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 ABSTRACT The paper develops a symmetric cryptoalgorithm based on a hierarchical system of remainder classes 
that allows to efficiently encrypt text messages using the remainders from dividing the numerical form of the 
plaintext into the corresponding modules. The peculiarity of this algorithm is its stepwise structure, which allows to 
gradually reduce the bit depth of modules and operands at each level. The software implementation and relevant 
experimental studies have shown that the abovementioned algorithm is highly resistant to cryptanalytic attacks due to 
the multi-level encryption structure and the use of large primes as modules at the first levels. It is established that the 
cryptographic strength increases with the number of modules, their bit depth, and hierarchical levels. A comparative 
analysis of the stability of the proposed algorithm and the AES-256 algorithm is carried out. It is determined at which 
values of the input parameters (bit depth of the modules, number of modules and hierarchy levels) the proposed 
algorithm demonstrates stability comparable to AES-256, while providing greater flexibility of settings and 
computational efficiency. The proposed methodology allows changing the number and bit depth of modules, the 
number of hierarchy levels, and other parameters to achieve the required degree of protection, making the algorithm 
versatile for different attacks and computing resources. This allows to adaptively adjust the system parameters to 
achieve the optimal ratio between the level of cryptographic strength and the speed of computation.  
 

 KEYWORDS symmetric cryptoalgorithm, hierarchical residue number system, module, remainder, Chinese 
remainder theorem, coding rules, cryptographic strength, hierarchical levels, bit depth of modules. 
 

I. INTRODUCTION 
Modern development of information technologies and 
globalization of the information space create new challenges 
for data protection [1, 2]. The number of cyberattacks is 
increasing every year [3], aimed at stealing confidential 
information, financial resources and personal data [4]. In this 
context, cryptographic methods remain the main tool for 
ensuring information security [5-7]. Particular attention is 
drawn to symmetric encryption methods [8] that provide a 
balance between the speed of data processing and the level of 
data protection [9, 10]. 

Existing modern algorithms, such as AES, have 
demonstrated high efficiency in countering cryptanalytic 
attacks [11-13]. However, the development of quantum 
computing [14] and the increase in the computing power of 
modern systems require the study of new approaches to 
creating cryptographically secure systems. In this context, the 
use of the residue number system (RNS) [15, 16] and its 
forms [17] is a promising direction, as it allows developing 
algorithms [18, 19] that have high speed and efficiency while 

maintaining the required level of resistance to attacks [20]. 
The relevance of the study is determined by the need to 

strengthen information security in the face of increasing 
complexity and scale of cyberattacks. The proposed approach 
is based on the use of the RNS mathematical apparatus, which 
combines high encryption efficiency with adaptability to 
different levels of threats [21-23]. In addition, it is important 
to find alternatives to traditional cryptographic methods to 
create new standards for information security in a rapidly 
changing digital environment. 

The purpose of this article is to develop a symmetric 
cryptoalgorithm based on the use of hierarchical residue 
number system (НRNS) and to evaluate its stability. The 
proposed algorithm allows to adaptively adjust the system 
parameters to achieve an optimal ratio between the level of 
cryptographic strength and the speed of computation. 

ІІ. OVERVIEW OF EXISTING SOLUTIONS 
In the field of cryptography, there is a constant need to 
improve algorithms and methods to ensure a high level of 
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security and increase the speed of processing confidential 
information. One way to enhance the efficiency of 
cryptographic operations is by using HRNS. Its foundations 
were laid in [24]. The HRNS proposed by the authors is based 
on representing large modules as subsystems of residues with 
smaller modules. This process can be repeated until the 
modules reach an acceptable length. Calculations can be 
performed within large dynamic ranges with several small 
modules, simplifying the transformation of numbers from 
residue format to positional representation. 

In [25], a new method for performing base extensions 
using a hierarchical approach in RNS is proposed. For certain 
parameters, this significantly reduces calculations. 

Several studies presented in the article [26] examine the 
development methods of HRNS and their application in 
asymmetric cryptography. The authors demonstrate that 
HRNS can effectively be used for data encryption and 
signing, providing a large dynamic range and high security 
level. 

Additionally, work [27] shows that using specially 
selected modules of a two-level RNS compared to a 
conventional one with the same number of modules and the 
same dynamic range results in hardware savings of 25 to 40% 
and a complexity reduction of up to 80% in accordance with 
the RNS. 

The work [28] indicates the possibility of expanding the 
dynamic range of the RNS by adding virtual layers, which 
contributes to the efficient implementation of modular 
operations for large numbers. This approach can find its 
application in large cryptographic systems, such as modern 
RSA encryption algorithms, and underscores the importance 
of applying a hierarchical approach in RNS for cryptographic 
tasks. Through it, computational costs can be significantly 
reduced, and a high level of parallelism can be achieved, 
which is crucial for the efficiency of cryptographic operations. 

The paper [29] discusses new symmetric crypto 
algorithms based on ordinary integer RNS and its modified 
perfect form. The authors propose two methods. The first 
involves encrypting by transforming plaintext into a set of 
residues using corresponding modules (keys) and its 
subsequent restoration in decimal form using the Chinese 
remainder theorem (CRT). In the second method, the plaintext 
is divided into corresponding modules into smaller sub-
blocks, which act as ciphertext. Decryption is performed by 
searching for residues of the ciphertext using corresponding 
modules. The authors also conduct research on the 
cryptographic strength of the proposed crypto algorithms 
based on the asymptotic distribution law of prime numbers 
and the use of the Euler function. 

A logical continuation of this work is the article [30], 
which develops symmetric encryption algorithms based on 
RNS. The essence of encryption is that when restoring the 
decimal representation of a number from its residues using 
CRT, multiplication is performed not on found base numbers 
but on arbitrarily selected, mutually prime with modules, 
coefficients (keys) of symmetric encryption in RNS, allowing 
to enhance the cryptographic strength of algorithms. 

The application of HRNS in cryptography and their 
research opens new perspectives for creating more efficient 
and secure cryptographic systems, which can find their 
implementation in a wide range of information technologies, 
including confidential information protection, and ensuring 
information and cyber security. 

ІІІ. A HIERARCHICAL SYMMETRIC CRYPTOALGORITHM 
BASED ON A RESIDUE NUMBER SYSTEM 
Any decimal number N in the RNS can be given by the set of 
residues bi from dividing this number by selected modules pi, 
which must be pairwise prime [31]: 
 

bi = N mod pi.  (1) 
 

The CRT allows to establish a mutually unambiguous 
correspondence between an integer N in the decimal system 

from the range [0, P), where 
1

,
l

ii
P p


  N < P, and its 

residues:  
 

 1
mod ,

l

i i ii
N b M m P


   (2) 

 

where ,i
i

P
M

p
  mi is determined by the expression 

1 mod ,i i im M p  l — number of modules. 

Another way is to add the product of the previously 
considered modules sequentially. For example, the module p1 
is added to the residue b1 until the congruence N1 mod p2 = b2 
is satisfied (N1 = b1 + 1р1, 1 is the number of additions of the 
module p1). Next, the product of the modules p1p2 is added to 
N1 until the equality N2 mod p3 = b3 (N2 = N1 + 2р1р2, 2 is the 
number of additions of p1p2) is satisfied. At the i-th step (i = 1, 
..., l–1), the congruence Ni mod pi+1 = bi+1 (Ni = Ni–1 + 

+ ір1р2р3...рi) must be fulfilled. Figure 1 shows the 
scheme of restoring the decimal representation of a number by 
its residues based on the addition of the product of modules. 

It is important to note that when using this approach, the 
results of intermediate calculations will not go beyond the set 
range P, which makes it impossible to overflow the bit grid 
and eliminates the need to perform the operation of finding 
the remainder modulo P. This method is similar to the Garner 
algorithm [32], according to which to calculate the 
coefficients i, it is needed to use methods of finding the 
inverse element by the corresponding module:  

    1

1 1 2 1 1( ... )mod mod .i i i i i ib N p p p p p 
      

 
 

N b p p p p p p p p p p =  +  +  +  + ... +  ... ,1 1 1 2 1 2 3 1 2 3 –1 1 2 3 –1   l l

| mod p2

| |||
| b2

| mod p3

| |||
| b3

| mod p4

| |||
| b4

| mod pl

| |||
| bl  

Figure 1. Scheme for restoring the decimal representation of a 
number by its remainders based on adding the product of 

modules. 
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IV. RULES FOR ENCODING TEXT 
To encrypt textual information, it must first be converted into 
a numerical form. This is usually done using well-known 
tables of correspondences between letters and numbers (for 
example, ASCII codes, letter numbers in the corresponding 
alphabet). However, when using the decimal system, it is 
inconvenient when the letter number starts from zero (for 
example, a = 00, b = 01, etc.). Therefore, for transcoding 
letters of the Ukrainian and English alphabets, numbers, and 

some special characters, the principle is used when the 
character numbering is represented by a three-digit number 
starting from 100. This allows to effectively apply the 
proposed symmetric encryption/decryption method in a 
stepped RNS. Table 1 shows the character-number 
correspondence for encoding 167 characters. Obviously, 
Table 1 can be extended to 900 characters. 

 

 

Table 1. Encoding of letters of the Ukrainian and English alphabets, special characters and numbers 

а б в г д е є ж з и і ї й к л м 
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 
н о п р с т у ф х ц ч ш щ ь ю я 

116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 
 \n . , : ! ? % # @ № ; ^ * ( ) 

132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 

- + = _ < > { } [ ] | / ` ~ \ " 
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 
\\ $ & a b c d e f' g h i j k l m 

164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 
n o p q r s t u v w x y z А Б В 

180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 

Г Ґ Д Е Є Ж З И І Ї Й К Л М Н О 
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 
П Р С Т У Ф Х Ц Ч Ш Щ Ь Ю A B C 

212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 
D E F G H I J K L M N O P Q R S 

228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 

T U V W X Y Z 1 2 3 4 5 6 7 8 9 
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 

0 — − « » ґ Я  

260 261 262 263 264 265 266 

 

V. THEORETICAL FOUNDATIONS OF SYMMETRIC 
ENCRYPTION IN HIERARCHICAL RESIDUE NUMBER 
SYSTEM 
The increase in the volume of information processing, 
transmission and storage inevitably leads to an increase in the 
number of modules and their size. This, in turn, causes 
hardware to become more complex and operations to take 
longer. Reducing the size of modules and, accordingly, 
numerical operands allows the НRNS. 

Let the system of first-level modules p1, p2, ..., pl, arranged 
in ascending order, provide the possibility of plaintext blocks 

N in the range [0, P), where 
1

.
l

i
i

P p


  The residues bi are 

calculated using formula (1). Next, for each module pi of the 
first level, a new system of modules of the second level is 
selected: qi1, qi2, ..., qil, assuming for simplicity that the 
number of modules in each system at any level is the same 
and equal to l. Accordingly, the residues bij = bi mod qij are 
calculated.  

Then, in turn, the residues of the second level are written 
in the same way in the system of modules of the third level, 
subject to the relevant requirements. This procedure continues 

until the last, k-th level. 
Thus, each residue of the r-th level corresponds to l 

systems with lr–1 residues. Thus, lr residues (l > 1, r = 1, 2,..., 
k–1) are transmitted to the r + 1 level and the ciphertext 
consists of lk numbers, which are the residues of the last level 
of the HRNS. If the number of levels is 1, then the usual 
symmetric encryption in the RNS takes place. The module 
sets are known to the sender and the receiver. 

As a rule, the number of levels is determined by the 
conditions of a particular task. Such a process of transition to 
smaller modules greatly simplifies the implementation of an 
elementary arithmetic device and reduces the time for 
performing arithmetic operations. Figure 2 shows a diagram 
of processing residues at the appropriate levels. 

It should be noted that for cryptography tasks, it is 
advisable to choose different numbers of modules at different 
levels. This will significantly increase the complexity of 
cryptanalysis of such an encryption system, although it will 
complicate the hardware implementation. 
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p1 b  N p1 1   mod   

b  b q11 1 11   mod   q11 ...
q11...21  

b  b q11...21 11...2 11...21   mod   

b  b q11...22 11...2 11...22   mod   

b  b q11...2 11...2 11...2l l   mod   
...

...

q11... 1l   

b  b q11... 1 11... 11... 1l l l   mod   

b  b q11... 2 11... 11... 2l l l   mod   

b  b q11... 11... 11...ll l ll   mod   

...

q11...11  
k  – 1

b  b q11...11 11...1 11...11   mod   

b  b q11...12 11...1 11...12   mod   

b  b q11...1 11...1 11...1l l   mod   
...

k  – 1

k  – 1

k  – 1

k – 1

k  – 1

k – 1

k – 1

k  – 1

k  – 1

k  – 1

k  – 1

k  – 1

k  – 1

k – 1 k  – 1

k – 1 k – 1

k – 1 k  – 1

k  – 1

k  – 1

k  – 1

k  – 1 k  – 1

k – 1

k – 1 k  – 1

k – 1

k  – 1

b  b q12 1 12 mod q12  ... q12...11  
k  – 1

...

b  b q12...11 12...1 12...11 mod 

b  b q12...12 12...1 12...12 mod 

b  b q12...1 12...1 12...1l l mod   
...

k – 1

k  – 1

k  – 1

k – 1

k  – 1

k  – 1

k  – 1

k  – 1

k – 1

b  b q1 1 1l l   mod   q1l  ... q1 ...11l   
k – 1

...............
p2 b  N p2 2 mod 

b  b q21 2 21 mod   q21  ...

b  b q22 2 22 mod   q22  ...

b  b q2 2 2l l   mod   q2l ...

...

pl b  N pl l mod 

b  b ql l l1 1   mod   ql1 ...

b  b ql l l2 2   mod   ql2  ...

b  b qll l ll   mod   qll  ...

...

......

qll ll...

b  b qll l ll l ll l... 1 ... ... 1   mod   

b  b qll l ll l ll l... 2 ... ... 2 mod 

b  b qll ll ll l ll ll... ... ...   mod   
...k  – 1

k – 1

k – 1

k  – 1 k  – 1

k  – 1 k – 1

k – 1 k – 1 k  – 1

N

Modules of 
the 1st level

Modules of 
 2the level

Modules of 
 kthe level

level I
l sresidue

level II
l2 sresidue

level k
lk sresidue  

Figure 2. Scheme of transfer of residues by levels. 

 
If the plaintext message converted into numerical form 

does not satisfy the condition N < P, it must be divided into 
blocks that meet the specified inequality. 

Decryption in an HRNS is performed in the reverse order. 
The entire ciphertext is divided into blocks, the number of 
which is lk. Then, using one of the methods of recovering a 

number from its residues, for example, the CRT (2), the 
residues of a higher level are obtained. At each level of 
decryption, the number of residues is reduced by a factor of l.  

At the last level of decryption, the numerical value of the 
input message is obtained. Figure 3 shows a general scheme 
of symmetric encryption based on the HRNS. 
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Source of keys

level I ,  = 1,:  p i  li

level II , = 1, :  q j lij

...........................
level : , = 1, k q r l  i...r

k

Closed
channel

Closed
channel

Sender

Message

Encoding 
table

N

Cipher

...........................

level I: =  mod bi N pi

level II: =  mod   bij b qi ij

level : =  mod k b qbi r... i...g i...r
k k  –1 Сiphertext

bi...r

Attacker

Open
channel

Сiphertext

bi...r

Decipher

...........................k –1

level : =  mod k b M m P   bi r... i...r i...r k–1   i...r
k k k

level II: =  mod bi b M m Pij ij ij 2

level I: =   mod    N     b M m Pi i i 1

Receiver

Message

Decoding 
table

N

 

Figure 3. Scheme of symmetric encryption and decryption based on HRNS 

VI. AN EXAMPLE OF A SYMMETRIC ENCRYPTION 
METHOD IN AN HIERARCHICAL RESIDUE NUMBER 
SYSTEM 

For example, let's take a two-level HRNS with the following 

sets of modules of the 1st and 2nd levels, respectively: 

p1 = 164359, p2 = 1287493, p3 = 1702861; q11 = 167, 

q12 = 331, q13 = 599, q21 = 137, q22 = 283, q23 = 677, q31 = 157, 

q32 = 367, q33 = 709. Suppose that it is needed to encrypt the 

plaintext “looks cool”, which is divided into two blocks of 5 

characters each, including spaces: S1 = “looks”, S2 = “ cool”. 

According to Table 1, two 15-digit numeric blocks are 

obtained: N1 = 178181181177185, N2 = 132169181181178. 

The results of the hierarchical encryption of blocks N1 and N2 

are shown in Tables 2-3. 

Table 2. Encryption N1 

N
1 

=
 1

78
18

11
81

17
71

85
 

р 1
 =

 1
64

35
9 

b 1
 =

 1
0 

32
6 q11 = 167 b11 = 139 

q12 = 331 b12 = 65 

q13 = 599 b13 = 143 

р 2
 =

 1
28

74
93

 

b 2
 =

 1
10

94
99

 

q21 = 137 b21 = 73 

q22 = 283 b22 = 139 

q23 = 677 b23 = 573 

р 3
 =

 1
70

28
61

 

b 3
 =

 1
14

55
03

 

q31 = 157 b31 = 31 

q32 = 367 b32 = 96 

q33 = 709 b33 = 468 

 

Thus, the blocks S1 = “looks” and S2 = “ cool” correspond 

to the residue sets (139, 65, 143, 73, 139, 573, 31, 96, 468) 

and (63, 133, 264, 37, 251, 403, 37, 260, 656), respectively. 

The full ciphertext is obtained by concatenating both sets of 

residues: (139, 65, 143, 73, 139, 573, 31, 96, 468, 63, 133, 

264, 37, 251, 403, 37, 260, 656).  

Table 3. Encryption N2 

N
2 

=
 1

32
16

91
81

18
11

78
 

р 1
 =

 1
64

35
9 

b 1
 =

 1
36

 8
36

 

q11 = 167 b11 = 63 

q12 = 331 b12 = 133 

q13 = 599 b13 = 264 

р 2
 =

 1
28

74
93

 

b 2
 =

 1
 0

74
 8

02
 

q21 = 137 b21 = 37 

q22 = 283 b22 = 251 

q23 = 677 b23 = 403 

р 3
 =

 1
70

28
61

 

b 3
 =

 1
36

 7
84

 

q31 = 157 b31 = 37 

q32 = 367 b32 = 260 

q33 = 709 b33 = 656 

 

The decryption process is carried out in reverse order 

using the CRT, starting from the second level with 9 modules: 

q11 = 167, q12 = 331, q13 = 599, q21 = 137, q22 = 283, q23 = 677, 

q31 = 157, q32 = 367, q33 = 709. After recovering the residuals 

of the second level, the decryption is performed using three 

modules of the first level: p1 = 164359, p2 = 1287493, 

p3 = 1702861.  

Thus, the ciphertext is divided into two blocks of 9 

residues each. The first of them (139, 65, 143, 73, 139, 573, 

31, 96, 468) is divided into sub-blocks of three residues, to 

which the CRT (2) with second-level modules is applied. The 

resulting three numbers (remainders) are again subjected to 

the CRT with first-level modules. The procedure is similar 

with the second block of the ciphertext. The process and 

results of decrypting each block are presented in Tables 4 and 

5, respectively. 
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Table 4. Decryption of the first block 

  I II III 

ІI
 le

ve
l 

bij b11 = 139 b12 = 65 b13 = 143 b21 = 73 b22 = 139 b23 = 573 b31 = 31 b32 = 96 b33 = 468 
qij q11 = 167 q12 = 331 q13 = 599 q21 = 137 q22 = 283 q23 = 677 q31 = 157 q32 = 367 q33 = 709 

1

l

ij
j

ij
ij

q

q
M 


 

198 269 100 033 55 277 191 591 92 749 38 771 260 203 111 313 57 619 

1 modij ij ijm M q  71 14 319 78 83 93 32 213 153 

1 1

mod
ll

i ij ij ij ij
j j

b b M m q
 

 
  
 
   10326 1 109 499 1 145 503 

І 
le

ve
l 

pi р1 = 164359 р2 = 1287493 р3 = 1702861 

1

l

i

i
i

i

p

p
M 


 2 192 421 617 473 279 880 531 099 211 611 061 987 

1 modi i im M p  59400 1 108 855 1 323 710 

1
1 1

mod
ll

i i i i
i i

N b M m p
 

   
 
   178 181 181 177 185 

S1 «looks» 

Table 5. Decryption of the second block 

  I II III 

ІI
 le

ve
l 

bij b11 = 63 b12 = 133 b13 = 264 b21 = 37 b22 = 251 b23 = 403 b31 = 37 b32 = 260 b33 = 656 
qij q11 = 167 q12 = 331 q13 = 599 q21 = 137 q22 = 283 q23 = 677 q31 = 157 q32 = 367 q33 = 709 

1

l

ij
j

ij
ij

q

q
M 


 

198 269 100 033 55 277 191 591 92 749 38 771 260 203 111 313 57 619 

1 modij ij ijm M q  71 14 319 78 83 93 32 213 153 

1 1

mod
ll

i ij ij ij ij
j j

b b M m q
 

 
  
 
   136 836 1 074 802 136 784 

І 
le

ve
l 

pi р1 = 164359 р2 = 1287493 р3 = 1702861 

1

l

i

i
i

i

p

p
M 


 2 192 421 617 473 279 880 531 099 211 611 061 987 

1 modi i im M p  59400 1 108 855 1 323 710 

2
1 1

mod
ll

i i i i
i i

N b M m p
 

   
 
   132 169 181 181 178 

S2 « cool» 

 
Thus, after combining the decrypted texts of both blocks, 

the incoming message “looks cool” is obtained. 

VII. SOFTWARE IMPLEMENTATION OF THE METHOD 
The implementation of the proposed encryption method is 
based on the Python software. The calculations in the study 
were performed using HP Pavilion Gaming Laptop 16-
a0xxx/Intel(R) Core(TM) i7-10870H CPU @ 2.20 GHz, 
2208 Mhz, 8 Core(s)/32 Gb/1 Tb. At the initial stage, the 
necessary libraries were exported, a table of encoding letters, 
numbers and symbols was created, functions for displaying 
text during encryption and decryption, as well as auxiliary 
functions for displaying windows on the screen, etc. A 
description of the main functions of the program 
implementation and the output of the result of execution on 
the screen for encryption and decryption is given in Tables 6 
and 7, respectively.  
 

Table 6. Description of the main functions of the 
encryption software implementation and the result 

of displaying on the screen 

Function  
description 

The result of the screen display 

Create and display a 
job selection window 

 
Create and display a 
window for entering 
text and checking if 
all characters are in 

the alphabet  
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Creating and 
displaying a window 
for entering first- and 

second-order 
modules and 
checking the 

conditions for the 
entered data, namely, 

mutual primes, 
belonging to a certain 

range 

 

 

 

 
A timer for 

evaluating the 
program's 

performance, block 
encryption of the 

text, writing data to a 
file for transmission 
to the recipient, and 

additional text output 
to a window with the 

ability to copy 

 

 

 

Table 7. Description of the main functions of the 
decryption software implementation and the result of 

displaying on the screen 

Code  
description 

The result of the screen display 

Create and display a 
window for setting 
the cryptotext and 

selecting the type of 
work 

 

 

 

Creating and 
displaying a window 
for entering modules 

of the first and 
second levels and 

checking the 
conditions for the 

entered data, namely: 
mutual simplicity, 

belonging to a certain 
range 

 

 

 

 
Reading data, block 

decryption, creating a 
file with decrypted 

text, displaying it on 
the screen and 
estimating the 

operating time of 
each level 

 

 
Table 8 shows the encryption and decryption time for 

messages of different lengths at each level. 

Table 8. Encryption and decryption time for messages of different lengths at each level 

Text size, 
bits 

Encryption time,  Decryption time 
І level 
(b –b ) 

ІІ level 
(b –b ) 

І level 
(b –b ) 

ІІ level 
(b –b ) 8 7.799943Е–06 4.300033Е–06 2.659997Е–05 1.419999Е–05 

16 1.279998Е–05 7.799943Е–06 5.199993Е–05 2.020004Е–05 

32 1.630012Е–05 1.369999Е–05 4.129997Е–05 2.959999Е–05 

64 2.010015Е–05 1.389976Е–05 5.489995Е–05 4.520011Е–05 

128 2.790009Е–05 2.320018Е–05 1.246998Е–04 9.370025Е–05 

256 5.609961Е–05 6.760005Е–05 6.430999E–04 2.128998E–04 

512 1.146998Е–04 9.070023Е–05 5.221999E–04 4.703999E–04 

1024 2.345002Е–04 1.778999E–04 7.691999E–04 7.490998E–04 

2048 4.413006Е–04 3.627992E–04 2.385101E–03 2.479399E–03 

4096 9.392999Е–04 7.505005E–04 3.148402E–03 3.015401E–03 
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It is expected that as the message dimension increases 
from 8 bits to 4096 bits, the time of cryptographic 
transformations increases by about 100 times. With the same 
bit depths, the decryption time is longer than the encryption 
time. This is due to the use of computationally complex CRT 
operations during decryption. In addition, the time of 
cryptographic transformations at the second level, which uses 
smaller modules, is usually less than at the first level.  

VIII. EVALUATION OF CRYPTOGRAPHIC STRENGTH OF A 
CRYPTOGRAPHIC ALGORITHM IN A HIERARCHICAL 
SYSTEM OF RESIDUAL CLASSES 

As noted in [29], the complexity of cryptanalysis of a 
symmetric encryption method in an integer RNS, provided 
that the crypto-transformation modules are primes, is 

1
22

,
ln

O n
n

  
     

 where n — bit depth of the modules. When 

studying the cryptographic resistance of the developed 
algorithm using the HRNS, it is necessary to take into account 
the number of levels k and the change in the bit depth of the 
modules at each level. Therefore, the total time complexity of 
cryptanalysis at all levels is calculated according to the 
following formula: 
 

 
1

22
, , ,

k
k

ln

kk
k

O n k l n
n

 
  

 
  (3) 

 
where nk = n – k + 1 — is the bit depth at the k-th level, lk = lk 
is the number of modules at the k-th level. 

Taking into account the values of the parameters nk and lk, 
formula (3) will take the following form: 
 

   
1

22
, , 1 .

1

kln k

k
O n k l n k

n k

  
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  (4) 

 
For example, the cryptographic strength of the proposed 

algorithm for a k-level HRNS with the number of modules on 
the first level l = 3 is described by the expression:  
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31

22
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1

k
n k

k
O n k n k

n k

  
     
  (5) 

 
Figure 4 shows a graph that displays the logarithmic 

dependence of the complexity of cryptanalysis on the number 
of bits n, the number of modules l, and the levels k. It is 
clearly observed that with the growth of these parameters, the 
complexity of cryptanalysis increases.  

The results of experimental studies indicate that the 
stability of the proposed symmetric cryptosystem based on the 
use of a hierarchical system of residual classes increases with 
the number of levels and the bit depth of the input parameters 
(modules). 

 

Figure 4. Dependence of the logarithm of cryptanalysis 
complexity on the number of bits n, the number of modules l 

and the levels k. 

From the literature review, it is known [33, 34] that the 
cryptanalysis of the modern symmetric cipher AES-256 is 2255 
bit operations. From the equality 

 
1

2 2552
1 2

1

kln k

k
n k

n k

  
     

  we can find the bits, the 

number of levels, and the number of RNS modules that 
provide the same robustness as the AES-256 algorithm.  

After logarithmizing in base 2 and performing elementary 
arithmetic transformations, we can get 
 

 2( 1) (2 ) log ( 1) 255.k k

k
l n k l n k        (6) 

 
Table 9 shows the values of cryptographic strength for 

different values of n, l and k. 

Table 9. Cryptographic resistance of the developed 
algorithm in HRNS at different module bit depths, 

numbers of modules, and levels 

n = 8 

k l = 2 l = 3 l = 4 l = 5 l = 6 

1 16 21 26 31 36 

2 38.38529 64.34852 98.69703 141.4308 192.5499 

3 70.87552 161.7245 322.4294 573.4804 935.368 

4 118.3685 383.2921 1012.66 2251.919 4410.793 

5 186.3685 873.2921 3064.66 8505.919 19966.79 

6 280.1008 1908.024 8863.823 30619.05 85989.95 

n = 12 

k l = 2 l = 3 l = 4 l = 5 l = 6 

1 24 32.41504 40.83007 49.24511 57.66015 

2 61.08114 107.199 168.398 244.6782 336.0395 

3 121.1496 294.1508 602.4385 1086.081 1785.147 

4 220.7706 772.7267 2101.278 4736.218 9347.264 

5 386.7706 1993.727 7227.278 20367.22 48233.26 

 
Table 9 demonstrates that the proposed symmetric 

cryptographic algorithm based on the HRNS provides a level 
of cryptographic strength comparable to the AES-256 
algorithm at certain values of the parameters n, l, k. 

In particular, for 8-bit modules with l = 2, 6 levels are 
required to exceed the AES-256 strength. Increasing the 
number of modules leads to a decrease in encryption levels (if 
l = 3, then k = 4; if l = 4-6, then k = 3). 

For 12-bit modules with l = 2, the strength of the proposed 
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cryptoalgorithm exceeds the strength of AES-256 at the fifth 
level. With an increase in the number of modules (l = 3-5), the 
condition of exceeding the AES-256 strength is fulfilled at the 
third level, and at l = 6 – at the second level.  

Thus, varying the bit depth of the modules, their number, 
and hierarchy levels allows us to achieve the appropriate 
cryptographic strength of the proposed algorithm depending 
on the specific task. 

IX. CONCLUSIONS 
For the first time, a symmetric cryptoalgorithm based on 

the HRNS has been proposed that allows to efficiently convert 
text messages into numerical form and ensure their encryption 
using the remaining modules. A feature of the algorithm is its 
stepwise structure, which makes it possible to consistently 
reduce the bit depth of the modules at each level and ensure 
the preservation of the original information. 

Experimental studies have demonstrated that the proposed 
algorithm is highly resistant to attacks due to the use of large 
prime numbers in the system of modules and a multi-level 
encryption structure. It is established that cryptographic 
resistance increases with the number of modules, their bit 
depth, and hierarchy levels.  

A comparative analysis of the stability of the proposed 
algorithm and the AES-256 algorithm is carried out. It is 
indicated at what values of the input parameters (bit depth of 
the modules, number of modules, and hierarchy levels) the 
algorithm based on the RNS demonstrates stability 
comparable to AES-256, while providing greater flexibility of 
settings and computational efficiency. 

The proposed methodology allows changing the bit depth 
of the modules, the number of hierarchy levels, and other 
parameters to achieve the required level of protection. This 
makes the algorithm universal for use in conditions of 
different levels of threats and computer system resources. 

In general, the conducted studies confirm the effectiveness 
and prospects of using a symmetric cryptographic algorithm 
based on the HRNS to ensure the protection of information in 
the modern digital environment. The proposed approach 
opens up new opportunities for the development of 
cryptography that meet the challenges of the digital age. 
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