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ABSTRACT This research considers the impact of data augmentation on multi-class text classification.
A diverse news dataset comprising four categories was utilized for training and evaluation. Various
transformer models, including BERT, DistilBERT, ALBERT, and RoBERTa, were employed to classify
text across multiple categories. Based on the previous research on data augmentation, synonym replace-
ment, antonym replacement, contextual word embedding, and the lambada method for data augmentation
were chosen. Three mainstream LLMs were selected to investigate the capabilities of LLMs: LLaMA
3, GPT-4, and MistralAI. These models represent a diverse range of architectures and training data,
allowing to assess the impact of different LLM capabilities on data augmentation performance. The
performance of the aforementioned transformer models was evaluated using metrics such as accuracy,
recall, precision, F1-score, training time, validation, and training loss. Experiments revealed that data
augmentation significantly improved the performance of transformer models in text classification tasks,
with lambada augmentation consistently outperforming other methods. However, model architecture and
hyperparameter tuning also played a crucial role in achieving optimal results. ROBERTa, in particular,
required careful hyperparameter adjustment to reach competitive performance levels. Obtained results have
practical implications for developing NLP applications in low-resource languages, as data augmentation
can help address the limitations of small datasets.

KEYWORDS augmentation; multi-class text classification; large language models; transformers; BERT;
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I. INTRODUCTION
Transformer models have emerged as the dominant architec-
ture in contemporary Natural Language Processing (NLP)
[1]–[4]. Their capacity for parallel processing through self-
attention mechanisms enables efficient handling of long-
range dependencies and variable-length sequences, surpass-
ing the limitations of previous models. While transformers
excel in capturing intricate linguistic patterns, they are
computationally demanding and require substantial amounts
of data to achieve optimal performance. Moreover, they
are susceptible to overfitting. Prominent examples of trans-
former architectures include BERT [5], RoBERTa [6], Dis-
tilBERT [7], and ALBERT [8].

Despite these challenges, the remarkable capabilities of

transformers are evident in the development of Large Lan-
guage Models (LLMs), which have revolutionized the field.
These models are built upon the transformer architecture
and trained on massive datasets, enabling them to generate
human-quality text, translate languages, write different kinds
of creative content, and answer any questions in an infor-
mative way [9]–[12]. LLMs excel in capturing complex lan-
guage patterns and dependencies due to their self-attention
mechanism. However, their development is computationally
intensive, requiring substantial resources. Additionally, they
often exhibit biases in the training data, necessitating careful
consideration during development and deployment. Despite
these challenges, LLMs have become indispensable tools
for various applications, from chatbots and virtual assis-
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tants to content creation and language translation [13]–[17].
To achieve truly context-aware functionality within those
applications, especially when those applications are used
within smart cities, LLMs require access to vast amounts of
real-time data. E. g. in IoT cities, the data is generated by
sensors, cameras, and other connected devices. The efficient
processing of this data is crucial for providing the necessary
input to these LLMs [18].

Data augmentation is an important technique applied to
enhance the performance of machine learning models, par-
ticularly in data-scarce scenarios [19]–[21]. Data augmenta-
tion mitigates overfitting and improves model generalization
by artificially expanding the training dataset through various
transformations. In natural language processing, augmen-
tations can be applied at the character, word, or sentence
levels, including techniques like synonym replacement, back
translation, and noise injection [22], [23].

The advent of LLMs has introduced new possibilities
for data augmentation. These powerful models, trained on
massive amounts of text data, deeply understand language
patterns and can generate highly realistic text samples. How-
ever, a question arises: to what extent can LLMs effectively
contribute to data augmentation? While LLMs offer the
potential to create diverse and complex augmented data,
their generated samples might not permanently preserve the
original data distribution or semantic meaning, potentially
leading to performance degradation.

While recent studies have explored the potential of LLMs
for data augmentation [24]–[27], their effectiveness com-
pared to more traditional methods remains a subject of
ongoing research. While LLMs have shown promise in
generating diverse and realistic synthetic data, their ability to
accurately capture the underlying distribution of the original
data and improve model performance in various tasks still
requires further investigation. Addressing challenges such as
bias, quality control, and computational efficiency will be
crucial in determining the practical applicability of LLMs
for data augmentation in real-world scenarios.

This paper evaluates the impact of various augmentation
techniques on the effectiveness and training efficiency of
different transformer models applied to multi-class text
classification tasks. Additionally, the study compares the
performance of LLMs in generating augmented data with
traditional augmentation methods.

II. MATERIAL AND METHODS
A subset of 1000 records from the dataset [28] for our
experiments was utilized.

Table 1. Labels distribution.

Dataset Label, quantity
1 2 3 4

Test 988 1004 1008 1000
Train 988 990 1006 1016

Table 1 shows the distribution of labels in the used
dataset. As the table demonstrates, labels are almost evenly

distributed.
Augmented datasets were constructed by applying aug-

mentation techniques to the original dataset, resulting in
a threefold. In this research, word-level and sentence-level
augmentations, as part of the non-LLM component, were
utilized. These augmentations were done with the nlpaug
library [29].

Building upon our previous research [30], which explored
a comprehensive range of augmentation techniques, the
focus was set on the ones listed below for this study
due to their demonstrated effectiveness in enhancing model
performance and addressing overfitting:

• synonym augmenter: replaces words with semantically
similar alternatives;

• antonym augmenter: replaces words with semantically
opposite terms;

• contextual word embeddings augmenter: leverages con-
textual word embeddings to identify and substitute top
semantically similar words;

• lambada augmenter [31]: modifies textual input through
an abstractive summarization process based on the
lambada method.

Augmentation experiments were conducted on a system
equipped with an Intel i7-13700K CPU and NVIDIA
GeForce GTX 4070 Ti GPU.

In addition to traditional augmentation methods, three
LLMs were evaluated: LLaMA 3 [32], MistralAI [33], and
[34].

The following message was a prompt for LLMs: ’You will
rephrase the text, that is given as input’. The GPT-4 model
was accessed through the OpenAI API. The elapsed time
between the API request and the response was used to calcu-
late the execution time. The LLaMa 3 and MistralAI models
were accessed through Google Colab. The last two models
were run on the instance with an NVIDIA A100 GPU, and
the model’s response generation time was considered the
execution time. The LLaMa 3 and MistralAI models were
loaded from the HuggingFace portal and are accessible un-
der the names ’meta-llama/Meta-Llama-3-8B-Instruct’ and
’mistralai/Mistral-7B-Instruct-v0.3’, respectively.

Transformer models were trained on the NVIDIA
GeForce GTX 4070 Ti GPU. All models and tokenizers
used in this study are publicly available on Hugging Face,
accessible by their respective names: bert-base-uncased,
distilbert-base-uncased, xlm-roberta-base, and albert-base-
v2.

The DataColator class from the Hugging Face Transform-
ers library was used for data batching. The Trainer and
TrainingArguments classes were utilized to streamline the
training process. All experiments were conducted within
the PyTorch framework, leveraging the capabilities of the
Transformers package. Models were initially trained for five
epochs. Model evaluation and saving were performed after
each epoch. The weight decay for every experiment was
0.01.

VOLUME 24(1), 2025 149



Bohdan Pavlyshenko et al./ International Journal of Computing, 24(1) 2025, 148-154

To investigate the influence of data augmentation, the
aforementioned transformer models were trained on eight
datasets: the original dataset and seven augmented versions
created using the previously described methods. The perfor-
mance of each model was evaluated using a comprehensive
set of metrics, including validation and training loss, accu-
racy, precision, F1-score, and recall.

III. RESULTS

Table 2. Augmentation Processing Time

Augmentation
Dataset

Test Train
Time, s.ms

Word-level augmentation
Synonym 3.91 4.50
Antonym 4.82 4.61

Embeddings 154.59 209.02
Sentence-level augmentation

Lambada 136.13 123.31
LLMs

GPT-4 7770.61 7794.62
LLaMa 3 11070.71 11261.63
Mistalai 11453.31 11299.63

Table 2 shows the time consumed by different aug-
mentation techniques while modifying the original dataset.
Augmentations can be categorized into groups based on their
execution times. Synonym and antonym augmentations were
the fastest, completing in less than 5 seconds. In contrast,
contextual word embeddings and the lambada method took
approximately 2 minutes each.

Augmentations using LLMs were the most time-
consuming, requiring over 2 hours and 9 minutes per dataset.
GPT was the fastest LLM, with an approximately one-hour
runtime shorter than LLaMa. The Mistalai took the longest,
with execution times of around 3 hours and 10 minutes.

Table 3. Models training time.

Augmentations
Transformer model

BERT DistilBERT RoBERTa ALBERT
Time, s.ms

No augmentation 69.2835 44.6286 164.9856 33.4917
nlpaug

Synonym 239.6693 150.0055 501.0972 119.4692
Antonym 238.9841 153.0150 500.0100 118.2244

Embeddings 237.5268 147.8533 498.3375 116.6700
Lambada 245.2489 151.2111 510.4234 133.0340

LLM
GPT-4 244.5692 150.5958 506.1688 127.0171

LLaMa 3 242.1237 149.4536 502.1718 123.2351
MistralAI 246.1742 151.1493 509.1011 129.1767

Table 3 presents the training time required for various
transformer models. ALBERT exhibited the shortest training
time, followed by DistilBERT. The original BERT model
took moderate time, while RoBERTa required the most
prolonged training.

A consistent pattern emerged among BERT, DistilBERT,
and ALBERT regarding training time based on data aug-
mentation techniques. Data augmented with the Lambada

method resulted in the longest training times among all
models trained on nlpaug-modified datasets. Conversely,
contextual word embedding augmentation led to the shortest
training times for these models. Antonym augmentation
yielded moderately long training times, while synonym
augmentation was time-consuming but less so than the
lambada method.

Models trained on LLM-augmented datasets consis-
tently required longer training times than those trained on
nlpaug-modified datasets. Among LLM-augmented models,
the LLaMa-augmented model trained the fastest, followed
by the GPT-4 augmented model. The MistralAI LLM-
augmented model had the longest training time.

DistilBERT’s behavior aligned with this pattern, with a
notable exception: antonym augmentation resulted in the
longest training time for this model, while embedding aug-
mentation remained the fastest. Other DistilBERT models
aligned with the overall training time trends observed in the
other transformer models.

The first experiment involved training each model on ev-
ery dataset using the following hyperparameters: a learning
rate of 1e−5 and training and evaluation batches per device
set to 8. After training each model, results showed that
none effectively addressed overfitting. Moreover, accuracy,
precision, F1-score, and recall were lower than those of
models trained on the original dataset.

Due to these challenges, a second experiment involving
hyperparameter adjustments was conducted:

• decreased the learning rate of the models to 1e−6;
• decreased training and evaluation batches per device to

4.

Retraining the models with these modified hyperparameters
yielded improved results.

The following pages present images that contain training
and evaluation metrics for four models: BERT, DistilBERT,
ALBERT, and RoBERTa. Every model’s metrics are orga-
nized in a 2x3 grid format. The top row of each grid displays
training and validation loss curves, providing insights into
the model’s learning progress and potential overfitting. The
middle row showcases precision and F1-score, reflecting
the model’s ability to identify positive instances correctly.
The bottom row illustrates accuracy and recall, indicating
the overall correctness and completeness of the model’s
predictions. A legend accompanying each image clarifies
the correspondence between the plots and the specific aug-
mentations applied to the dataset for training the model.

Figure 1 presents the training and evaluation results for
BERT models using different datasets. For the model trained
on the original dataset, training loss initially increases after
the first epoch before decreasing. Meanwhile, evaluation
loss steadily declines. Training and evaluation losses de-
creased for other models, indicating no overfitting.

Figure 1 also presents evaluation metrics for the trained
models. The model trained on the original, unaugmented
dataset achieved metrics around 80%. The model trained on
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Figure 1. Bert models’ training result.

the dataset augmented with the Lambada method demon-
strated the best performance with metrics near 93%. Other
models trained on augmented datasets generally improved
results to around 88%, with the model trained on GPT-
augmented data performing best in this group, followed
by those trained on antonym, synonym, and LLaMA aug-
mented data. The model trained on MistralAI-augmented
data scored 87%, while the model trained on contextual
word embeddings augmentation achieved the lowest metrics
at 86% among the augmented models.

Figure 2 demonstrates the training results for the Distil-
BERT models. Like the BERT models, all models trained on
augmented datasets did not exhibit overfitting, unlike those
trained on the original, unaugmented dataset.

At the same time, Figure 2 shows evaluation metrics for
DistilBERT models. Similar to BERT, the model trained on
the original dataset achieved lower metrics, around 79%.

Figure 2. DistilBERT models’ training result.

The lambada-augmented model again demonstrated the best
performance with metrics near 92%, followed by the GPT-
augmented model at 87%. Unlike BERT, the LLaMA and
MistralAI-augmented models also achieved scores of around
87%. Models trained on synonym and antonym augmented
data obtained metrics around 86%. As with BERT, the
contextual word embeddings augmentation resulted in the
lowest metrics at 85%.

Figure 3 presents the training and evaluation results for
ALBERT models using different datasets. Unlike Distil-
BERT, all ALBERT models, including those trained on
augmented datasets, exhibited signs of overfitting after two
training epochs.

Evaluation metrics show that the models trained on the
lambada, antonym, and contextual word embeddings aug-
mented datasets maintained decreasing evaluation losses un-
til the second epoch. However, all other models experienced
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Figure 3. ALBERT models’ training result.

a rise in evaluation loss after this point.
Despite the overfitting, the ALBERT model trained on

the lambada-augmented dataset still achieved the highest
performance with a score of 93%. The models trained on
the GPT-4, MistralAI, LLaMA-3, and antonym-augmented
datasets all obtained scores around 87%. The model trained
on the synonym-augmented dataset scored 86%, and the
models trained on the original and contextual word embed-
dings augmented datasets both achieved 85%.

Figure 4 presents the training and evaluation results for
RoBERTa models using different datasets. Unlike ALBERT,
all RoBERTa models, including those trained on augmented
datasets, maintained decreasing evaluation losses until the
second training epoch. However, after this point, the evalu-
ation loss for all models either remained stable or increased,
indicating potential overfitting.

Regarding evaluation metrics, the RoBERTa model

Figure 4. RoBERTa models’ training result.

trained on the lambada-augmented dataset achieved the
highest performance with a score of 91%. The models
trained on the GPT-4, LLaMA-3, and MistralAI-augmented
datasets all obtained scores of around 86%. The models
trained on the synonym and antonym-augmented datasets
scored 84%, and the models trained on the original and con-
textual word embeddings augmented datasets both achieved
82% and 81%, respectively.

RoBERTa’s suboptimal performance on the news classi-
fication task is partly attributed to overfitting, as evidenced
by the increasing evaluation loss during training. Additional
experiments with RoBERTa models were performed. The
learning rate was adjusted to be 1e−5, and per device
training and evaluation batch were decreased to 2. These
changes allowed the model’s efficiency to improve.

After this experiment, the next was found: only the
lambada-augmented dataset allowed the model to overcome
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overfitting. In contrast, all other augmented and original
datasets exhibited signs of overfitting. The model trained
on the lambada-augmented dataset achieved the highest
performance with a score of 99%. Other augmented models,
such as those trained on GPT (87%), antonym (86%),
MistralAI (85%), synonym (87%), and LLaMA (85%) aug-
mented datasets, also showed improvements but did not
surpass the performance of the original, unaugmented model
(87%). The model trained on contextual word embeddings
augmentation performed slightly worse, achieving a score
of 84%.

The performance differences observed in RoBERTa’s
evaluation metrics can be attributed to several factors. The
Lambada dataset, explicitly designed for language model-
ing, might align more with RoBERTa’s architecture and
training objectives than other datasets like GPT, LLaMA,
and MistralAI. Additionally, RoBERTa’s inherent design,
pre-training, and hyperparameter tuning could affect its
performance on specific tasks.

IV. CONCLUSIONS
This research investigates the impact of data augmentation
on multi-class text classification using transformer models.
Various transformer models were utilized, including BERT,
RoBERTa, DistilBERT, and ALBERT. To augment the
dataset, traditional methods from the nlpaug library, includ-
ing synonyms, antonyms, contextual word embeddings, and
lambada, as well as advanced LLMs like GPT-4, LLaMA
3, and MistralAI, were employed.

The computational cost of augmentation techniques
varies widely depending on their complexity. Synonym and
antonym augmentation, which involve simple word substi-
tutions, are the fastest, typically taking less than 5 seconds.
While more involved than synonym/antonym replacement,
contextual word embedding augmentation and the lam-
bada method still complete relatively quickly in around
2.5 minutes. These techniques leverage pre-trained word
embeddings to generate contextually relevant replacements.
LLM-based augmentations, on the other hand, are the most
complex and time-consuming. LLMs can generate entirely
new text segments or rewrite existing text, often requiring
over 2 hours to complete.

The analysis shows that augmentation techniques influ-
ence model training time. The time consumed by each
model training with augmented datasets follows a consistent
pattern, except for DistilBERT.

Across all models, lambada augmentation consistently
outperformed other techniques, achieving the highest scores
in most cases. For example, BERT and DistilBERT achieved
F1-scores of 93% and 92%, respectively, with lambada
augmentation, compared to around 80% for the original,
unaugmented datasets. Augmentation techniques based on
LLMs (GPT-4, LLaMA 3, and MistralAI) generally out-
performed traditional methods. However, their effectiveness
varied, suggesting that the choice of LLM and the specific
augmentation strategy can influence results.

While Lambada consistently improved performance,
the specific benefits varied across models. For instance,
RoBERTa required adjusted hyperparameters to achieve
enhanced results with lambada augmentation, highlighting
the importance of careful tuning for individual models. The
overall trend was that LLM-based augmentations generally
outperformed traditional nlpaug methods, suggesting the
potential benefits of leveraging large language models for
data augmentation.

While data augmentation can effectively mitigate over-
fitting, its effectiveness varies across models. Factors such
as model architecture, hyperparameters, and data character-
istics influence a model’s susceptibility to overfitting. For
example, models with larger parameter sizes or complex
architectures may be more prone to overfitting, while care-
fully tuned hyperparameters and well-chosen augmentation
techniques can help prevent this issue. Additionally, datasets
with imbalanced classes or limited diversity may be more
susceptible to overfitting.

In the next step, we plan to investigate the augmenta-
tion capabilities of various transformer models and more
straightforward approaches for other languages. While
LLMs, such as GPT family models, MistralAI, and LLaMA,
may also be considered, our primary focus will be on these
more traditional techniques. The results of this research may
contribute to developing more effective natural language
processing tools for different languages and help bridge the
language gap in the field.
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