

126 VOLUME 24(1), 2025

Date of publication MAR-31, 2025, date of current version JAN-08, 2025.
www.computingonline.net / computing@computingonline.net

Print ISSN 1727-6209
Online ISSN 2312-5381
DOI 10.47839/ijc.24.1.3883

Peculiarities of Adaptation of
the LZ77 Dictionary Algorithm to Lossless

Image Compression
ALEXANDER SHPORTKO1, ANDRII BOMBA2

1Department of Information Systems and Computing Methods, Academician Stepan Demianchuk International University
of Economics and Humanities, 4, Acad. S. Demianchuk Str, 33000, Rivne, Ukraine

2Department of Computer Sciences and Applied Mathematics, National University of Water and Environmental Engineering,
11, Soborna Str, 33028, Rivne, Ukraine

Corresponding author: Alexander Shportko (e-mail: ITShportko@gmail.com).

 ABSTRACT The article describes three modifications of the LZ77 dictionary algorithm for lossless image
compression in the process of sequential bypass pixels: storing offsets to identical sequences in pixels, not in
individual components; performing a search for identical sequences first, starting from adjacent previously
processed pixels; performing a search for identical sequences not only in the horizontal but also in the vertical
direction. The first of these modifications is shown to improve compression by using smaller values for storing
offsets and increasing the dictionary of the LZ77 algorithm threefold. The second modification forms small
offsets to adjacent pixels of the previous row. And the third one finds longer identical sequences. Storing offsets
in pixels and separately searching for identical sequences from adjacent processed pixels is recommended to use
in graphic formats, as they improve compression with almost no impact on encoding and decoding time. The
search for identical sequences in two directions is suggested to be used only in archivers, because the
implementation of this modification slows down both encoding and decoding, improving the compression of
only individual images. On the well-known ACT test set, it is shown that the application of the proposed
modifications together with the simultaneous search of the same sequences in three dictionaries makes it possible
to reduce image compression coefficients by an average of 0.18 bpb.

 KEYWORDS lossless image compression; dictionary compression methods; LZ77 algorithm schedules.

I. INTRODUCTION
ODAY, images are an inseparable component of
multimedia information enhancing our understanding of

the world around us. Compressing images speeds up their
transfer over the network and reduces disk space usage. All
graphic formats that perform image data compression
implement methods of one of two compression classes: lossy
(for example, JPEG [1, 2]) and lossless (for example, PNG [2,
3]). And if for most lossy image compression algorithms it is
possible to achieve the required compression ratio (hereafter
CR, volume ratio compressed to uncompressed image file
sizes, expressed in bpb) at the expense of quality degradation,
then the compression level of lossless images is on average
only 30-70%, it depends on pixel color gradients and the
compression algorithm itself and cannot be programmed.
Therefore, the problem of improving the efficiency of lossless
image compression is relevant at this time and will remain the
same in the future.

II. FORMULATION OF THE PROBLEM
Usually, the process of lossless image compression in
archivers and graphic formats can be divided into a maximum
of four stages: at the first stage, context-dependent coding
reduces inter-element redundancy between the same
fragments or fragments with the same structure; at the second
stage, the transition to an alternative color model is performed
[4]; at the third – instead of the brightness of the raw pixel
components, their deviations from the values predicted by the
predictors are stored (forecaster) [5-7]:

 uvuvuv predictbrightness (1)

(u and v are changing, respectively, along all the rows and
columns of the pixel components of the image). At the fourth
stage, context-independent coding handles code redundancy
by forming element codes with lengths dependent on their

T

Alexander Shportko et al. / International Journal of Computing, 24(1) 2025, 126-133

VOLUME 24(1), 2025 127

probabilities (for example, using Huffman codes [8-11] or
arithmetic codes [12-15]). The average length of such a code
approaches entropy [16] is as follows:

i

i i ppH log , (2)

where pi is the probability of the i-th element. The second and
third stages redistribute the luminance values of the
components without directly performing compression, but
with this they increase the unevenness of the distribution of
values and therefore increase the efficiency of the fourth stage
of coding. It is possible to additionally increase the
unevenness of the distribution of elements by switching to
color models used in publishing, for example, to the HSI
model [17], which is invariant to changes in lighting.
However, while switching to such models and returning from
them to the RGB model, the operations of dividing the
component values are repeatedly performed, which is
unacceptable for lossless image compression. Therefore, at
the second stage of such compression, difference color models
are used, in which a maximum of two components are
replaced by differences with other components [4]. These
color models provide unambiguous decoding.

One of the successful examples of the combination of
context-dependent and context-independent stages of coding,
approved at the standard level, is the Deflate dictionary
compression format [18]. This format uses the context-
dependent dictionary algorithm LZ77 [19-22] to process the
input stream, and the results of its work are compressed by
Huffman dynamic codes [8] to ensure the smallest CR. Today,
this format is also used in many popular archivers (for
example, GZIP [23]) and graphic formats (for example, PNG
[3]) in other application software and does not require the
purchase of licenses. In this article, we propose the
modifications to the LZ77 deflate algorithm based on the
PNG graphic format.

It should be recollected that the LZ77 algorithm is based
on the replacement during encoding in the output stream of
the same sequence for the buffer by reference to the same
sequence starting in the dictionary in the form of a pair of
numbers <length of the same sequence, displacement from the
end of the dictionary to the previous identical sequence>. If it
is not possible to find the same sequence in the dictionary for
elements from the beginning of the buffer, then the first
element (literal) from the beginning of the buffer is written to
the end of the dictionary and to the output stream without
changes, and the coding continues similarly from the next
element of the buffer [19].

When decoding LZ77 codes, literals are passed to the
output stream unchanged. Pairs <length; offsets> are decoded
by sequentially transferring the specified number of literals
from the end of the output stream, at the given offset, into the
output stream.

In the RGB color model the order of sequential bypass of
the brightness of the pixel components is conventionally
shown by a continuous arrow in Fig. 1. The same sequence is
used to form the input stream for image compression by the
LZ77 algorithm in PNG format.

Figure 1. Brightness components of the upper pixels of the
left corner of conditional RGB image and sequence of their

consistent bypass (defined by continuous arrow)

For example, during a sequential bypass of the first 15 the
brightness components of four pixels from Fig. 1, a stream 3,
4, 6, 3, 4, 6, 3, 2, 6, 3, 4 is formed. The LZ77 algorithm will
convert this stream into a sequence 3, 4, 6, <4, 3>, 2, <3, 6>.
The step-by-step results of using of the LZ77 algorithm before
changes the dictionary and buffer for this flow are shown in
Table 1.

It is clear that the more and the longer the replacement of
luminances in pairs <length; offset> is found – the lower the
compression ratio will be provided by the LZ77 algorithm.
Known modifications of the LZ77 algorithm and the results of
their application for lossless image compression are given in
[24].

Table 1. Step-by-step results of forming the schedule of
the LZ77 algorithm 3, 4, 6, 3, 4, 6, 3, 2, 6, 3, 4

according to [8]

To increase the number of replacements of literals and

reduce the CR in the process of sequentially traversing pixels,
we proposed in [25] a modification of the LZ77 algorithm,
which was named LZPR. In this modification, the same
sequences of elements are searched not only in the sliding
window of the image data, but also in two additional sliding
windows of the results of the LeftPredict and AbovePredict
predictors, i.e., the search is performed not only among the
same brightness component of the pixels, but also among the
same brightness increments in two directions. At the same
time, replacements of literals are stored in the form of a triplet
of numbers <length; displacement; sliding window number>.
If it is not possible to find identical sequences in three
dictionaries, then the LZPR algorithm transfers the result of
applying the predictor with the lowest entropy to the coded
data instead of the next element. For example, for the input
stream from Fig. 2 the lowest entropy is provided by the
AbovePredict predictor, so its values are written to the output
stream instead of elements that are not included in the
substitution <length; displacement>. Thus, the LZPR
algorithm finds more identical sequences of elements and
forms an output stream with a lower entropy (2) relative to the
classic LZ77 algorithm.

 Alexander Shportko et al. / International Journal of Computing, 24(1) 2025, 126-133

128 VOLUME 24(1), 2025

Figure 2. Application of the LZPR algorithm, starting from
the second pixel in the third line of conditional RGB image

shown in Figure 1

Therefore, the purpose of this article and the novelty of the
research is to improve the LZ77 and LZPR algorithms due to
more compact storage of displacements, increasing the
dictionary and searching for identical sequences not only in
the horizontal direction, but also in the vertical direction and
from the nearest processed pixels to reduce the CR of images
without losses in the process of sequentially traversing pixels.

III. THE WAYS TO IMPROVE COMPRESSION WITH THE
LZ77 ALGORITHM DURING LOSSLESS IMAGE
COMPRESSION
Firstly, we will show that the displacement of the modified
LZ77 algorithm should be determined in pixels, and not in the
brightness of individual components, as was done in [25]. It is
well known that the highest correlation in images is between
identical components of adjacent pixels [26]. This is what
determines the mechanism of using predictors (1) to reduce
entropy (2), which are used component by component. It is
clear that different sequences of components after the
application of linear predictors can generate the same
brightness increments, but due to noise exposure this happens
much less often than identical fragments of images. That is, it
is expedient to search for identical fragments starting from the
same component of previously processed pixels (if, for
example, the next literal of the dictionary contains the value
of component R, then it is expedient to search for identical
sequences starting from component R of the processed pixels).
Offsets between identical pixel components are multiples of
pixel length, so these offsets can be defined in pixels rather
than components. In the RGB color model that we use to store
uncompressed images, brightness of pixels is represented by
three components. Therefore, the displacements expressed in
pixels will be three times smaller than the values of the same
displacements recorded in the components, and smaller
displacement values in the Deflate format are on average
encoded with a smaller number of bits [17]. In addition,
moving from setting offsets in components to specifying
offsets in pixels triples the size of the dictionary. Therefore,
such transition should predictably reduce CR.

Secondly, let us point out the expediency of encoding
displacements to the nearest previously processed pixels with
smaller values than to the pixels in the dictionary. Since
adjacent pixels have the highest level of correlation in images,
the identical luminances of pixel sequences are most often
found in images starting from adjacent pixels. By their nature,
images are two-dimensional, while LZ77 dictionary algorithm
is text-oriented and therefore one-dimensional. Sequential
pixel traversal converts a two-dimensional image into a one-
dimensional stream suitable for processing by the LZ77
algorithm. But at the same time, the displacements in the
dictionary to adjacent pixels in the previous row become
significantly larger than the displacement to the processed
pixel on the left (Fig. 3), which negatively affects the CR,

since larger displacements in the Deflate format [18] are
encoded with more additional bits.

Figure 3. Offset to the adjacent pixels in the LZ77 algorithm
in the dictionary (on the gray background) for pixel X during

sequential traversal for an 800-pixel-wide image

Therefore, we encode the displacement to the four closest
previously processed pixels with the smallest values from 1 to
4, and the displacement in the dictionary is increased by 4 for
decoding clarity (Fig. 4). The codes of the nearest four pixels
can be rearranged among themselves and this will not affect
the CR, because these codes in the Deflate format are stored
without additional bits. The reduction in CR here is planned to
be achieved by reducing the displacements to adjacent pixels
in the previous row relative to the displacements to them in
the dictionary, because the pixel on the left has a small
displacement. In addition, searching for the same sequences
separately, starting from the nearest previously processed
pixels, speeds up further searches in the dictionary, because
only longer identical sequences are then searched in it.

Figure 4. Codes of displacements to adjacent pixels in the
LZ77 algorithm (on the gray background) for coding the same
sequences on the horizontal in the process of consistent detour

Thirdly, we note that identical sequences from adjacent
previously processed pixels can be searched in images not
only in horizontal, but also in vertical directions, because the
image is two-dimensional, and the longest found sequence
from two directions can be encoded. For example, from the
second pixel in the second row in Fig. 5, it is advisable to
encode the same sequence with a length of 4 pixels in the
vertical direction, because in the horizontal direction from this
pixel only 3 pixels are the same. At the same time, coded
pixels should be marked vertically in a separate array to avoid
their re-coding in the process of subsequent sequential
traversal.

Figure 5. Search for the same sequences, beginning with the
nearest processed pixels, both in the horizontal direction
(indicated by dotted arrows) and in the vertical direction

(indicated by solid arrows).

Alexander Shportko et al. / International Journal of Computing, 24(1) 2025, 126-133

VOLUME 24(1), 2025 129

During reproduction of encoded images, the decoder must
know the direction of continuation of each identical sequence.
Therefore, in this case, the closest previously processed pixels
will be coded as in Fig. 6, and increase the offset to the pixels
in the dictionary by 8. For example, the same sequence of four
pixels in the vertical direction from the second pixel in the
second row in Fig. 5 is then encoded by a pair of numbers <4;
8>.

Figure 6. Offset codes to the nearest previously processed
pixels in the LZ77 algorithm (on the gray background) for

coding the same sequences horizontally and vertically in the
process of sequential traversal

IV. IMPLEMENTATION AND EXPERIMENTAL RESULTS
We will now demonstrate the effect of the transition from
setting displacements in components to determining
displacements in pixels on the CR of images using the popular
ACT test set (Fig. 7). We can download these images from
[27]. This set contains both synthesized (№№. 1, 2, 7) and
photorealistic (all others) images. Compression ratio of the

images of this set during sequential traversal in a modified
PNG format with different options for determining the
displacements of the LZ77 algorithm replacements are shown
in Table 2. We made modifications to the MinPNG utility
[28], which currently provides minimal CR in this format.
Comparing the first two rows of this table, we can see that
limiting the displacements to multiple pixels only increases
the average CR of the ACT set images by 0.04 bpb at the
expense of photorealistic images, for which sequences of the
same brightness increments occur from different components.

The determination of displacements in pixels instead of
displacements in components (first and third rows in Table 2)
provided a reduction in the CR of the images of the ACT set
by an average of 0.03 bpb, both at the expense of
photorealistic and synthesized images. Such a transition did
not worsen the CR of any image, so we can use it in the
future. In addition, definition of offsets in pixels in the Deflate
format [18] made it possible to increase the size of the
dictionary to 32768 pixels, i.e., to 98304 literals. The use of
such a triple dictionary (the first lines of Table 3 – Table 5)
increased the probability of finding the same sequences for
the elements of the buffer and therefore, on average,
additionally reduced the CR by 0.02 bpb, although it slowed
down the encoding by 54.5%. Therefore, storing the offsets of
the LZ77 algorithm in pixels made it possible to reduce the
CR on the ACT set during sequential traversal by an average
of 0.05 bpb.

Figure 7. Images of the ACT set

 Alexander Shportko et al. / International Journal of Computing, 24(1) 2025, 126-133

130 VOLUME 24(1), 2025

Table 2. Image compression coefficients of the ACT set for different methods of determining the displacements of the
LZ77 algorithm while traversing sequential pixel traversal, bpb

Modification of the LZ77 algorithm
File number

Average CR
1 2 3 4 5 6 7 8

Definition of all displacements of the LZ77 algorithm in
components

1.67 0.50 4.82 4.13 4.30 5.16 0.52 4.59 3.21

Definition of displacements of the LZ77 algorithm is done only
in components that are multiples of pixels

1.67 0.50 4.82 4.16 4.31 5.38 0.52 4.61 3.25

Definition of displacements of the LZ77 algorithm in pixels
according to the standard dictionary

1.67 0.47 4.82 4.09 4.30 5.03 0.49 4.59 3.18

We will also examine the results of applying the proposed

modifications to the LZPR algorithm [25] on the same test set
of images (Table 3 – Table 5). We can see that, in addition to
the sliding window on the image data, the application of two
additional sliding windows on the data of the linear predictors
LeftPredict and AbovePredict in the LZPR algorithm
compared to the modified PNG format with the displacements

of the LZ77 algorithm in pixels according to the triple
dictionary makes it possible to reduce the CR on average for
the ACT set by 0.12 bpb, accelerates encoding by 5.39 times,
as well as slows down decoding by 31.1% (the first two lines
of these tables), which indicates the feasibility of using the
LZPR algorithm.

Table 3. Image compression coefficients of the ACT set by various modifications of the LZPR algorithm in the process of
sequentially traversing pixels, bpb

Modification of the LZPR algorithm
File no Average

CR 1 2 3 4 5 6 7 8
MinPNG with triple dictionary pixel offsets (for comparison) 1.67 0.46 4.82 4.07 4.29 4.95 0.48 4.56 3.16
"Greedy" LZPR decomposition over three dictionaries 1.61 0.45 4.84 3.78 4.10 4.69 0.48 4.38 3.04
"Greedy" LZPR schedule by the nearest processed pixels 1.64 0.63 4.85 3.91 4.20 5.36 0.63 4.42 3.21
LZPR by nearest processed pixels and three dictionaries 1.60 0.44 4.84 3.78 4.09 4.69 0.46 4.38 3.03
LZPR by nearest processed pixels and image dictionary 1.59 0.46 4.85 3.89 4.21 5.09 0.49 4.45 3.13
LZPR with differential color models 1.60 0.44 4.70 3.37 3.71 4.11 0.46 3.77 2.77
LZPR in two directions 1.33 0.46 4.84 3.78 4.09 4.69 0.49 4.38 3.01
LZPR in two directions with different color patterns 1.33 0.46 4.70 3.37 3.70 4.11 0.49 3.77 2.74

Table 4. The time of encoding images of the ACT set using various modifications of the LZPR algorithm in the process of
sequentially traversing pixels, sec

Modification of the LZPR algorithm
File no Average

time 1 2 3 4 5 6 7 8
MinPNG with triple dictionary pixel offsets (for comparison) 10.75 20.48 4.94 11.84 7.25 7.08 7.81 10.10 10.03
"Greedy" LZPR decomposition over three dictionaries 1.67 2.47 1.19 2.47 1.53 2.44 1.00 2.14 1.86
"Greedy" LZPR schedule by the nearest processed pixels 1.46 1.61 0.61 0.95 0.59 0.83 0.70 1.11 0.98
LZPR by nearest processed pixels and three dictionaries 1.77 2.52 1.30 2.47 1.56 2.50 1.11 2.24 1.93
LZPR by nearest processed pixels and image dictionary 1.14 1.63 0.59 0.86 0.63 1.09 0.64 0.91 0.94
LZPR with differential color models 1.72 2.81 1.31 2.55 1.63 2.72 1.23 2.22 2.02
LZPR in two directions 1.77 2.89 1.31 2.72 1.72 2.70 1.28 2.44 2.10
LZPR in two directions with different color patterns 1.81 3.28 1.34 2.78 1.74 2.86 1.41 2.45 2.21

Table 5. The decoding time of the ACT set images encoded by various modifications of the LZPR algorithm in the process
of sequential pixel traversal, sec

Modification of the LZPR algorithm
File no Average

time 1 2 3 4 5 6 7 8
MinPNG with triple dictionary pixel offsets (for comparison) 0.64 0.70 0.30 0.45 0.36 0.48 0.22 0.47 0.45
"Greedy" LZPR decomposition over three dictionaries 0.70 0.94 0.45 0.58 0.44 0.61 0.36 0.64 0.59
"Greedy" LZPR schedule by the nearest processed pixels 0.59 0.91 0.39 0.48 0.30 0.58 0.36 0.45 0.51
LZPR by nearest processed pixels and three dictionaries 0.58 0.86 0.38 0.49 0.28 0.52 0.34 0.44 0.49
LZPR by nearest processed pixels and image dictionary 0.58 0.89 0.33 0.45 0.36 0.45 0.30 0.55 0.49
LZPR with differential color models 0.52 0.88 0.31 0.52 0.28 0.49 0.30 0.42 0.47
LZPR in two directions 0.59 1.02 0.36 0.49 0.34 0.47 0.36 0.53 0.52
LZPR in two directions with different color patterns 0.55 0.97 0.36 0.48 0.38 0.47 0.34 0.53 0.51

Alexander Shportko et al. / International Journal of Computing, 24(1) 2025, 126-133

VOLUME 24(1), 2025 131

Searching for identical sequences, only from the closest
previously processed pixels (that is, using only the four
smallest offsets marked in Fig. 4), worsens the CR on average
over the ACT set by 0.17 bpb, since it excludes other
dictionary positions from consideration, but speeds up the
encoding by almost 2 times and decoding by 13.6% (third
lines of Table 3 – Table 5).

If the search for the same sequences is performed first
from the nearest previously processed pixels, and then in three
dictionaries, then the CR on average for the ACT set will
additionally decrease by 0.01 bpb, and the duration of
encoding and decoding will not undergo significant changes.
At the same time, a decrease in CR is observed for all
synthesized and only for one photorealistic image, since the
images of the first type have more identical fragments or
fragments with the same increments, and, accordingly, more
substitutions of the LZ77 algorithm, for which the reduction
of displacements to adjacent previously processed pixels
reduces the size of the compressed file.

Using of only one image dictionary instead of three
dictionaries increases the CR by an average of 0.1 bpb (fifth
row of Table 3), but for images of different types this
indicator worsens unequally: for synthesized images, the CR
increased on average by only 0.013 bpb, and for photorealistic
ones – up to 0.16 bpb. That is, a dictionary of image data is
most often used to compress synthesized images, and for
photorealistic images, dictionaries of predictor results
(increase in horizontal and vertical directions, analogues of
delta coding [29]) are also used. The same trend can be traced
after applying the difference color models described in [4] –
on average, the CR of ACT set decreases by 0.25-0.26 bpb
mainly due to photorealistic images.

Now let us analyze the impact on the compression
indicators of the search for identical sequences of the LZPR
algorithm from the nearest processed pixels not only in
horizontal, but also in vertical directions (fourth and seventh
lines of Table 3 – Table 5). We can see that even though the
ACT set has reduced the CR on average by 0.02 bpb, the
improvement in compression is observed only for one
synthesized image, and the deterioration is observed for two.
This happens because individual identical sequences found
vertically can reduce or even eliminate subsequent identical
sequences horizontally, or can be completely included in such
sequences. In addition, to store in the compressed data
identical vertical sequences from the nearest previously
processed pixels, small offsets are used (in our case, 2, 4, 6, 8,
see Fig. 6), which, in addition to the Huffman code, are coded
with a maximum of one additional bit [18]. Without searching
for identical sequences vertically, four additional small offsets
would be applied to encode identical sequences in the
dictionary. All this negatively affects the CR of images. On
the other hand, the CR of image #1 Clegg.bmp due to the
application of an additional search for identical sequences
vertically decreased by as much as 0.27 bpb, and when
applying two additional iterations to discard ineffective
replacements of the LZPR algorithm [25]. This image is
compressed to 347 Kb, which repeats the best results of
compressing this image among the archivers and graphic

formats known to us. This result is also due to the fact that
there is a black and white frame around the image of this file
(Fig. 7). It is clear that the horizontal lines of these uniform
frames are better encoded by long identical sequences
horizontally, and the vertical lines by identical sequences
vertically. The CR of photorealistic images was almost
unaffected by the additional search for identical sequences
vertically, since they contain few identical sequences.

Image encoding time due to the additional search for
identical vertical sequences for the ACT set increased by
8.1% on average, and decoding time by 6.12% (see the fourth
and seventh rows in Table 4 – Table 5). All this in
combination with the need to use an additional array of pixel
belonging to previous replacements in the coding process
indicates the impracticality of implementing an additional
search for the same vertical sequences for the LZ77 algorithm
and its modifications in graphic formats. Such an additional
search should be performed in archivers to ensure improved
image compression.

V. DISCUSSION
We use the modifications of the LZ77 and LZPR algorithms
described in this work (determination of offsets to the same
sequences in pixels and performing an additional search for
the same sequences, starting from the nearest previously
processed pixels) in the graphic format of progressive
hierarchical image compression without losses HBF-LS [30].
In this format, image pixels are bypassed layer by layer,
gradually increasing the resolution [4, 30]. Therefore, long
identical sequences of pixels are broken up and coded on
different layers, which reduces CR. To reduce the
manifestations of this deficiency in the following versions of
the HBF-LS graphic format, we plan the following actions:

1. In the process of encoding, the end-to-end search
between layers of identical sequences of the LZ77 algorithm
from adjacent previously processed pixels is implemented.
Such a modification should reduce CR.

2. During decoding, the array of pixels belonging to the
same sequences from the previous layers should be matched
with the unprocessed pixels of the image. This should reduce
the amount of memory used.

VI. CONCLUSIONS
Therefore, applying the LZ77 algorithm for lossless image
compression, in addition to the ideas given in [31-34], it is
advisable to implement the following modifications:

1. Analyze and store bias to the same sequences not in the
luminances of the pixel components, but in whole pixels.
Determining the offsets to the same sequences of the LZ77
algorithm in pixels, and not in components, makes it possible
to improve compression of images due to the encoding of
three times smaller values and a threefold increase in the size
of the dictionary.

2. Execute the search of the same sequences first of all
starting from the closest previously processed pixels, and then
in the dictionary. If the longest identical sequence is found,
encode the offset to the nearest previously processed pixels
with smaller values than the offset in the dictionary.

 Alexander Shportko et al. / International Journal of Computing, 24(1) 2025, 126-133

132 VOLUME 24(1), 2025

3. In the absence of the same sequence for buffer
elements, instead of the next literal (the brightness of the pixel
component), encode the result of using the predictor with the
lowest entropy (as in the LZPR algorithm).

The application of such modifications and the LZPR
algorithm provides, for example, a reduction in the CR of the
ACT images by an average of 0.18 bpb.

In addition, to improve the compression of images in
archivers, it is worth searching for identical sequences not
only horizontally, but also vertically. This can significantly
reduce the CR of images, although it will require the use of an
additional array to indicate the belonging of pixels to previous
replacements in the coding process.

References

[1] G. Wallace, “The JPEG still picture compression standard,”
Communication of ACM, vol. 34, pp. 30-44. 1991.
https://doi.org/10.1145/103085.103089.

[2] J. Miano, Compressed Image File Format: JPEG, PNG, GIF, XBM,
BMP, Addison Wesley, New York, 1999, 264 p. ISBN 0201604434.

[3] L. D. Crocker, “PNG: The portable network graphic format,” Dr.
Dobb's Journal. vol. 20, no. 232, pp. 36–44, 1995.

[4] A. V. Shportko, A. Ya. Bomba and V. A. Postolatii, “Programming the
formation of difference color models for lossless image compression,”
Proceedings of the 7th International Conference Computational
Linguistics and Intelligent Systems (COLINS 2023), Kharkiv, Ukraine,
Apr. 20-21, 2023, vol. 3, pp. 53-68. Available at: http://ceur-
ws.org/Vol-3403/paper5.pdf.

[5] X. Li, M. T. Orchard, “Edge-directed prediction for lossless
compression of natural images,” IEEE Transaction on Image
Processing, vol. 10, issue 6, pp. 813-817, 2001.
https://doi.org/10.1109/83.923277.

[6] N. A. N. Azman, A. Samura, R. A. Rashid, F. A. Saparudin, M. A.
Sarijari, “A hybrid predictive technique for lossless image
compression,” Bulletin of Electrical Engineering and Informatics, vol.
8, no. 4, pp. 1289-1296, 2019. https://doi.org/10.11591/eei.v8i4.1612.

[7] M. U. A. Ayoobkhan, E. Chikkannan, K. Ramakrishnan, S. B.
Balasubramanian, “Prediction-based lossless image compression,”
Proceedings of the International Conference on ISMAC in
Computational Vision and Bio-Engineering 2018 (ISMAC-CVB),
Springer, Cham, Jan. 02, 2019, vol. 30, pp. 1749–1761.
https://doi.org/10.1007/978-3-030-00665-5_161.

[8] D. Huffman, “A method for the construction of minimum redundancy
codes,” Proceedings of the IRE, vol. 40, issue 9, pp. 1098-1101, 1952.
https://doi.org/10.1109/JRPROC.1952.273898.

[9] A. Moffat, “Huffman coding,” ACM Computing Surveys (CSUR), vol.
52, pp. 1-35, 2019. https://doi.org/10.1145/3342555.

[10] J. Duda, K. Tahboub, N. J. Gadil and E. J. Delp, “The use of
asymmetric numeral systems as an accurate replacement for Huffman
coding,” Picture Coding Symposium, Cairns, QLD, Australia, Jul. 30,
2015. https://doi.org/10.1109/PCS.2015.7170048.

[11] A. Gribov, “Optimal Compression of a Polyline with Segments and
Arcs,” 2017, 40 p. Available at: https://arxiv.org/pdf/1604.07476.pdf.

[12] J. Rissanen, “Generalized Kraft inequality and arithmetic coding,” IBM
Journal of Research and Development, vol. 20, issue 3, pp. 198–203,
1976. https://doi.org/10.1147/rd.203.0198.

[13] J. Rissanen, G. G. Langdon, “Arithmetic coding,” IBM Journal of
Research and Development, vol. 23, vol. 2, pp. 149–162, 1979.
https://doi.org/10.1147/rd.232.0149.

[14] A. Moffat, R. M. Neal and I. H. Witten, “Arithmetic coding revisited,”
ACM Transactions on Information Systems, vol. 16, vol. 3, pp. 256-294,
1998. https://doi.org/10.1145/290159.290162.

[15] I. H. Witten, R. M. Neal and J. G. Cleary, “Arithmetic Coding for Data
Compression,” Communications of the ACM, vol. 30, issue 6, pp. 520–
540, 1987. https://doi.org/10.1145/214762.214771.

[16] C. E. Shannon, “A mathematical theory of communication,” Bell System
Technical Journal, vol. 27, no. 4, pp. 623-656, 1948.
https://doi.org/10.1002/j.1538-7305.1948.tb00917.x.

[17] Kh. B. Predko, M. V. Shovheniuk, “Canonical presentation of colour
spaces for publishing systems,” Scientific Papers Ukrainian Academy of
Printing, vol. 2(16), 2009, pp. 60–73. Available at:
http://nz.uad.lviv.ua/static/media/2-16/11.pdf.

[18] P. Deutsch, DEFLATE Compressed Data Format Specification, version
1.3, RFC 1951. Available at: https://www.rfc-editor.org/rfc/rfc1951.

[19] J. Ziv, A. Lempel, “A universal algorithm for sequential data
compression,” IEEE Transactions on Information Theory, vol. 23, issue
3, pp. 337-343, 1977. https://doi.org/10.1109/TIT.1977.1055714.

[20] S. Kreft, G. Navarro, “LZ77-like compression with fast random access,”
Proceedings of the 2010 IEEE Data Compression Conference.
Snowbird, UT, USA, Mar. 24-26, 2010, pp. 239-248.
https://doi.org/10.1109/DCC.2010.29.

[21] H. Nagumo, M. Lu, K. Watson, “Image compression with modified
LZ77 coding,” Proceedings of the IEEE Third International Conference
on Signal Processing (ICSP), Beijing, China, Oct. 14-18, 1996, pp.
1067-1070. https://doi.org/10.1109/ICSIGP.1996.566277.

[22] M. Komar, A. Sachenko, V. Golovko and V. Dorosh, “Compression of
network traffic parameters for detecting cyber attacks based on deep
learning,” Proceedings of the IEEE 9th International Conference on
Dependable Systems, Services and Technologies (DESSERT), Kyiv,
Ukraine, May 24-27, 2018, pp. 43-47.
https://doi.org/10.1109/DESSERT.2018.8409096.

[23] P. Deutsch, J-L. Gailly, ZLIB Compressed Data Format Specification,
version 3.3, RFC 1950, Network Working Group, 1996, 10 p.
https://doi.org/10.17487/rfc1950.

[24] A. V. Shportko, Rise of efficiency of compression of colored images in
the PNG format. Thesis for a candidate’s degree in technical sciences,
Rivne State University of the Humanities, Rivne, 2010, 195 p. Available
at: https://dspace.megu.edu.ua:8443/jspui/handle/123456789/1665.

[25] A. V. Shportko, “Optimization of the use of static predictors in the
process of lossless image compression,” Information extraction and
processing, vol. 28, 2008, pp. 82-89.

[26] W. K. Pratt, “Correlation techniques of image registration,” IEEE
Transactions on Aerospace and Electronic Systems, vol. AES-10, no. 3,
pp. 353-358, 1974. https://doi.org/10.1109/TAES.1974.307828.

[27] ACT – Test Files, 2002, [Online]. Available at:
http://www.compression.ca/act/act-files.html.

[28] MinPNG 1.0 – a utility to minimize the size of PNG image files (True
Color), 2010, [Online]. Available at:
http://apserver.org.ua/peregl.php?d=view&tid=131.

[29] O. Shehata, “Unraveling the JPEG,” Parametric Press, vol. 1, 2019.
Available at: https://parametric.press/issue-01/unraveling-the-jpeg.

[30] A. Ya. Bomba, A. V. Shportko and V. A. Shportko, “Development of
the HBF-LS graphics format for lossless progressive image
compression,” Proceedings of the III scientific and technical conference
Computational methods and systems of information transformation,
Lviv, Ukraine, Sept. 25-26, 2014, vol. 3, pp. 98-101.

[31] B. Rusyn, O. Lutsyk, Y. Lysak, A. Lukenyuk and L. Pohreliuk,
“Lossless image compression in the remote sensing applications,” IEEE
Proceedings First International Conference on Data Stream Mining &
Processing (DSMP), Lviv, Ukraine, Aug. 1, 2016, pp. 195-198.
https://doi.org/10.1109/DSMP.2016.7583539.

[32] H. D. Kotha, M. Tummanapally and V. K. Upadhyay, “Review on
lossless compression techniques,” Journal of Physics, vol. 1228, 2019.
https://doi.org/10.1088/1742-6596/1228/1/012007.

[33] D. R. Pavithra, Sudarshan Patil Kulkarni, “Investigation of wavelets for
representation and compression of skin cancer images,” International
Journal of Image, Graphics and Signal Processing (IJIGSP), vol. 15,
no. 2, pp. 24-34, 2023. https://doi.org/10.5815/ijigsp.2023.02.03.

[34] Z. Hu, O. Shkurat, K. Przystupa, O. Kochan, M. Ivakhnenko, “Low-
light image enhancement technology based on image categorization,
processing and retinex deep network,” International Journal of Image,
Graphics and Signal Processing (IJIGSP), vol. 16, no. 5, pp. 1-13,
2024. https://doi.org/10.5815/ijigsp.2024.05.01.

Alexander Shportko et al. / International Journal of Computing, 24(1) 2025, 126-133

VOLUME 24(1), 2025 133

Aleksandr Shportko, Associate
Professor of the Department of
Information Systems and
Computing Methods of the Private
Higher Educational Institution
"International University of
Economics and Humanities named
after Academician Stepan
Demianchuk", Candidate of
technical sciences. Graduated from

Rivne state pedagogical Institute (1997) for specialty
"Applied mathematics" and graduated from the school of
Rivne state humanitarian university (2010).

Scientific interests: compression of images without
losses, theory of information, theoretical foundations of
programming, design and development of databases.
e-mail: ITShportko@gmail.com, ORCID: 0000-0002-4013-
3057

Andrii Bomba, Professor of the
Department of Computer Sciences
and Applied Mathematics of the
National University of Water and
Environmental Engineering, Doctor
of Technical Sciences, Candidate
of Physical and Mathematical
Sciences, Professor. Graduated
from Lviv State University named
after I. Franko (1972) majoring in
"Mathematics", post-graduate

studies at the Institute of Mathematics of the Academy of
Sciences of the Ukrainian SSR (Kyiv, 1981), and doctoral
studies at the Institute of Cybernetics named after V. M.
Hlushkova, National Academy of Sciences of Ukraine (Kyiv;
2003).

Scientific interests: basics of mathematical modeling,
modeling of non-linear disturbances processes and
systems, theory of information.
e-mail: abomba@ukr.net, ORCID: 0000-0001-5528-4192

