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 ABSTRACT One aspect of a well-written codebase is its adherence to a particular code style, and Large Language 
Models (LLMs) can greatly assist in reviewing and adapting the code to follow the defined conventions. Because 
specific code-style rules are typically not known during the pre-training of the base model, additional fine-tuning is 
necessary. However, the exact number of training samples required to achieve optimal model performance is unclear. 
The significance of dataset size when fine-tuning LLMs to categorize Python code snippets as compliant or non-
compliant with the specific PEP-8 indentation rule is investigated in this work. We used Low-Rank Adaptation (LoRA) 
and its quantized variant (QLoRA) to fine-tune the Llama 2 7B and Llama 3 8B models on datasets of varying sizes, 
ranging from 60 to 480 training samples. Our experiments demonstrated that the models fine-tuned with larger datasets 
(240 and 480 samples) achieved accuracies of up to 99%, whereas those trained with smaller datasets (60 and 120 
samples) experienced overfitting and lower accuracy. Subsequent research will be based on these findings to explore 
the potential of LLMs and improve code readability, maintainability, and adherence to coding standards in software 
development. The methodology used to determine the sufficient number of training samples can also be valuable for 
fine-tuning LLMs in other domains where strict style or formatting conventions are required, such as legal document 
preparation, standardized medical reporting, or financial regulatory filings. 
 

 KEYWORDS code-style analysis; PEP-8; large language models; Llama 2; Llama 3; fine-tuning; dataset size; zero-
shot learning; low-rank adaptation, QLoRA. 
 

I. INTRODUCTION 
ode-style analysis plays a vital role in software 
development by ensuring readability, maintainability, and 

consistency across codebases. Adhering to a uniform code style 
enhances collaboration between developers and reduces the 
likelihood of introducing errors, ultimately contributing to the 
overall quality and longevity of software projects. 

Software quality and its evaluation have long been central 
concerns in software engineering research and practice. 
Established standards, such as ISO/IEC 25002:2024 [1], 
provide guidelines for assessing software quality, and 
extensive research has been conducted to develop methods for 
evaluating various software quality characteristics [2]. Code-
style analysis methods commonly employ these standards, 
relying heavily on static analysis tools and manual reviews 
[3, 4]. Although these approaches can be effective, they are 
often time-consuming and prone to errors. Manual reviews are 
susceptible to oversight and inconsistencies; as human 

reviewers may overlook subtle code-style issues or interpret 
standards differently. 

In contrast, Large Language Models (LLMs) are promising 
alternatives, leveraging their advanced language understanding 
capabilities to assist in various tasks, including code generation 
and reasoning. Models such as Llama 2 [5] and Llama 3 [6] 
have been successfully employed for diverse tasks, including 
natural language processing [7], sentiment analysis [8], and 
image recognition [9, 10]. 

Although LLMs are primarily known for their text-
generation capabilities, several studies have explored their 
applications in classification tasks [11, 12], automated code 
reviews [13] and code understanding [14]. These studies have 
proven that fine-tuned LLMs can comprehend and generate 
programming code. However, the models used in these 
experiments are typically trained or fine-tuned on large datasets 
containing a significant amount of high-quality training data. 
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Another study found that the efficiency of fine-tuning is 
highly task- and data dependent [15]. The authors discovered 
that LLM fine-tuning follows a power-based multiplicative 
joint scaling rule between the fine-tuning data size and the other 
scaling factors. The findings of this study also indicate that the 
result of the fine-tuning process is affected more by the increase 
in the size of the LLM model than by the scaling of the pre-
training data. 

We began our study on how well LLMs work for code-style 
analysis by fine-tuning the pre-trained Llama 2 7B model to 
classify Python code snippets for compliance with the 
following three PEP-8 indentation rules: E101 (indentation 
contains mixed spaces and tabs), E111 (indentation is not a 
multiple of four), and E112 (expected an indented block) [16]. 
For each rule, 20 “compliant” and 20 “non-compliant” training 
examples were prepared. However, we faced significant 
challenges owing to the unstable training process, which led to 
inconsistent results in model performance. Our hypothesis 
implies that an insufficient amount of training data for each rule 
is the primary factor contributing to observed issues. 

Motivated by the need to develop a model for our code-style 
analysis task, we set out to determine the minimum number of 
training samples required to produce reasonably good results. 
By examining the performance of models trained on datasets of 
varying sizes, we seek to understand how the training 
efficiency, model generalization, and accuracy are influenced 
by the amount of data available for fine-tuning. 

The goal of this research is to enhance our understanding of 
fine-tuning LLMs for domain-specific tasks, specifically code-
style analysis, and to evaluate the significance of the dataset 
size in achieving robust and reliable performance. Through this 
study, we aim to provide insights that can inform future 
research and practical applications of LLMs to improve 
software development, as well as similar tasks where enforcing 
a particular style or standard is vital. 

II. METHODOLOGY 
A.  DATASET 
The dataset used for fine-tuning in this study comprises 600 
Python code snippets, balanced between “compliant” and 
“non-compliant” examples according to the PEP-8 style rule, 
which specifies that indentation must be a multiple of four 
(E111 in pycodestyle error codes taxonomy). 

This dataset was derived from the “python code instructions 
18k alpaca” dataset [17] and validated using the pycodestyle 
checker [18]. We made it publicly accessible on the Hugging 
Face hub [19]. 

The dataset was split into training and validation sets in an 
80-20% proportion, with 480 records used for training and 120 
for validation. To evaluate the impact of the dataset size on the 
fine-tuning process, the dataset was further split into subsets 
with 60 training and 15 validation samples, 120 training and 30 
validation samples, and 240 training and 60 validation samples. 

B.  LOW-RANK ADAPTATION 
All data processing and evaluation experiments were 
performed on an Apple MacBook M3 Max with 48GB of 
unified memory. 

Training was conducted on a single NVIDIA A100-SXM4-
40GB GPU system. We used the AdamW optimizer [20] and 

trained the models for up to five epochs using parameter-
efficient fine-tuning techniques such as Low-Rank Adaptation 
(LoRA) [21] and QLoRA [22]. 

During the early training sessions, we constantly 
encountered out-of-memory issues, even with LoRA. To 
mitigate this problem, we employed quantization using the 
BitsAndBytes library [23]. This approach enabled us to fine-
tune the model regardless of the batch size used, with a memory 
consumption not exceeding 25GB of GPU memory. However, 
BitsAndBytes does not currently support Apple silicon, which 
is why we used the NVIDIA GPU platform. 

On the other hand, the MLX library [24] shows promise for 
leveraging Apple’s GPU while supporting quantization. 
However, it is still under active development, and its 
functionality is yet to be fully explored. 

LoRA was designed to adapt a pre-trained model to better 
suit a specific, often smaller, dataset by adjusting only a small 
subset of the model’s weight parameters. In simpler terms, 
instead of fine-tuning all parameters of a large model, LoRA 
only updates a small percentage of them, reducing 
computational cost and required resources while preserving 
performance. This method is particularly valuable because it 
enables efficient fine-tuning of large models on task-specific 
data [25, pp. 317–319]. 

Usually, when deep neural networks are being fine-tuned, 
backpropagation learns a matrix ∆𝑊, which indicates how 
much to update the original weight parameters to minimize the 
loss function during training (Fig. 1). 
 

 

Figure 1. Weight update in regular fine-tuning 

 
LoRA provides a more efficient alternative by 

approximating the weight updates ∆𝑊 with the product of two 
smaller matrices, 𝐴 and 𝐵: 
 

∆𝑊 ≈ 𝐴𝐵,                                     (1) 
 
where 𝐴 and 𝐵 are much smaller than 𝑊, and 𝐴𝐵 represents 
their matrix multiplication product. 

Using LoRA, the weight update can then be formulated as: 
 

𝑊௨ௗ௧ௗ = 𝑊 + 𝐴𝐵.                              (2) 
 

Fig. 2 illustrates the operational approach of LoRA, 
employing matrices 𝐴 and 𝐵 of reduced dimensions to 
approximate ∆𝑊, with rank 𝑟 representing the adjustable 
hyperparameter. 
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Figure 2. Weight update in LoRA 

 
This approach allows for significant reductions in the 

number of parameters that need to be fine-tuned (Table 1), 
leading to faster training times and lower resource 
requirements, while still effectively adapting the model to the 
new data. 

Table 1. Trainable parameters after applying LoRA 

Model Model 
Params 

Trainable 
Params 

Trainable % 

Llama 2 7B ~6.7B ~2.1M 0.0319 
Llama 3 8B ~7.5B ~5.1M 0.0682 

 
QLoRA extends LoRA by quantizing the model’s weights. 

This further reduces the memory footprint and can speed up 
training, making it more feasible to fine-tune large models on 
smaller hardware setups. 

C.  CLASSIFICATION HEAD 
The input code snippet 𝑆 was tokenized using LlamaTokenizer 
for Llama 2 and AutoTokenizer for Llama 3 from the Hugging 
Face transformers library [26]. 

The resulting tokens 𝑇 were then input into the pre-trained 
or fine-tuned model to extract the latent representation 𝐻 using 
LlamaForSequenceClassification transformer [27]: 
 

𝑇 = 𝑇𝑜𝑘𝑒𝑛𝑖𝑧𝑒𝑟(𝑆) 
𝐻 = 𝐿𝑙𝑎𝑚𝑎𝐹𝑜𝑟𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛(𝑇).    (3) 

 
LlamaForSequenceClassification uses the last token to 

perform classification. This token effectively captures all 
historical information due to the unidirectional information 
flow imposed by the causal masks. The vector representation 
was then passed through the fully connected layers and a 
softmax layer, mapping it to the label space. 

Finally, the cross-entropy loss is computed using the output 
logits and the class labels (1 for “compliant” and 0 for “non-
compliant” code sample). 

D.  EXPERIMENTS 
The baseline performance of the pre-trained Llama 2 7B and 
Llama 3 8B models was evaluated using zero-shot 
classification methods [28, 29]. This step aimed to establish the 
ability of pre-trained models to differentiate between code-
style compliance and non-compliance without any task-
specific adjustments. 

Following this, both the Llama 2 and Llama 3 base models 
underwent a series of fine-tuning experiments. Twenty 
experiments were conducted by systematically varying the 

number of epochs, batch sizes, and LoRA parameters. The 
dataset for these experiments comprised 120 training and 30 
validation samples. We employed a Bayesian search approach 
[30] to identify the optimal hyperparameter configurations 
efficiently. 

The hyperparameters of the top-performing Llama 2 and 
Llama 3 models were selected for further experiments. These 
optimized parameters formed the basis for exploring the 
accuracy of fine-tuned LLMs for code-style analysis across 
different dataset sizes. 

The experiments were conducted on datasets with the 
following sizes: 60/15, 120/30, 240/60, and 480/120 
training/validation samples. 

Finally, the fine-tuned models were compared with the pre-
trained models on the full dataset to evaluate improvements in 
code-style analysis accuracy after the fine-tuning process. 

III. RESULTS 
The source code for all experiments can be found in [31]. 

A.  ZERO-SHOT CLASSIFICATION 
The performance of pre-trained Llama 2 and Llama 3 models 
was evaluated through zero-shot binary classification across 10 
experiments using the dataset’s “validation” split (Fig. 3). 

For Llama 2, the accuracy ranged from 0.4583 to 0.5833, 
with a mean accuracy of 0.5 and a standard deviation of 0.0350, 
indicating relatively moderate variability in performance. The 
highest accuracy was observed in Experiment 8, and the lowest 
in Experiments 1 and 9. 

For Llama 3, the accuracy ranged from 0.4083 to 0.6667, 
with a mean accuracy of 0.4983 and a standard deviation of 
0.0694, demonstrating slightly more variability in 
performance. The highest accuracy was observed in 
Experiment 3, and the lowest in Experiment 10. 
 
 

 

Figure 3. Zero-shot classification for pre-trained models 

 
Given that this is a binary classification task, the results are 

close to those of random guessing (50% accuracy), indicating 
that neither model significantly outperforms random chance in 
this zero-shot setting. These results suggest that further fine-
tuning or additional data may be necessary to improve the 
performance of models beyond random guessing. 
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B.  HYPERPARAMETERS DISCOVERY 
The hyperparameters tuning process utilized a Bayesian 
optimization approach to identify the optimal settings for 
training the models. 

The hyperparameters considered were the number of 
epochs, batch size, and LoRA parameters (alpha, dropout, and 
rank). The evaluation metric used for optimization was the 
accuracy. Figures 4 and 5 illustrate the results of discovering 
the optimal hyperparameters for fine-tuning the Llama 2 and 
Llama 3 models, respectively. 
 

 

Figure 4. Tuning hyperparameters for Llama 2 

 

 

Figure 5. Tuning hyperparameters for Llama 3 

 
The Bayesian optimization results indicated that smaller 

batch sizes (4 and 8) consistently yielded a higher evaluation 
accuracy, suggesting that frequent updates with smaller 
gradient steps are advantageous. Lower LoRA alpha values (16 
for Llama 2 and up to 32 for Llama 3) and moderate LoRA 
dropout values (0.05) were prevalent in the high-performing 
configurations, highlighting the effectiveness of balanced 
regularization. In addition, configurations with a greater 
number of epochs demonstrated improved performance, 
underscoring the importance of extended training periods for 
model learning. 

The optimal hyperparameters for fine-tuning Llama 2 and 
Llama 3 are presented in Table 2. 

Table 2. Optimal hyperparameters for fine-tuning models 

Parameter Llama 2 Llama 3 
epochs 5 5 

batch_size 8 8 
lora_alpha 16 32 

lora_dropout 0.05 0.05 
lora_r 4 12 

eval/accuracy 0.933 1 

 

We used a linear learning rate scheduler [32], with the 
learning rate set to 0.001 and the weight decay set to 0.01. 

C.  FINE-TUNING LLAMA 2 7B MODEL 
We evaluated the impact of dataset size on fine-tuning the 
Llama 2 7B model by analyzing the training loss, validation 
loss, and obtained accuracy during the training process. 

For the smallest dataset of 60 training samples and 15 
validation samples, the training loss decreased rapidly (Fig. 6), 
reaching nearly zero by the fifth epoch. However, the 
validation loss increased after the first epoch, indicating 
overfitting (Fig. 7). Despite this, the accuracy improved 
slightly from 66.67% to 73.33%, showing limited 
generalization due to the small dataset size (Fig. 8). 

For the 120/30 dataset, the training loss decreased 
significantly, and the validation loss showed a downward trend, 
dropping from 2.549609 to 1.103788. The accuracy improved 
considerably, reaching 83.33% by the fifth epoch, indicating a 
better generalization with a moderately larger dataset. 

For the 240/60 dataset, the training loss decreased rapidly, 
and the validation loss decreased substantially from 0.707462 
to 0.300284. The accuracy peaked at 96.67%, indicating robust 
model performance and strong generalization for this dataset 
size. 
 

 

Figure 6. Training loss of Llama 2 in 5 epochs 

 

 

Figure 7. Validation loss of Llama 2 in 5 epochs 
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Figure 8. Accuracy of Llama 2 in 5 epochs 

 
The largest dataset, comprising 480 training samples and 

120 validation samples, yielded the best results. The training 
loss steadily decreased to zero, whereas the validation loss 
continuously decreased to 0.082847. The accuracy reached an 
impressive 99.17%, demonstrating an excellent generalization. 

It is important to note that instability in training (e.g., 
validation loss fluctuations) was more evident with smaller 
datasets, suggesting that a limited number of samples can 
impede the fine-tuning process by not providing a 
representative range of patterns for the model to learn. 

Overall, larger datasets consistently led to lower training 
and validation losses and higher accuracy, highlighting the 
critical role of extensive training data in enhancing model 
performance and generalization for code-style classification 
tasks. 

D.  FINE-TUNING LLAMA 3 8B MODEL 
For the smallest dataset (60/15), the training loss for Llama 3 
decreased rapidly (Fig. 9), similar to that of Llama 2. However, 
the validation loss showed fluctuations, with an increase in the 
third epoch before decreasing again (Fig. 10). The accuracy 
improved from 66.67% to 86.67%, indicating better 
generalization than for Llama 2 for this dataset size (Fig. 11). 

For the 120/30 dataset, the training loss significantly 
decreased. The validation loss initially decreased, but then 
slightly increased in the middle epochs before improving again. 
The accuracy reached 93.33%, showing better generalization 
compared with Llama 2 for this dataset size. 

For the 240/60 dataset, the training loss decreased steadily, 
but the validation loss showed more fluctuation than that of 
Llama 2 model. Despite this, the accuracy peaked at 96.67%, 
indicating a similar performance to Llama 2. 

For the largest dataset (480/120), the training loss showed 
an unusual pattern, with an increase in the second epoch before 
decreasing again. The validation loss initially decreased but 
then increased again in the second and third epochs. The 
accuracy reached 97.50%, indicating strong generalization but 
some instability in training. 
 

 

Figure 9. Training loss of Llama 3 in 5 epochs 

 

 

Figure 10. Validation loss of Llama 3 in 5 epochs 

 

 

Figure 11. Accuracy of Llama 3 in 5 epochs 

 
Overall, Llama 3 demonstrated slightly better accuracy for 

smaller datasets, but showed instability in training loss and 
validation loss for larger datasets. By contrast, Llama 2 
exhibited more stable training and validation patterns, 
suggesting better consistency in fine-tuning with larger 
datasets. These fluctuations for Llama 3 indicate that even 
larger models can experience instability when the dataset is too 
small, possibly due to the model’s capacity exceeding the 
complexity of the provided training data. 
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E.  EVALUATION OF FINE-TUNED MODELS 
Models fine-tuned with different dataset sizes were evaluated 
using 1200 previously unseen code samples [33]. The results 
are presented in Table 3. 

Table 3. Accuracy of fine-tuned vs. pre-trained (base) 
models 

Model Accuracy % 

Llama 2 7B 

base 47.3 
fine-tuned (60/15) 77.6 (+30.3) 
fine-tuned (120/30) 88.6 (+41.3) 
fine-tuned (240/60) 98.4 (+51.1) 
fine-tuned (480/120) 99.5 (+52.2) 

Llama 3 8B 

base 45.2 
fine-tuned (60/15) 87.8 (+42.6) 
fine-tuned (120/30) 95.0 (+49.8) 
fine-tuned (240/60) 98.5 (+53.3) 
fine-tuned (480/120) 99.0 (+53.8) 

 
The results demonstrate that fine-tuning on progressively 

larger datasets leads to a substantial increase in accuracy. 
Llama 3 performs better at smaller to mid-range dataset sizes, 
whereas Llama 2 achieves a slightly higher accuracy with the 
largest dataset. The most significant improvements for both 
models were observed with dataset sizes up to 240/60, where 
the accuracy gains were substantial, while beyond this point, 
the increase in accuracy became marginal. This indicates that 
while larger datasets generally enhance performance, the 
benefits plateau beyond a certain point. 

IV. CONCLUSIONS 
The primary aim of our research was to explore the impact of 
dataset size on fine-tuning LLMs for a particular code-style 
analysis task. We assessed how datasets of varying sizes used for 
fine-tuning impact the performance and reliability of models to 
categorize Python code as compliant or non-compliant with a 
specific PEP-8 indentation rule. 

Our experiments demonstrated that models fine-tuned with 
larger datasets, specifically with 240 and 480 samples for a single 
rule, achieved accuracies of up to 99%. In contrast, the models 
trained with smaller datasets (60 and 120 samples) experienced 
overfitting and lower accuracy. These results suggest that having 
only dozens of samples per rule is insufficient for developing 
high-performance models; at least hundreds of training samples 
per rule are necessary. Our findings also show that insufficient 
data can lead to unstable training and suboptimal convergence, 
especially when fine-tuning large models. 

We acknowledge the limitations of this study. We focused on 
only one PEP-8 rule; therefore, it is unclear how the models 
would perform with multiple rules. Additionally, we used only 
smaller LLM variants and did not fully explore the impact of 
quantization on the model quality. 

Future research should address these limitations by 
investigating various PEP-8 rules, exploring larger LLM 
variants, experimenting with different fine-tuning strategies, and 
assessing the impact of quantization. 

Beyond software development, these observations can be 
applied to other domains where compliance with formatting or 
stylistic standards is necessary, such as legal documentation, 
medical record keeping, and financial reporting. 

Looking ahead, we plan to expand our research on Large 
Language Models to further explore their potential for enhancing 
software quality. 
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