

VOLUME 24(1), 2025 81

Date of publication MAR-31, 2025, date of current version DEC-15, 2024.
www.computingonline.net / computing@computingonline.net

Print ISSN 1727-6209
Online ISSN 2312-5381
DOI 10.47839/ijc.24.1.3879

Fast Exponentiation in Galois Fields
GF(2n)

NIKOLAOS DOUKAS
Department of Mathematics and Engineering Sciences

Hellenic Army Academy, Vari, Greece

Corresponding author: Nikolaos Doukas (e-mail: ndoukas@sse.gr, nd@ieee.org).

 ABSTRACT Algebraic operations in Galois fields present properties that render them suitable for use in
implementations of cryptographic primitives. Two fundamental operations of interest are modulo squaring and
multiplication, whose implementations can be accelerated by using Galois field algebra. An approach is proposed
for the acceleration of the calculation of modulo exponentiation in Galois fields, an operation that is fundamental
for a wide spectrum of cryptographic algorithms. The approach is based on two developed procedures, namely fast
exponentiation to the square and multiplication with a constant number in Galois fields. The proposed innovative
accelerated calculation is attained via the use of the properties of the second order polynomial, the Montgomery
group reduction and the derivation of pre-calculated tabular results. The mathematical foundation of the proposed
method is given, followed by numerical examples that illustrate its operation. The amount of memory required is
also calculated. It has been proved, both theoretically and experimentally that the proposed approach renders
possible the acceleration of exponentiation in Galois fields by 5 to 7 times, in comparison with known methods.

 KEYWORDS multiplication operation on Galois fields, cryptographic algorithms based on Galois Fields
algebra, Galois Fields exponentiation, Montgomery reduction, precomputation.

I. INTRODUCTION
perations in Galois fields are widely used in several
applications of current information technology. One of the

most important areas of application of the Galois fields are
cryptographic mechanisms for the protection of information.
The Galois fields are actively used in stream cipher algorithms
[1], can provide the implementation of the fundamental
cryptographic transformations of the AES algorithm [2, 3],
form the basis for the creation of cryptographic mechanisms of
public key algorithms, such as digital signatures [4, 5] and are
used for the zero-knowledge authentication of remote users [6,
7].

For cryptographic applications, the attractive aspect of
using the Galois fields algebra is that by carefully selecting the
polynomial to define the field, it becomes possible to generate
a set of algebraic bases, for which the results of the operations
are different.

This opens up the possibility of significantly increasing the
security level without increasing the bit length of the numbers
processed. However, the principle attractive feature for using
Galois field algebra to implement public key cryptography, is
that they enable an increase in the speed of computer
implementation of the corresponding information security
protocols by an order of magnitude. This is due to the fact that

operations on Galois fields are performed without the need for
carry bits, which implies that each bit can be processed in
parallel. In addition, this leads to specific properties of squaring
on Galois fields [5], which can be used to accelerate this
operation many times over.

The above allow the consideration of public key
cryptographic mechanisms based on Galois field algebra as an
effective alternative to classical algorithms based on modular
arithmetic. Such algorithms are of particular interest for low-
power terminal microcontrollers of remote-control systems
used in IoT technologies. This class of computational platforms
is continuously expanding due to the rapid improvement of
Internet technologies, expansion of connectivity and
availability of inexpensive radio communication equipment.
Using the Internet as a medium for data exchange with remote
control systems of real world objects, provides many
advantages. It is however also associated with a significant
number of problems. The most important of these problems is
the necessity to ensure the protection of data transmitted over
the potentially open Internet [6]. For remote control systems,
the most prominent threat is external intervention in their
operation. For the protection against such intervention, it is
necessary to utilize digital signature technologies for each
control message to the terminal microcontroller or data item

O

 Nikolaos Doukas et al. / International Journal of Computing, 24(1) 2025, 81-91

82 VOLUME 24(1), 2025

transmitted regarding the status of a remote object [7]. Existing
DSA-type digital signature mechanisms presuppose the ability
to use modular exponentiation on large size numbers.
Performing this operation at 4096 bits resolution requires a
significant amount of computational effort. This is a
particularly important obstacle when implemented on a low-
power microcontroller, which is utilized for implementing real-
time control of remote equipment.

One of the available ways of overcoming this situation is
the use of Galois field algebra combined with research of
techniques for the acceleration of exponentiation of large
numbers. The purpose of this research is the acceleration of the
operation of exponentiation in Galois fields, that can provide
the foundation for a large number of cryptographic protocols.

II. STATE OF THE ART: PROBLEM STATEMENT AND
REVIEW OF CURRENT TECHNIQUES
Interest in the practical use of the of finite Galois fields GF(2n)
algebra for creating fast mechanisms of public-key
cryptography as an alternative to classical technologies based
on modular arithmetic, stimulates research for creating
efficient methods of the fundamental operation of
exponentiation on Galois fields [8, 9].

When using the Galois field algebra GF(2n), a polynomial
representation of numbers in the form

}1,0{:}1,...,1,0{

,...)(01
2

2
1

1

j

n
n

n
n

anj

axaxaxaxA
 (1)

is commonly used, which corresponds to the usual
representation of the number

01
2

2
1

1 2...22 aaaaA n
n

n
n

 (2)
Addition in Galois Fields is preformed via the logical XOR

operation and will be from here on represented by the symbol
‘’ [6]. Reduction or the calculation of the remainder of a
polynomial division A(x) by the produced polynomial P(x) in
the Galois field will be represented as A rem P, so as to be
distinguishable from the division of number A by number M in
regular algebra, denoted as A mod M. The multiplication
operation in the Galois fields A B rem P, consists of two
operations: polynomial multiplication, denoted by ‘’ and the
reduction of the polynomial produced by the field polynomial
P [10].

The operation of calculating the square of a number A in the
Galois field with the produced polynomial P is denoted as AA
rem P or A|2 rem P. Consequently, the exponentiation
operation in the Galois fields, i.e. the calculation of the
remainder of the polynomial division of the number A raised to
the power E in the polynomial P is denoted as A|E rem P [10].

The existing exponentiation technologies, both in
traditional algebra and in Galois fields are based on a classical
algorithm that performs a bit-by-bit analysis of the bits of the
exponential code

Е = {en-1, en-2, …, e0}, j{0,1, …, n-1}; ei{0, 1} (3)

At every step, a calculation of a square in the Galois field is

performed, and the multiplication operation is dependent on the
value of the current bit of the exponent. Given that in every next
step, the results of the previous step are used, the algorithm
cannot be parallelized at the level of the processing of the bits
of the exponent.

There exist two variants of this algorithm that differ as to
the direction of the analysis of the bits of the exponent. When
the exponentiation starts at the most significant bits of the
exponent, in each of the n steps the calculation of the square of
the current result is performed and the result is multiplied by A
if the current bit of the exponential code is 1. Therefore, the
mean time t0 for the exponentiation starting from the most
significant bits is 1.5ntm, where tm is the time required for the
multiplication in the Galois field. The advantage of the
exponentiation starting from the least significant bit is that
there exists a possibility for partial parallelization of the
calculations in one step. This enables the acceleration of the
calculations by 1.5 times [10].

Further acceleration of the exponentiation in the Galois
field may be attained by reducing the times required for the
multiplication and for calculation of the square. In turn, the
multiplication and the power calculation in the Galois fields
consists of operations performed on large n bit numbers and on
small numbers whose bit size is smaller than that of the
processor. In actual cryptographic systems that use
exponentiation in Galois fields the value of n is 2048 or 4096
i.e. 1 – 2 orders of magnitude larger than that of
microprocessors (8 – 64). Hence, for the comparative
evaluation of efficiency, it is recommended to consider only
operations on large numbers.

The multiplication operation consists of two phases: the
polynomial multiplication and the reduction of the obtained
result. The polynomial multiplication of the n bit numbers
requires 2n shift operations (both operands are shifted) and, on
average, 0.5n logical additions operations (XOR).

All the above operations belong to the logical class and are
executed in approximately the same time. It can therefore be
assumed that the logical multiplication requires, on average,
2.5n logical operations. The polynomial division is also
performed in n cycles, each of which consists of a shift of the
code of the Galois field production polynomial and of the test
code and, with probability 0.5, the logical addition. Hence the
multiplication of the Galois field is performed in 2.5n logical
operations [7].

There are two main approaches used for the acceleration of
the multiplication operation in the Galois fields:
1. Application of preliminary calculations for the

acceleration of the reduction
2. Combination of the polynomial multiplication and of the

reduction
Most of the existing methods [10, 11] that use the first

approach use pre-calculations depending on the produced
polynomial P(x) of the Galois field, based on the fact that in
real cryptographic protocols, this is part of the public key and
can consequently be considered as constant [12]. It may
therefore be pre-calculated and be stored for n remainders.

Qn-1= 22n-1 rem P(x), Qn-2=22n-2 rem P(x),…,
Q1=2n+1 rem P(x), Q0 = 2n rem P(x) (4)

After the division of the produced polynomial P(x) of the
Galois field the reduction consists of the calculation of the
logical sum of the values of the table the correspond to the ones
in the most significant bits of the produced polynomial. Due to
the pre-calculation, the number of logical operations is reduced
to 1.5n. If there exist memory resources for the storage of a
table of n2h values, during the reduction operation, h bits of the
product may be processed in parallel. Therefore, the time

Nikolaos Doukas et al. / International Journal of Computing, 24(1) 2025, 81-91

VOLUME 24(1), 2025 83

required for the performance of the reduction operation
becomes smaller by h times [13].

The combination of the polynomial multiplication and
reduction was proposed in [14]. The described method is based
on solving a sequence of congruences that are derived from the
Grobner theory bases in modules over the polynomial ring
GF(p).

Such a solution is effective for implementation in hardware,
when it is feasible to perform the parallel implementation of the
logical sum of multiple numbers. Hardware implementations
enable an increase in the speed and stability of exponent
computation on Galois fields by accelerating the squaring on
Galois fields [15].

Another option for the combination of polynomial
multiplication and reduction that is oriented towards software
implementations, is the use of the Montgomery technology that
was modified for Galois fields [16-18].

According to this approach, the combined operation is
performed in n steps, each one of which involves the processing
of the least significant bit of the multiplier and the logical
addition with the binary code of the result, if this bit is equal to
1. Additionally, depending on the least significant bit of the
result, the logical addition with the producing polynomial of
the field is performed. The result and the bit code of the
multiplier are then shifted. As a result, the average number of
logical operations is 3n [19].

Hence the total number T0 of logical operations performed
in large n-bit numbers for the performance of the
exponentiation in Galois fields using multiplication for the
calculation of the square in the context of the Montgomery
combination of multiplication and reduction is given by the
formula [20]:

2
0 5.4)35.03(nnnnT (5)

In [20], a variant of the combined use of pre-calculations
depending on the constitutive polynomial of a Galois field and
Montgomery reduction for accelerating the squaring is
proposed. However, these studies lack an effective
implementation of the above idea into another component -
multiplication by a constant number and into the
exponentiation process on Galois fields in general.

An analysis of the algorithm of classical exponentiation in
Galois fields demonstrates that 2/3 of the volume of
computations are devoted to the calculation of the square [21].
Consequently, the most promising direction for the increase of
the speed of exponentiation in Galois fields, is research for the
reduction of the computational complexity of the operation of
the calculation of the square.

A. NOTABLE PREVIOUS RELATED WORK
This problem has attracted significant attention from
researchers, due to its importance for providing enhanced
information security [22]. Additionally, it has attracted
attention due to the possibility of applying accelerated
calculations in other fields as well. In [23], modular arithmetic
used for error correction coding could benefit from the
application of this technique. Accelerated modular arithmetic
is also applied in the case of wireless sensor networks [24].
Other researchers have investigated the possibility of
employing accelerated calculations in hybrid random number
generators [25] and emphasizing in serial encryption [26].
Accelerated modulo arithmetic operations have also been

recognized as capable of also benefiting cryptographic
hardware implementations [27].

B. STATE – OF – THE ART IN CURRENT RELATED
TECHNIQUES
The proposals by Zhang [28] involve an improved Barrett
modular multiplication (BMM) algorithm along with a
hardware-efficient design. The key idea is to parallelize the
quotient estimation and intermediate product computations,
and to replace costly multi-word additions with lightweight
carry-save compression operations. They introduce a novel
data representation allowing use of tiny (2-bit and 3-bit) adders
for certain overflow and partial-sum corrections. In an FPGA
implementation, their optimized Barrett multiplier significantly
outperforms both classical Barrett and Montgomery multipliers
in terms of speed and area, especially for high-radix (large
word size) arithmetic. This demonstrates that even a well-
known method like Barrett’s can be tweaked at the algorithmic
level (quotient estimation and reduction steps) for notable
efficiency gains in cryptographic hardware. In [29], the
researchers present a software-side innovation that benefits
modern CPUs with 512-bit SIMD instructions. They focus on
the 52-bit fused multiply-add (VPMADD52) capability of the
Intel AVX-512 to perform batch Montgomery multiplications
in parallel. A novel contribution is their Truncated
Montgomery Multiplication, which computes only the
necessary lower half of certain intermediate products, reducing
workload in the reduction phase. This optimization yields
~20% speedup in the inner multiplication loop compared to
conventional Montgomery multiplication. By processing up to
8 modular multiplications in a word-sliced SIMD batch, they
achieved over 4× faster modular multiplication throughput than
GMP and OpenSSL for operands of 1024 up to 4096-bit. For
full modular exponentiation, their 512-bit wide implementation
attained 1.75× speedup for 1024-bit exponents (and 1.38× for
2048-bit) over OpenSSL’s AVX2-based constant time
exponentiation routine.

The work in [30] focuses on the scenario where the base a
is fixed across many exponentiations (common in certain
protocols or repeated operations). They implemented a
Montgomery-arithmetic based exponentiation in C++ and
introduced a precomputation of a reduced residue table for
powers of the fixed base. Using a right-to-left binary
exponentiation with that precomputed table, they achieved
notable speedups for large exponents (larger than 1024 bits). In
[31], the proposals tackled the problem of multiple
simultaneous exponentiations which occurs in multi-base
cryptographic protocols, batch verification, etc. They
compared known multi-exponentiation algorithms (such as
interleaving exponentiation vs. separate exponentiations) not
just by counting multiplications, but by actual execution time
on different hardware. A key finding is that the theoretically
optimal algorithm (in terms of minimal multiplications) might
not be the fastest in practice once factors like memory access
and pipeline stalls are considered. Although not primarily about
speed, it’s worth noting that in cryptographic contexts,
sometimes a slightly slower algorithm is chosen to prevent
timing or cache side-channels. For instance, a Montgomery
ladder or a fixed-window method with dummy operations may
be used to make execution time independent of secret
exponents. Some recent research [32] evaluated the security of
such implementations against cache attacks. While these works
focus on security, they often propose minor tweaks that can

 Nikolaos Doukas et al. / International Journal of Computing, 24(1) 2025, 81-91

84 VOLUME 24(1), 2025

reduce the performance penalty of constant-time
exponentiation.

In the hardware front, researches have demonstrated [33]
that RSA and modular exponentiation can be performed
entirely in Residue Number System (RNS), eliminating the
need for costly base-conversion steps at every multiplication.
They leverage a recent technique called Sum of Residues
reduction, which performs modular reduction within a single
RNS system (as opposed to earlier RNS Montgomery methods
that required two related RNS systems and multiple base
extensions). By improving both the algorithm and the digital
architecture, they achieved a 1024-bit modular exponentiation
in only 0.567 ms on a Xilinx FPGA (Virtex-6), using a
reasonable amount of resources. Other research [34] has
addressed the efficiency of RNS from another angle, by looking
at how to choose the RNS moduli for optimal performance and
simpler conversion. The proposals of [34] introduced the
selection of two new balanced RNS bases that are well-suited
for Montgomery multiplication. In particular, they chose
moduli that are well-formed, i.e. close to powers of 2, in order
to simplify the reduction and base extension operations. They
also designed efficient reverse converters to recombine
residues, that take advantage of this balanced structure. In
FPGA experiments, their RNS Montgomery multiplier shows
excellent speedup for large operand multiplication, with
manageable hardware cost. The research proposed in [35],
develops a Block-Parallel approach to exponentiation using
Intel AVX-512 and demonstrates its benefit not only for speed
but also for fault attack countermeasures. The proposal
introduces the Block Product Scanning (BPS) method (a block-
based Montgomery multiply) which vectorizes big-integer ops.
On an Intel Xeon, their implementation achieved 1.5× higher
RSA throughput than GMP 6.1.2 for 2048-bit exponentiation
and 1.9× faster RSA decryption compared to OpenSSL, thanks
to AVX-512 parallelism. There is also ongoing work in
designing application-specific integrated circuits for tasks like
the Verifiable Delay Function (VDF), which essentially
requires computing a2t mod N squaring operations [36].
Researchers have in this case [36] proposed pipelined squaring
units and even ASIC prototypes that perform a 2048-bit
modular squaring in under 100 ns, targeting VDF use-cases.
These specialized designs often use high-radix Montgomery
multipliers and deep pipelines to churn out one modular square
per clock cycle after latency.

Resource-constrained devices (IoT sensors,
microcontrollers) may not be able to perform 2048-bit
exponentiations quickly. One approach highlighted in recent
work is the secure outsourcing of modular exponentiation to a
more powerful server. Protocols have been proposed for an IoT
device to transfer RSA computations to the cloud, for which a
vulnerability is shown in [37] and a fix is provided. The
improved protocol of [37] ensures that the untrusted server
cannot learn the secret exponent or result, by blinding
intermediate values, and is resilient against known lattice
attacks. The overall performance remains unaffected by this
correction and hence the computational effort benefit is
achieved with better security. This approach represents a
workaround for a cryptographic solution to the performance
problem, since it allows small devices to benefit from big
accelerators in the cloud. When combined with algorithmic
improvements, whereby the cloud server can use all the
methods discussed above, secure cloud computations can make
heavy cryptography feasible in lightweight environments

without sacrificing privacy.
Finally, research has also been directed toward algorithmic

developments, such as the efficient implementation of
Montgomery multiplication and Barrett reduction algorithms.
In [38], a high-efficiency digital signal processing framework
is explored, aimed at optimizing modulo calculations,
emphasizing significant improvements in efficiency through
these established methods. By formulating optimizations
specifically for lattice-based cryptography, the authors
demonstrated the applicability of this approach to post-
quantum systems.

C. CONTRIBUTIONS OF THE PRESENT WORK
The principal disadvantage of the existing methods for
accelerating multiplicative operations on Galois fields is that
they do not use the possibilities of simultaneous multiple digit
processing. The possibility of using this reserve for increasing
the speed of computation is due to both the specific features of
operations on Galois fields and the extension of the
Montgomery reduction operation.

In the following sections, existing techniques will be
presented in detail for accelerated calculation of the square of
a number and the accelerated calculation of the multiplication
with a constant number in Galois fields. Following that, based
on these accelerated procedures for squaring and
multiplication, an innovative proposed procedure will be
developed for the execution of exponentiation in the Galois
fields i.e., for the calculation of A|E rem P.

III. ACCELERATED SQUARING METHOD IN GALOIS
FIELDS WITH MONTGOMERY GROUP REDUCTION
When using both versions of the classical algorithm for
exponentiation on Galois fields of long numbers, the squaring
operation takes 2/3 of the volume of all calculations. Therefore,
to accelerate exponentiation on Galois fields, it is necessary to
investigate the possibilities of reducing the time required for
performing squaring operations.
The principal resources that may be used for the reduction of
the number of logical operations for the squaring in the Galois
fields are:

- the Factor Square Property (FSP),
- application of the Montgomery reduction modified for

Galois fields,
- group processing of bits when performing Montgomery

reduction.
The property of the calculation of the square of a

polynomial of A, is that this operation is actually equivalent to
inserting zeros between the bits of the number A. Indeed, the
polynomial product is the XOR of the logical products of all
possible pairs of bits of the factor codes, multiplied by the
corresponding power of two. If the factors are equal to each
other, then the logical product of a pair of different bits is
included in the XOR twice and, consequently, it is cancelled
out. Therefore, the polynomial square can be represented as:

j
j

n

j

ji
ji

n

i

n

j

aaaAA

 2
1

0

1

0

1

0

22 (6)

For example, if А=9=10012, then AA=10000012=65.
Accordingly, the implementation of polynomial squaring
becomes significantly simpler and faster than calculating the
square in traditional algebra.

Nikolaos Doukas et al. / International Journal of Computing, 24(1) 2025, 81-91

VOLUME 24(1), 2025 85

Polynomial squaring can hence be performed in software
using 2n shift operations of the n-bit code A. After calculating
the polynomial square, it is necessary to perform its reduction,
that is, the calculation of the remainder of the division by the
field generator polynomial – P. Direct execution of the
polynomial division operation of the 2n -bit code of the
polynomial square by the field generator polynomial requires n
shift operations of the n-bit code P and n/2 XOR operations on
n-bit codes. Thus, sequential execution of polynomial squaring
and reduction of the obtained result requires 3.5n logical
operations on n-bit codes.

A more efficient implementation of squaring on Galois
fields is achieved by combining the bit expansion of the number
A that is being squared with the reduction. Such a combination
is possible only when performing the reduction from the lowest
bits, that is, using the Montgomery's technique [5]. In order to
attain this, the technique which is used for modular reduction
in ordinary algebra, must be updated in order to encompass the
features of reduction on finite Galois fields.

For the implementation of the combination of polynomial
squaring and modified Montgomery reduction on the Galois
field, a procedure for fast calculation of A2 rem P is proposed.
In the developed procedure, the code of the n-bit number A,
which is raised to the power of E on the finite Galois field
GF(2n), is divided into two fragments: the n/2 least significant
digits form the first fragment A1, and the n/2 most significant
digits of the number A form the second fragment A2. The
procedure for the combined polynomial squaring and modified
Montgomery reduction on the Galois field involves the
following steps:

1. The initial value of the variable R of the current result
and the index j of the loop are set to zero: R=0 and j=0.

2. If the index j of the loop is even, that is j mod 2=0, then
the least significant digit a10 of the code A1 is logically added
to the least significant bit of R, and the least significant bit a20
of the code A2 is logically added to the most significant (n+1)th
bit of R=R a10 a202n.

3. If the least significant digit of R is equal to one: r0 =1,
then the generator polynomial of the field P is logically added
to P: R = R P.

4. The code R is shifted to the right by one bit: R>>=1.
5. If the index j of the loop is even, that is, j mod 2=0, then

the codes A1 and A2 are shifted to the right: A1>>=1 and A2>>1.
6. The index j of the loop is increased by one. If j<n, then a

return to repeat Step 2 is performed.
7. End of process. The value R = AA Q-1 rem P is

obtained, where Q-1 is the multiplicative inverse of the
polynomial of Q(x)=xn in the Galois field. The polynomial P(x)
is formed, i.e. QQ-1 rem P =1.

In order to obtain the correct value of the squaring of the
number A in the Galois field, the result of the above procedure
must be multiplied by Q:

R= RQ rem P (7)
However, the correction is not performed during the

exponentiation.
The proposed procedure for the squaring in the Galois field

is illustrated by an example of the squaring of a number
A = 910 = 10012 (8)

In the Galois field, the polynomial
P(x) = x4+x+1 (9)

is formulated, that corresponds to the number
P=100112=1910; n=4, (10)

and
Q=100002=16, Q-1 =1410 =11102. (11)

Indeed,
QQ-1 rem P = 1614 rem 19 = 1. (12)

The actual result is then,
R=AA rem P = 99 rem 19=13. (13)

The step-by-step modification of the variables R and A
during the execution of the proposed procedure of the
calculation of the square in the Galois field for A = 9 with the
formulation of the polynomial P(x) = x4+x+1 is presented in
Table 1.

The result R is the product AAQ-1 rem P = 9 9 14
rem 19 = 10. In order to obtain the actual result of the squaring
of the number A=9 in the Galois field it is necessary to multiply
R with the value

Q: R = R Q rem P = 1016 rem 19 = 13. (14)
The dynamic progress of variables R and A during the

execution of the calculation of the square of A=9 in the Galois
field, from the formulated polynomial P(x) = x4+x+1 is
illustrated in Table 1 below.

Table 1. Evolution of the calculation for A = 910

j Transformation R Transformation
A

R R=Ra10a202n R=RP R>>=1
A2=102 A1=012

0
0 R=01 0=1 0000110011=10010 01001

01 00
1

10010 - 0100110011=11010 01101
- -

2
01101 0110110000

=11101
1110110011=01110 00111

00 00

3
00111 011110011=10100 01010

- -

The execution of the above procedure involves performing

n/2 shifts of the two halves A1 and A2 of number A, n shifts of
number R, and, on average, n/2 logical summation operations
(XOR). All these operations are performed on n-bit codes.
Given that n is much greater than the processor capacity r:
n>>r, each of the operations described actually requires
performing n/r processor instructions. The remaining actions
required by the proposed procedure, such as R = R a10 a20
2n or testing the R bits, are performed in 1-2 processor
operations, i.e. in significantly less time. Thus, the total number
of logical operations on n-bit codes required to implement the
proposed squaring procedure on the Galois field is 2n. This is
significantly less than the similar figure of 3.5n for separate
execution of polynomial squaring and reduction on the Galois
field.

One particular characteristic of the proposed method for
accelerated squaring on the Galois field, is that the modification
of the least significant digit of the intermediate result R occurs
in every second cycle (for even values of j) and this
modification concerns only one bit. This enables possibilities
for implementing group reduction on the Galois field, in which
the shift to the right is performed immediately by k digits. In
turn, this allows to reduce the time spent on reduction by k
times and, thus, significantly speed up squaring on Galois
fields.

In order to implement this possibility, it is necessary to
logically add to the current code R such a linear combination

L(P) = k-12k-1 P + k-22k-2 P+…+12 P+0 P, (15)
i{0,1,…,k-1}: i{0,1}, which ensures that the k least
significant bits of the logical sum RL(P) are equal to zero. It

 Nikolaos Doukas et al. / International Journal of Computing, 24(1) 2025, 81-91

86 VOLUME 24(1), 2025

will be shown that such a linear combination L(P) always exists
for any value of the code

R = rn2n + rn-12n-1+…+rk-12k-1 +…+ r12 + r0, (15)
where j{0,1,…,n}: rj{0,1}, provided that the generating
polynomial P(x) is prime.

Since P(x), the polynomial generated in the Galois field is
prime, then it necessarily contains a non-zero component at x0
(otherwise, it would necessarily be divisible by the polynomial
V(x) = x, i.e., it would not be prime). This implies that the
number P that corresponds to the generator polynomial P(x) is
odd, i.e., its least significant bit p0 is equal to one: p0=1. If the
least significant bit r0 of the code R being reduced is equal to
one, then its logical sum with P in the least significant bit is
zero. Thus, in order for the logical sum RL(P) to have zero in
the least significant bit, it is necessary that 0 = r0.

Similarly, if the second bit of the logical sum R0P is
equal to one, then for 1=1 the bit of the logical sum
R0P1P2 with the same name is equal to zero. This
means that it is always possible to make the two least
significant bits of R 0 P 1 P 2 equal to zero: for this
it is necessary that 1 = r1 0 p1. Reasoning in a similar
manner, it is easy to show that in order for the three least
significant bits of the logical sum R0 P1 P22 P22
to be equal to zero, it is sufficient to satisfy the condition
2=r10p11p2.

Continuing the above reasoning, we can come to the
conclusion that it is always possible to choose binary
coefficients 0, 1, …, k-1 in such a way that the k least
significant bits of the logical sum

R 0 P 1 P 2 2 P 22 … k-1 P 2k-1 (16)
are equal to zero. The proof of the above statement enables the
organization of a simultaneous Montgomery reduction
immediately over k bits of the current result when squaring on
Galois fields. Subsequently, due to this, it hence becomes
possible to significantly speed up the fundamental operation of
exponentiation on Galois fields.

For this reason, it is proposed that, for a given polynomial
P(x) formulated in the Galois field and for given values rk-1, rk-

2, …, r1, r0, it is possible to obtain as a result the corresponding
values k-1, k-2, …, 1, 0 with a recursive application of the
approach outlined above. Hence, for each of the possible of the
2k-1 combinations (excluding zeros) of the k bits of the code rk-

1, rk-2, …, r1, r0, the values of the sums L(P)=k-12k-1P + k-

22k-2P+…+12P+0P are derived, for which the k least
significant bits of L(P) are equal to the corresponding
combination. The results of the calculation are presented in the
form of the 2k-1 table of values T(1), T(2),…,T(2k-1). The value
of k is selected to be even and such that n is exactly divisible
by k.

The above method is illustrated according to the following
example. Let n=8 and the Galois field formulated by the
polynomial P(x)=x8+x7+x6+x5+x3+x2+1. For n=8, the number
Q=2n=256 and the multiplicative inverse Q-1 that is produced
with the given polynomial P(x) is Q-1=127. Then indeed,
256127 rem P(x)=1.

This polynomial corresponds to the number P=1110111012
= 47710. The four least significant digits for this number (for
k=4) of this number are: p0=1, p1=0, p2=1 και p3=1.

For each of the 16 possible values of r38+r24+r12+r0, the
values of the coefficients 0, 1, 2 and 3 of the linear
combination L(P) can be calculated based on the above

considerations. The values of the linear combinations
calculated in this way are given in Table 2. This table
summarizes values of the pre-calculated results for the Galois
field with polynomial P(x)=x8+x7+x6+x5+x3+x2+1 for k=4.

Additionally, in order to quickly formulate the k bits of a
polynomial for the calculation of the square of k/2-bit packets
of a number via the insertion of zeros between the digits of the
binary representation, the formulation of table Z is proposed.
This table contains in each case, polynomials with squares
obtained by the insertion of for each one of the 2k/2-1 codes of
k/2-bits. Specifically for, k=4 the table Ζ consists of three rows:
Z[1]=Z[012]=00012, Z[102]=01002 and Z[112]=0101. These
values may be identified as a subset of the rows of Table 2.

All the steps described above, depending on the polynomial
P(x) that has been formulated and the number k of the
concurrently processed bits, need to be performed once for
actual cryptographic data protection systems, since the
polynomial is part of the public key.

Table 2. Pre-calculated results for P(x) and k=4

r3r2r1r0 T r3r2r1r0 T
 1000(8) 3816 10 =1110 1110 10002

0001(1) 211310=1000 0100 00012 1001(9) 170510 = 0110 1010 10012
0010(2) 341010=1101 0101 00102 1010(10) 95410 = 0011 1011 10102
0011(3) 129910=0101 0001 00112 1011(11) 306710 =1011 1111 10112
0100(4) 190810=0111 0111 01002 1100(12) 246010 =1001 1001 11002
0101(5) 389310=1111 0011 01012 1101(13) 47710= 0001 1101 11012
0110(6) 259810=1010 0010 01102 1110(14) 123010 = 0100 1100 11102

0111(7) 61510=0010 0110 01112 1111(15) 321510 = 1100 1000 11112

It is proposed to calculate the square AA rem P of the

number A in the Galois field according to the following
sequence:
1. The cycle count j is initialized: j=1. The code of the result
is also initialized (n + k)- bit R: R=0.

2. The value of R is shifted by k bits: R>>=k. The most
significant k bits of R are assigned values from the table, the
index of which is determined by the least significant k/2 bits
of А: Z(ak/2-1, ak/2-2, …, a1, a0).

3. If the least significant k bits R: rk-1, rk-2, …, r0 are equal to
zero – go to Step 5. Otherwise R is logically added upon the
code T[rk-1, rk-2, …, r0] : R = R T[rk-1, rk-2, …, r0].

4. A shift of A is performed by k/2 bits: A>>=k/2. Increment
the counter j: j=j+1. If j 2n/k, then return to Step 2.

5. End of process. The value R = A A Q-1 rem P is
obtained

The proposed procedure for the accelerated squaring in the
Galois field is illustrated using the following example.
Consider squaring the number А=15910 = 1001 11112 in the
Galois field with the forming polynomial
P(x)=x8+x7+x6+x5+x3+x2+1 for which and for k=4, Table 2 is
constructed. The true value of the result AA rem P = 159
159 rem 477 = 11101112 = 231.

The dynamic progress of R and q in the steps j of the
proposed procedure for squaring AA rem P for А = 159 and P
= 477 for k = 4, is shown in Table 3.

The result R=236 is different from the correct result and is
the product AAQ-1 rem P = 159159127 rem 477. In
order to obtain the correct result R for the number A=159 in
the Galois field, it is necessary to perform the Montgomery
correction, that is to multiply the obtained result R by the value
of Q: R=RQ rem P = 236256 rem 477 = 231.

Nikolaos Doukas et al. / International Journal of Computing, 24(1) 2025, 81-91

VOLUME 24(1), 2025 87

Table 3. AA rem P for А = 159, P = 477, k = 4.

j Operations on R Operations on А
A>>=2 Logical Addition (XOR) Shift (R>>=4)

0 0000 0000 0000 0000
0000

1001 1111

1 - 0101 0000
0000

0010 0111

2 - 0101 0101
0000

0000 1001

3 - 0001 0101
0101= 341

0000 0010

4 R=RT[5] =3413893 =
3680=1110 0110 0000

0100 1110
0110 = 1254

0000 0000

5 R=RT[6] =
12542598= 3776=

1110 1100 0000

0000 1110
1100 = 236

During the exponentiation in the Galois field in information

security systems, the actual word length n (typical values of
which are 2048 or 4096) of the operands is one to two orders
of magnitude higher than the bit capacity of the processor.
Consequently, for the estimation of the number of operations
required for the squaring, one can ignore the operations
concerning operands the size of which is smaller than the
capacity of the processor and consider only operations on long
operands i.e., operands for n bit operations.

The performance of the above procedure involves the
execution of n/k shifts of the number A, 2n/k 2 shifts of the
number R and n/k logical additions (XOR). Hence the total of
logical operations required for the application of the proposed
procedure of the squaring in the Galois field is 4n/k. This
implies that the use of the use of the reduction of the
Montgomery group with the concurrent k bit processing,
renders feasible the acceleration of the squaring in the Galois
fields by a factor of 0.75k times.

IV. ACCELERATED MULTIPLICATION BY A CONSTANT
NUMBER ON GALOIS FIELDS WITH MONTGOMERY
GROUP REDUCTION
When using the Montgomery reduction as modified for the
Galois fields, one may use the accelerated multiplication in the
Galois fields i.e., the calculation AB rem P, where

A=an-12n-1+an-22n-2+…+a222+a12+a0,
B=bn-12n-1+bn-22n-2+…+b222+b12+b0, (17)

i{0,1,…,n-1}: ai,bi{0,1}.

Similarly to the proposed method for fast squaring,

multiplication in the Galois fields may be accelerated via:
 The application of the Montgomery reduction as modified

for the Galois fields
 Concurrent processing of digits during the execution of the

Montgomery reduction.
For the purpose of immediately reducing the q least

significant bits of the intermediate result using the
Montgomery technology during the calculation of the product,
it is recommended to use the pre-calculation tables. The logical
addition of the values of the table to the intermediate result,
allows the assignment of zeros to its q least significant bits.
However, in contrast to the squaring, these values depend not
only on the produced polynomial P(x) of the Galois field, but
also on the multiplier A. It is therefore necessary to perform
preliminary multiplications before every calculation of the

exponent A|E rem P.
In every step of the multiplication for the intermediate result

R, a logical addition of the code Y = bq-1 2q-1 A + bq-2 2q-2 A
+…+ b1 2 A + b0 A is performed, that depends on the q least
significant bits bq-1, bq-2, …, b0 of the multiplier Β and the
multiplicand Α. The compensatory code D = vq-12q-1P + vq-2
2q-2 P +…+ v1 2P + v0P of the Montgomery reduction has
to be added upon the logical sum RY, that is selected so that
the q least significant bits of the sum RYD are equal to zero.

In the previous section, it was shown that the compensatory
code D exists for any value q of the least significant bits of the
logical sum RY.

From this it follows that for given values of rq-1, rq-2, …, r1,
r0 of the q least significant bits of the intermediate result R and
of the q least significant bits bq-1,bq-2,…,b0 of the multiplier Β,
there always exists such a set vq-1,vq-2,…,v0, for which the q
least significant bits of the logical sum RYD are equal to
zero.

Consequently, the numbers of the rows of the table W of the
pre-calculated values are determined by the given codes rq-1, rq-

2, …, r1, r0 and bq-1, bq-2, …,b0 and the values of the table
contain the code DY, For which the q least significant bits of
the logical sum RYD are equal to zero. Hence the value of
the 2q bits of the jth line of the table are formulated as:

1

0

1

0

22
q

l

l
l

q

i

iq
i brj

 (18)

For example, for n = 6, q = 2, A = 5710 = 1110012 and the
polynomial formulated in the Galois field is

P(x) = x6 + x4 + x2+x+1 (19)
which corresponds to the number P = 8710 = 10101112. The pre-
calculated values of DY for all the possible values of the 2-bit
codes r1, r0 and b1, b0 for A = 57 and P = 87 are presented in
Table 4 below. On algorithmic level and the general case, this
table will be referred to as table W.

Table 4. Pre-calculated values for A = 57 and P = 87

r1,r0 b1,b0 j D v1,v0 r1,r0 b1,b0 j D v1,v0
0 0 0 0 0 0 0 0 1 0 0 0 8 17410 =

1010 11102
 1 0

0 0 0 1 1 19210 =
1100 00002

 1 1 1 0 0 1 9 11010 =
0110 11102

 0 1
0 0 1 0 2 22010 =

1101 11002
 1 0 1 0 1 0 10 11410 =

0111 00102
 0 0

0 0 1 1 3 2810 =
0001 11002

 0 1 1 0 1 1 11 17810 =
1011 00102

 1 1
0 1 0 0 4 5710 =

0011 10012
 1 1 1 1 0 0 12 8710 =

0101 01112
 0 1

0 1 0 1 5 3710 =
0010 01012

 0 1 1 1 0 1 13 15110 =
1001 01112

 1 0
0 1 1 0 6 22910 =

1110 01012
 0 0 1 1 1 0 14 13910 =

1000 10112
 1 1

0 1 1 1 7 24910 =
1111 10012

 1 1 1 1 1 1 15 7510 =
 0100 10112

 0 0

The procedure required is the following:

1. The cycle counter i is initialized as
i=1;

similarly, the (n+k)-bit result code R:
R =0.

2. For the values of the q least significant bits of R and the q
least significant bits В using Equation (18) the
corresponding line number j within the pre-calculated
table W is determined.

3. The value W[j] of the logical addition is read from the
table and hence R: R = R W[j].

 Nikolaos Doukas et al. / International Journal of Computing, 24(1) 2025, 81-91

88 VOLUME 24(1), 2025

4. The values R and B are shifted by q bits:
R>>=q. B>>=q.

The cycle counter is incremented
i: i=i+1.

If in/q, return to Step 2.
The operation of the described multiplication procedure

with concurrent processing (q=2) in the Galois fields is
illustrated via the example of the multiplication А=57 by B=41.
The polynomial

P(x)=x6 + x4 + x2+x+1 (20)
is created. For this particular Galois field

P = 87, Q = 26 = 64, and Q-1 = 9. (21)
The correct value of the product is obtained as 57 41 rem

87 = 18.
The calculations of R and A during the steps for all i of the

procedure described for the accelerated multiplication in the
Galois fields is given in Table 5. This table illustrates in step-
by-step form, the evolution of the values of R and A for each
iteration of the execution of the calculation of AB rem P for
А = 57, B = 4110 = 1010012 and P = 87 for q = 2

Table 5. Iterations for A = 57 and P = 87

i r1 r0 b1 b0 j W[j] Operations in R Shift B
B >>= 2 R = R W[j] R >>= 2

0 0 0 0 1 1 192 0 192 = 19210 = 1100 00002 11 00002= 4810 1010
1 0 0 1 0 2 220 48 220 = 23610 = 1000 11002 11 10112= 5910 0010
2 1 1 1 0 14 139 59 139 = 17610 = 1011 00002 10 11002= 4410 0000

The obtained result R = 44 is different from the true result

A B Q-1 rem P = 57 41 9 rem 87. In order to obtain
the result R it is necessary to perform the Montgomery
correction i.e., to multiply the result R by the value Q:

R=R Q rem P = 44 64 rem 87 = 18 (22)
The immediate execution of one cycle of the described

procedure requires one logical addition and two shift
operations. Hence the total number of operations for the
application of the procedure for multiplication is 3n/q.

V. ACCELERATED EXPONENTIATION IN GALOIS FIELDS
Based on the accelerated procedures for squaring and
multiplication that were developed in the previous sections, the
following innovative procedure is proposed for the execution
of exponentiation in the Galois fields i.e., for the calculation of
A|E rem P.

The creation of the polynomial P(x) for most cryptographic
data protection mechanisms based on Galois fields, is part of
the public key and changes very rarely. This implies that the
table T of the pre-calculations is predetermined, may be stored
in memory and the time required to complete it is not
considered a computational complexity during the
exponentiation of a particular number A.

Before performing the exponentiation, the initial values of
the result

R=Q rem P= xn rem P (23)
and the parameter

C = Q Q rem P = x2n rem P (24)
are also calculated. These values only depend on the produced
polynomial of the Galois field and need to be once together
with the table T of pre - calculations.

The immediate procedure for the calculation of A|E rem P
in the proposed scheme, starts with the formulation of the table
W of pre – calculations, that is used for the accelerated
multiplication.

The size of this table is 22q - 1. For each of the possible
values bq-1, bq-2, …, b0 the values

Y = bq-12q-1A + bq-22q-2 A +…+ b12A + b0A (25)
are calculated, with the operations required being q-1 shifts and
0.5q2 logical additions.

For each of the possible values rq-1, rq-2, …, r1, r0, a linear
system of Boolean equations is solved, that renders possible the
determination of the values vq-1, vq-2, …, v0 for which the q least
significant bits of the sum R Y D are equal to zero. The
mean number of operations for the determination of a value v
is 0.5q. Consequently, the total number of logical additions
required for the determination of the values vq-1, vq-2, …, v0 is
0.5q2.

Hence the construction of the table W of the pre-
calculations, requires 2q (q + 0.5 q2) logical operations for the
determination of all possible Y and 2q-1q2 logical operations for
the determination of vq-1, vq-2, …, v0. Taking into account the
function for the formulation of W[j] = Y D for all rows of the
table, the total number TW of logical operations for constructing
this is table is determined by the formula:

)22()5.0(

)5.0(2)5.0(2
22

222

qq

qq
W

qq

qqqqT

 (26)
For the description of the proposed procedure for the fast

exponentiation in Galois fields, SM(A,k) denotes the expanded
procedure for the fast squaring of a number A in a Galois field
with Montgomery reduction group k bits, that formulates
AAQ-1rem P. Similarly, MM(A, B, q) denotes the expanded
procedure for accelerated multiplication in the Galois field of
the numbers A and B with the (q-bit) Montgomery reduction
group A B Q-1 rem P. The algorithm can then be described
as follows:

1. For the selected q and the given Α, a table W of

preliminary calculations is formulated.
2. Calculate G = MM(A,C,q).
3. The number i of the current bit of the binary code of the

exponent is set to n: i = n.
4. Raise to the square of the current result R in the Galois

field: R = SM(R, k).
5. If the ith bit ei of the binary code of the exponent is equal

to 1 ei =1 : the current result R is multiplied by G using
the procedure ММ: R=MM(R, G, q).

6. If i > 0 the counter is decremented (i = i - 1) and the
process returns to Step 4.

7. The correct result R is formulated as the multiplication of
R with unity: R = MM(R,1,q)

The proposed procedure is illustrated via an example of the

exponentiation of the number A = 15910 to the exponent E
=20310 = 1100 10112 in the Galois field, that is formulated by
the polynomial P(x) = x8 + x7 + x6 + x5 + x3 + x2 + 1,
corresponding to the number P = 477; n = 8. The correct result
is 159|203 rem 477 = 69.

For a single repetition and for a given constant polynomial
P(x) the calculations R = Q rem P = xn rem P = 256 rem 477 =
221 and C = Q Q rem P = x2n rem P = 216 rem 477 = 97 are
performed. For the selected value of k, the tables T of
preliminary calculation are created and stored.

The process of the exponentiation begins immediately with
the formulation of the table W of the pre-calculations (Step 1)
and the calculation G=MM(159, 97, q) = 105 (Step 2).

Nikolaos Doukas et al. / International Journal of Computing, 24(1) 2025, 81-91

VOLUME 24(1), 2025 89

The dynamic evolution of the values of the current result
during the execution of Steps 4 – 6 of the proposed procedure
are presented in Table 6. This table illustrates the values of the
pre-calculated results for the Galois field with polynomial P(x)
= x8 + x7 + x6 + x5 + x3 + x2 + 1 for k = 4.

According to Step 7 of the procedure, the obtained result R
= 124 is corrected by multiplying with unity: R = MM(R, 1, q)
= MM(124, 1, q) = 69.

It is apparent that for each of the n iterations of the described
procedure for multiplication in the Galois fields a squaring with
4 n / k logical operations is required, and with probability 0.5,
an additional multiplication with 3n/q logical operations is also
required. Additionally, the formulation of the table W is
performed before the repetitions that requires TW logical
operations.

Table 6. Steps 4-6 for A = 15910 and E = 20310

i ei Evolution of R
 Squaring Multiplication in G
8 1 SM(221,k) = 221 MM(221,105,q) = 105
7 1 SM(105,k) = 28 MM(28,105,q) = 65
6 0 SM(65,k) = 111
5 0 SM(111,k) = 185
4 1 SM(185,k) = 77 MM(77,105,q) = 223
3 0 SM(223,k) = 252
2 1 SM(252,k) = 166 MM(166,105,q) = 250
1 1 SM(250,k) = 3 MM(3,105,q) = 124

Hence the total number of logical operations TE required for

the exponentiation in the Galois fields according to the
proposed method is given by the formula:

)
5.14

()5.0()22(

)
3

5.0
4

(

222

2

qk
nqq

qk
nTT

qq

WE

 (27)

The analysis of Equation (27) demonstrates that the

principal factors for the reduction of the time required for the
exponentiation is the number of bits concurrently processed
during exponentiation - k and multiplication - q. It is also
apparent that the dependence of TE on q possesses an
extremum, i.e. there exists an optimal value q0 for which TE is
minimum. Given that q is integer, it is easy to determine the
values of q0 for the corresponding values of n used in practice.
For n = 1024 the optimal value q0 = 5 and for n = 2048 q0 = 6.

In this case the value of k is limited only by the available
amount of memory for the storage of table Τ. Compared to the
exponentiation in the Galois fields, with Montgomery
reduction and without concurrent processing, the proposed
procedure accelerates the computations by a factor of the
arithmetic value of which is determined by the formula:

)
5.14

()5.0()22(

5.4

222

2
0

qk
nqq

n

T

T

qqE

 (28)
It is apparent that for q = 1, implying that the concurrent

processing of a group of bits is only used for squaring, the value
of lies in the range 1.3 to 3. This means that the use of
concurrent processing for the calculation of only a square in the
Galois fields is ineffective. A much more significant
acceleration in the calculation of the exponent in the Galois
fields is obtained by the concurrent processing of the group of

bits in both the squaring and the multiplication.
In order to verify the theoretical results for the achieved

acceleration of the calculation of the execution of
exponentiation in the Galois fields i.e., for the calculation of
A|E rem P, suitable simulations were performed. Table 7 shows
the experimentally obtained values of ξ of the acceleration
obtained during the calculation of the exponent in the Galois
fields for different values of k. This table illustrates the
achieved acceleration that approaches an order of magnitude. It
additionally highlights the dependence of the calculation of the
acceleration of the calculation of the exponent in the Galois
fields on the group size k during squaring for the particular
example of n = 2048 and q = 6.

Table 7. Experimentally achieved acceleration.

k
6 4.78
7 5.33
8 5.81
9 6.26

10 6.67
11 7.05
12 7.41

The analysis shows that the efficiency of the proposed

approach tends to decrease with an increase in the value of k
due to the exponential growth of the volume V of the memory
required for the table:

)(2)(2 qnknV qk (29)
Hence for k = 10 and q = 6, the required memory space is

V= 274 KBytes, a value that is feasible in most processing
platforms, including microcontrollers.

VI. EVALUATION OF THE RESULTS
Modular exponentiation in Galois fields is a fundamental

operation in various cryptographic applications, particularly in
public key cryptography. This operation is essential for
algorithms such as RSA, Diffie-Hellman, and ElGamal, where
it facilitates secure key exchanges and digital signatures [17,
18, 19]. The efficiency of modular exponentiation directly
impacts the performance of these cryptographic systems, as it
often involves repeated modular multiplications, which can be
computationally intensive [19]. Techniques like Montgomery
multiplication have been developed to optimize this process,
enhancing both speed and security by minimizing
vulnerabilities to side-channel attacks [17, 18]. Furthermore,
the implementation of modular exponentiation in hardware
architectures is crucial for achieving high performance in real-
world applications, ensuring that cryptographic protocols can
operate securely and efficiently in various environments [22,
23]. Overall, the role of modular exponentiation in Galois fields
is pivotal for maintaining the integrity and confidentiality of
cryptographic communications.

The results of this ongoing research concern a range of
mathematical operations. Firstly, a method for the fast
calculation of the square in the Galois fields was theoretically
founded, analyzed and developed. This method is based on the
use of the polynomial property of the square, on the
Montgomery group reduction in the Galois fields and on the
use of preliminary calculations. It has been shown theoretically
and experimentally that the use of the Montgomery group
reduction with the processing of k bits concurrently, at the same
time as using preliminary calculations, renders feasible the

 Nikolaos Doukas et al. / International Journal of Computing, 24(1) 2025, 81-91

90 VOLUME 24(1), 2025

acceleration of the squaring in Galois fields by 0.75k times.
Following that, another method was developed for the

accelerated multiplication by a constant number in the Galois
fields. The acceleration of the calculation of the result is
attained via the use of group reduction and preliminary
calculations that combine the operations of addition of the
multiplicand and the Montgomery correction. This rendered
possible the acceleration of the multiplication by q times when
q bits were concurrently processed.

Based on the proposed methods for fast squaring and
multiplication by a constant factor, a procedure was developed
for the exponentiation in the Galois fields. The theoretical
analysis and the experimental studies have demonstrated that
their use is capable of significantly accelerating the
computational application of this operation that is important for
cryptographic applications. The acceleration is significant, of
approximately one order of magnitude. The memory
requirements for the implementation of the algorithms were
calculated to be of the order of 102 kilobytes for numbers of
2048 bits, a value that is feasibly available even in the case of
microcontrollers.

By increasing the speed at which the calculation of the
exponent takes place, the word length of the numbers for which
the exponent can be effectively calculated is implicitly also
increased. Hence, by enabling the use of numbers with larger
numbers of digits, the cryptographic stability of the algorithms
increased, together with the associated level of security.

VII. CONCLUSIONS AND FUTURE WORK
A collection of accelerated calculations was proposed that leads
to the acceleration of the calculation of exponentiation in Galois
fields. Galois Fields exponentiation is an operation that is
fundamental for a wide spectrum of cryptographic algorithms.
The ability to accelerate this calculation facilitates the use of
strong cryptographic security in devices where it is otherwise
difficult. This includes portable terminals, IoT and
microcontroller-based systems. The approach consists of two
developed procedures, namely fast exponentiation to the square
and multiplication with a constant number in Galois fields. The
acceleration was developed using the properties of the second
order polynomial, the Montgomery group reduction and pre-
calculations. The proposed method was founded mathematically.
The operation of the proposed method was illustrated by simple
arithmetic examples that were described in detail. The
development was further supported by results obtained an
implemented computer simulation that was used for deriving
experimental results on the achieved acceleration. It has been
proved, both theoretically and experimentally that the proposed
approach renders possible the acceleration of exponentiation in
Galois fields by 5 to 7 times, in comparison with known
methods.

The level of security provided by public-key cryptographic
algorithms is completely determined by the word length of the
numbers being processed. In practice, for many important
applications, the number of bits is limited by the allowable time
for the realization of the basic operation of public-key
cryptography - exponentiation, the computational complexity of
which has a cubic dependence on the length of numbers [13].
Accordingly, the achieved acceleration of exponentiation on
Galois fields opens up opportunities for using numbers of larger

digit capacity, i.e., increasing the level of resistance of public-
key cryptographic algorithms.

The proposed scheme will be an enabling technology for
future research, aiming to exploit this proposal for achieving
high levels of security in applications where this is limited. An
initial target the implementation modular exponentiation with
group processing of the exponent code and the use of pre-
calculations that depend on the number that is raised to a power.
This will facilitate the proliferation of the use of high-level
security cryptographic primitives in smart-cards and
microcontrollers with limited resources. A further application
will involve the development of fast modular multiplication by a
constant number, the length of which significantly exceeds the
processor bit capacity, enabling increased levels of security in all
types of processors. An additional target is the increasing the
security level of the implementation of homomorphic encryption
with modular exponentiation components. This will facilitate the
accelerated implementation of this operation on IoT terminal
devices via secure involvement of cloud computing resources. A
further development will be the utilization of the proposed
accelerated scheme for the definition of procedures for Fast
Zero-Knowledge Identification Method, derived from of the
well-known Schnorr schemes.

References

[1] U. Jetzek, Galois Fields, Linear Feedback Shift Registers and Their
Applications. Carl Hanser Verlag GmbH Co KG, 2018.
https://doi.org/10.1007/978-3-446-45613-6

[2] D. Canright, "A very compact S-box for AES," In Proceedings of the
International Workshop on Cryptographic Hardware and Embedded
Systems, pp. 441-455. Berlin, Heidelberg: Springer Berlin Heidelberg,
2005. https://doi.org/10.1007/11545262_32

[3] J. Daemen, V. Rijmen, "The advanced encryption standard process," The
Design of Rijndael: AES—The Advanced Encryption Standard (2002): 1-
8. https://doi.org/10.1007/978-3-662-04722-4_1

[4] Y. N. Shivani, A. Srinivas, B. K. Thanmayi, V. Vignesh, and B. V.
Srividya, "EdDSA over Galois Field GF (p^m) for Multimedia Data,"
Journal of Engineering Research and Reports, vol. 4, no. 4, pp. 1-7, 2019.
https://doi.org/10.9734/jerr/2019/v4i416911

[5] J. Luo, K. D. Bowers, A. Oprea, and L. Xu, "Efficient software
implementations of large finite fields GF (2 n) for secure storage
applications," ACM Transactions on Storage (TOS), vol. 8, no. 1, pp. 1-
27, 2012. https://doi.org/10.1145/2093139.2093141

[6] Nikolaos G. Bardis, O. P. Markovskyi, and N. Doukas, "A method for
strict remote user identification using non-reversible Galois field
transformations," In MATEC Web of Conferences, vol. 125, p. 05017,
2017. https://doi.org/10.1051/matecconf/201712505017

[7] Nikolaos G. Bardis, O. P. Markovskyi, N. Doukas, and A. Drigas, "Fast
implementation zero knowledge identification schemes using the Galois
Fields arithmetic," In Proceedings of the 2012 IX IEEE International
Symposium on Telecommunications (BIHTEL), 2012, pp. 1-6.
https://doi.org/10.1109/BIHTEL.2012.6412094

[8] J.-L. Danger, Y. El Housni, A. Facon, C. T. Gueye, S. Guilley, S. Herbel,
O. Ndiaye, E. Persichetti, and A. Schaub, "On the performance and
security of multiplication in GF (2 N)," Cryptography, vol. 2, no. 3, 25,
2018. https://doi.org/10.3390/cryptography2030025

[9] A. Ibrahim, and F. Gebali, "Low power semi-systolic architectures for
polynomial-basis multiplication over GF (2m) using progressive
multiplier reduction," Journal of Signal Processing Systems, 82, pp. 331-
343, 2016. https://doi.org/10.1007/s11265-015-1000-x

[10] A. A. Moustafa, "Fast exponentiation in Galois Fields GF (2 m) using
precomputations," Contemporary Engineering Sciences, vol. 7, no. 4, pp.
193-206, 2014. https://doi.org/10.12988/ces.2014.3955

[11] I. Dychka, M. Onai, A. Severin, C. Hu, "Method of performing operations
on the elements of GF(2m) using a sparse table," International Journal
of Computer Network and Information Security (IJCNIS), vol. 16, no. 1,
pp. 61-72, 2024. https://doi.org/ 10.5815/ijcnis.2024.01.05

[12] S. Gao, D. Panario, and V. Shoup, "Algorithms for exponentiation in
finite fields," Journal of Symbolic Computation, vol. 29, no. 6, pp. 879-
889, 2000. https://doi.org/10.1006/jsco.1999.0309

Nikolaos Doukas et al. / International Journal of Computing, 24(1) 2025, 81-91

VOLUME 24(1), 2025 91

[13] D. Ihor, and S. Viktor, "Fast exponential method on Galois fields for
cryptographic applications," In Proceedings of the 2023 13th IEEE
International Conference on Dependable Systems, Services and
Technologies (DESSERT), 2023, pp. 1-4.
https://doi.org/10.1109/DESSERT61349.2023.10416519.

[14] E. M. Popovici, and P. Fitzpatrick, "Algorithm and architecture for a
Galois field multiplicative arithmetic processor," IEEE Transactions on
Information Theory, vol. 49, no. 12, pp. 3303-3307, 2003.
https://doi.org/10.1109/TIT.2003.820026

[15] M. Zholubak, V. S. Hlukhov, "Galua Field multipliers core generator,"
International Journal of Computer Network and Information Security
(IJCNIS), vol. 15, no. 3, pp. 1-14, 2023.
https://doi.org/10.5815/ijcnis.2023.03.01

[16] C. K. Koc, and T. Acar, "Montgomery multiplication in GF (2k),"
Designs, Codes and Cryptography, vol. 14, pp. 57-69, 1998.
https://doi.org/10.1023/A:1008208521515

[17] G. Hachez, and J.-J. Quisquater, "Montgomery exponentiation with no
final subtractions: Improved results," In Proceedings of the Second
International Workshop on Cryptographic Hardware and Embedded
Systems CHES 2000, Worcester, MA, USA, August 17–18, 2000, pp.
293-301. Springer Berlin Heidelberg, 2000. https://doi.org/10.1007/3-
540-44499-8_23

[18] R. Skuratovskii, and V. Osadchyy, "The order of Edwards and
Montgomery curves," WSEAS Transactions on Mathematics, vol. 19, pp.
253-264, 2020. https://doi.org/10.37394/23206.2020.19.25

[19] H. Wu, M. Anwarul Hasan, I. F. Blake, and S. Gao, "Finite field
multiplier using redundant representation," IEEE Transactions on
Computers, vol. 51, no. 11, pp. 1306-1316, 2002.
https://doi.org/10.1109/TC.2002.1047755

[20] T. John, S. Haider, H. Omar, & M. van Dijk, “Connecting the dots:
privacy leakage via write-access patterns to the main memory,” IEEE
Transactions on Dependable and Secure Computing, vol. 17, issue 2, pp.
436-442, 2020. https://doi.org/10.1109/tdsc.2017.2779780

[21] S. Vollala, K. Geetha, & N. Ramasubramanian, “Efficient modular
exponential algorithms compatible with hardware implementation of
public‐key cryptography,” Security and Communication Networks, vol.
9, issue 16, pp. 3105-3115, 2016. https://doi.org/10.1002/sec.1511

[22] T. Wu, “High-performance RNS modular exponentiation by sum-residue
reduction,” IEEE Canadian Journal of Electrical and Computer
Engineering, vol. 46, issue 2, pp. 137-143, 2023.
https://doi.org/10.1109/icjece.2023.3243888

[23] V. Yatskiv, N. Yatskiv, Su Jun, A. Sachenko, and Hu Zhengbing, "The
use of modified correction code based on residue number system in
WSN," In Proceedings of the 2013 IEEE 7th International Conference
on Intelligent Data Acquisition and Advanced Computing Systems
(IDAACS), vol. 1, pp. 513-516, 2013.
https://doi.org/10.1109/IDAACS.2013.6662738

[24] J. Chen, V. Yatskiv, A. Sachenko, and J. Su, "Wireless sensor networks
based on modular arithmetic," Radioelectronics and Communications
Systems, vol. 60, pp. 215-224, 2017.
https://doi.org/10.3103/S073527271705003X

[25] M. Iavich, T. Kuchukhidze, G. Iashvili, and S. Gnatyuk, "Hybrid
quantum random number generator for cryptographic algorithms,"
Radioelectronic and Computer Systems, no. 4, pp. 103-118, 2021. doi:
https://doi.org/10.32620/reks.2021.4.09.

[26] V. Avramenko, and V. Demianenko, "Serial encryption using the
functions of real variable," Radioelectronic and Computer Systems, no.
2, pp. 39-50, 2021. https://doi.org/10.32620/reks.2021.2.04.

[27] T. Wu, S. Li, & L. Liu, “Fast, compact and symmetric modular
exponentiation architecture by common-multiplicand Montgomery
modular multiplications,” Integration, vol. 46, issue 4, pp. 323-332,
2013. https://doi.org/10.1016/j.vlsi.2012.09.002

[28] B. Zhang, Z. Cheng and M. Pedram, "Design of a high-performance
iterative Barrett modular multiplier for crypto systems," in IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, vol. 32,
no. 5, pp. 897-910, May 2024,
https://doi.org/10.1109/TVLSI.2024.3368002

[29] L. Didier, A. Mrabet, P. Glandus, and Y. Robert, "Truncated
multiplication and batch AVX512 implementation for faster
Montgomery multiplications and exponentiation," arXiv preprint
arXiv:2410.18129, 2024. https://arxiv.org/abs/2410.18129

[30] O. Prots’ko, and V. Gryshchuk, "Implementing Montgomery
multiplication to speed-up modular exponentiation of multi-bit numbers,"
CEUR Workshop Proceedings, vol. 3702, 2024, pp. 228–235.
https://ceur-ws.org/Vol-3702/paper23.pdf

[31] V. Attias, L. Vigneri, and V. S. Dimitrov, "Rethinking modular multi-
exponentiation in real-world applications," IACR Cryptology ePrint
Archive, vol. 2022, 263, 2022. https://eprint.iacr.org/2022/263

[32] H. Böck, "Exponent-blinded RSA-CRT with sliding window – side-
channel analysis," In Proceedings of the 32nd USENIX Security
Symposium, 2023, pp. 951–967.
https://www.usenix.org/conference/usenixsecurity23/presentation/boeck

[33] T. Wu, X. Wu, C. Chang, and J. Zhang, "High-performance RNS modular
exponentiation by sum-residue reduction," Integration, vol. 90, pp. 43–
51, 2023. https://doi.org/10.1016/j.vlsi.2022.12.003

[34] S. Ahsan, M. U. Wahab, S. A. Qazi, and A. A. Khan, "Efficient FPGA
implementation of RNS Montgomery multiplication using balanced RNS
bases," Journal of Circuits, Systems and Computers, vol. 31, no. 12,
2250208, 2022. https://doi.org/10.1142/S0218126622502080

[35] C. Buhrow, S. Nejad, and R. Rivest, "Block product scanning: Parallel
modular multiplication using 512-bit AVX-512 instructions," In Proc. of
the 30th USENIX Security Symposium (2022): 163–180.
https://www.usenix.org/conference/usenixsecurity22/presentation/buhro
w

[36] M. F. Esgin, A. K. Kocabas, and M. S. Siddiqui, "ASIC-friendly VDF
evaluation: Efficient modular exponentiation architectures for verifiable
delay functions," IEEE Transactions on Computers, vol. 72, no. 4, pp.
961–974, 2023. https://doi.org/10.1109/TC.2023.3249126

[37] M. Rath, R. Pathan, and M. S. Khan, "On efficient parallel secure
outsourcing of modular exponentiation to cloud for IoT," Concurrency
and Computation: Practice and Experience, vol. 36, no. 2, e7709, 2024.
https://doi.org/10.1002/cpe.7709

[38] T.-H. Nguyen, C.-K. Pham, and T.-T. Hoang, "A high-efficiency modular
multiplication digital signal processing for lattice-based post-quantum
cryptography," Cryptography, vol. 7, no. 4, 46, 2023.
https://doi.org/10.3390/cryptography7040046.

NIKOLAOS DOUKAS is an Associate
Professor of Information Technology in the
Hellenic Army Academy. His research
interests include Cryptography, Data
Security, Software Engineering, Multimedia
Systems, Decision Support Systems, Data
Mining, Speech processing, Ultrasonic
Signal and Image Processing, Optimization
and e-Learning systems. He has participated
in research and development projects

supported by various organisations, while he also has long
experience in teaching at all levels and commercial software
development. He has published in over 20 peer-reviewed journals
and conferences while he is also co-inventor in a European Patent
in 2011, in the field of secure speech communications.

