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 ABSTRACT The article describes three modifications of the LZ77 dictionary algorithm for lossless image 
compression in the process of sequential bypass pixels: storing offsets to identical sequences in pixels, not in 
individual components; performing a search for identical sequences first, starting from adjacent previously 
processed pixels; performing a search for identical sequences not only in the horizontal but also in the vertical 
direction. The first of these modifications is shown to improve compression by using smaller values for storing 
offsets and increasing the dictionary of the LZ77 algorithm threefold. The second modification forms small 
offsets to adjacent pixels of the previous row. And the third one finds longer identical sequences. Storing offsets 
in pixels and separately searching for identical sequences from adjacent processed pixels is recommended to use 
in graphic formats, as they improve compression with almost no impact on encoding and decoding time. The 
search for identical sequences in two directions is suggested to be used only in archivers, because the 
implementation of this modification slows down both encoding and decoding, improving the compression of 
only individual images. On the well-known ACT test set, it is shown that the application of the proposed 
modifications together with the simultaneous search of the same sequences in three dictionaries makes it possible 
to reduce image compression coefficients by an average of 0.18 bpb. 
 

 KEYWORDS lossless image compression; dictionary compression methods; LZ77 algorithm schedules. 
 

I. INTRODUCTION 
ODAY, images are an inseparable component of 
multimedia information enhancing our understanding of 

the world around us. Compressing images speeds up their 
transfer over the network and reduces disk space usage. All 
graphic formats that perform image data compression 
implement methods of one of two compression classes: lossy 
(for example, JPEG [1, 2]) and lossless (for example, PNG [2, 
3]). And if for most lossy image compression algorithms it is 
possible to achieve the required compression ratio (hereafter 
CR, volume ratio compressed to uncompressed image file 
sizes, expressed in bpb) at the expense of quality degradation, 
then the compression level of lossless images is on average 
only 30-70%, it depends on pixel color gradients and the 
compression algorithm itself and cannot be programmed. 
Therefore, the problem of improving the efficiency of lossless 
image compression is relevant at this time and will remain the 
same in the future. 
 

II. FORMULATION OF THE PROBLEM 
Usually, the process of lossless image compression in 
archivers and graphic formats can be divided into a maximum 
of four stages: at the first stage, context-dependent coding 
reduces inter-element redundancy between the same 
fragments or fragments with the same structure; at the second 
stage, the transition to an alternative color model is performed 
[4]; at the third – instead of the brightness of the raw pixel 
components, their deviations from the values predicted by the 
predictors are stored (forecaster) [5-7]: 
 
 uvuvuv predictbrightness   (1) 

 
(u and v are changing, respectively, along all the rows and 
columns of the pixel components of the image). At the fourth 
stage, context-independent coding handles code redundancy 
by forming element codes with lengths dependent on their 
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probabilities (for example, using Huffman codes [8-11] or 
arithmetic codes [12-15]). The average length of such a code 
approaches entropy [16] is as follows: 
 

  
i 

i i ppH log , (2) 

 
where pi is the probability of the i-th element. The second and 
third stages redistribute the luminance values of the 
components without directly performing compression, but 
with this they increase the unevenness of the distribution of 
values and therefore increase the efficiency of the fourth stage 
of coding. It is possible to additionally increase the 
unevenness of the distribution of elements by switching to 
color models used in publishing, for example, to the HSI 
model [17], which is invariant to changes in lighting. 
However, while switching to such models and returning from 
them to the RGB model, the operations of dividing the 
component values are repeatedly performed, which is 
unacceptable for lossless image compression. Therefore, at 
the second stage of such compression, difference color models 
are used, in which a maximum of two components are 
replaced by differences with other components [4]. These 
color models provide unambiguous decoding. 

One of the successful examples of the combination of 
context-dependent and context-independent stages of coding, 
approved at the standard level, is the Deflate dictionary 
compression format [18]. This format uses the context-
dependent dictionary algorithm LZ77 [19-22] to process the 
input stream, and the results of its work are compressed by 
Huffman dynamic codes [8] to ensure the smallest CR. Today, 
this format is also used in many popular archivers (for 
example, GZIP [23]) and graphic formats (for example, PNG 
[3]) in other application software and does not require the 
purchase of licenses. In this article, we propose the 
modifications to the LZ77 deflate algorithm based on the 
PNG graphic format. 

It should be recollected that the LZ77 algorithm is based 
on the replacement during encoding in the output stream of 
the same sequence for the buffer by reference to the same 
sequence starting in the dictionary in the form of a pair of 
numbers <length of the same sequence, displacement from the 
end of the dictionary to the previous identical sequence>. If it 
is not possible to find the same sequence in the dictionary for 
elements from the beginning of the buffer, then the first 
element (literal) from the beginning of the buffer is written to 
the end of the dictionary and to the output stream without 
changes, and the coding continues similarly from the next 
element of the buffer [19]. 

When decoding LZ77 codes, literals are passed to the 
output stream unchanged. Pairs <length; offsets> are decoded 
by sequentially transferring the specified number of literals 
from the end of the output stream, at the given offset, into the 
output stream. 

In the RGB color model the order of sequential bypass of 
the brightness of the pixel components is conventionally 
shown by a continuous arrow in Fig. 1. The same sequence is 
used to form the input stream for image compression by the 
LZ77 algorithm in PNG format. 

 

 

Figure 1. Brightness components of the upper pixels of the 
left corner of conditional RGB image and sequence of their 

consistent bypass (defined by continuous arrow) 

For example, during a sequential bypass of the first 15 the 
brightness components of four pixels from Fig. 1, a stream 3, 
4, 6, 3, 4, 6, 3, 2, 6, 3, 4 is formed. The LZ77 algorithm will 
convert this stream into a sequence 3, 4, 6, <4, 3>, 2, <3, 6>. 
The step-by-step results of using of the LZ77 algorithm before 
changes the dictionary and buffer for this flow are shown in 
Table 1. 

It is clear that the more and the longer the replacement of 
luminances in pairs <length; offset> is found – the lower the 
compression ratio will be provided by the LZ77 algorithm. 
Known modifications of the LZ77 algorithm and the results of 
their application for lossless image compression are given in 
[24]. 

Table 1. Step-by-step results of forming the schedule of 
the LZ77 algorithm 3, 4, 6, 3, 4, 6, 3, 2, 6, 3, 4 

according to [8] 

 
 
To increase the number of replacements of literals and 

reduce the CR in the process of sequentially traversing pixels, 
we proposed in [25] a modification of the LZ77 algorithm, 
which was named LZPR. In this modification, the same 
sequences of elements are searched not only in the sliding 
window of the image data, but also in two additional sliding 
windows of the results of the LeftPredict and AbovePredict 
predictors, i.e., the search is performed not only among the 
same brightness component of the pixels, but also among the 
same brightness increments in two directions. At the same 
time, replacements of literals are stored in the form of a triplet 
of numbers <length; displacement; sliding window number>. 
If it is not possible to find identical sequences in three 
dictionaries, then the LZPR algorithm transfers the result of 
applying the predictor with the lowest entropy to the coded 
data instead of the next element. For example, for the input 
stream from Fig. 2 the lowest entropy is provided by the 
AbovePredict predictor, so its values are written to the output 
stream instead of elements that are not included in the 
substitution <length; displacement>. Thus, the LZPR 
algorithm finds more identical sequences of elements and 
forms an output stream with a lower entropy (2) relative to the 
classic LZ77 algorithm. 
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Figure 2. Application of the LZPR algorithm, starting from 
the second pixel in the third line of conditional RGB image 

shown in Figure 1 

Therefore, the purpose of this article and the novelty of the 
research is to improve the LZ77 and LZPR algorithms due to 
more compact storage of displacements, increasing the 
dictionary and searching for identical sequences not only in 
the horizontal direction, but also in the vertical direction and 
from the nearest processed pixels to reduce the CR of images 
without losses in the process of sequentially traversing pixels. 

III. THE WAYS TO IMPROVE COMPRESSION WITH THE 
LZ77 ALGORITHM DURING LOSSLESS IMAGE 
COMPRESSION 
Firstly, we will show that the displacement of the modified 
LZ77 algorithm should be determined in pixels, and not in the 
brightness of individual components, as was done in [25]. It is 
well known that the highest correlation in images is between 
identical components of adjacent pixels [26]. This is what 
determines the mechanism of using predictors (1) to reduce 
entropy (2), which are used component by component. It is 
clear that different sequences of components after the 
application of linear predictors can generate the same 
brightness increments, but due to noise exposure this happens 
much less often than identical fragments of images. That is, it 
is expedient to search for identical fragments starting from the 
same component of previously processed pixels (if, for 
example, the next literal of the dictionary contains the value 
of component R, then it is expedient to search for identical 
sequences starting from component R of the processed pixels). 
Offsets between identical pixel components are multiples of 
pixel length, so these offsets can be defined in pixels rather 
than components. In the RGB color model that we use to store 
uncompressed images, brightness of pixels is represented by 
three components. Therefore, the displacements expressed in 
pixels will be three times smaller than the values of the same 
displacements recorded in the components, and smaller 
displacement values in the Deflate format are on average 
encoded with a smaller number of bits [17]. In addition, 
moving from setting offsets in components to specifying 
offsets in pixels triples the size of the dictionary. Therefore, 
such transition should predictably reduce CR. 

Secondly, let us point out the expediency of encoding 
displacements to the nearest previously processed pixels with 
smaller values than to the pixels in the dictionary. Since 
adjacent pixels have the highest level of correlation in images, 
the identical luminances of pixel sequences are most often 
found in images starting from adjacent pixels. By their nature, 
images are two-dimensional, while LZ77 dictionary algorithm 
is text-oriented and therefore one-dimensional. Sequential 
pixel traversal converts a two-dimensional image into a one-
dimensional stream suitable for processing by the LZ77 
algorithm. But at the same time, the displacements in the 
dictionary to adjacent pixels in the previous row become 
significantly larger than the displacement to the processed 
pixel on the left (Fig. 3), which negatively affects the CR, 

since larger displacements in the Deflate format [18] are 
encoded with more additional bits. 

 

 

Figure 3. Offset to the adjacent pixels in the LZ77 algorithm 
in the dictionary (on the gray background) for pixel X during 

sequential traversal for an 800-pixel-wide image 

Therefore, we encode the displacement to the four closest 
previously processed pixels with the smallest values from 1 to 
4, and the displacement in the dictionary is increased by 4 for 
decoding clarity (Fig. 4). The codes of the nearest four pixels 
can be rearranged among themselves and this will not affect 
the CR, because these codes in the Deflate format are stored 
without additional bits. The reduction in CR here is planned to 
be achieved by reducing the displacements to adjacent pixels 
in the previous row relative to the displacements to them in 
the dictionary, because the pixel on the left has a small 
displacement. In addition, searching for the same sequences 
separately, starting from the nearest previously processed 
pixels, speeds up further searches in the dictionary, because 
only longer identical sequences are then searched in it. 
 

 

Figure 4. Codes of displacements to adjacent pixels in the 
LZ77 algorithm (on the gray background) for coding the same 
sequences on the horizontal in the process of consistent detour 

Thirdly, we note that identical sequences from adjacent 
previously processed pixels can be searched in images not 
only in horizontal, but also in vertical directions, because the 
image is two-dimensional, and the longest found sequence 
from two directions can be encoded. For example, from the 
second pixel in the second row in Fig. 5, it is advisable to 
encode the same sequence with a length of 4 pixels in the 
vertical direction, because in the horizontal direction from this 
pixel only 3 pixels are the same. At the same time, coded 
pixels should be marked vertically in a separate array to avoid 
their re-coding in the process of subsequent sequential 
traversal. 

 

 

Figure 5. Search for the same sequences, beginning with the 
nearest processed pixels, both in the horizontal direction 
(indicated by dotted arrows) and in the vertical direction 

(indicated by solid arrows). 
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During reproduction of encoded images, the decoder must 
know the direction of continuation of each identical sequence. 
Therefore, in this case, the closest previously processed pixels 
will be coded as in Fig. 6, and increase the offset to the pixels 
in the dictionary by 8. For example, the same sequence of four 
pixels in the vertical direction from the second pixel in the 
second row in Fig. 5 is then encoded by a pair of numbers <4; 
8>. 
 

 

Figure 6. Offset codes to the nearest previously processed 
pixels in the LZ77 algorithm (on the gray background) for 

coding the same sequences horizontally and vertically in the 
process of sequential traversal 

IV. IMPLEMENTATION AND EXPERIMENTAL RESULTS 
We will now demonstrate the effect of the transition from 
setting displacements in components to determining 
displacements in pixels on the CR of images using the popular 
ACT test set (Fig. 7). We can download these images from 
[27]. This set contains both synthesized (№№. 1, 2, 7) and 
photorealistic (all others) images. Compression ratio of the 

images of this set during sequential traversal in a modified 
PNG format with different options for determining the 
displacements of the LZ77 algorithm replacements are shown 
in Table 2. We made modifications to the MinPNG utility 
[28], which currently provides minimal CR in this format. 
Comparing the first two rows of this table, we can see that 
limiting the displacements to multiple pixels only increases 
the average CR of the ACT set images by 0.04 bpb at the 
expense of photorealistic images, for which sequences of the 
same brightness increments occur from different components. 

The determination of displacements in pixels instead of 
displacements in components (first and third rows in Table 2) 
provided a reduction in the CR of the images of the ACT set 
by an average of 0.03 bpb, both at the expense of 
photorealistic and synthesized images. Such a transition did 
not worsen the CR of any image, so we can use it in the 
future. In addition, definition of offsets in pixels in the Deflate 
format [18] made it possible to increase the size of the 
dictionary to 32768 pixels, i.e., to 98304 literals. The use of 
such a triple dictionary (the first lines of Table 3 – Table 5) 
increased the probability of finding the same sequences for 
the elements of the buffer and therefore, on average, 
additionally reduced the CR by 0.02 bpb, although it slowed 
down the encoding by 54.5%. Therefore, storing the offsets of 
the LZ77 algorithm in pixels made it possible to reduce the 
CR on the ACT set during sequential traversal by an average 
of 0.05 bpb. 

 

 

Figure 7. Images of the ACT set 
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Table 2. Image compression coefficients of the ACT set for different methods of determining the displacements of the 
LZ77 algorithm while traversing sequential pixel traversal, bpb 

Modification of the LZ77 algorithm 
File number 

Average CR 
1 2 3 4 5 6 7 8 

Definition of all displacements of the LZ77 algorithm in 
components 

1.67 0.50 4.82 4.13 4.30 5.16 0.52 4.59 3.21 

Definition of displacements of the LZ77 algorithm is done only 
in components that are multiples of pixels 

1.67 0.50 4.82 4.16 4.31 5.38 0.52 4.61 3.25 

Definition of displacements of the LZ77 algorithm in pixels 
according to the standard dictionary 

1.67 0.47 4.82 4.09 4.30 5.03 0.49 4.59 3.18 

 
We will also examine the results of applying the proposed 

modifications to the LZPR algorithm [25] on the same test set 
of images (Table 3 – Table 5). We can see that, in addition to 
the sliding window on the image data, the application of two 
additional sliding windows on the data of the linear predictors 
LeftPredict and AbovePredict in the LZPR algorithm 
compared to the modified PNG format with the displacements 

of the LZ77 algorithm in pixels according to the triple 
dictionary makes it possible to reduce the CR on average for 
the ACT set by 0.12 bpb, accelerates encoding by 5.39 times, 
as well as slows down decoding by 31.1% (the first two lines 
of these tables), which indicates the feasibility of using the 
LZPR algorithm. 

 

Table 3. Image compression coefficients of the ACT set by various modifications of the LZPR algorithm in the process of 
sequentially traversing pixels, bpb 

Modification of the LZPR algorithm 
File no Average 

CR 1 2 3 4 5 6 7 8 
MinPNG with triple dictionary pixel offsets (for comparison) 1.67 0.46 4.82 4.07 4.29 4.95 0.48 4.56 3.16 
"Greedy" LZPR decomposition over three dictionaries 1.61 0.45 4.84 3.78 4.10 4.69 0.48 4.38 3.04 
"Greedy" LZPR schedule by the nearest processed pixels 1.64 0.63 4.85 3.91 4.20 5.36 0.63 4.42 3.21 
LZPR by nearest processed pixels and three dictionaries 1.60 0.44 4.84 3.78 4.09 4.69 0.46 4.38 3.03 
LZPR by nearest processed pixels and image dictionary 1.59 0.46 4.85 3.89 4.21 5.09 0.49 4.45 3.13 
LZPR with differential color models 1.60 0.44 4.70 3.37 3.71 4.11 0.46 3.77 2.77 
LZPR in two directions 1.33 0.46 4.84 3.78 4.09 4.69 0.49 4.38 3.01 
LZPR in two directions with different color patterns 1.33 0.46 4.70 3.37 3.70 4.11 0.49 3.77 2.74 

Table 4. The time of encoding images of the ACT set using various modifications of the LZPR algorithm in the process of 
sequentially traversing pixels, sec 

Modification of the LZPR algorithm 
File no Average  

time 1 2 3 4 5 6 7 8 
MinPNG with triple dictionary pixel offsets (for comparison) 10.75 20.48 4.94 11.84 7.25 7.08 7.81 10.10 10.03 
"Greedy" LZPR decomposition over three dictionaries 1.67 2.47 1.19 2.47 1.53 2.44 1.00  2.14 1.86 
"Greedy" LZPR schedule by the nearest processed pixels 1.46 1.61 0.61 0.95 0.59 0.83 0.70 1.11 0.98 
LZPR by nearest processed pixels and three dictionaries 1.77 2.52 1.30 2.47 1.56 2.50 1.11 2.24 1.93 
LZPR by nearest processed pixels and image dictionary 1.14 1.63 0.59 0.86 0.63 1.09 0.64 0.91 0.94 
LZPR with differential color models 1.72 2.81 1.31 2.55 1.63 2.72 1.23 2.22 2.02 
LZPR in two directions 1.77 2.89 1.31 2.72 1.72 2.70 1.28 2.44 2.10 
LZPR in two directions with different color patterns 1.81 3.28 1.34 2.78 1.74 2.86 1.41 2.45 2.21 

Table 5. The decoding time of the ACT set images encoded by various modifications of the LZPR algorithm in the process 
of sequential pixel traversal, sec 

Modification of the LZPR algorithm 
File no Average  

time 1 2 3 4 5 6 7 8 
MinPNG with triple dictionary pixel offsets (for comparison) 0.64 0.70 0.30 0.45 0.36 0.48 0.22 0.47 0.45 
"Greedy" LZPR decomposition over three dictionaries 0.70 0.94 0.45 0.58 0.44 0.61 0.36 0.64 0.59 
"Greedy" LZPR schedule by the nearest processed pixels 0.59 0.91 0.39 0.48 0.30 0.58 0.36 0.45 0.51 
LZPR by nearest processed pixels and three dictionaries 0.58 0.86 0.38 0.49 0.28 0.52 0.34 0.44 0.49 
LZPR by nearest processed pixels and image dictionary 0.58 0.89 0.33 0.45 0.36 0.45 0.30 0.55 0.49 
LZPR with differential color models 0.52 0.88 0.31 0.52 0.28 0.49 0.30 0.42 0.47 
LZPR in two directions 0.59 1.02 0.36 0.49 0.34 0.47 0.36 0.53 0.52 
LZPR in two directions with different color patterns 0.55 0.97 0.36 0.48 0.38 0.47 0.34 0.53 0.51 
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Searching for identical sequences, only from the closest 
previously processed pixels (that is, using only the four 
smallest offsets marked in Fig. 4), worsens the CR on average 
over the ACT set by 0.17 bpb, since it excludes other 
dictionary positions from consideration, but speeds up the 
encoding by almost 2 times and decoding by 13.6% (third 
lines of Table 3 – Table 5). 

If the search for the same sequences is performed first 
from the nearest previously processed pixels, and then in three 
dictionaries, then the CR on average for the ACT set will 
additionally decrease by 0.01 bpb, and the duration of 
encoding and decoding will not undergo significant changes. 
At the same time, a decrease in CR is observed for all 
synthesized and only for one photorealistic image, since the 
images of the first type have more identical fragments or 
fragments with the same increments, and, accordingly, more 
substitutions of the LZ77 algorithm, for which the reduction 
of displacements to adjacent previously processed pixels 
reduces the size of the compressed file. 

Using of only one image dictionary instead of three 
dictionaries increases the CR by an average of 0.1 bpb (fifth 
row of Table 3), but for images of different types this 
indicator worsens unequally: for synthesized images, the CR 
increased on average by only 0.013 bpb, and for photorealistic 
ones – up to 0.16 bpb. That is, a dictionary of image data is 
most often used to compress synthesized images, and for 
photorealistic images, dictionaries of predictor results 
(increase in horizontal and vertical directions, analogues of 
delta coding [29]) are also used. The same trend can be traced 
after applying the difference color models described in [4] – 
on average, the CR of ACT set decreases by 0.25-0.26 bpb 
mainly due to photorealistic images. 

Now let us analyze the impact on the compression 
indicators of the search for identical sequences of the LZPR 
algorithm from the nearest processed pixels not only in 
horizontal, but also in vertical directions (fourth and seventh 
lines of Table 3 – Table 5). We can see that even though the 
ACT set has reduced the CR on average by 0.02 bpb, the 
improvement in compression is observed only for one 
synthesized image, and the deterioration is observed for two. 
This happens because individual identical sequences found 
vertically can reduce or even eliminate subsequent identical 
sequences horizontally, or can be completely included in such 
sequences. In addition, to store in the compressed data 
identical vertical sequences from the nearest previously 
processed pixels, small offsets are used (in our case, 2, 4, 6, 8, 
see Fig. 6), which, in addition to the Huffman code, are coded 
with a maximum of one additional bit [18]. Without searching 
for identical sequences vertically, four additional small offsets 
would be applied to encode identical sequences in the 
dictionary. All this negatively affects the CR of images. On 
the other hand, the CR of image #1 Clegg.bmp due to the 
application of an additional search for identical sequences 
vertically decreased by as much as 0.27 bpb, and when 
applying two additional iterations to discard ineffective 
replacements of the LZPR algorithm [25]. This image is 
compressed to 347 Kb, which repeats the best results of 
compressing this image among the archivers and graphic 

formats known to us. This result is also due to the fact that 
there is a black and white frame around the image of this file 
(Fig. 7). It is clear that the horizontal lines of these uniform 
frames are better encoded by long identical sequences 
horizontally, and the vertical lines by identical sequences 
vertically. The CR of photorealistic images was almost 
unaffected by the additional search for identical sequences 
vertically, since they contain few identical sequences. 

Image encoding time due to the additional search for 
identical vertical sequences for the ACT set increased by 
8.1% on average, and decoding time by 6.12% (see the fourth 
and seventh rows in Table 4 – Table 5). All this in 
combination with the need to use an additional array of pixel 
belonging to previous replacements in the coding process 
indicates the impracticality of implementing an additional 
search for the same vertical sequences for the LZ77 algorithm 
and its modifications in graphic formats. Such an additional 
search should be performed in archivers to ensure improved 
image compression. 

V. DISCUSSION 
We use the modifications of the LZ77 and LZPR algorithms 
described in this work (determination of offsets to the same 
sequences in pixels and performing an additional search for 
the same sequences, starting from the nearest previously 
processed pixels) in the graphic format of progressive 
hierarchical image compression without losses HBF-LS [30]. 
In this format, image pixels are bypassed layer by layer, 
gradually increasing the resolution [4, 30]. Therefore, long 
identical sequences of pixels are broken up and coded on 
different layers, which reduces CR. To reduce the 
manifestations of this deficiency in the following versions of 
the HBF-LS graphic format, we plan the following actions: 

1. In the process of encoding, the end-to-end search 
between layers of identical sequences of the LZ77 algorithm 
from adjacent previously processed pixels is implemented. 
Such a modification should reduce CR. 

2. During decoding, the array of pixels belonging to the 
same sequences from the previous layers should be matched 
with the unprocessed pixels of the image. This should reduce 
the amount of memory used. 

VI. CONCLUSIONS 
Therefore, applying the LZ77 algorithm for lossless image 
compression, in addition to the ideas given in [31-34], it is 
advisable to implement the following modifications: 

1. Analyze and store bias to the same sequences not in the 
luminances of the pixel components, but in whole pixels. 
Determining the offsets to the same sequences of the LZ77 
algorithm in pixels, and not in components, makes it possible 
to improve compression of images due to the encoding of 
three times smaller values and a threefold increase in the size 
of the dictionary. 

2. Execute the search of the same sequences first of all 
starting from the closest previously processed pixels, and then 
in the dictionary. If the longest identical sequence is found, 
encode the offset to the nearest previously processed pixels 
with smaller values than the offset in the dictionary. 
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3. In the absence of the same sequence for buffer 
elements, instead of the next literal (the brightness of the pixel 
component), encode the result of using the predictor with the 
lowest entropy (as in the LZPR algorithm). 

The application of such modifications and the LZPR 
algorithm provides, for example, a reduction in the CR of the 
ACT images by an average of 0.18 bpb. 

In addition, to improve the compression of images in 
archivers, it is worth searching for identical sequences not 
only horizontally, but also vertically. This can significantly 
reduce the CR of images, although it will require the use of an 
additional array to indicate the belonging of pixels to previous 
replacements in the coding process. 
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