

VOLUME 24(1), 2025 141

Date of publication MAR-31, 2025, date of current version DEC-19, 2024.
www.computingonline.net / computing@computingonline.net

Print ISSN 1727-6209
Online ISSN 2312-5381
DOI 10.47839/ijc.24.1.3885

Fine-Tuning Large Language Models for
Code-Style Analysis: The Significance of

Dataset Size
ANDRII HOLOVKO, VLADYSLAV ALIEKSIEIEV

Department of Applied Mathematics, Lviv Polytechnic National University, S. Bandery 12, Lviv, 79013, Ukraine
andrii.i.holovko@lpnu.ua, vladyslav.i.alieksieiev@lpnu.ua

Corresponding author: Andrii Holovko (e-mail: andrii.i.holovko@lpnu.ua).

 ABSTRACT One aspect of a well-written codebase is its adherence to a particular code style, and Large Language
Models (LLMs) can greatly assist in reviewing and adapting the code to follow the defined conventions. Because
specific code-style rules are typically not known during the pre-training of the base model, additional fine-tuning is
necessary. However, the exact number of training samples required to achieve optimal model performance is unclear.
The significance of dataset size when fine-tuning LLMs to categorize Python code snippets as compliant or non-
compliant with the specific PEP-8 indentation rule is investigated in this work. We used Low-Rank Adaptation (LoRA)
and its quantized variant (QLoRA) to fine-tune the Llama 2 7B and Llama 3 8B models on datasets of varying sizes,
ranging from 60 to 480 training samples. Our experiments demonstrated that the models fine-tuned with larger datasets
(240 and 480 samples) achieved accuracies of up to 99%, whereas those trained with smaller datasets (60 and 120
samples) experienced overfitting and lower accuracy. Subsequent research will be based on these findings to explore
the potential of LLMs and improve code readability, maintainability, and adherence to coding standards in software
development. The methodology used to determine the sufficient number of training samples can also be valuable for
fine-tuning LLMs in other domains where strict style or formatting conventions are required, such as legal document
preparation, standardized medical reporting, or financial regulatory filings.

 KEYWORDS code-style analysis; PEP-8; large language models; Llama 2; Llama 3; fine-tuning; dataset size; zero-
shot learning; low-rank adaptation, QLoRA.

I. INTRODUCTION
ode-style analysis plays a vital role in software
development by ensuring readability, maintainability, and

consistency across codebases. Adhering to a uniform code style
enhances collaboration between developers and reduces the
likelihood of introducing errors, ultimately contributing to the
overall quality and longevity of software projects.

Software quality and its evaluation have long been central
concerns in software engineering research and practice.
Established standards, such as ISO/IEC 25002:2024 [1],
provide guidelines for assessing software quality, and
extensive research has been conducted to develop methods for
evaluating various software quality characteristics [2]. Code-
style analysis methods commonly employ these standards,
relying heavily on static analysis tools and manual reviews
[3, 4]. Although these approaches can be effective, they are
often time-consuming and prone to errors. Manual reviews are
susceptible to oversight and inconsistencies; as human

reviewers may overlook subtle code-style issues or interpret
standards differently.

In contrast, Large Language Models (LLMs) are promising
alternatives, leveraging their advanced language understanding
capabilities to assist in various tasks, including code generation
and reasoning. Models such as Llama 2 [5] and Llama 3 [6]
have been successfully employed for diverse tasks, including
natural language processing [7], sentiment analysis [8], and
image recognition [9, 10].

Although LLMs are primarily known for their text-
generation capabilities, several studies have explored their
applications in classification tasks [11, 12], automated code
reviews [13] and code understanding [14]. These studies have
proven that fine-tuned LLMs can comprehend and generate
programming code. However, the models used in these
experiments are typically trained or fine-tuned on large datasets
containing a significant amount of high-quality training data.

C

 Andrii Holovko et al. / International Journal of Computing, 24(1) 2025, 141-147

142 VOLUME 24(1), 2025

Another study found that the efficiency of fine-tuning is
highly task- and data dependent [15]. The authors discovered
that LLM fine-tuning follows a power-based multiplicative
joint scaling rule between the fine-tuning data size and the other
scaling factors. The findings of this study also indicate that the
result of the fine-tuning process is affected more by the increase
in the size of the LLM model than by the scaling of the pre-
training data.

We began our study on how well LLMs work for code-style
analysis by fine-tuning the pre-trained Llama 2 7B model to
classify Python code snippets for compliance with the
following three PEP-8 indentation rules: E101 (indentation
contains mixed spaces and tabs), E111 (indentation is not a
multiple of four), and E112 (expected an indented block) [16].
For each rule, 20 “compliant” and 20 “non-compliant” training
examples were prepared. However, we faced significant
challenges owing to the unstable training process, which led to
inconsistent results in model performance. Our hypothesis
implies that an insufficient amount of training data for each rule
is the primary factor contributing to observed issues.

Motivated by the need to develop a model for our code-style
analysis task, we set out to determine the minimum number of
training samples required to produce reasonably good results.
By examining the performance of models trained on datasets of
varying sizes, we seek to understand how the training
efficiency, model generalization, and accuracy are influenced
by the amount of data available for fine-tuning.

The goal of this research is to enhance our understanding of
fine-tuning LLMs for domain-specific tasks, specifically code-
style analysis, and to evaluate the significance of the dataset
size in achieving robust and reliable performance. Through this
study, we aim to provide insights that can inform future
research and practical applications of LLMs to improve
software development, as well as similar tasks where enforcing
a particular style or standard is vital.

II. METHODOLOGY
A. DATASET
The dataset used for fine-tuning in this study comprises 600
Python code snippets, balanced between “compliant” and
“non-compliant” examples according to the PEP-8 style rule,
which specifies that indentation must be a multiple of four
(E111 in pycodestyle error codes taxonomy).

This dataset was derived from the “python code instructions
18k alpaca” dataset [17] and validated using the pycodestyle
checker [18]. We made it publicly accessible on the Hugging
Face hub [19].

The dataset was split into training and validation sets in an
80-20% proportion, with 480 records used for training and 120
for validation. To evaluate the impact of the dataset size on the
fine-tuning process, the dataset was further split into subsets
with 60 training and 15 validation samples, 120 training and 30
validation samples, and 240 training and 60 validation samples.

B. LOW-RANK ADAPTATION
All data processing and evaluation experiments were
performed on an Apple MacBook M3 Max with 48GB of
unified memory.

Training was conducted on a single NVIDIA A100-SXM4-
40GB GPU system. We used the AdamW optimizer [20] and

trained the models for up to five epochs using parameter-
efficient fine-tuning techniques such as Low-Rank Adaptation
(LoRA) [21] and QLoRA [22].

During the early training sessions, we constantly
encountered out-of-memory issues, even with LoRA. To
mitigate this problem, we employed quantization using the
BitsAndBytes library [23]. This approach enabled us to fine-
tune the model regardless of the batch size used, with a memory
consumption not exceeding 25GB of GPU memory. However,
BitsAndBytes does not currently support Apple silicon, which
is why we used the NVIDIA GPU platform.

On the other hand, the MLX library [24] shows promise for
leveraging Apple’s GPU while supporting quantization.
However, it is still under active development, and its
functionality is yet to be fully explored.

LoRA was designed to adapt a pre-trained model to better
suit a specific, often smaller, dataset by adjusting only a small
subset of the model’s weight parameters. In simpler terms,
instead of fine-tuning all parameters of a large model, LoRA
only updates a small percentage of them, reducing
computational cost and required resources while preserving
performance. This method is particularly valuable because it
enables efficient fine-tuning of large models on task-specific
data [25, pp. 317–319].

Usually, when deep neural networks are being fine-tuned,
backpropagation learns a matrix ∆𝑊, which indicates how
much to update the original weight parameters to minimize the
loss function during training (Fig. 1).

Figure 1. Weight update in regular fine-tuning

LoRA provides a more efficient alternative by

approximating the weight updates ∆𝑊 with the product of two
smaller matrices, 𝐴 and 𝐵:

∆𝑊 ≈ 𝐴𝐵, (1)

where 𝐴 and 𝐵 are much smaller than 𝑊, and 𝐴𝐵 represents
their matrix multiplication product.

Using LoRA, the weight update can then be formulated as:

𝑊௨ௗ௧ௗ = 𝑊 + 𝐴𝐵. (2)

Fig. 2 illustrates the operational approach of LoRA,
employing matrices 𝐴 and 𝐵 of reduced dimensions to
approximate ∆𝑊, with rank 𝑟 representing the adjustable
hyperparameter.

Andrii Holovko et al. / International Journal of Computing, 24(1) 2025, 141-147

VOLUME 24(1), 2025 143

Figure 2. Weight update in LoRA

This approach allows for significant reductions in the

number of parameters that need to be fine-tuned (Table 1),
leading to faster training times and lower resource
requirements, while still effectively adapting the model to the
new data.

Table 1. Trainable parameters after applying LoRA

Model Model
Params

Trainable
Params

Trainable %

Llama 2 7B ~6.7B ~2.1M 0.0319
Llama 3 8B ~7.5B ~5.1M 0.0682

QLoRA extends LoRA by quantizing the model’s weights.

This further reduces the memory footprint and can speed up
training, making it more feasible to fine-tune large models on
smaller hardware setups.

C. CLASSIFICATION HEAD
The input code snippet 𝑆 was tokenized using LlamaTokenizer
for Llama 2 and AutoTokenizer for Llama 3 from the Hugging
Face transformers library [26].

The resulting tokens 𝑇 were then input into the pre-trained
or fine-tuned model to extract the latent representation 𝐻 using
LlamaForSequenceClassification transformer [27]:

𝑇 = 𝑇𝑜𝑘𝑒𝑛𝑖𝑧𝑒𝑟(𝑆)
𝐻 = 𝐿𝑙𝑎𝑚𝑎𝐹𝑜𝑟𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛(𝑇). (3)

LlamaForSequenceClassification uses the last token to

perform classification. This token effectively captures all
historical information due to the unidirectional information
flow imposed by the causal masks. The vector representation
was then passed through the fully connected layers and a
softmax layer, mapping it to the label space.

Finally, the cross-entropy loss is computed using the output
logits and the class labels (1 for “compliant” and 0 for “non-
compliant” code sample).

D. EXPERIMENTS
The baseline performance of the pre-trained Llama 2 7B and
Llama 3 8B models was evaluated using zero-shot
classification methods [28, 29]. This step aimed to establish the
ability of pre-trained models to differentiate between code-
style compliance and non-compliance without any task-
specific adjustments.

Following this, both the Llama 2 and Llama 3 base models
underwent a series of fine-tuning experiments. Twenty
experiments were conducted by systematically varying the

number of epochs, batch sizes, and LoRA parameters. The
dataset for these experiments comprised 120 training and 30
validation samples. We employed a Bayesian search approach
[30] to identify the optimal hyperparameter configurations
efficiently.

The hyperparameters of the top-performing Llama 2 and
Llama 3 models were selected for further experiments. These
optimized parameters formed the basis for exploring the
accuracy of fine-tuned LLMs for code-style analysis across
different dataset sizes.

The experiments were conducted on datasets with the
following sizes: 60/15, 120/30, 240/60, and 480/120
training/validation samples.

Finally, the fine-tuned models were compared with the pre-
trained models on the full dataset to evaluate improvements in
code-style analysis accuracy after the fine-tuning process.

III. RESULTS
The source code for all experiments can be found in [31].

A. ZERO-SHOT CLASSIFICATION
The performance of pre-trained Llama 2 and Llama 3 models
was evaluated through zero-shot binary classification across 10
experiments using the dataset’s “validation” split (Fig. 3).

For Llama 2, the accuracy ranged from 0.4583 to 0.5833,
with a mean accuracy of 0.5 and a standard deviation of 0.0350,
indicating relatively moderate variability in performance. The
highest accuracy was observed in Experiment 8, and the lowest
in Experiments 1 and 9.

For Llama 3, the accuracy ranged from 0.4083 to 0.6667,
with a mean accuracy of 0.4983 and a standard deviation of
0.0694, demonstrating slightly more variability in
performance. The highest accuracy was observed in
Experiment 3, and the lowest in Experiment 10.

Figure 3. Zero-shot classification for pre-trained models

Given that this is a binary classification task, the results are

close to those of random guessing (50% accuracy), indicating
that neither model significantly outperforms random chance in
this zero-shot setting. These results suggest that further fine-
tuning or additional data may be necessary to improve the
performance of models beyond random guessing.

 Andrii Holovko et al. / International Journal of Computing, 24(1) 2025, 141-147

144 VOLUME 24(1), 2025

B. HYPERPARAMETERS DISCOVERY
The hyperparameters tuning process utilized a Bayesian
optimization approach to identify the optimal settings for
training the models.

The hyperparameters considered were the number of
epochs, batch size, and LoRA parameters (alpha, dropout, and
rank). The evaluation metric used for optimization was the
accuracy. Figures 4 and 5 illustrate the results of discovering
the optimal hyperparameters for fine-tuning the Llama 2 and
Llama 3 models, respectively.

Figure 4. Tuning hyperparameters for Llama 2

Figure 5. Tuning hyperparameters for Llama 3

The Bayesian optimization results indicated that smaller

batch sizes (4 and 8) consistently yielded a higher evaluation
accuracy, suggesting that frequent updates with smaller
gradient steps are advantageous. Lower LoRA alpha values (16
for Llama 2 and up to 32 for Llama 3) and moderate LoRA
dropout values (0.05) were prevalent in the high-performing
configurations, highlighting the effectiveness of balanced
regularization. In addition, configurations with a greater
number of epochs demonstrated improved performance,
underscoring the importance of extended training periods for
model learning.

The optimal hyperparameters for fine-tuning Llama 2 and
Llama 3 are presented in Table 2.

Table 2. Optimal hyperparameters for fine-tuning models

Parameter Llama 2 Llama 3
epochs 5 5

batch_size 8 8
lora_alpha 16 32

lora_dropout 0.05 0.05
lora_r 4 12

eval/accuracy 0.933 1

We used a linear learning rate scheduler [32], with the
learning rate set to 0.001 and the weight decay set to 0.01.

C. FINE-TUNING LLAMA 2 7B MODEL
We evaluated the impact of dataset size on fine-tuning the
Llama 2 7B model by analyzing the training loss, validation
loss, and obtained accuracy during the training process.

For the smallest dataset of 60 training samples and 15
validation samples, the training loss decreased rapidly (Fig. 6),
reaching nearly zero by the fifth epoch. However, the
validation loss increased after the first epoch, indicating
overfitting (Fig. 7). Despite this, the accuracy improved
slightly from 66.67% to 73.33%, showing limited
generalization due to the small dataset size (Fig. 8).

For the 120/30 dataset, the training loss decreased
significantly, and the validation loss showed a downward trend,
dropping from 2.549609 to 1.103788. The accuracy improved
considerably, reaching 83.33% by the fifth epoch, indicating a
better generalization with a moderately larger dataset.

For the 240/60 dataset, the training loss decreased rapidly,
and the validation loss decreased substantially from 0.707462
to 0.300284. The accuracy peaked at 96.67%, indicating robust
model performance and strong generalization for this dataset
size.

Figure 6. Training loss of Llama 2 in 5 epochs

Figure 7. Validation loss of Llama 2 in 5 epochs

Andrii Holovko et al. / International Journal of Computing, 24(1) 2025, 141-147

VOLUME 24(1), 2025 145

Figure 8. Accuracy of Llama 2 in 5 epochs

The largest dataset, comprising 480 training samples and

120 validation samples, yielded the best results. The training
loss steadily decreased to zero, whereas the validation loss
continuously decreased to 0.082847. The accuracy reached an
impressive 99.17%, demonstrating an excellent generalization.

It is important to note that instability in training (e.g.,
validation loss fluctuations) was more evident with smaller
datasets, suggesting that a limited number of samples can
impede the fine-tuning process by not providing a
representative range of patterns for the model to learn.

Overall, larger datasets consistently led to lower training
and validation losses and higher accuracy, highlighting the
critical role of extensive training data in enhancing model
performance and generalization for code-style classification
tasks.

D. FINE-TUNING LLAMA 3 8B MODEL
For the smallest dataset (60/15), the training loss for Llama 3
decreased rapidly (Fig. 9), similar to that of Llama 2. However,
the validation loss showed fluctuations, with an increase in the
third epoch before decreasing again (Fig. 10). The accuracy
improved from 66.67% to 86.67%, indicating better
generalization than for Llama 2 for this dataset size (Fig. 11).

For the 120/30 dataset, the training loss significantly
decreased. The validation loss initially decreased, but then
slightly increased in the middle epochs before improving again.
The accuracy reached 93.33%, showing better generalization
compared with Llama 2 for this dataset size.

For the 240/60 dataset, the training loss decreased steadily,
but the validation loss showed more fluctuation than that of
Llama 2 model. Despite this, the accuracy peaked at 96.67%,
indicating a similar performance to Llama 2.

For the largest dataset (480/120), the training loss showed
an unusual pattern, with an increase in the second epoch before
decreasing again. The validation loss initially decreased but
then increased again in the second and third epochs. The
accuracy reached 97.50%, indicating strong generalization but
some instability in training.

Figure 9. Training loss of Llama 3 in 5 epochs

Figure 10. Validation loss of Llama 3 in 5 epochs

Figure 11. Accuracy of Llama 3 in 5 epochs

Overall, Llama 3 demonstrated slightly better accuracy for

smaller datasets, but showed instability in training loss and
validation loss for larger datasets. By contrast, Llama 2
exhibited more stable training and validation patterns,
suggesting better consistency in fine-tuning with larger
datasets. These fluctuations for Llama 3 indicate that even
larger models can experience instability when the dataset is too
small, possibly due to the model’s capacity exceeding the
complexity of the provided training data.

 Andrii Holovko et al. / International Journal of Computing, 24(1) 2025, 141-147

146 VOLUME 24(1), 2025

E. EVALUATION OF FINE-TUNED MODELS
Models fine-tuned with different dataset sizes were evaluated
using 1200 previously unseen code samples [33]. The results
are presented in Table 3.

Table 3. Accuracy of fine-tuned vs. pre-trained (base)
models

Model Accuracy %

Llama 2 7B

base 47.3
fine-tuned (60/15) 77.6 (+30.3)
fine-tuned (120/30) 88.6 (+41.3)
fine-tuned (240/60) 98.4 (+51.1)
fine-tuned (480/120) 99.5 (+52.2)

Llama 3 8B

base 45.2
fine-tuned (60/15) 87.8 (+42.6)
fine-tuned (120/30) 95.0 (+49.8)
fine-tuned (240/60) 98.5 (+53.3)
fine-tuned (480/120) 99.0 (+53.8)

The results demonstrate that fine-tuning on progressively

larger datasets leads to a substantial increase in accuracy.
Llama 3 performs better at smaller to mid-range dataset sizes,
whereas Llama 2 achieves a slightly higher accuracy with the
largest dataset. The most significant improvements for both
models were observed with dataset sizes up to 240/60, where
the accuracy gains were substantial, while beyond this point,
the increase in accuracy became marginal. This indicates that
while larger datasets generally enhance performance, the
benefits plateau beyond a certain point.

IV. CONCLUSIONS
The primary aim of our research was to explore the impact of
dataset size on fine-tuning LLMs for a particular code-style
analysis task. We assessed how datasets of varying sizes used for
fine-tuning impact the performance and reliability of models to
categorize Python code as compliant or non-compliant with a
specific PEP-8 indentation rule.

Our experiments demonstrated that models fine-tuned with
larger datasets, specifically with 240 and 480 samples for a single
rule, achieved accuracies of up to 99%. In contrast, the models
trained with smaller datasets (60 and 120 samples) experienced
overfitting and lower accuracy. These results suggest that having
only dozens of samples per rule is insufficient for developing
high-performance models; at least hundreds of training samples
per rule are necessary. Our findings also show that insufficient
data can lead to unstable training and suboptimal convergence,
especially when fine-tuning large models.

We acknowledge the limitations of this study. We focused on
only one PEP-8 rule; therefore, it is unclear how the models
would perform with multiple rules. Additionally, we used only
smaller LLM variants and did not fully explore the impact of
quantization on the model quality.

Future research should address these limitations by
investigating various PEP-8 rules, exploring larger LLM
variants, experimenting with different fine-tuning strategies, and
assessing the impact of quantization.

Beyond software development, these observations can be
applied to other domains where compliance with formatting or
stylistic standards is necessary, such as legal documentation,
medical record keeping, and financial reporting.

Looking ahead, we plan to expand our research on Large
Language Models to further explore their potential for enhancing
software quality.

V. ACKNOWLEDGEMENTS
We thank Taras Kutsyk, an M.S. student in the Department of
Applied Mathematics at Lviv Polytechnic National University,
for his work on the dataset used in our early experiments on
fine-tuning the Llama 2 model.

References

[1] Systems and software engineering — Systems and software Quality
Requirements and Evaluation (SQuaRE) — Quality model overview and
usage, ISO/IEC 25002:2024, Mar. 2024.

[2] T. Hovorushchenko and O. Pomorova, “Evaluation of mutual influences
of software quality characteristics based ISO 25010:2011,” Proceedings
of the 2016 IEEE XIth International Scientific and Technical Conference
Computer Sciences and Information Technologies (CSIT), Lviv, Ukraine,
Sep. 2016, pp. 80–83. https://doi.org/10.1109/STC-CSIT.2016.7589874.

[3] C. Sadowski, E. Söderberg, L. Church, M. Sipko, and A. Bacchelli,
“Modern code review: a case study at google,” in Proceedings of the
ACM 40th International Conference on Software Engineering: Software
Engineering in Practice, Gothenburg, Sweden, May 2018, pp. 181–190.
https://doi.org/10.1145/3183519.3183525.

[4] S. Panichella, V. Arnaoudova, M. Di Penta, and G. Antoniol, “Would
static analysis tools help developers with code reviews?,” in Proceedings
of the IEEE 2015 IEEE 22nd International Conference on Software
Analysis, Evolution, and Reengineering (SANER), Montreal, QC,
Canada, Mar. 2015, pp. 161–170. doi: 10.1109/SANER.2015.7081826.

[5] H. Touvron et al., “Llama 2: Open Foundation and Fine-Tuned Chat
Models,” Jul. 19, 2023, arXiv: arXiv:2307.09288.
https://doi.org/10.48550/arXiv.2307.09288.

[6] AI@Meta, “Llama 3 Model Card.” [Online]. Available:
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md

[7] B. M. Pavlyshenko, “Analysis of Disinformation and Fake News
Detection Using Fine-Tuned Large Language Model,” Sep. 09, 2023,
arXiv: arXiv:2309.04704. https://doi.org/10.48550/arXiv.2309.04704.

[8] X. Zhu, S. Gardiner, T. Roldán, and D. Rossouw, “The Model Arena for
Cross-lingual Sentiment Analysis: A Comparative Study in the Era of
Large Language Models,” Jun. 27, 2024, arXiv: arXiv:2406.19358.
https://doi.org/10.48550/arXiv.2406.19358.

[9] J. Wang et al., “Adapting LLaMA Decoder to Vision Transformer,” May
27, 2024, arXiv: arXiv:2404.06773.
https://doi.org/10.48550/arXiv.2404.06773.

[10] X. Chu, J. Su, B. Zhang, and C. Shen, “VisionLLaMA: A Unified
LLaMA Backbone for Vision Tasks,” Jul. 07, 2024, arXiv:
arXiv:2403.00522. https://doi.org/10.48550/arXiv.2403.00522.

[11] Z. Li et al., “Label Supervised LLaMA Finetuning,” Oct. 02, 2023, arXiv:
arXiv:2310.01208. https://doi.org/10.48550/arXiv.2310.01208.

[12] A. Jafari, “Comparison Study Between Token Classification and
Sequence Classification in Text Classification,” Nov. 25, 2022, arXiv:
arXiv:2211.13899. https://doi.org/10.48550/arXiv.2211.13899.

[13] J. Lu, L. Yu, X. Li, L. Yang, and C. Zuo, “LLaMA-Reviewer: Advancing
Code Review Automation with Large Language Models through
Parameter-Efficient Fine-Tuning,” Sep. 04, 2023, arXiv:
arXiv:2308.11148. https://doi.org/10.48550/arXiv.2308.11148.

[14] B. Rozière et al., “Code Llama: Open Foundation Models for Code,” Jan.
31, 2024, arXiv: arXiv:2308.12950.
https://doi.org/10.48550/arXiv.2308.12950.

[15] B. Zhang, Z. Liu, C. Cherry, and O. Firat, “When Scaling Meets LLM
Finetuning: The Effect of Data, Model and Finetuning Method,” Feb. 26,
2024, arXiv: arXiv:2402.17193.
https://doi.org/10.48550/arXiv.2402.17193.

[16] “Pycodestyle Error Codes.” [Online]. Available:
https://pycodestyle.pycqa.org/en/latest/intro.html#error-codes

[17] “Python Code Instructions 18K Alpaca Dataset.” [Online]. Available:
https://huggingface.co/datasets/iamtarun/python_code_instructions_18k
_alpaca

[18] pycodestyle. Python Code Quality Authority. [Online]. Available:
https://github.com/PyCQA/pycodestyle

[19] A. Holovko, “Dataset: PEP8 E111 Compliance.” 2024. [Online].
Available:
https://huggingface.co/datasets/aholovko/pep8_e111_compliance

[20] I. Loshchilov and F. Hutter, “Decoupled Weight Decay Regularization,”
Jan. 04, 2019, arXiv: arXiv:1711.05101.
https://doi.org/10.48550/arXiv.1711.05101.

[21] E. J. Hu et al., “LoRA: Low-Rank Adaptation of Large Language
Models,” Oct. 16, 2021, arXiv: arXiv:2106.09685.
https://doi.org/10.48550/arXiv.2106.09685.

Andrii Holovko et al. / International Journal of Computing, 24(1) 2025, 141-147

VOLUME 24(1), 2025 147

[22] T. Dettmers, A. Pagnoni, A. Holtzman, and L. Zettlemoyer, “QLoRA:
Efficient Finetuning of Quantized LLMs,” May 23, 2023, arXiv:
arXiv:2305.14314. https://doi.org/10.48550/arXiv.2305.14314.

[23] T. Dettmers, BitsAndBytes. (2024). [Online]. Available:
https://github.com/TimDettmers/bitsandbytes

[24] A. Hannun, J. Digani, A. Katharopoulos, and R. Collobert, MLX:
Efficient and flexible machine learning on Apple silicon. (2023).
[Online]. Available at: https://github.com/ml-explore

[25] S. Raschka, Build a Large Language Model (From Scratch), MEAP v7.
Manning Publications Co, 2024.

[26] Transformers: State-of-the-art Machine Learning for Pytorch,
TensorFlow, and JAX. Hugging Face. [Online]. Available at:
https://github.com/huggingface/transformers

[27] Llama for Sequence Classification. Hugging Face. [Online]. Available at:
https://github.com/huggingface/transformers/blob/63fb253df0d976b95d
9b4b9a7b0012e5f8a37896/src/transformers/models/llama/modeling_lla
ma.py#L1312

[28] “Zero-Shot Learning in Modern NLP,” Joe Davison Blog. [Online].
Available at: https://joeddav.github.io/blog/2020/05/29/ZSL.html

[29] W. Yin, J. Hay, and D. Roth, “Benchmarking Zero-shot Text
Classification: Datasets, Evaluation and Entailment Approach,” Aug. 31,
2019, arXiv: arXiv:1909.00161.
https://doi.org/10.48550/arXiv.1909.00161.

[30] R. Turner et al., “Bayesian Optimization is Superior to Random Search
for Machine Learning Hyperparameter Tuning: Analysis of the Black-
Box Optimization Challenge 2020,” Aug. 31, 2021, arXiv:
arXiv:2104.10201. https://doi.org/10.48550/arXiv.2104.10201.

[31] A. Holovko, Fine-Tuning LLM for Code Style Analysis in Python. (2024).
Python. [Online]. Available at: https://github.com/aholovko/pycodestyle-
llm

[32] A. Defazio, A. Cutkosky, H. Mehta, and K. Mishchenko, “When, Why
and How Much? Adaptive Learning Rate Scheduling by Refinement,”
Oct. 11, 2023, arXiv: arXiv:2310.07831.
https://doi.org/10.48550/arXiv.2310.07831.

[33] A. Holovko, “Dataset: PEP8 E111 Compliance Evaluation.” 2024.
[Online]. Available:
https://huggingface.co/datasets/aholovko/pep8_e111_compliance_eval

ANDRII HOLOVKO received an M.S. in
Social Informatics from Lviv
Polytechnic National University,
Ukraine in 2006, a Ph.D. student since
2023 at the Department of Applied
Mathematics at Lviv Polytechnic
National University, Ukraine. Since
2007, Andrii has been actively
engaged in the software development
industry. His academic pursuits are

focused on bridging the gap between his industry experience
and research interests in Artificial Intelligence and Machine
Learning

VLADYSLAV ALIEKSIEIEV received
the Ph.D. degree in Technical Science
(Mathematical Modelling and
Computational Methods) in 2009, after
graduating Lviv Polytechnic National
University in 2002 as M.S. in Applied
Mathematics. Holds the position of
Associate Professor at the
Department of Applied Mathematics in
Lviv Polytechnic National University

since 2012. Current areas of scientific interests include AI, ML,
Data Science, Mathematical Modelling.

