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 ABSTRACT Algebraic operations in Galois fields present properties that render them suitable for use in 
implementations of cryptographic primitives. Two fundamental operations of interest are modulo squaring and 
multiplication, whose implementations can be accelerated by using Galois field algebra. An approach is proposed 
for the acceleration of the calculation of modulo exponentiation in Galois fields, an operation that is fundamental 
for a wide spectrum of cryptographic algorithms. The approach is based on two developed procedures, namely fast 
exponentiation to the square and multiplication with a constant number in Galois fields. The proposed innovative 
accelerated calculation is attained via the use of the properties of the second order polynomial, the Montgomery 
group reduction and the derivation of pre-calculated tabular results. The mathematical foundation of the proposed 
method is given, followed by numerical examples that illustrate its operation. The amount of memory required is 
also calculated. It has been proved, both theoretically and experimentally that the proposed approach renders 
possible the acceleration of exponentiation in Galois fields by 5 to 7 times, in comparison with known methods. 
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I. INTRODUCTION 
perations in Galois fields are widely used in several 
applications of current information technology. One of the 

most important areas of application of the Galois fields are 
cryptographic mechanisms for the protection of information. 
The Galois fields are actively used in stream cipher algorithms 
[1], can provide the implementation of the fundamental 
cryptographic transformations of the AES algorithm [2, 3], 
form the basis for the creation of cryptographic mechanisms of 
public key algorithms, such as digital signatures [4, 5] and are 
used for the zero-knowledge authentication of remote users [6, 
7]. 

For cryptographic applications, the attractive aspect of 
using the Galois fields algebra is that by carefully selecting the 
polynomial to define the field, it becomes possible to generate 
a set of algebraic bases, for which the results of the operations 
are different.  

This opens up the possibility of significantly increasing the 
security level without increasing the bit length of the numbers 
processed. However, the principle attractive feature for using 
Galois field algebra to implement public key cryptography, is 
that they enable an increase in the speed of computer 
implementation of the corresponding information security 
protocols by an order of magnitude. This is due to the fact that 

operations on Galois fields are performed without the need for 
carry bits, which implies that each bit can be processed in 
parallel. In addition, this leads to specific properties of squaring 
on Galois fields [5], which can be used to accelerate this 
operation many times over. 

The above allow the consideration of public key 
cryptographic mechanisms based on Galois field algebra as an 
effective alternative to classical algorithms based on modular 
arithmetic. Such algorithms are of particular interest for low-
power terminal microcontrollers of remote-control systems 
used in IoT technologies. This class of computational platforms 
is continuously expanding due to the rapid improvement of 
Internet technologies, expansion of connectivity and 
availability of inexpensive radio communication equipment. 
Using the Internet as a medium for data exchange with remote 
control systems of real world objects, provides many 
advantages. It is however also associated with a significant 
number of problems. The most important of these problems is 
the necessity to ensure the protection of data transmitted over 
the potentially open Internet [6]. For remote control systems, 
the most prominent threat is external intervention in their 
operation. For the protection against such intervention, it is 
necessary to utilize digital signature technologies for each 
control message to the terminal microcontroller or data item 
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transmitted regarding the status of a remote object [7]. Existing 
DSA-type digital signature mechanisms presuppose the ability 
to use modular exponentiation on large size numbers. 
Performing this operation at 4096 bits resolution requires a 
significant amount of computational effort. This is a 
particularly important obstacle when implemented on a low-
power microcontroller, which is utilized for implementing real-
time control of remote equipment. 

One of the available ways of overcoming this situation is 
the use of Galois field algebra combined with research of 
techniques for the acceleration of exponentiation of large 
numbers. The purpose of this research is the acceleration of the 
operation of exponentiation in Galois fields, that can provide 
the foundation for a large number of cryptographic protocols. 

II.  STATE OF THE ART: PROBLEM STATEMENT AND 
REVIEW OF CURRENT TECHNIQUES 
Interest in the practical use of the of finite Galois fields GF(2n) 
algebra for creating fast mechanisms of public-key 
cryptography as an alternative to classical technologies based 
on modular arithmetic, stimulates research for creating 
efficient methods of the fundamental operation of 
exponentiation on Galois fields [8, 9]. 

When using the Galois field algebra GF(2n), a polynomial 
representation of numbers in the form  
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is commonly used, which corresponds to the usual 
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Addition in Galois Fields is preformed via the logical XOR 

operation and will be from here on represented by the symbol 
‘’ [6]. Reduction or the calculation of the remainder of a 
polynomial division A(x) by the produced polynomial P(x) in 
the Galois field will be represented as A rem P, so as to be 
distinguishable from the division of number A by number M in 
regular algebra, denoted as A mod M. The multiplication 
operation in the Galois fields A  B rem P, consists of two 
operations: polynomial multiplication, denoted by ‘’ and the 
reduction of the polynomial produced by the field polynomial 
P [10]. 

The operation of calculating the square of a number A in the 
Galois field with the produced polynomial P is denoted as AA 
rem P or A|2 rem P.  Consequently, the exponentiation 
operation in the Galois fields, i.e. the calculation of the 
remainder of the polynomial division of the number A raised to 
the power E in the polynomial P is denoted as A|E rem P [10]. 

The existing exponentiation technologies, both in 
traditional algebra and in Galois fields are based on a classical 
algorithm that performs a bit-by-bit analysis of the bits of the 
exponential code  
 

Е = {en-1, en-2, …, e0}, j{0,1, …, n-1}; ei{0, 1}       (3) 
 
At every step, a calculation of a square in the Galois field is 

performed, and the multiplication operation is dependent on the 
value of the current bit of the exponent. Given that in every next 
step, the results of the previous step are used, the algorithm 
cannot be parallelized at the level of the processing of the bits 
of the exponent. 

There exist two variants of this algorithm that differ as to 
the direction of the analysis of the bits of the exponent. When 
the exponentiation starts at the most significant bits of the 
exponent, in each of the n steps the calculation of the square of 
the current result is performed and the result is multiplied by A 
if the current bit of the exponential code is 1. Therefore, the 
mean time t0 for the exponentiation starting from the most 
significant bits is 1.5ntm, where tm is the time required for the 
multiplication in the Galois field. The advantage of the 
exponentiation starting from the least significant bit is that 
there exists a possibility for partial parallelization of the 
calculations in one step. This enables the acceleration of the 
calculations by 1.5 times [10]. 

Further acceleration of the exponentiation in the Galois 
field may be attained by reducing the times required for the 
multiplication and for calculation of the square. In turn, the 
multiplication and the power calculation in the Galois fields 
consists of operations performed on large n bit numbers and on 
small numbers whose bit size is smaller than that of the 
processor. In actual cryptographic systems that use 
exponentiation in Galois fields the value of n is 2048 or 4096 
i.e. 1 – 2 orders of magnitude larger than that of 
microprocessors (8 – 64). Hence, for the comparative 
evaluation of efficiency, it is recommended to consider only 
operations on large numbers. 

The multiplication operation consists of two phases: the 
polynomial multiplication and the reduction of the obtained 
result. The polynomial multiplication of the n bit numbers 
requires 2n shift operations (both operands are shifted) and, on 
average, 0.5n logical additions operations (XOR). 

All the above operations belong to the logical class and are 
executed in approximately the same time. It can therefore be 
assumed that the logical multiplication requires, on average, 
2.5n logical operations. The polynomial division is also 
performed in n cycles, each of which consists of a shift of the 
code of the Galois field production polynomial and of the test 
code and, with probability 0.5, the logical addition. Hence the 
multiplication of the Galois field is performed in 2.5n logical 
operations [7]. 

There are two main approaches used for the acceleration of 
the multiplication operation in the Galois fields: 
1. Application of preliminary calculations for the 

acceleration of the reduction 
2. Combination of the polynomial multiplication and of the 

reduction 
Most of the existing methods [10, 11] that use the first 

approach use pre-calculations depending on the produced 
polynomial P(x) of the Galois field, based on the fact that in 
real cryptographic protocols, this is part of the public key and 
can consequently be considered as constant [12]. It may 
therefore be pre-calculated and be stored for n remainders. 

Qn-1= 22n-1 rem P(x), Qn-2=22n-2 rem P(x),…,  
Q1=2n+1 rem P(x), Q0 = 2n rem P(x)         (4) 

After the division of the produced polynomial P(x) of the 
Galois field the reduction consists of the calculation of the 
logical sum of the values of the table the correspond to the ones 
in the most significant bits of the produced polynomial. Due to 
the pre-calculation, the number of logical operations is reduced 
to 1.5n. If there exist memory resources for the storage of a 
table of n2h values, during the reduction operation, h bits of the 
product may be processed in parallel. Therefore, the time 
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required for the performance of the reduction operation 
becomes smaller by h times [13]. 

The combination of the polynomial multiplication and 
reduction was proposed in [14]. The described method is based 
on solving a sequence of congruences that are derived from the 
Grobner theory bases in modules over the polynomial ring 
GF(p). 

Such a solution is effective for implementation in hardware, 
when it is feasible to perform the parallel implementation of the 
logical sum of multiple numbers.  Hardware implementations 
enable an increase in the speed and stability of exponent 
computation on Galois fields by accelerating the squaring on 
Galois fields [15].  

Another option for the combination of polynomial 
multiplication and reduction that is oriented towards software 
implementations, is the use of the Montgomery technology that 
was modified for Galois fields [16-18]. 

According to this approach, the combined operation is 
performed in n steps, each one of which involves the processing 
of the least significant bit of the multiplier and the logical 
addition with the binary code of the result, if this bit is equal to 
1. Additionally, depending on the least significant bit of the 
result, the logical addition with the producing polynomial of 
the field is performed. The result and the bit code of the 
multiplier are then shifted. As a result, the average number of 
logical operations is 3n [19].  

Hence the total number T0 of logical operations performed 
in large n-bit numbers for the performance of the 
exponentiation in Galois fields using multiplication for the 
calculation of the square in the context of the Montgomery 
combination of multiplication and reduction is given by the 
formula [20]:  

2
0 5.4)35.03( nnnnT               (5) 

In [20], a variant of the combined use of pre-calculations 
depending on the constitutive polynomial of a Galois field and 
Montgomery reduction for accelerating the squaring is 
proposed. However, these studies lack an effective 
implementation of the above idea into another component - 
multiplication by a constant number and into the 
exponentiation process on Galois fields in general. 

An analysis of the algorithm of classical exponentiation in 
Galois fields demonstrates that 2/3 of the volume of 
computations are devoted to the calculation of the square [21]. 
Consequently, the most promising direction for the increase of 
the speed of exponentiation in Galois fields, is research for the 
reduction of the computational complexity of the operation of 
the calculation of the square. 

A. NOTABLE PREVIOUS RELATED WORK 
This problem has attracted significant attention from 
researchers, due to its importance for providing enhanced 
information security [22]. Additionally, it has attracted 
attention due to the possibility of applying accelerated 
calculations in other fields as well. In [23], modular arithmetic 
used for error correction coding could benefit from the 
application of this technique. Accelerated modular arithmetic 
is also applied in the case of wireless sensor networks [24]. 
Other researchers have investigated the possibility of 
employing accelerated calculations in hybrid random number 
generators [25] and emphasizing in serial encryption [26]. 
Accelerated modulo arithmetic operations have also been 

recognized as capable of also benefiting cryptographic 
hardware implementations [27].  

B. STATE – OF – THE ART IN CURRENT RELATED 
TECHNIQUES 
The proposals by Zhang [28] involve an improved Barrett 
modular multiplication (BMM) algorithm along with a 
hardware-efficient design. The key idea is to parallelize the 
quotient estimation and intermediate product computations, 
and to replace costly multi-word additions with lightweight 
carry-save compression operations. They introduce a novel 
data representation allowing use of tiny (2-bit and 3-bit) adders 
for certain overflow and partial-sum corrections. In an FPGA 
implementation, their optimized Barrett multiplier significantly 
outperforms both classical Barrett and Montgomery multipliers 
in terms of speed and area, especially for high-radix (large 
word size) arithmetic. This demonstrates that even a well-
known method like Barrett’s can be tweaked at the algorithmic 
level (quotient estimation and reduction steps) for notable 
efficiency gains in cryptographic hardware. In [29], the 
researchers present a software-side innovation that benefits 
modern CPUs with 512-bit SIMD instructions. They focus on 
the 52-bit fused multiply-add (VPMADD52) capability of the 
Intel AVX-512 to perform batch Montgomery multiplications 
in parallel. A novel contribution is their Truncated 
Montgomery Multiplication, which computes only the 
necessary lower half of certain intermediate products, reducing 
workload in the reduction phase. This optimization yields 
~20% speedup in the inner multiplication loop compared to 
conventional Montgomery multiplication. By processing up to 
8 modular multiplications in a word-sliced SIMD batch, they 
achieved over 4× faster modular multiplication throughput than 
GMP and OpenSSL for operands of 1024 up to 4096-bit. For 
full modular exponentiation, their 512-bit wide implementation 
attained 1.75× speedup for 1024-bit exponents (and 1.38× for 
2048-bit) over OpenSSL’s AVX2-based constant time 
exponentiation routine. 

The work in [30] focuses on the scenario where the base a 
is fixed across many exponentiations (common in certain 
protocols or repeated operations). They implemented a 
Montgomery-arithmetic based exponentiation in C++ and 
introduced a precomputation of a reduced residue table for 
powers of the fixed base. Using a right-to-left binary 
exponentiation with that precomputed table, they achieved 
notable speedups for large exponents (larger than 1024 bits). In 
[31], the proposals tackled the problem of multiple 
simultaneous exponentiations which occurs in multi-base 
cryptographic protocols, batch verification, etc. They 
compared known multi-exponentiation algorithms (such as 
interleaving exponentiation vs. separate exponentiations) not 
just by counting multiplications, but by actual execution time 
on different hardware. A key finding is that the theoretically 
optimal algorithm (in terms of minimal multiplications) might 
not be the fastest in practice once factors like memory access 
and pipeline stalls are considered. Although not primarily about 
speed, it’s worth noting that in cryptographic contexts, 
sometimes a slightly slower algorithm is chosen to prevent 
timing or cache side-channels. For instance, a Montgomery 
ladder or a fixed-window method with dummy operations may 
be used to make execution time independent of secret 
exponents. Some recent research [32] evaluated the security of 
such implementations against cache attacks. While these works 
focus on security, they often propose minor tweaks that can 
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reduce the performance penalty of constant-time 
exponentiation. 

In the hardware front, researches have demonstrated [33] 
that RSA and modular exponentiation can be performed 
entirely in Residue Number System (RNS), eliminating the 
need for costly base-conversion steps at every multiplication. 
They leverage a recent technique called Sum of Residues 
reduction, which performs modular reduction within a single 
RNS system (as opposed to earlier RNS Montgomery methods 
that required two related RNS systems and multiple base 
extensions). By improving both the algorithm and the digital 
architecture, they achieved a 1024-bit modular exponentiation 
in only 0.567 ms on a Xilinx FPGA (Virtex-6), using a 
reasonable amount of resources. Other research [34] has 
addressed the efficiency of RNS from another angle, by looking 
at how to choose the RNS moduli for optimal performance and 
simpler conversion. The proposals of [34] introduced the 
selection of two new balanced RNS bases that are well-suited 
for Montgomery multiplication. In particular, they chose 
moduli that are well-formed, i.e. close to powers of 2, in order 
to simplify the reduction and base extension operations. They 
also designed efficient reverse converters to recombine 
residues, that take advantage of this balanced structure. In 
FPGA experiments, their RNS Montgomery multiplier shows 
excellent speedup for large operand multiplication, with 
manageable hardware cost. The research proposed in [35], 
develops a Block-Parallel approach to exponentiation using 
Intel AVX-512 and demonstrates its benefit not only for speed 
but also for fault attack countermeasures. The proposal 
introduces the Block Product Scanning (BPS) method (a block-
based Montgomery multiply) which vectorizes big-integer ops. 
On an Intel Xeon, their implementation achieved 1.5× higher 
RSA throughput than GMP 6.1.2 for 2048-bit exponentiation 
and 1.9× faster RSA decryption compared to OpenSSL, thanks 
to AVX-512 parallelism. There is also ongoing work in 
designing application-specific integrated circuits for tasks like 
the Verifiable Delay Function (VDF), which essentially 
requires computing a2t mod N squaring operations [36]. 
Researchers have in this case [36] proposed pipelined squaring 
units and even ASIC prototypes that perform a 2048-bit 
modular squaring in under 100 ns, targeting VDF use-cases. 
These specialized designs often use high-radix Montgomery 
multipliers and deep pipelines to churn out one modular square 
per clock cycle after latency.  

Resource-constrained devices (IoT sensors, 
microcontrollers) may not be able to perform 2048-bit 
exponentiations quickly. One approach highlighted in recent 
work is the secure outsourcing of modular exponentiation to a 
more powerful server. Protocols have been proposed for an IoT 
device to transfer RSA computations to the cloud, for which a 
vulnerability is shown in [37] and a fix is provided. The 
improved protocol of [37] ensures that the untrusted server 
cannot learn the secret exponent or result, by blinding 
intermediate values, and is resilient against known lattice 
attacks. The overall performance remains unaffected by this 
correction and hence the computational effort benefit is 
achieved with better security. This approach represents a 
workaround for a cryptographic solution to the performance 
problem, since it allows small devices to benefit from big 
accelerators in the cloud. When combined with algorithmic 
improvements, whereby the cloud server can use all the 
methods discussed above, secure cloud computations can make 
heavy cryptography feasible in lightweight environments 

without sacrificing privacy. 
Finally, research has also been directed toward algorithmic 

developments, such as the efficient implementation of 
Montgomery multiplication and Barrett reduction algorithms. 
In [38], a high-efficiency digital signal processing framework 
is explored, aimed at optimizing modulo calculations, 
emphasizing significant improvements in efficiency through 
these established methods. By formulating optimizations 
specifically for lattice-based cryptography, the authors 
demonstrated the applicability of this approach to post-
quantum systems. 

C. CONTRIBUTIONS OF THE PRESENT WORK 
The principal disadvantage of the existing methods for 
accelerating multiplicative operations on Galois fields is that 
they do not use the possibilities of simultaneous multiple digit 
processing. The possibility of using this reserve for increasing 
the speed of computation is due to both the specific features of 
operations on Galois fields and the extension of the 
Montgomery reduction operation.  

In the following sections, existing techniques will be 
presented in detail for accelerated calculation of the square of 
a number and the accelerated calculation of the multiplication 
with a constant number in Galois fields. Following that, based 
on these accelerated procedures for squaring and 
multiplication, an innovative proposed procedure will be 
developed for the execution of exponentiation in the Galois 
fields i.e., for the calculation of A|E rem P.   

III.  ACCELERATED SQUARING METHOD IN GALOIS 
FIELDS WITH MONTGOMERY GROUP REDUCTION 
When using both versions of the classical algorithm for 
exponentiation on Galois fields of long numbers, the squaring 
operation takes 2/3 of the volume of all calculations. Therefore, 
to accelerate exponentiation on Galois fields, it is necessary to 
investigate the possibilities of reducing the time required for 
performing squaring operations. 
The principal resources that may be used for the reduction of 
the number of logical operations for the squaring in the Galois 
fields are: 

- the Factor Square Property (FSP),  
- application of the Montgomery reduction modified for 

Galois fields, 
- group processing of bits when performing Montgomery 

reduction. 
The property of the calculation of the square of a 

polynomial of A, is that this operation is actually equivalent to 
inserting zeros between the bits of the number A. Indeed, the 
polynomial product is the XOR of the logical products of all 
possible pairs of bits of the factor codes, multiplied by the 
corresponding power of two. If the factors are equal to each 
other, then the logical product of a pair of different bits is 
included in the XOR twice and, consequently, it is cancelled 
out. Therefore, the polynomial square can be represented as: 
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For example, if А=9=10012, then AA=10000012=65. 
Accordingly, the implementation of polynomial squaring 
becomes significantly simpler and faster than calculating the 
square in traditional algebra. 
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Polynomial squaring can hence be performed in software 
using 2n shift operations of the n-bit code A. After calculating 
the polynomial square, it is necessary to perform its reduction, 
that is, the calculation of the remainder of the division by the 
field generator polynomial – P. Direct execution of the 
polynomial division operation of the 2n -bit code of the 
polynomial square by the field generator polynomial requires n 
shift operations of the n-bit code P and n/2 XOR operations on 
n-bit codes. Thus, sequential execution of polynomial squaring 
and reduction of the obtained result requires 3.5n logical 
operations on n-bit codes. 

A more efficient implementation of squaring on Galois 
fields is achieved by combining the bit expansion of the number 
A that is being squared with the reduction. Such a combination 
is possible only when performing the reduction from the lowest 
bits, that is, using the Montgomery's technique [5]. In order to 
attain this, the technique which is used for modular reduction 
in ordinary algebra, must be updated in order to encompass the 
features of reduction on finite Galois fields. 

For the implementation of the combination of polynomial 
squaring and modified Montgomery reduction on the Galois 
field, a procedure for fast calculation of A2 rem P is proposed. 
In the developed procedure, the code of the n-bit number A, 
which is raised to the power of E on the finite Galois field 
GF(2n), is divided into two fragments: the n/2 least significant 
digits form the first fragment A1, and the n/2 most significant 
digits of the number A form the second fragment A2. The 
procedure for the combined polynomial squaring and modified 
Montgomery reduction on the Galois field involves the 
following steps: 

1. The initial value of the variable R of the current result 
and the index j of the loop are set to zero: R=0 and j=0. 

2. If the index j of the loop is even, that is j mod 2=0, then 
the least significant digit a10 of the code A1 is logically added 
to the least significant bit of R, and the least significant bit a20 
of the code A2 is logically added to the most significant (n+1)th 
bit of R=R  a10   a202n. 

3. If the least significant digit of R is equal to one: r0 =1, 
then the generator polynomial of the field P is logically added 
to P:  R = R  P. 

4. The code R is shifted to the right by one bit: R>>=1. 
5. If the index j of the loop is even, that is, j mod 2=0, then 

the codes A1 and A2 are shifted to the right: A1>>=1 and A2>>1. 
6. The index j of the loop is increased by one. If j<n, then a 

return to repeat Step 2 is performed. 
7. End of process. The value R = AA Q-1 rem P is 

obtained, where Q-1 is the multiplicative inverse of the 
polynomial of Q(x)=xn in the Galois field. The polynomial P(x) 
is formed, i.e. QQ-1 rem P =1.  

In order to obtain the correct value of the squaring of the 
number A in the Galois field, the result of the above procedure 
must be multiplied by Q:  

R= RQ rem P                                (7) 
However, the correction is not performed during the 

exponentiation. 
The proposed procedure for the squaring in the Galois field 

is illustrated by an example of the squaring of a number  
A = 910 = 10012                                 (8) 

In the Galois field, the polynomial            
P(x) = x4+x+1                                        (9) 

is formulated, that corresponds to the number  
P=100112=1910; n=4,                                 (10) 

and  
Q=100002=16, Q-1 =1410 =11102.                         (11) 

Indeed,  
QQ-1 rem P = 1614 rem 19 = 1.                          (12) 

The actual result is then, 
R=AA rem P = 99 rem 19=13.                         (13) 

The step-by-step modification of the variables R and A 
during the execution of the proposed procedure of the 
calculation of the square in the Galois field for A = 9 with the 
formulation of the polynomial P(x) = x4+x+1 is presented in 
Table 1. 

The result R is the product AAQ-1 rem P = 9   9  14 
rem 19 = 10. In order to obtain the actual result of the squaring 
of the number A=9 in the Galois field it is necessary to multiply 
R with the value  

Q: R = R  Q rem P = 1016 rem 19 = 13.             (14) 
The dynamic progress of variables R and A during the 

execution of the calculation of the square of A=9 in the Galois 
field, from the formulated polynomial P(x) = x4+x+1 is 
illustrated in Table 1 below. 

Table 1. Evolution of the calculation for A = 910 

j Transformation R Transformation 
A 

R R=Ra10a202n R=RP R>>=1 
A2=102 A1=012 

0 
0 R=01 0=1 0000110011=10010 01001 

01 00 
1 

10010 - 0100110011=11010 01101 
- - 

2 
01101 0110110000

=11101 
1110110011=01110 00111 

00 00 

3 
00111  011110011=10100 01010 

- - 

 
The execution of the above procedure involves performing 

n/2 shifts of the two halves A1 and A2 of number A, n shifts of 
number R, and, on average, n/2 logical summation operations 
(XOR). All these operations are performed on n-bit codes. 
Given that n is much greater than the processor capacity r: 
n>>r, each of the operations described actually requires 
performing n/r processor instructions. The remaining actions 
required by the proposed procedure, such as R = R  a10   a20 
2n or testing the R bits, are performed in 1-2 processor 
operations, i.e. in significantly less time. Thus, the total number 
of logical operations on n-bit codes required to implement the 
proposed squaring procedure on the Galois field is 2n. This is 
significantly less than the similar figure of 3.5n for separate 
execution of polynomial squaring and reduction on the Galois 
field. 

One particular characteristic of the proposed method for 
accelerated squaring on the Galois field, is that the modification 
of the least significant digit of the intermediate result R occurs 
in every second cycle (for even values of j) and this 
modification concerns only one bit. This enables possibilities 
for implementing group reduction on the Galois field, in which 
the shift to the right is performed immediately by k digits. In 
turn, this allows to reduce the time spent on reduction by k 
times and, thus, significantly speed up squaring on Galois 
fields. 

In order to implement this possibility, it is necessary to 
logically add to the current code R such a linear combination  

L(P) = k-12k-1 P + k-22k-2 P+…+12 P+0 P,      (15)
i{0,1,…,k-1}: i{0,1}, which ensures that the k least 
significant bits of the logical sum RL(P) are equal to zero. It 
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will be shown that such a linear combination L(P) always exists 
for any value of the code  

R = rn2n + rn-12n-1+…+rk-12k-1 +…+ r12 + r0,       (15) 
where j{0,1,…,n}: rj{0,1}, provided that the generating 
polynomial P(x) is prime.  

Since P(x), the polynomial generated in the Galois field is 
prime, then it necessarily contains a non-zero component at x0 
(otherwise, it would necessarily be divisible by the polynomial 
V(x) = x, i.e., it would not be prime). This implies that the 
number P that corresponds to the generator polynomial P(x) is 
odd, i.e., its least significant bit p0 is equal to one: p0=1. If the 
least significant bit r0 of the code R being reduced is equal to 
one, then its logical sum with P in the least significant bit is 
zero. Thus, in order for the logical sum RL(P) to have zero in 
the least significant bit, it is necessary that 0 = r0. 

Similarly, if the second bit of the logical sum R0P is 
equal to one, then for 1=1 the bit of the logical sum 
R0P1P2 with the same name is equal to zero. This 
means that it is always possible to make the two least 
significant bits of R  0  P  1 P  2 equal to zero: for this 
it is necessary that 1 = r1  0  p1. Reasoning in a similar 
manner, it is easy to show that in order for the three least 
significant bits of the logical sum R0  P1  P22  P22 
to be equal to zero, it is sufficient to satisfy the condition 
2=r10p11p2. 

Continuing the above reasoning, we can come to the 
conclusion that it is always possible to choose binary 
coefficients 0, 1, …, k-1 in such a way that the k least 
significant bits of the logical sum 

R  0  P  1  P  2  2  P  22  …  k-1 P  2k-1 (16) 
are equal to zero. The proof of the above statement enables the 
organization of a simultaneous Montgomery reduction 
immediately over k bits of the current result when squaring on 
Galois fields. Subsequently, due to this, it hence becomes 
possible to significantly speed up the fundamental operation of 
exponentiation on Galois fields. 

For this reason, it is proposed that, for a given polynomial 
P(x) formulated in the Galois field and for given values rk-1, rk-

2, …, r1, r0, it is possible to obtain as a result the corresponding 
values k-1, k-2, …, 1, 0 with a recursive application of the 
approach outlined above. Hence, for each of the possible of the 
2k-1 combinations (excluding zeros) of the k bits of the code rk-

1, rk-2, …, r1, r0, the values of the sums L(P)=k-12k-1P + k-

22k-2P+…+12P+0P are derived, for which the k least 
significant bits of L(P) are equal to the corresponding 
combination. The results of the calculation are presented in the 
form of the 2k-1 table of values T(1), T(2),…,T(2k-1). The value 
of k is selected to be even and such that n is exactly divisible 
by k. 

The above method is illustrated according to the following 
example. Let n=8 and the Galois field formulated by the 
polynomial P(x)=x8+x7+x6+x5+x3+x2+1. For n=8, the number 
Q=2n=256 and the multiplicative inverse Q-1 that is produced 
with the given polynomial P(x) is Q-1=127. Then indeed, 
256127 rem P(x)=1.  

This polynomial corresponds to the number P=1110111012 
= 47710. The four least significant digits for this number (for 
k=4) of this number are: p0=1, p1=0, p2=1 και p3=1.  

For each of the 16 possible values of r38+r24+r12+r0, the 
values of the coefficients 0, 1, 2 and 3 of the linear 
combination L(P) can be calculated based on the above 

considerations. The values of the linear combinations 
calculated in this way are given in Table 2. This table 
summarizes values of the pre-calculated results for the Galois 
field with polynomial P(x)=x8+x7+x6+x5+x3+x2+1 for k=4. 

Additionally, in order to quickly formulate the k bits of a 
polynomial for the calculation of the square of k/2-bit packets 
of a number via the insertion of zeros between the digits of the 
binary representation, the formulation of table Z is proposed. 
This table contains in each case, polynomials with squares 
obtained by the insertion of for each one of the 2k/2-1 codes of 
k/2-bits. Specifically for, k=4 the table Ζ consists of three rows: 
Z[1]=Z[012]=00012, Z[102]=01002 and Z[112]=0101. These 
values may be identified as a subset of the rows of Table 2. 

All the steps described above, depending on the polynomial 
P(x) that has been formulated and the number k of the 
concurrently processed bits, need to be performed once for 
actual cryptographic data protection systems, since the 
polynomial is part of the public key. 

Table 2. Pre-calculated results for P(x) and k=4 

r3r2r1r0 T r3r2r1r0 T 
  1000(8) 3816 10 =1110 1110 10002 

0001(1) 211310=1000 0100 00012 1001(9) 170510 = 0110 1010 10012 
0010(2) 341010=1101 0101 00102 1010(10) 95410 = 0011 1011 10102 
0011(3) 129910=0101 0001 00112 1011(11) 306710 =1011 1111 10112 
0100(4) 190810=0111 0111 01002 1100(12) 246010 =1001 1001 11002 
0101(5) 389310=1111 0011 01012 1101(13) 47710= 0001 1101 11012 
0110(6) 259810=1010 0010 01102 1110(14) 123010 = 0100 1100 11102

0111(7) 61510=0010 0110 01112 1111(15) 321510 = 1100 1000 11112

 
It is proposed to calculate the square AA rem P of the 

number A in the Galois field according to the following 
sequence: 
1. The cycle count j is initialized:  j=1. The code of the result 
is also initialized (n + k)- bit R: R=0. 

2. The value of R is shifted by k bits: R>>=k. The most 
significant k bits of R are assigned values from the table, the 
index of which is determined by the least significant k/2 bits 
of А: Z(ak/2-1, ak/2-2, …, a1, a0). 

3. If the least significant k bits R:  rk-1, rk-2, …, r0 are equal to 
zero – go to Step 5. Otherwise R is logically added upon the 
code T[rk-1, rk-2, …, r0] : R = R  T[rk-1, rk-2, …, r0]. 

4. A shift of A is performed by k/2 bits: A>>=k/2. Increment 
the counter j:   j=j+1. If j  2n/k, then return to Step 2. 

5. End of process. The value R = A  A  Q-1 rem P is 
obtained 

The proposed procedure for the accelerated squaring in the 
Galois field is illustrated using the following example. 
Consider squaring the number А=15910 = 1001 11112 in the 
Galois field with the forming polynomial 
P(x)=x8+x7+x6+x5+x3+x2+1 for which and for k=4, Table 2 is 
constructed. The true value of the result AA rem P = 159  
159 rem 477 = 11101112 = 231. 

The dynamic progress of R and q in the steps j of the 
proposed procedure for squaring AA rem P for А = 159 and P 
= 477 for k = 4, is shown in Table 3. 

The result R=236 is different from the correct result and is 
the product AAQ-1 rem P = 159159127 rem 477. In 
order to obtain the correct result R for the number A=159 in 
the Galois field, it is necessary to perform the Montgomery 
correction, that is to multiply the obtained result R by the value 
of Q:   R=RQ rem P = 236256 rem 477 = 231. 
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Table 3. AA rem P for А = 159, P = 477, k = 4. 

j Operations on R Operations on А 
A>>=2 Logical Addition (XOR) Shift (R>>=4) 

0 0000 0000 0000 0000 
0000 

1001 1111 

1 - 0101 0000 
0000 

0010 0111 

2 - 0101 0101 
0000 

0000 1001 

3 - 0001 0101 
0101= 341 

0000 0010 

4 R=RT[5] =3413893 = 
3680=1110 0110 0000 

0100 1110 
0110 = 1254 

0000 0000 

5 R=RT[6] = 
12542598= 3776=    

1110 1100 0000 

0000 1110 
1100 = 236 

 

 
During the exponentiation in the Galois field in information 

security systems, the actual word length n (typical values of 
which are 2048 or 4096) of the operands is one to two orders 
of magnitude higher than the bit capacity of the processor. 
Consequently, for the estimation of the number of operations 
required for the squaring, one can ignore the operations 
concerning operands the size of which is smaller than the 
capacity of the processor and consider only operations on long 
operands i.e., operands for n bit operations. 

The performance of the above procedure involves the 
execution of n/k shifts of the number A, 2n/k 2 shifts of the 
number R and n/k logical additions (XOR). Hence the total of 
logical operations required for the application of the proposed 
procedure of the squaring in the Galois field is 4n/k. This 
implies that the use of the use of the reduction of the 
Montgomery group with the concurrent k bit processing, 
renders feasible the acceleration of the squaring in the Galois 
fields by a factor of 0.75k times. 

IV. ACCELERATED MULTIPLICATION BY A CONSTANT 
NUMBER ON GALOIS FIELDS WITH MONTGOMERY 
GROUP REDUCTION 
When using the Montgomery reduction as modified for the 
Galois fields, one may use the accelerated multiplication in the 
Galois fields i.e., the calculation AB rem P, where 
 

A=an-12n-1+an-22n-2+…+a222+a12+a0, 
B=bn-12n-1+bn-22n-2+…+b222+b12+b0,         (17)

i{0,1,…,n-1}: ai,bi{0,1}. 
 
Similarly to the proposed method for fast squaring, 

multiplication in the Galois fields may be accelerated via: 
 The application of the Montgomery reduction as modified 

for the Galois fields 
 Concurrent processing of digits during the execution of the 

Montgomery reduction. 
For the purpose of immediately reducing the q least 

significant bits of the intermediate result using the 
Montgomery technology during the calculation of the product, 
it is recommended to use the pre-calculation tables. The logical 
addition of the values of the table to the intermediate result, 
allows the assignment of zeros to its q least significant bits. 
However, in contrast to the squaring, these values depend not 
only on the produced polynomial P(x) of the Galois field, but 
also on the multiplier A. It is therefore necessary to perform 
preliminary multiplications before every calculation of the 

exponent A|E rem P. 
In every step of the multiplication for the intermediate result 

R, a logical addition of the code Y = bq-1  2q-1  A + bq-2  2q-2  A 
+…+ b1  2  A + b0  A is performed, that depends on the q least 
significant bits bq-1, bq-2, …, b0 of the multiplier Β and the 
multiplicand Α. The compensatory code D = vq-12q-1P + vq-2 
2q-2  P +…+ v1  2P + v0P of the Montgomery reduction has 
to be added upon the logical sum RY, that is selected so that 
the q least significant bits of the sum RYD are equal to zero. 

In the previous section, it was shown that the compensatory 
code D exists for any value q of the least significant bits of the 
logical sum RY. 

From this it follows that for given values of rq-1, rq-2, …, r1, 
r0  of the q least significant bits of the intermediate result R and 
of the q least significant bits bq-1,bq-2,…,b0 of the multiplier Β, 
there always exists such a set vq-1,vq-2,…,v0, for which the q 
least significant bits of the logical sum RYD are equal to 
zero. 

Consequently, the numbers of the rows of the table W of the 
pre-calculated values are determined by the given codes rq-1, rq-

2, …, r1, r0  and bq-1, bq-2,  …,b0 and the values of the table 
contain the code DY, For which the q least significant bits of 
the logical sum RYD are equal to zero. Hence the value of 
the 2q bits of the jth line of the table are formulated as: 
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For example, for n = 6, q = 2, A = 5710 = 1110012 and the 
polynomial formulated in the Galois field is                      

P(x) = x6 + x4 + x2+x+1                            (19) 
which corresponds to the number P = 8710 = 10101112. The pre-
calculated values of DY for all the possible values of the 2-bit 
codes r1, r0 and b1, b0 for A = 57 and P = 87 are presented in 
Table 4 below. On algorithmic level and the general case, this 
table will be referred to as table W. 

 

Table 4. Pre-calculated values for A = 57 and P = 87 

r1,r0 b1,b0 j D v1,v0 r1,r0 b1,b0 j D v1,v0 
0 0  0 0 0  0  0 0 1 0  0 0 8 17410 =  

1010 11102   
 1 0 

0 0  0 1 1 19210 =  
1100 00002 

 1 1 1 0  0 1 9 11010 =  
0110 11102 

 0 1 
0 0  1 0 2 22010 =  

1101 11002 
 1 0 1 0  1 0 10 11410 =  

0111 00102 
 0 0 

0 0  1 1 3   2810 =  
0001 11002  

 0 1 1 0  1 1 11 17810 =  
1011 00102 

 1 1 
0 1  0 0 4   5710 =  

0011 10012 
 1 1 1 1  0 0 12   8710 =  

0101 01112 
 0 1 

0 1  0 1 5   3710 =  
0010 01012 

 0 1 1 1  0 1 13 15110 =  
1001 01112 

 1 0 
0 1  1 0 6 22910 =  

1110 01012 
 0 0 1 1  1 0 14 13910 =  

1000 10112 
 1 1 

0 1  1 1 7 24910 =  
1111 10012 

 1 1 1 1  1 1 15   7510 = 
 0100 10112 

 0 0 

 
The procedure required is the following: 

1. The cycle counter i is initialized as   
i=1; 

similarly, the (n+k)-bit result code R:  
R =0. 

2. For the values of the q least significant bits of R and the q 
least significant bits В using Equation (18) the 
corresponding line number j within the pre-calculated 
table W is determined. 

3. The value W[j] of the logical addition is read from the 
table and hence R: R = R  W[j]. 
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4. The values R and B are shifted by q bits:   
R>>=q. B>>=q. 

The cycle counter is incremented  
i:   i=i+1. 

If in/q, return to Step 2. 
The operation of the described multiplication procedure 

with concurrent processing (q=2) in the Galois fields is 
illustrated via the example of the multiplication А=57 by B=41. 
The polynomial  

P(x)=x6 + x4 + x2+x+1                                (20) 
is created. For this particular Galois field  

P = 87, Q = 26 = 64, and Q-1 = 9.                             (21) 
The correct value of the product is obtained as 57  41 rem 

87 = 18. 
The calculations of R and A during the steps for all i of the 

procedure described for the accelerated multiplication in the 
Galois fields is given in Table 5. This table illustrates in step-
by-step form, the evolution of the values of R and A for each 
iteration of the execution of the calculation of AB rem P for 
А = 57, B = 4110 = 1010012 and P = 87 for q = 2 

Table 5. Iterations for A = 57 and P = 87 

i r1 r0 b1 b0 j W[j] Operations in R Shift B 
B >>= 2 R = R  W[ j ] R >>= 2 

0 0 0 0 1 1 192 0  192  = 19210 = 1100 00002 11 00002= 4810 1010 
1 0 0 1 0 2 220 48  220 = 23610 = 1000 11002 11 10112= 5910 0010 
2 1 1 1 0 14 139 59  139 = 17610 = 1011 00002 10 11002= 4410 0000 
 
The obtained result R = 44 is different from the true result 

A  B  Q-1 rem P = 57  41 9 rem 87. In order to obtain 
the result R it is necessary to perform the Montgomery 
correction i.e., to multiply the result R by the value Q:  

R=R  Q rem P = 44  64 rem 87 = 18            (22) 
The immediate execution of one cycle of the described 

procedure requires one logical addition and two shift 
operations. Hence the total number of operations for the 
application of the procedure for multiplication is 3n/q. 

V.  ACCELERATED EXPONENTIATION IN GALOIS FIELDS 
Based on the accelerated procedures for squaring and 
multiplication that were developed in the previous sections, the 
following innovative procedure is proposed for the execution 
of exponentiation in the Galois fields i.e., for the calculation of 
A|E rem P.  

The creation of the polynomial P(x) for most cryptographic 
data protection mechanisms based on Galois fields, is part of 
the public key and changes very rarely. This implies that the 
table T of the pre-calculations is predetermined, may be stored 
in memory and the time required to complete it is not 
considered a computational complexity during the 
exponentiation of a particular number A. 

Before performing the exponentiation, the initial values of 
the result  

R=Q rem P= xn rem P                             (23) 
and the parameter  

C = Q  Q rem P = x2n rem P                         (24) 
are also calculated. These values only depend on the produced 
polynomial of the Galois field and need to be once together 
with the table T of pre - calculations.  

The immediate procedure for the calculation of A|E rem P 
in the proposed scheme, starts with the formulation of the table 
W of pre – calculations, that is used for the accelerated 
multiplication.  

The size of this table is 22q - 1. For each of the possible 
values bq-1, bq-2, …, b0 the values  

Y = bq-12q-1A + bq-22q-2  A +…+ b12A + b0A      (25) 
are calculated, with the operations required being q-1 shifts and 
0.5q2 logical additions.  

For each of the possible values rq-1, rq-2, …, r1, r0, a linear 
system of Boolean equations is solved, that renders possible the 
determination of the values vq-1, vq-2, …, v0 for which the q least 
significant bits of the sum R   Y D are equal to zero. The 
mean number of operations for the determination of a value v 
is 0.5q. Consequently, the total number of logical additions 
required for the determination of the values vq-1, vq-2, …, v0 is 
0.5q2. 

Hence the construction of the table W of the pre-
calculations, requires 2q  (q + 0.5  q2) logical operations for the 
determination of all possible Y and 2q-1q2 logical operations for 
the determination of vq-1, vq-2, …, v0. Taking into account the 
function for the formulation of W[j] = Y D for all rows of the 
table, the total number TW of logical operations for constructing 
this is table is determined by the formula: 

)22()5.0(

)5.0(2)5.0(2
22

222

qq

qq
W

qq

qqqqT








         (26) 
For the description of the proposed procedure for the fast 

exponentiation in Galois fields, SM(A,k) denotes the expanded 
procedure for the fast squaring of a number A in a Galois field 
with Montgomery reduction group k bits, that formulates 
AAQ-1rem P. Similarly, MM(A, B, q) denotes the expanded 
procedure for accelerated multiplication in the Galois field of 
the numbers A and B with the (q-bit) Montgomery reduction 
group A  B  Q-1 rem P. The algorithm can then be described 
as follows: 

 
1. For the selected q and the given Α, a table W of 

preliminary calculations is formulated. 
2. Calculate G = MM(A,C,q). 
3. The number i of the current bit of the binary code of the 

exponent is set to n: i = n. 
4. Raise to the square of the current result R in the Galois 

field: R = SM(R, k). 
5. If the ith bit ei of the binary code of the exponent is equal 

to 1 ei  =1 : the current result R is multiplied by G using 
the procedure ММ: R=MM(R, G, q).   

6. If i > 0 the counter is decremented (i = i - 1) and the 
process returns to Step 4.  

7. The correct result R is formulated as the multiplication of 
R with unity:  R = MM(R,1,q) 

 
The proposed procedure is illustrated via an example of the 

exponentiation of the number A = 15910 to the exponent E 
=20310 = 1100 10112 in the Galois field, that is formulated by 
the polynomial P(x) = x8 + x7 + x6 + x5 + x3 + x2 + 1, 
corresponding to the number P = 477; n = 8. The correct result 
is 159|203 rem 477 = 69.  

For a single repetition and for a given constant polynomial 
P(x) the calculations R = Q rem P = xn rem P = 256 rem 477 = 
221 and C = Q  Q rem P = x2n rem P = 216 rem 477 = 97 are 
performed. For the selected value of k, the tables T of 
preliminary calculation are created and stored.   

The process of the exponentiation begins immediately with 
the formulation of the table W of the pre-calculations (Step 1) 
and the calculation G=MM(159, 97, q) = 105 (Step 2). 
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The dynamic evolution of the values of the current result 
during the execution of Steps 4 – 6 of the proposed procedure 
are presented in Table 6. This table illustrates the values of the 
pre-calculated results for the Galois field with polynomial P(x) 
= x8 + x7 + x6 + x5 + x3 + x2 + 1 for k = 4. 

According to Step 7 of the procedure, the obtained result R 
= 124 is corrected by multiplying with unity: R = MM(R, 1, q) 
= MM(124, 1, q) = 69.  

It is apparent that for each of the n iterations of the described 
procedure for multiplication in the Galois fields a squaring with 
4  n / k logical operations is required, and with probability 0.5, 
an additional multiplication with 3n/q logical operations is also 
required. Additionally, the formulation of the table W is 
performed before the repetitions that requires TW logical 
operations. 

Table 6. Steps 4-6 for A = 15910 and E = 20310  

i ei Evolution of R 
  Squaring Multiplication in G 
8 1 SM(221,k) = 221 MM(221,105,q) = 105 
7 1 SM(105,k) =   28 MM(  28,105,q) =   65 
6 0 SM(  65,k) = 111  
5 0  SM(111,k) = 185  
4 1 SM(185,k) =   77 MM(  77,105,q) =  223 
3 0 SM(223,k) = 252  
2 1 SM(252,k) = 166 MM(166,105,q) =  250 
1 1  SM(250,k) = 3 MM(3,105,q) =  124 

  
Hence the total number of logical operations TE required for 

the exponentiation in the Galois fields according to the 
proposed method is given by the formula: 
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The analysis of Equation (27) demonstrates that the 

principal factors for the reduction of the time required for the 
exponentiation is the number of bits concurrently processed 
during exponentiation - k and multiplication - q. It is also 
apparent that the dependence of TE on q possesses an 
extremum, i.e. there exists an optimal value q0 for which TE is 
minimum. Given that q is integer, it is easy to determine the 
values of q0 for the corresponding values of n used in practice. 
For n = 1024 the optimal value q0 = 5 and for n = 2048 q0 = 6.  

In this case the value of k is limited only by the available 
amount of memory for the storage of table Τ. Compared to the 
exponentiation in the Galois fields, with Montgomery 
reduction and without concurrent processing, the proposed 
procedure accelerates the computations by a factor of  the 
arithmetic value of which is determined by the formula: 
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It is apparent that for q = 1, implying that the concurrent 

processing of a group of bits is only used for squaring, the value 
of  lies in the range 1.3 to 3. This means that the use of 
concurrent processing for the calculation of only a square in the 
Galois fields is ineffective. A much more significant 
acceleration in the calculation of the exponent in the Galois 
fields is obtained by the concurrent processing of the group of 

bits in both the squaring and the multiplication.  
In order to verify the theoretical results for the achieved 

acceleration of the calculation of the execution of 
exponentiation in the Galois fields i.e., for the calculation of 
A|E rem P, suitable simulations were performed. Table 7 shows 
the experimentally obtained values of ξ of the acceleration 
obtained during the calculation of the exponent in the Galois 
fields for different values of k. This table illustrates the 
achieved acceleration that approaches an order of magnitude. It 
additionally highlights the dependence of the calculation of the 
acceleration  of the calculation of the exponent in the Galois 
fields on the group size k during squaring for the particular 
example of n = 2048 and q = 6. 

Table 7. Experimentally achieved acceleration. 

k  
6 4.78 
7 5.33 
8 5.81 
9 6.26 

10 6.67 
11 7.05 
12 7.41 

 
The analysis shows that the efficiency of the proposed 

approach tends to decrease with an increase in the value of k 
due to the exponential growth of the volume V of the memory 
required for the table: 

)(2)(2 qnknV qk                      (29) 
Hence for k = 10 and q = 6, the required memory space is 

V= 274 KBytes, a value that is feasible in most processing 
platforms, including microcontrollers. 

VI. EVALUATION OF THE RESULTS 
Modular exponentiation in Galois fields is a fundamental 

operation in various cryptographic applications, particularly in 
public key cryptography. This operation is essential for 
algorithms such as RSA, Diffie-Hellman, and ElGamal, where 
it facilitates secure key exchanges and digital signatures [17, 
18, 19]. The efficiency of modular exponentiation directly 
impacts the performance of these cryptographic systems, as it 
often involves repeated modular multiplications, which can be 
computationally intensive [19]. Techniques like Montgomery 
multiplication have been developed to optimize this process, 
enhancing both speed and security by minimizing 
vulnerabilities to side-channel attacks [17, 18]. Furthermore, 
the implementation of modular exponentiation in hardware 
architectures is crucial for achieving high performance in real-
world applications, ensuring that cryptographic protocols can 
operate securely and efficiently in various environments [22, 
23]. Overall, the role of modular exponentiation in Galois fields 
is pivotal for maintaining the integrity and confidentiality of 
cryptographic communications.  

The results of this ongoing research concern a range of 
mathematical operations. Firstly, a method for the fast 
calculation of the square in the Galois fields was theoretically 
founded, analyzed and developed. This method is based on the 
use of the polynomial property of the square, on the 
Montgomery group reduction in the Galois fields and on the 
use of preliminary calculations. It has been shown theoretically 
and experimentally that the use of the Montgomery group 
reduction with the processing of k bits concurrently, at the same 
time as using preliminary calculations, renders feasible the 
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acceleration of the squaring in Galois fields by 0.75k times. 
Following that, another method was developed for the 

accelerated multiplication by a constant number in the Galois 
fields. The acceleration of the calculation of the result is 
attained via the use of group reduction and preliminary 
calculations that combine the operations of addition of the 
multiplicand and the Montgomery correction. This rendered 
possible the acceleration of the multiplication by q times when 
q bits were concurrently processed. 

Based on the proposed methods for fast squaring and 
multiplication by a constant factor, a procedure was developed 
for the exponentiation in the Galois fields. The theoretical 
analysis and the experimental studies have demonstrated that 
their use is capable of significantly accelerating the 
computational application of this operation that is important for 
cryptographic applications. The acceleration is significant, of 
approximately one order of magnitude. The memory 
requirements for the implementation of the algorithms were 
calculated to be of the order of 102 kilobytes for numbers of 
2048 bits, a value that is feasibly available even in the case of 
microcontrollers. 

By increasing the speed at which the calculation of the 
exponent takes place, the word length of the numbers for which 
the exponent can be effectively calculated is implicitly also 
increased. Hence, by enabling the use of numbers with larger 
numbers of digits, the cryptographic stability of the algorithms 
increased, together with the associated level of security.  

VII. CONCLUSIONS AND FUTURE WORK 
A collection of accelerated calculations was proposed that leads 
to the acceleration of the calculation of exponentiation in Galois 
fields. Galois Fields exponentiation is an operation that is 
fundamental for a wide spectrum of cryptographic algorithms. 
The ability to accelerate this calculation facilitates the use of 
strong cryptographic security in devices where it is otherwise 
difficult. This includes portable terminals, IoT and 
microcontroller-based systems. The approach consists of two 
developed procedures, namely fast exponentiation to the square 
and multiplication with a constant number in Galois fields. The 
acceleration was developed using the properties of the second 
order polynomial, the Montgomery group reduction and pre-
calculations. The proposed method was founded mathematically. 
The operation of the proposed method was illustrated by simple 
arithmetic examples that were described in detail. The 
development was further supported by results obtained an 
implemented computer simulation that was used for deriving 
experimental results on the achieved acceleration. It has been 
proved, both theoretically and experimentally that the proposed 
approach renders possible the acceleration of exponentiation in 
Galois fields by 5 to 7 times, in comparison with known 
methods. 

The level of security provided by public-key cryptographic 
algorithms is completely determined by the word length of the 
numbers being processed. In practice, for many important 
applications, the number of bits is limited by the allowable time 
for the realization of the basic operation of public-key 
cryptography - exponentiation, the computational complexity of 
which has a cubic dependence on the length of numbers [13]. 
Accordingly, the achieved acceleration of exponentiation on 
Galois fields opens up opportunities for using numbers of larger 

digit capacity, i.e., increasing the level of resistance of public-
key cryptographic algorithms.    

The proposed scheme will be an enabling technology for 
future research, aiming to exploit this proposal for achieving 
high levels of security in applications where this is limited. An 
initial target the implementation modular exponentiation with 
group processing of the exponent code and the use of pre-
calculations that depend on the number that is raised to a power. 
This will facilitate the proliferation of the use of high-level 
security cryptographic primitives in smart-cards and 
microcontrollers with limited resources. A further application 
will involve the development of fast modular multiplication by a 
constant number, the length of which significantly exceeds the 
processor bit capacity, enabling increased levels of security in all 
types of processors. An additional target is the increasing the 
security level of the implementation of homomorphic encryption 
with modular exponentiation components. This will facilitate the 
accelerated implementation of this operation on IoT terminal 
devices via secure involvement of cloud computing resources. A 
further development will be the utilization of the proposed 
accelerated scheme for the definition of procedures for Fast 
Zero-Knowledge Identification Method, derived from of the 
well-known Schnorr schemes. 
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