffic sign recognition system. Through extensive testing in
real-world scenarios, we demonstrate the system’s efficacy in
accurately detecting and classifying traffic signs, highlighting
its potential to significantly improve the functionality of
ADAS and autonomous driving technologies.

II. ANALYSIS OF THE SUBJECT AREA
A. BASIC CONCEPTS
Traffic sign recognition is a critical component in the
development of Advanced Driver Assistance Systems
(ADAS) and autonomous vehicles [1]. It involves the
automatic detection and identification of road signs using
various technologies, ensuring compliance with traffic
regulations and improving road safety.

The process typically starts with isolating potential traffic
signs from their surroundings through color segmentation,
which uses models such as HSL (Hue, Saturation, Lightness)
or HSV (Hue, Saturation, Value) to classify sign border frames
by color (red, blue, yellow, and grey). This step is crucial for
handling varying illumination conditions.

Following segmentation, shape recognition algorithms
identify the geometric shapes of signs—circles, triangles,
rectangles, and octagons. These shapes provide clues about the
type and intent of each sign. The Region of Interest (ROI) is
scaled up for more precise analysis before passing the data to

neural network classifiers, which use deep learning techniques
to recognize and categorize signs accurately.

In real-world scenarios, challenges include variations in
lighting, occlusions, and environmental noise. Machine
learning, particularly convolutional neural networks (CNNs),
has emerged as the leading method to address these issues,
offering robust solutions in classification tasks.

B. REVIEW OF ANALOGS FROM THE LITERATURE
Various approaches have been explored in the literature to
improve traffic sign recognition:

1. Color Segmentation and Shape Detection.
Traditional methods focused on color segmentation and

shape detection as the primary mechanisms for isolating and
identifying traffic signs. Methods utilizing HSL or HSV color
models, such as those described by Gonzalez and Woods in
“Digital Image Processing,” [2] have been instrumental in
addressing challenges related to diverse lighting conditions.
The incorporation of adaptive thresholding methods for robust
segmentation [3] further enhanced performance under
complex scenarios.

Hybrid approaches have also gained attention. Zaid et
al. [4] demonstrated a method that integrates color-based
segmentation with geometric shape validation to recognize
traffic signs in adverse weather conditions, achieving
significant robustness. Similarly, Marimuthu et al. [5] utilized
frequency pattern mining combined with shape-based features
to enhance the precision of traffic sign detection.

2. Neural Network-Based Classification.
The advent of convolutional neural networks (CNNs) has

revolutionized traffic sign recognition. LeCun et al. [6]
pioneered the application of CNNs for image recognition, and
subsequent work has extended this success to traffic sign
classification. Ahmed et al. [7] proposed a CNN architecture
optimized for diverse real-world conditions, which
significantly improved detection and classification accuracy.
Gao et al. [8] emphasized the role of adaptive fusion and
dictionary learning for improving generalization in neural
networks, even under challenging conditions such as
occlusions and motion blur.

Recent studies have explored innovative neural network
structures. Ishii et al. [9], Al-Salameh et al. [10], and Yu et al.
[11] demonstrated deep learning models optimized for low-
power embedded devices, showcasing real-time performance
capabilities. This advancement bridges the gap between high-
accuracy models and resource-constrained environments, a
critical need for autonomous vehicles.

3. Real-Time Processing.
Real-time traffic sign recognition is crucial for applications

in Advanced Driver Assistance Systems (ADAS) and
autonomous driving [12]. Rodrigues et al. [13] and Wang et al.
[14] developed edge-computing systems that efficiently
handle traffic sign detection and classification. These systems
reduce latency by processing data locally on devices, thus
ensuring reliability in time-sensitive applications.

YOLO-based models have further streamlined real-time
detection. Zhang et al. [3] and Chen et al. [15] introduced
optimized versions of YOLOv5 that achieve high accuracy and
low latency, making them suitable for deployment in real-
world driving scenarios.

4. Dataset Contributions
Datasets play a pivotal role in the development and

benchmarking of traffic sign recognition systems. The German

 Mykola Drobiniak et al. / International Journal of Computing, 24(1) 2025, 62-71

64 VOLUME 24(1), 2025

Traffic Sign Recognition Benchmark (GTSRB) [16] and the
Belgium Traffic Sign Dataset (BTSD) [17] have been widely
adopted as benchmarks, providing diverse examples under
various conditions.

More recently, Alhamadi et al. [18] and Zhang et al. [19]
introduced synthetic datasets that simulate adverse conditions,
such as poor lighting and motion blur, enabling researchers to
train models for extreme scenarios. These datasets
complement traditional benchmarks, ensuring robust model
development.

5. Application in Autonomous Driving
Applications of traffic sign recognition systems in

autonomous vehicles have seen a surge in interest. Zaid et al.
[4] demonstrated real-time detection systems capable of
operating in harsh environmental conditions, contributing to
improved road safety. Similarly, Ahmed et al. [7] and Chen et
al. [20] explored CNN-based classifiers for ADAS, achieving
state-of-the-art accuracy with minimal inference time.

These studies underline the importance of integrating AI
techniques to overcome the limitations of traditional methods,
such as susceptibility to environmental noise and reliance on
handcrafted features.

C. CONCLUSIONS
The review confirms that CNNs and hybrid methodologies
combining traditional and deep learning approaches offer
substantial advancements in traffic sign recognition. The ability
of CNN-based systems to handle variations in lighting,
occlusions, and noise demonstrates their potential for real-time
applications in ADAS and autonomous vehicles. Future work
should focus on optimizing these models for low-power
embedded systems to enhance their feasibility in practical
deployments.

III. BUILDING A MACHINE LEARNING MODEL
The proposed traffic sign recognition system is composed of
four main modules: Color Segmentation, Sign Shape
Recognition, Area of Interest Scaling, and Classification. Each
module is integral to the accurate and efficient detection and
recognition of traffic signs in real-time environments. This
chapter provides a detailed description of each module’s
components, algorithms, and interactions within the system.

A. COLOR SEGMENTATION
Color segmentation is the initial step in the recognition process,
focusing on isolating traffic signs based on their distinct border
colors. The system uses either the HSL (Hue, Saturation,
Lightness) or HSV (Hue, Saturation, Value) color model to
simplify the segmentation process by concentrating on the hue
component, which is less affected by lighting variations.

To extract hue, the input image is converted to the HSL color
space. The hue component is extracted as it provides a robust
basis for color differentiation.

The process of converting an RGB value to the HSL (Hue,
Saturation, Lightness) color space begins with normalizing the
RGB components. This involves scaling each RGB value to a
range of 0 to 1 by dividing it by 255.

For example, consider the RGB value (104, 153, 237):
1. Normalize RGB values
Convert the RGB values to a range of 0 to 1 by dividing

each by 255:

𝑹 =
𝟏𝟎𝟒

𝟐𝟓𝟓
= 𝟎. 𝟒𝟏

𝑮 =
𝟏𝟓𝟑

𝟐𝟓𝟓
= 𝟎. 𝟔

𝑩 =
𝟐𝟑𝟕

𝟐𝟓𝟓
= 𝟎. 𝟗𝟑

2. Determine Minimum and Maximum Values
Identify the minimum and maximum values among the

normalized R, G, and B:
𝑚𝑖𝑛 = 0.41 (𝑅)
𝑚𝑎𝑥 = 0.93 (𝐵)

3. Calculate Luminance (L)
Luminance is calculated as the average of the max and min

values (9):

𝐿 =
𝑚𝑎𝑥 + 𝑚𝑖𝑛

2
=

0.93 + 0.41

2
≈ 0.67 (𝑜𝑟 67%), (1)

4. Determine Saturation (S)
Saturation depends on whether the max and min values are

equal and the luminance value. If max equals min, saturation is
0 (achromatic, gray). Otherwise:

𝐼𝑓 𝐿 ≤ 0.5:

𝑆 =
𝑚𝑎𝑥 − 𝑚𝑖𝑛

𝑚𝑎𝑥 + 𝑚𝑖𝑛
, (2)

𝐼𝑓 𝐿 > 0.5:

𝑆 =
𝑚𝑎𝑥 − 𝑚𝑖𝑛

2 − 𝑚𝑎𝑥 − 𝑚𝑖𝑛
, (3)

Given L = 0.67 (which is greater than 0.5), we use the second
formula:

𝑆 =
0.93 − 0.41

2 − 0.93 − 0.41
=

0.52

0.66
≈ 0.788 (𝑜𝑟 79%), (4)

5. Calculate Hue (H)
The Hue calculation is contingent on which RGB

component is the maximum:
𝐼𝑓 𝑚𝑖𝑛 = 𝑚𝑎𝑥:

𝐻 = 0, (5)
𝐼𝑓 𝑚𝑎𝑥 = 𝑅:

𝐻 =
𝐺 − 𝐵

𝑚𝑎𝑥 − 𝑚𝑖𝑛
, (6)

𝐼𝑓 𝑚𝑎𝑥 = 𝐺:

𝐻 = 2 +
𝐵 − 𝑅

𝑚𝑎𝑥 − 𝑚𝑖𝑛
, (7)

𝐼𝑓 𝑚𝑎𝑥 = 𝐵:

𝐻 = 4 +
𝑅 − 𝐺

𝑚𝑎𝑥 − 𝑚𝑖𝑛
, (8)

Since 𝑚𝑎𝑥 = 𝐵:

𝐻 = 4 +
0.41 − 0.6

0.93 − 0.41
= 4 +

−0.19

0.52
≈ 4 − 0.365 ≈ 3.635

Convert to degrees by multiplying by 60:
𝐻 = 3.635 × 60 ≈ 217.2∘(𝑟𝑜𝑢𝑛𝑑𝑒𝑑 𝑡𝑜 217∘)

For rgb(104, 153, 237), the HSL values are:
– Hue (H): 217∘
– Saturation (S): 79%
– Luminance (L): 67%

B. THRESHOLDING
Threshold values specific to grey, red, yellow, and blue are
applied to the hue component to create binary masks. These
masks highlight regions that potentially contain traffic signs
[21].

1. Define Thresholds:

Mykola Drobiniak et al. / International Journal of Computing, 24(1) 2025, 62-71

VOLUME 24(1), 2025 65

Based on hue, luminance, and saturation ranges specific to
traffic sign colors:
– Red: 𝐻 ∈ [0,10] ∪ [350,360], 𝑆 > 0.5, 𝐿 > 0.2
– Yellow: 𝐻 ∈ [50,70], 𝑆 > 0.5, 𝐿 > 0.2
– Blue: 𝐻 ∈ [200,240], 𝑆 > 0.5, 𝐿 > 0.2
– Grey: 𝑆 < 0.1, 𝐿 ∈ [0.3,1]

The aim of this stage is to accurately isolate potential traffic
sign regions based on color characteristics. By defining specific
thresholds for hue, saturation, and luminance values
corresponding to typical traffic sign colors—such as red,
yellow, blue, and grey—the system can create binary masks that
highlight regions of interest (ROIs) where traffic signs are likely
to appear. This color-based thresholding serves as a foundation
for efficient and precise segmentation, even in varying lighting
conditions, by focusing on the color profiles unique to traffic
signs. Rahman et al. [22] demonstrated the effectiveness of real-
time traffic sign detection systems like TRD-YOLO in
accurately identifying small or occluded traffic signs, as
illustrated in Figure 5.

Figure 3. Distribution of Colors on H (Hue) and S

(Saturation).

Figure 4. Distribution of colors on L (Luminance) and S
(Saturation).

Figure 5. Color segmentation for red traffic signs.

2. Apply Thresholding:
– Convert the image to HSL.
– Create binary masks for each color range:

𝑀𝑎𝑠𝑘ௗ

= ቄ
1 𝑖𝑓 (𝐻 ∈ [0,10] ∪ [350,360]) 𝑎𝑛𝑑 𝑆 > 0.5 𝑎𝑛𝑑 𝐿 > 0.2
0 𝑜𝑡ℎ𝑒𝑟𝑣𝑖𝑠𝑒

, (10)

Similarly, masks for yellow, blue, and grey are created based
on their respective thresholds.

The purpose of this stage is to utilize the defined color
thresholds to create binary masks for each target color (red,
yellow, blue, and grey), effectively isolating potential traffic
sign regions in the image. By converting the image to the HSL
color space and applying the thresholds, the system highlights
areas that match the specific color profiles of traffic signs. This
thresholding process simplifies the image, enabling the system
to focus on relevant regions for further shape recognition, and
enhances the robustness of traffic sign detection in diverse
lighting conditions.

Morphological operations are applied to the binary masks to
refine them by removing noise and enhancing the regions
corresponding to traffic signs.

1. Noise Reduction:
Erosion: Removes small noise points by eroding the

boundaries of the foreground (traffic sign regions).
𝑀𝑎𝑠𝑘ௗௗ = 𝑒𝑟𝑜𝑑𝑒(𝑀𝑎𝑠𝑘, 𝐾𝑒𝑟𝑛𝑒𝑙), (11)

A common kernel is a 3×33×3 matrix of ones.
Dilation: Expands the boundaries of the foreground,

recovering the eroded regions and smoothing the shapes.
𝑀𝑎𝑠𝑘ௗ௧ௗ = 𝑑𝑖𝑙𝑎𝑡𝑒(𝑀𝑎𝑠𝑘ௗௗ , 𝐾𝑒𝑟𝑛𝑒𝑙), (12)

2. Region Enhancement:
Closing: A dilation followed by erosion. This operation fills

small holes and connects disjointed regions within the masks.
𝑀𝑎𝑠𝑘௦ௗ = 𝑑𝑖𝑙𝑎𝑡𝑒(𝑒𝑟𝑜𝑑𝑒(𝑀𝑎𝑠𝑘, 𝐾𝑒𝑟𝑛𝑒𝑙), 𝐾𝑒𝑟𝑛𝑒𝑙)

Opening: An erosion followed by dilation. This operation
removes small objects from the foreground while preserving the
shape and size of larger objects.

𝑀𝑎𝑠𝑘ௗ

= 𝑒𝑟𝑜𝑑𝑒(𝑑𝑖𝑙𝑎𝑡𝑒(𝑀𝑎𝑠𝑘, 𝐾𝑒𝑟𝑛𝑒𝑙), 𝐾𝑒𝑟𝑛𝑒𝑙), (13)
3. Final Mask Preparation:
After applying these morphological operations, the refined

masks are combined if multiple colors are being segmented.
This ensures that all potential traffic sign regions are captured.

C. SHAPE RECOGNITION
After isolating the potential traffic sign regions through color
segmentation, the system employs shape recognition algorithms
to identify specific geometric shapes that are characteristic of
traffic signs.

 Mykola Drobiniak et al. / International Journal of Computing, 24(1) 2025, 62-71

66 VOLUME 24(1), 2025

1. Hough Transform for Circles:
The system uses the Hough Transform to detect circular

shapes, which are common in many regulatory signs.
Parameters such as the minimum and maximum radius are set
to filter out irrelevant circles.

2. Edge Detection (using modified Canny Edge Detection
algorithm):

The ROI searching in this system improves upon traditional
Canny edge detection by integrating color information, which
the Canny algorithm alone lacks. Canny edge detection is purely
gradient-based, which can result in high sensitivity to noise and
missing critical color-based features of road signs. Instead of
solely relying on edges, the system in article uses a modified
Canny edge detection algorithm combined with Hough
Transform and shape approximation to better isolate sign shapes
based on color and geometric properties, thereby enhancing
reliability in real-world conditions.

2.1. Grayscale Conversion
– Convert the RGB image to a grayscale image using a

weighted sum of the R, G, and B channels. This can be done
using the formula:

𝐺𝑟(𝐺𝑟𝑒𝑦𝑠𝑐𝑎𝑙𝑒) = 0.299 ∗ 𝑅 + +0.587 ∗ 𝐺 + 0.114 ∗ 𝐵, (14)
– This reduces the image data to a single channel,

simplifying further processing.
2.2. Noise Reduction:
Apply a Gaussian blur to the grayscale image to smooth out

noise and reduce minor variations in pixel intensity.
A Gaussian blur convolution can be applied using a 5x5

kernel with a standard deviation (σ) adjusted based on the noise
level in the image.

2.3. Finding Intensity Gradient of the Image (Fig. 3)
The smoothed image is subsequently filtered using a Sobel

kernel applied in both the horizontal and vertical directions to
obtain the first derivative in the horizontal direction (Gx) and
the vertical direction (Gy).

A – the source image that will be convolved with the Sober
kernel

𝐺௫ =
1 0 −1
2 0 −2
1 0 −1

൩ ∗ 𝐴, (15)

𝐺௬ =
1 2 1
0 0 0

−1 −2 −1
൩ ∗ 𝐴, (16)

From these derivative images, we can calculate the edge

gradient magnitude (G) and direction (D) for each pixel as
follows:

𝐺 = ට𝐺௫
ଶ + 𝐺௬

ଶ, (17)

Figure 6. Suppression of non-maximum edges in Sobel edge
detection.

𝐷 = 𝑎𝑟𝑐𝑡𝑔 ൬
𝐺௬

𝐺௫

൰, (18)

Point A lies on the edge (in the vertical direction). The
gradient direction is perpendicular to the edge. Points B and C
are positioned along the gradient direction. To determine if
Point A is a local maximum, it is compared with Points B and
C. If it is a local maximum, it proceeds to the next stage;
otherwise, it is suppressed (set to zero).

2.4. Hysteresis Thresholding
This stage determines which detected edges are genuine and

which are not. Two threshold values, minVal and maxVal, are
required for this process. Edges with an intensity gradient
exceeding maxVal are definitely considered edges, while those
below minVal are disregarded as non-edges. Edges falling
between these two thresholds are classified based on their
connectivity: if they are connected to “sure-edge” pixels, they
are retained as part of the edges; otherwise, they are discarded
(Fig 4).

Figure 7. Hysteresis thresholding in edge detection. Edges
above maxVal are confirmed, while those below minVal are
discarded. Edges between the thresholds (e.g., Point B) are

kept only if connected to strong edges (e.g., Point A);
otherwise, they are discarded (e.g., Point C).

Edge A exceeds the maxVal threshold, thus it is classified as

a “sure-edge.” Despite edge B being below the maxVal, it is
connected to edge A, making it a valid edge and allowing us to
capture the entire curve. On the other hand, edge C, although
above the minVal and located in the same region as edge B, is
not connected to any “sure-edge” and is therefore discarded. It
is crucial to carefully select the minVal and maxVal thresholds
to achieve accurate results.

This stage also removes small pixels noises on the
assumption that edges are long lines

2.5. Circle Detection using Hough Transform
2.5.1. Accumulator Array Initialization
Initialize a 3D accumulator array 𝐴(𝑎, 𝑏, 𝑟) where 𝑎 and 𝑏

represent the coordinates of the circle centers and 𝑟 represents
the radius of the circles. The dimensions of this array are
determined by the possible ranges of 𝑎, 𝑏, and 𝑟.

2.5.2. Voting Process:
For each edge point (𝑥, 𝑦) and each possible radius 𝑟 within

the specified minimum and maximum bounds:
– Calculate the potential circle centers (𝑎, 𝑏) using the

parametric equations of a circle:
𝑎 = 𝑥 − 𝑟 ∗ cos(𝜃), (19)
𝑏 = 𝑦 − 𝑟 ∗ cos(𝜃), (20)

where 𝜃 ranges from 0 to 360 degrees.
– Increment the corresponding cell in the accumulator array:

𝐴(𝑎, 𝑏, 𝑟)+= 1, (21)

Mykola Drobiniak et al. / International Journal of Computing, 24(1) 2025, 62-71

VOLUME 24(1), 2025 67

This process involves iterating over a range of angles 𝜃
(commonly in steps of 1 degree) to vote for all possible circle
centers for each edge point and radius.

2.5.3. Post-Processing and Filtering:
To refine the detected circles and eliminate false positives:
– Radius Constraints: Ensure that the detected circles’ radii

fall within the specific minimum and maximum bounds.
– Shape Validation: Verify the circularity by checking the

consistency of edge points around the detected circle’s
perimeter.

2.5.4. Transform for Circles
Edge Point (𝑥, 𝑦): Suppose an edge point is located at (𝑥, 𝑦).
Radius Range [𝑟 , 𝑟௫]: Consider a range of possible

radii, for instance, from 10 to 50 pixels.
Voting in the Accumulator Array: For each radius 𝑟 in the

range and for each angle 𝜃 from 0 to 360 degrees:
– Calculate potential centers

𝑎 = 𝑥 − 𝑟 ∗ cos(𝜃), (22)
𝑏 = 𝑦 − 𝑟 ∗ cos(𝜃), (23)

– Increment the corresponding cell 𝐴(𝑎, 𝑏, 𝑟) in the
accumulator array

2.5.5. Identifying Circles
– Analyze the accumulator array to find cells with high vote

counts.
– These cells indicate potential circles with parameters

(𝑎, 𝑏, 𝑟).
2.5.6. Filtering and Validation
Apply thresholds and validate the circularity to ensure

accurate detection.
– Edge Detection and Polygon Approximation
For polygonal shapes like triangles, rectangles, and

octagons, edge detection techniques (e.g., Canny edge detector)
are used. The detected edges are then approximated to polygons
using algorithms like the Douglas-Peucker algorithm.

The system employs shape detection algorithms to identify
the geometric shapes of traffic signs. The Hough Transform is
used for detecting circular shapes, while edge detection methods
are applied for identifying polygons such as triangles,
rectangles, and octagons [23].

– Geometric Filtering
Detected shapes are validated based on their geometric

properties, such as aspect ratio, area, number of sides, and
perimeter. This step ensures that only shapes corresponding to
actual traffic signs are retained.

– ROI Extraction
Bounding boxes around the validated shapes are extracted,

defining the regions of interest (ROIs) for further processing.
3. Scaling up the Area of Interest
To improve the accuracy of classification, the identified

ROIs are scaled up to provide better resolution and detail for the
neural network classifier.

3.1. ROI Enlargement
The bounding boxes of the ROIs are expanded by a

predefined scale factor. This enlargement increases the size of
the potential sign regions, allowing for finer detail to be
captured.

3.2. Normalization
The scaled-up ROIs are normalized to a standard size,

ensuring consistent input dimensions for the neural network.
This normalization helps maintain uniformity and enhances the
classifier's performance.

4. Classification

The classification component of the proposed traffic sign
recognition system uses a Region-based Convolutional Neural
Network (RCNN) to identify and categorize detected regions of
interest (ROIs) as specific types of traffic signs [24]. The
classification process includes feature extraction, classification,
and bounding box refinement for accurate sign identification
and localization.

4.1. Feature Extraction
Each detected ROI from the previous stages (color

segmentation and shape detection) is passed into a CNN for
feature extraction. This stage involves convolutional and
pooling layers to identify patterns that differentiate traffic sign
types.

4.1.1. Convolutional Layers
The CNN applies convolutional layers with ReLU

(Rectified Linear Unit) activation to introduce non-linearity,
allowing the network to learn complex features such as edges,
textures, and other distinct details of traffic signs [25]. ReLU is
defined as:

𝑓(𝑥) = max(0, 𝑥), (24)
where 𝑥 is the input to the ReLU function. This function outputs
zero for negative values and the input itself for positive values,
effectively addressing the vanishing gradient problem and
speeding up training.

The convolution operation at each layer can be represented
as:

𝑓, = 𝜎 ൭ 𝑊, ∙ 𝑥ାା + 𝑏

,

൱, (25)

where:
– 𝑓, is the resulting feature map value,
– 𝑊, is the filter (weight) matrix,
– 𝑥ାା represents the input pixels in the local receptive

field,
– 𝑏 is the bias term,
– 𝜎 is the ReLU activation function
4.1.2. Pooling Layers
To reduce the spatial dimensions of the feature maps and

make the network invariant to small translations, max pooling is
used after convolutional layers. Max pooling outputs the
maximum value from a specified window, which enhances
computational efficiency and reduces the risk of overfitting.

4.1.3. ROI Pooling
Each ROI is resized to a fixed dimension through ROI

pooling, ensuring consistent input size for subsequent fully
connected layers. ROI pooling applies max pooling within each
sub-region to yield a fixed-size output, represented as:

𝑃, = max
(,)∈ோ,ೕ

𝑥, , (26)

where 𝑃, is the pooled feature map of region 𝑅,.
4.2. Classification and Bounding Box Regression
After feature extraction, the RCNN performs classification

and bounding box regression to predict the sign type and refine
its localization.

4.2.1. Classification with Softmax:
For each ROI feature map, fully connected layers calculate

scores for each traffic sign class. The output layer applies
the Softmax activation function, converting these scores into
probabilities for each class. This is essential for multi-class
classification, where the goal is to identify the most probable
class for each ROI.

The Softmax function for a class kk is given by:

 Mykola Drobiniak et al. / International Journal of Computing, 24(1) 2025, 62-71

68 VOLUME 24(1), 2025

𝑃(𝑦 = 𝑘|𝑥) =
𝑒௦ೖ

∑ 𝑒௦ೕ
ୀଵ

, (27)

where:
– 𝑠 is the raw score (logit) for class 𝑘,
– 𝐶 is the number of traffic sign classes,
– 𝑒௦ೖ transforms the score into a non-negative probability,
– the sum in the denominator ensures all probabilities sum

to 1.
The classification error is minimized using cross-entropy

loss, which compares the predicted probabilities to the actual
labels:

𝐿௦௦ = − 𝑦 log 𝑃(𝑦 = 𝑘|𝑥)

ୀଵ

, (28)

where 𝑦 is 1 if the ROI belongs to class 𝑘 and 0 otherwise
4.2.2. Bounding Box Regression
Besides classification, the RCNN refines each ROI’s

bounding box using bounding box regression. This step adjusts
the bounding box coordinates based on predicted offsets,
ensuring precise localization of the detected signs.

Let (𝑥, 𝑦, 𝑤, ℎ) be the initial bounding box coordinates,
and (𝑥∗, 𝑦∗, 𝑤∗, ℎ∗) the ground truth values. The network
predicts offset adjustments (∆𝑥, ∆𝑦, ∆𝑤, ∆ℎ) calculated as:

Δ𝑥 =
𝑥∗ − 𝑥

𝑤
, (29) Δ𝑦 =

𝑦∗ − 𝑦

ℎ
, (30)

Δ𝑤 = 𝑙𝑜𝑔 ൬
𝑤∗

𝑤
൰ , (31) Δℎ = 𝑙𝑜𝑔 ൬

ℎ∗

ℎ
൰ , (32)

The bounding box regression is trained using the Smooth L1
loss function:

𝐿 = 𝑠𝑚𝑜𝑜𝑡ℎଵ(𝑡 − 𝑡
∗)

∈{௫,௬,௪,}

, (33)

where:
– 𝑡 = (Δ𝑥, Δ𝑦, Δ𝑤, Δℎ) are the predicted bounding box

transformations.
– 𝑡 = (Δ𝑥∗, Δ𝑦∗, Δ𝑤∗, Δℎ∗) are the ground truth

transformations.
The Smooth L1 loss function is defined as:

𝑠𝑚𝑜𝑜𝑡ℎଵ(𝑥) = ൜
0.5𝑥ଶ 𝑖𝑓 |𝑥| < 1
|𝑥| − 0.5 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, (34)

Combined Loss Function
The total loss for training the RCNN model, 𝐿௧௧,

combines the classification and bounding box regression losses,
with a balancing parameter λ:

𝐿௧௧ = 𝐿௦ + 𝜆𝐿 , (35)
where 𝜆 is a hyperparameter that balances the contributions of
classification and localization. This total loss guides the network
to optimize both the accuracy of the road sign type prediction
and the precision of the bounding box location.

Inference Process
During inference, each detected ROI is processed by the

trained RCNN to generate both the predicted traffic sign class
and a refined bounding box. Non-Maximum Suppression
(NMS) is applied to remove redundant bounding boxes for the
same sign, retaining only the highest-confidence prediction.

D. BUILDING AND TESTING THE MODEL
To validate the effectiveness of the proposed traffic sign
recognition system, we conducted a series of experiments across
well-known datasets, evaluated using standard metrics, and
compared our approach with classic methods for both shape
recognition and classification. This section presents the datasets

used, experiment setup, evaluation metrics, performance results,
and a comparison with traditional techniques.

1. Dataset
For our experiments, we used the German Traffic Sign

Recognition Benchmark (GTSRB) dataset, a standard dataset in
traffic sign recognition, which includes over 50,000 images
across 43 distinct traffic sign classes. This dataset offers a
diverse set of images, covering variations in size, rotation,
illumination, and partial occlusions, which are representative of
real-world driving conditions.

To further evaluate the robustness of our system, we also
tested it on synthetic images that simulate challenging
conditions, including poor lighting, motion blur, and partial
occlusions.

2. Experiment Setup
The experiments were conducted on a high-performance

machine equipped with an Apple M3 Max
chip featuring 128GB of unified RAM/VRAM. This setup
provided substantial computational power, especially for
handling large datasets and high-resolution image processing
tasks, accelerating both the training and inference phases.

Key training parameters included:
Learning rate: 0.001 with a decay rate of 0.9 per epoch
Batch size: 32
Optimizer: Adam, chosen for its adaptive learning

capabilities
Number of epochs: 50
The M3 Max's integrated GPU and memory allowed

efficient data processing and model training, enabling us to
conduct experiments with faster iterations and higher resolution
input data. Data augmentation techniques, including random
rotations, translations, and brightness adjustments, were applied
to improve model generalizability.

3. Evaluation Metrics
The system’s performance was evaluated using the

following metrics:
Accuracy: Measures the overall correctness of sign

recognition.
Precision, Recall, and F1 Score: Provides insight into the

system's ability to correctly classify traffic signs and handle
class imbalances.Intersection over Union (IoU): Evaluates the
quality of bounding box localization by comparing predicted
and ground-truth boxes.

Inference Time: Assesses the suitability of the system for
real-time applications by measuring the average time taken to
process each image.

4. Results
The proposed system showed excellent performance in sign

recognition, achieving high accuracy, precision, recall, and F1
scores across various conditions. Table 1 provides a summary
of the performance metrics.

Table 1. Performance of Proposed System on GTSRB
Dataset

Metric Value
Accuracy 98.4%
Precision 97.8%
Recall 97.5%
F1 Score 97.6%
IoU (Bounding Box) 85.3%
Average Inference Time 24 ms per image

These results demonstrate that the proposed system is

effective in accurately detecting and classifying traffic signs

Mykola Drobiniak et al. / International Journal of Computing, 24(1) 2025, 62-71

VOLUME 24(1), 2025 69

with minimal false positives and negatives. The average
inference time of 24 ms per image suggests the model's
suitability for real-time applications, making it feasible for
deployment in Advanced Driver Assistance Systems (ADAS)
and autonomous vehicles.

5. Comparison with Classic Methods
To highlight the advancements of our proposed system, we

compared it with traditional shape recognition and classification
methods. This comparison provides insights into improvements
in accuracy, robustness, and computational efficiency.

5.1 Shape Recognition Comparison
Classic Shape Recognition: Traditional approaches for

shape recognition, such as the standard Canny edge detection
and Hough Transform, are based on geometric features to
identify common shapes (e.g., circles, triangles). These
methods, while effective in controlled environments, tend to
struggle with noise, lighting variations, and complex
backgrounds, often resulting in false positives.

Proposed Shape Recognition Method: Our approach
improves upon traditional methods by incorporating color
segmentation, modified Canny edge detection, and enhanced
shape validation algorithms, which improve recognition
accuracy in diverse lighting and occlusion conditions.

Table 2. Shape Recognition Results Comparison:

Metric Classic Method (Canny +
Hough)

Proposed
Method

Detection Accuracy 85.2% 94.5%
False Positive Rate 14.8% 5.5%
IoU (Bounding Box) 76.3% 85.3%
Average Detection
Time

35 ms 24 ms

The proposed method achieved a detection accuracy of

94.5%, significantly higher than the classic method (85.2%).
Ishaq et al. [26] showed that YOLOv5 could achieve high

precision in traffic sign detection while maintaining real-time
processing, a capability also demonstrated in our model.

The IoU score, a measure of bounding box accuracy, was
also higher at 85.3%, compared to 76.3% for the classic method.
These improvements highlight the increased precision of our
approach in detecting sign shapes, even in challenging
environments. Additionally, the average detection time was
lower, indicating enhanced suitability for real-time applications.

The proposed system was compared to context-aware
algorithms like those developed by Lee et al. [27], which
incorporate environmental cues to improve detection accuracy.
The results showed that our method achieves superior precision
and inference time under similar real-world conditions.

5.2. Classification Comparison
– Classic Classification:
Traditional classification techniques, including Support

Vector Machines (SVM) and K-Nearest Neighbors (KNN) with
handcrafted features (e.g., Histogram of Oriented Gradients
(HOG) and Scale-Invariant Feature Transform (SIFT)), have
been used in early traffic sign recognition. However, these
approaches often require substantial feature engineering and
struggle to handle diverse real-world variations.

– Proposed Classification Method:
Our model employs a Convolutional Neural Network

(CNN) with ROI pooling and a Softmax classifier, enabling it to
learn relevant features automatically, thereby handling
variations in lighting, rotation, and occlusion more effectively.

Table 3. Classification Results Comparison:

Metric SVM +
HOG

KNN +
SIFT

Proposed CNN
Classifier

Classification
Accuracy

88.1% 82.5% 98.4%

Precision 86.7% 80.2% 97.8%
Recall 84.5% 78.9% 97.5%
F1 Score 85.6% 79.5% 97.6%
Inference Time 45 ms 40 ms 24 ms

Figure 8. Recall vs. IoU (Intersection over Union) for SVM +
HOG, KNN + SIFT, and Proposed CNN Classifier.

The improved speed and accuracy of the proposed CNN
model are achieved through the following key factors:

– Speed (Inference Time):
Automatic Feature Extraction: Unlike SVM with HOG and

KNN with SIFT, which rely on computationally expensive
manual feature extraction, CNNs automatically extract relevant
features. This significantly reduces processing time.

Efficient Architecture: Convolutional and pooling layers
quickly reduce the dimensionality of the data while retaining
critical information, lowering computational demands.

– Accuracy:
1. Preprocessing: Robust color segmentation and shape

recognition improve ROI selection, minimizing irrelevant data
passed to the classifier.

2. End-to-end learning: Combines feature extraction and
classification in one framework, avoiding the error propagation
in SVM+HOG or KNN+SIFT pipelines.

3. Generalization: CNN handles variations in lighting, size,
and occlusion better due to deeper layers and diverse training
data.

4. Efficiency: CNN achieves higher precision and recall
while being faster (24 ms) than SVM (45 ms) and KNN (40 ms).

5. Class handling: Weighted loss functions allow CNN to
handle imbalanced datasets, unlike traditional methods prone to
bias.

The CNN-based classifier achieved a classification accuracy
of 98.4%, substantially outperforming both SVM (88.1%) and
KNN (82.5%) classifiers. Precision and recall metrics were
higher with the CNN, indicating superior handling of false
positives and negatives. The lower inference time demonstrates
the efficiency of the proposed model, which is crucial for real-
time deployment.

To improve classification accuracy and handle distributed
systems, Zhou et al. [28] proposed a federated learning approach
with spike neural networks. This method enhances scalability
and ensures efficient training across multiple edge devices,
making it highly suitable for real-time traffic sign recognition.

6. Analysis of Results
6.1. Performance under Challenging Conditions

0

0,2

0,4

0,6

0,8

1

0,05 0,2 0,4 0,6 0,8 1

Re
ca

ll

IoA

SVM + HOG

Proposed CNN

KNN + SIFT

 Mykola Drobiniak et al. / International Journal of Computing, 24(1) 2025, 62-71

70 VOLUME 24(1), 2025

Our system maintained high accuracy and IoU scores even
under conditions with occlusions and poor lighting, where
traditional methods tended to fail or produce lower precision.

6.2. Real-Time Feasibility
The lower inference times in both shape recognition and

classification highlight the real-time feasibility of the proposed
system, making it well-suited for ADAS applications.

6.3. Class-Specific Performance
Analysis of class-specific results revealed that rare or

partially occluded signs occasionally caused reduced precision
in classic methods, whereas our CNN-based approach
performed reliably across these cases.

7. Visual Results
Example Images: Figures 1-3 illustrate examples of

successful traffic sign recognition under various conditions,
including daylight, low-light, and partial occlusion. Bounding
boxes and class labels show the system’s accuracy in detecting
and classifying signs.

IV. CONCLUSIONS
This study addresses the critical challenge of accurate and
efficient traffic sign recognition for Advanced Driver
Assistance Systems (ADAS) and autonomous vehicles. We
propose a comprehensive system combining robust
preprocessing techniques with a convolutional neural network
(CNN) for classification. The system incorporates color
segmentation, geometric shape recognition, ROI scaling, and a
CNN-based classifier designed to handle diverse real-world
conditions.

The proposed method ensures high-speed and high-accuracy
recognition by leveraging an end-to-end learning approach. The
CNN automatically extracts relevant features, eliminating the
need for manual feature engineering as in traditional methods
like SVM+HOG or KNN+SIFT. This integration allows the
model to achieve exceptional performance, with an accuracy of
98.4%, precision of 97.8%, and recall of 97.5%, while
maintaining a low inference time of 24 ms per image.

Experimental results demonstrate that the system
outperforms classical methods both in accuracy and efficiency.
For instance, the proposed CNN model surpasses traditional
methods like SVM+HOG (88.1% accuracy) and KNN+SIFT
(82.5% accuracy) while achieving faster inference.
Additionally, the IoU score of 85.3% reflects precise
localization of traffic signs, further confirming the model’s
robustness under varying conditions. This research highlights
the potential of integrating advanced preprocessing with deep
learning techniques to enhance traffic sign recognition, making
it a promising solution for real-time applications in ADAS and
autonomous driving technologies. The integration of deep
learning techniques, as highlighted by Li et al. [29], reinforces
the potential of traffic sign recognition systems in enhancing
ADAS and autonomous driving.

Future work could explore further optimizations and expand
the system’s applicability to other visual recognition tasks in
intelligent transportation systems.

References

[1] F. Hu et al., “A comprehensive survey on traffic sign recognition
systems,” IEEE Transactions on Intelligent Transportation Systems, vol.
22, no. 7, pp. 4745–4762, 2022.

[2] R. C. Gonzalez and R. E. Woods, Digital Image Processing, 4th ed.,
Upper Saddle River, NJ, USA: Pearson, 2018.

[3] W. Zhang et al., “YOLO-TS: Real-time traffic sign detection with
enhanced accuracy using optimized receptive fields,” in Proceedings of
the IEEE International Conference on Intelligent Transportation
Systems (ITSC), 2021.

[4] A. Zaid et al., “Traffic sign detection and recognition in adverse weather
conditions,” IEEE Transactions on Image Processing, vol. 32, no. 1, pp.
567–579, 2023.

[5] M. Komar, V. Golovko, A. Sachenko and S. Bezobrazov, “Development
of neural network immune detectors for computer attacks recognition
and classification,” in Proceedings of the 2013 IEEE 7th International
Conference on Intelligent Data Acquisition and Advanced Computing
Systems (IDAACS), Berlin, Germany, 2013, pp. 665-668.
https://doi.org/10.1109/IDAACS.2013.6663008

[6] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, 2015. https://doi.org/10.1038/nature14539

[7] M. Ahmed et al., “A real-time traffic sign detection and recognition
system using optimized CNN architectures,” IEEE Transactions on
Intelligent Vehicles, vol. 9, no. 4, pp. 1387–1398, 2023.

[8] Z. Gao et al., “Adaptive fusion and dictionary learning models for traffic
sign recognition,” IEEE Transactions on Intelligent Transportation
Systems, vol. 20, no. 12, pp. 4724–4735, 2019.

[9] K. Ishii et al., “Deep neural networks for traffic sign recognition
systems,” IEEE Transactions on Intelligent Vehicles, vol. 4, no. 3, pp.
231–241, 2023.

[10] J. Al-Salameh et al., “Real-time traffic sign recognition and detection
using deep learning techniques,” IEEE Access, vol. 8, pp. 57690–57700,
2020.

[11] D. Yu et al., “Real-time traffic sign detection and recognition on low-
power embedded devices,” in Proceedings of the IEEE Embedded
Systems Symposium, 2022.

[12] H. Li et al., “Towards real-time traffic sign and traffic light detection on
embedded systems,” in Proceedings of the IEEE Embedded Systems
Conference, 2022.

[13] A. Y. Rodrigues, J. S. Marques, and P. L. Correia, “Context-aware
adaptive systems for real-time traffic sign detection,” Research Report,
Univ. of Lisbon, Lisbon, Portugal, 2020.

[14] X. Wang et al., “Neural-network-based traffic sign detection and
recognition in high-definition images,” Journal of Transportation
Engineering, vol. 146, no. 2, pp. 1–12, 2020.

[15] R. Chen et al., “Improved YOLOv5 for real-time multi-scale traffic sign
detection,” IEEE Transactions on Intelligent Transportation Systems,
vol. 23, no. 6, pp. 5783–5795, 2022.

[16] J. Stallkamp et al., “The German traffic sign recognition benchmark,”
[Online]. Available at: https://benchmark.ini.rub.de/gtsrb_news.html

[17] T. Timofte, V. Van Gool, and L. Van Gool, BelgiumTS Dataset, KU
Leuven, 2012. [Online]. Available at: https://btsd.ethz.ch.

[18] M. Alhamadi et al., “Real-time road traffic sign detection and
recognition for intelligent transportation systems,” Applied Intelligence,
vol. 50, no. 1, pp. 163–177, 2021.

[19] X. Zhang et al., “Traffic sign detection and classification using deep
learning,” IEEE Transactions on Neural Networks and Learning
Systems, vol. 31, no. 9, pp. 1–10, 2020.

[20] F. Chen et al., “Deep learning techniques for traffic sign recognition,”
IEEE Transactions on Intelligent Vehicles, vol. 6, no. 1, pp. 1–10, 2021.

[21] T. Kim et al., “Traffic sign recognition using CNNs and advanced
preprocessing techniques,” Proceedings of the International Conference
on Computer Vision (ICCV), 2021.

[22] A. Rahman et al., “TRD-YOLO: A real-time, high-performance small
traffic sign detection method,” Sensors, vol. 22, no. 8, 2022.

[23] P. V. K. Borges and E. Aldon, “Line detection with Hough transform
and line segment clustering,” Pattern Recognition Letters, vol. 32, no.
13, 2011.

[24] C. M. Bishop, Pattern Recognition and Machine Learning, New York,
NY, USA: Springer, 2006.

[25] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” in Advances in Neural
Information Processing Systems (NIPS), vol. 25, 2012

[26] A. Ishaq et al., “Real-time traffic sign recognition using YOLOv5,”
IEEE Access, vol. 9, pp. 1–10, 2021.

[27] J. Lee et al., “Enhanced traffic sign detection using context-aware
algorithms,” Pattern Recognition Letters, vol. 130, pp. 321–327, 2023.

[28] S. Zhou et al., “Efficient federated learning with spike neural networks
for traffic sign recognition,” IEEE Transactions on Neural Networks and
Learning Systems, vol. 32, no. 10, pp. 4254–4265, 2022.

[29] H. Li et al., “Deep learning-based traffic sign recognition for
autonomous driving,” IEEE Transactions on Intelligent Vehicles, vol. 5,
no. 2, pp. 1–10, 2020.

Mykola Drobiniak et al. / International Journal of Computing, 24(1) 2025, 62-71

VOLUME 24(1), 2025 71

MYKOLA DROBINIAK, Master’s
degree student in Software
Engineering, Zaporizhzhia Polytech-
nic National University, Ukraine, 2024.
Field of scientific interests: Artificial
Intelligence, Machine Learning, Image
Recognition, Neural Network
Integration.
https://orcid.org/0009-0005-4413-5403
Email: ndrobiniak@gmail.com

PROF. SERGEY SUBBOTIN. Doctor of
Technical Sciences, Professor, Head
of the Department of Software Tools
at the National University
"Zaporizhzhia Polytechnic". Field of
scientific interests: Pattern
Recognition, Machine Learning,
Optimization, Intelligent Diagnosis.
https://orcid.org/0000-0001-5814-8268
Email: subbotin.csit@gmail.com

DANYLO BOROVYK Student at the
National University "Zaporizhzhia
Polytechnic". Field of scientific
interests: Machine Learning, Pattern
Recognition.
https://orcid.org/0009-0004-2194-0824
Email: daniilborovik1999@ukr.net

PROF. ANDRII OLIINYK, Dr. Sc.,
Professor of Software Tools
Department of National University
"Zaporizhzhia Polytechnic". Field of
scientific interests: Artificial
Intelligence, Modeling, Diagnostics.
https://orcid.org/0000-0002-6740-6078
Email: olejnikaa@gmail.com

TETIANA KOLPAKOVA, PhD.,
Associate Professor of Software
Tools Department of National
University "Zaporizhzhia
Polytechnic". Field of scientific
interests: Web Technologies, Artificial
Intelligence.
http:// orcid.org/0000-0001-8307-8134
Email: t.o.kolpakova@gmail.com

