
 

VOLUME 24(1), 2025 163 

Date of publication MAR–31, 2025, date of current version FEB–10, 2025. 
www.computingonline.net / computing@computingonline.net 

Print ISSN 1727–6209 
Online ISSN 2312–5381 
DOI 10.47839/ijc.24.1.3888 

Quantitative WEB Application Vulnerability 
Assessment using SAST Methodology 

ANASTASIIA BRYHYNETS, HALYNA HAIDUR, SERGII GAKHOV, VITALII MARCHENKO 
Department of Information and Cyber Security, State University of Information and Communication Technologies, Solomianska 7, Kyiv, Ukraine 

Corresponding author: Anastasiia Bryhynets (e–mail: anastasiyka.br@gmail.com). 

 

 ABSTRACT This paper presents a study on Static Application Security Testing (SAST) with a focus on the Snyk 
Code tool. SAST enables early detection and remediation of security vulnerabilities during software development, 
improving overall system security. The research introduces the General Application Vulnerability Rate (GAVR) model, 
which quantifies vulnerability risks based on the CVSS 3.1 framework. A case study using Snyk Code demonstrates 
the identification and assessment of security flaws, such as XSS and certificate validation issues. The study highlights 
the need for an integrated approach to security testing, emphasizing automation and structured vulnerability assessment 
to enhance software security. 

The GAVR model enhances traditional security evaluations by incorporating exploitability probabilities, offering a 
more dynamic risk assessment. The findings suggest that integrating SAST within the software development lifecycle 
significantly reduces security risks and improves remediation efficiency. By leveraging automation and systematic 
vulnerability quantification, this study underscores the importance of proactive security strategies to safeguard web 
applications against evolving threats. 
 

 KEYWORDS SAST; web application vulnerabilities; CVSS v.3.1; general application vulnerability score, 
cybersecurity. 
 

I.  INTRODUCTION 
TATIC Application Security Testing (SAST) is a set of 
testing methods and techniques in which the component or 

system under test is not run (not executed) [7]. In essence, 
SAST is used as a 'white box' testing method that requires 
access to and understanding of the underlying code base and 
programming language. 

SAST is designed to identify potential security 
vulnerabilities that may be present in the code. It does this by 
checking the code against a set of pre–defined rules or patterns 
associated with known security vulnerabilities. Some of the 
common security issues that SAST can detect are buffer 
overflows, insecure encryption algorithms and unhandled 
exceptions. 

SAST testing allows the identification vulnerabilities in the 
source code of an application at an early stage of development. 
This is because it can be performed at the very beginning of the 
SDLC, a software development life cycle, a structure used in 
project management to describe the stages and tasks associated 
with each step of development. The SDLC model reflects the 
entire software development process from initial planning to 
maintenance and finally to retirement and replacement of the 
completed application [1].  This means: SAST allows 
developers to identify and fix security problems before the code 

is compiled. This saves time and effort and significantly 
reduces the costs associated with fixing security problems later. 
 
II.  PROBLEM DEFINITION 
In the software development process, especially in the context 
of today's dynamic digital environment, early identification and 
mitigation of potential vulnerabilities is critical to ensuring a 
high level of web application security. While source code 
analysis using SAST techniques has proven effective, it faces a 
number of challenges, including the quantification and 
prioritisation of vulnerabilities. 

According to a study conducted by Verizon, web 
applications are the target of 26% [2] of all cyber-attacks, 
making them the second most common category of attack in 
cyberspace. With approximately 58% of the world's 
organisations working remotely [3], there is a need to ensure 
that reliable security measures are in place to minimise the 
potential threats posed by remote access to corporate resources. 

The primary goal of protecting against web threats is to 
reduce the risk of data breaches, which can have catastrophic 
consequences for organizations. The average cost of a data 
breach is estimated at $4.24 million [3], highlighting the 
financial impact of inadequate cyber security. However, 
organisations that implement improved security processes and 

S



 Anastasiia Bryhynets et al. / International Journal of Computing, 24(1) 2025, 163–170 

164 VOLUME 24(1), 2025 

architecture can significantly reduce potential losses, 
demonstrating the importance of a proactive approach to 
information security. 
 
III. SCIENTIFIC PUBLICATIONS ANALYSIS 
Discussion of this topic in academic articles focuses on 
integrating security practices, such as SAST, into the software 
development lifecycle (SDLC) to proactively identify and 
remediate vulnerabilities. This focus correlates with the 
broader theme of improving web application security through 
early detection. 

Paper [10] highlighted the importance of automating 
security measures within DevOps and DevSecOps 
methodologies to ensure the efficiency and security of software 
development and deployment processes. The author 
emphasized the usefulness of SAST in automating code quality 
checks to identify security vulnerabilities early in the 
development process. However, the author also focused on 
automation through Dynamic Application Security Testing 
(DAST), container scanning, software composition analysis 
and automated vulnerability scanning, presenting a 
comprehensive approach to protecting web applications from 
potential threats. 

According to [12], an integrated approach to application 
security facilitated by automation reflects the need for 
preventive measures in vulnerability detection. It illustrates 
how automated tools, including SAST, are used not only to 
identify vulnerabilities but also to enforce security policies, 
thereby reducing the risk of human error and ensuring that 
critical security tasks such as regression testing are performed 
consistently. 

In [15], a detailed overview of SAST was given with the 
explanation of its work as a 'white box' testing method that 
checks the source code of an application for security 
vulnerabilities. The author noted that the intervention early in 
the development lifecycle provides real–time feedback to 
developers, allowing them to identify vulnerabilities a priori 
before they escalate. The article highlighted the usefulness of 
SAST in quickly and efficiently scanning the entire code base 
of an application, as well as its ability to detect key 
vulnerabilities such as SQL injections and cross–site scripting, 
thereby improving code quality. 

As discussed in [10] and [12], integrating SAST into the 
SDLC provides a proactive approach to security through 
automation and the use of comprehensive scanning tools such 
as SAST. This underscores the importance of using SAST–
class solutions to develop secure Web applications by 
identifying and remediating vulnerabilities early in the 
lifecycle. This strategy not only increases the security of web 
applications, but also complies with industry standards and 
requirements, highlighting the importance of early automation 
of security processes in today's digital environment. 

 
IV. THE CONCEPT OF SAST 
In today’s landscape, automation plays a crucial role in various 
development activities, ranging from ensuring code quality and 
performing unit testing to managing deployments. Automating 
testing and deployment can bring many advantages to software 
teams, such as faster and more frequent delivery, higher quality 
and reliability, lower cost and resource consumption, and better 
collaboration and communication. Automation can speed up 
the testing and deployment cycles, allowing software teams to 
release software more often with fewer errors or bugs.  

Thanks to the use of the SAST method, it is possible to 
conduct in–depth code analysis [11]. This is done as follows: 
the solution scans the entire code base, including the libraries 
and frameworks used, to identify any potential security flaws. 
This provides comprehensive coverage of all software 
components, including third–party libraries and packages.  

With the advent of DevSecOps [12], security has become 
an integral part of the development lifecycle, and SAST is a 
good tool in this paradigm. Automating scanning with the 
SAST method will allow the development of secure software 
by ensuring security in the early cycles of application 
development.  

In modern software development life cycle (SDLC), the 
security of an application is as important as its functionality 
[15, 16]. SAST helps development teams do this in several 
ways: the integration of SAST into the Software Development 
Life Cycle represents a pivotal shift in traditional development 
paradigms—a strategy known as "shift left." Basically, it 
assumes that the software development team may find bugs 
faster if they test their code as it is being written, rather than 
waiting until the end of the project [9]. This approach 
encourages the identification and mitigation of security 
vulnerabilities early in the development process. By 
embedding security measures from the onset, development 
teams can significantly reduce both the costs and the effort 
required for later remediation. This proactive detection and 
resolution not only streamline the development process but also 
enhance the overall quality and security of the software. 

Further deepening its impact, SAST tools analyze the entire 
code base faster than manual review in a detailed way. This 
thorough investigation extends beyond mere surface checks, 
delving into complex code bases to uncover hidden or subtle 
patterns that might pose significant security risks. By 
identifying these vulnerabilities early in the development 
stages, SAST tools help prevent the progression of potentially 
exploitable code into later stages of production, thereby 
safeguarding the application from future security threats. 

In addition to enhancing security protocols, SAST 
empowers developers directly. In the era of DevSecOps [27], 
where security is increasingly integrated with development and 
operational practices, SAST plays a crucial role. It equips 
developers with the necessary tools and knowledge to embed 
security into the very fabric of the application from the 
beginning. This empowerment enables developers to take 
ownership of the security aspects of their code, making security 
a fundamental component of the application development 
lifecycle rather than an afterthought. As expressed in a key 
observation, the developer analyzes a warning from a SAST 
solution and investigates the essence of the security defect to 
fix it. The tool documentation helps with this. Thus, the 
developer becomes more experienced in information security. 
This process not only mitigates risks early but also enhances 
the security skills of developers, integrating learning with 
development practices. 

Lastly, the use of SAST, in conjunction with other security 
tools, facilitates a comprehensive protection strategy that 
extends across the entire software ecosystem [13, 14]. For 
example, combining both SAST and DAST offers a more 
holistic approach to security testing that enables continuous 
feedback across different stages of the development lifecycle. 
This holistic approach ensures that not only the application 
itself but all interconnected systems and software components 
are secured. By integrating SAST and other security 



Anastasiia Bryhynets et al. / International Journal of Computing, 24(1) 2025, 163–170  

VOLUME 24(1), 2025 165 

methodologies, teams can build a robust security posture that 
effectively shields the entire digital infrastructure from 
potential threats. This extensive coverage is crucial in today's 
interconnected and interdependent technological landscape, 
where vulnerabilities in one system can potentially 
compromise the integrity of others.  

SAST scan unfolds through a meticulously structured 
sequence designed to scrutinize and methodically organize the 
security aspects of application code. Initially, the process 
commences with the comprehensive analysis of the code base, 
during which the entire source code of the application is 
examined to ascertain its structural and functional attributes. 
Subsequently, leveraging a robust database encompassing 
known vulnerability patterns, the scanning tool meticulously 
searches for the analyzed code to pinpoint patterns that may 
indicate potential security threats. Following the identification 
of possible vulnerabilities, these issues are systematically 
ranked or prioritized. This prioritization process is crucial and 
is based on factors such as the severity of the vulnerability, its 
potential impact on the system, and the ease with which it can 
be exploited. The final stage involves a feedback loop where 
developers are provided with real–time feedback on the 
vulnerabilities identified. This prompt feedback mechanism is 
essential as it facilitates immediate corrective actions, thereby 
enabling more rapid and effective remediation measures. This 
structured approach ensures that each aspect of the 
application's security is addressed comprehensively, enhancing 
the overall robustness of the software against potential cyber 
threats. The detailed algorithm of the application scanning 
process is shown in Figure 1. 

 

 
Figure 1. Algorithm for scanning a web application using the 

SAST method. 

In conclusion, the integration of SAST into the DevSecOps 
framework significantly enhances the security posture of 
software development. By incorporating SAST early in the 
development lifecycle, teams can detect and address 

vulnerabilities at the initial stages, substantially reducing the 
risks and costs associated with later remediation. This proactive 
approach not only streamlines the security process but also 
embeds a security mindset directly within the development 
phase, empowering developers to produce more secure code 
from the outset. Ultimately, SAST provides a thorough and 
effective means of safeguarding against potential security 
threats, ensuring that both the application and its broader 
software ecosystem are robustly protected. This integration, 
therefore, represents a critical step forward in the evolution of 
secure software development practices. 

 
VI. GENERAL APPLICATION VULNERABILITY RATE 
The web application vulnerability assessment process uses a 
mathematical approach to systematically evaluate and quantify 
the security risks posed by identified vulnerabilities. This 
approach uses the Common Vulnerability Scoring System 
(CVSS) version 3.1, a widely accepted standard for assessing 
the severity of security vulnerabilities. It is a free and open 
industry standard for assessing the severity of computer system 
security vulnerabilities and attempts to assign severity scores 
to vulnerabilities, allowing responders to prioritize responses 
and resources according to the threat. Scores are calculated 
based on a formula that depends on several metrics that 
approximate ease of exploit and the impact of exploit [8]. 

In this paper we formalize the assessment process and 
present an improved methodology for calculating the General 
Application Vulnerability Rate (GAVR). 

Each identified vulnerability is assigned a comprehensive 
rating based on the CVSS 3.1 system. The CVSS rating consists 
of a base score and a base severity, which are supplemented by 
additional scores that reflect the specific characteristics and 
potential impact of the vulnerability [20-22].  

The Base metric group represents the intrinsic 
characteristics of a vulnerability that are constant over time and 
across user environments. It is composed of two sets of metrics: 
the Exploitability metrics and the Impact metrics [23]. 

The Temporal metric group reflects the characteristics of a 
vulnerability that may change over time but not across user 
environments. For example, the presence of a simple-to-use 
exploit kit would increase the CVSS score, while the creation 
of an official patch would decrease it. 

The Environmental metric group represents the 
characteristics of a vulnerability that are relevant and unique to 
a particular user’s environment. Considerations include the 
presence of security controls which may mitigate some or all 
consequences of a successful attack, and the relative 
importance of a vulnerable system within a technology 
infrastructure. 

Unlike traditional CVSS-based assessments, GAVR 
incorporates exploitability probability for a more 
comprehensive security evaluation. The model provides a 
structured method for prioritizing vulnerabilities, optimizing 
remediation efforts. 

By integrating exploitability data, GAVR offers a dynamic 
assessment that adapts to real-world attack scenarios. This 
approach ensures that organizations can allocate resources 
more efficiently, mitigating the most critical threats first. 
Additionally, the model helps security teams identify patterns 
in vulnerabilities, improving long-term defensive strategies. 

To quantify the severity and potential impact of each 
vulnerability accurately, these metrics are integrated into a 
structured formula. This calculation not only reflects the 



 Anastasiia Bryhynets et al. / International Journal of Computing, 24(1) 2025, 163–170 

166 VOLUME 24(1), 2025 

inherent risk posed by the vulnerability but also accommodates 
temporal changes and environmental differences that could 
alter its severity. The formula for calculating the rating of an 
individual vulnerability Vi (1) is as follows: 

 
𝑉௜ = 𝐵𝑎𝑠𝑒𝑆𝑐𝑜𝑟𝑒௜ + 𝑇𝑒𝑚𝑝𝑜𝑟𝑎𝑙𝑆𝑐𝑜𝑟𝑒௜ +  𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡𝑎𝑙𝑆𝑐𝑜𝑟𝑒௜ , (1) 
 
where: 

𝑉௜  is the rating of the i-th vulnerability. 
𝐵𝑎𝑠𝑒𝑆𝑐𝑜𝑟𝑒௜ is the CVSS base score for the i–th 

vulnerability, reflecting its inherent characteristics. 
𝑇𝑒𝑚𝑝𝑜𝑟𝑎𝑙𝑆𝑐𝑜𝑟𝑒௜ – reflects the characteristics of the 

vulnerability that may change over time but do not depend on 
a particular user's environment. This score adjusts the baseline 
score to account for factors that may affect the severity of the 
vulnerability over time. 

𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡𝑎𝑙𝑆𝑐𝑜𝑟𝑒௜ – modifies the baseline and 
temporal scores to tailor the CVSS score to a specific 
organizational context, reflecting the impact of the 
vulnerability on a particular environment. Environmental 
factors are derived from impact assessments of affected 
systems, considering industry-defined security controls and 
mitigation measures. 

GAVR (2) is a metric designed to provide a holistic 
assessment of the security posture of web applications by 
aggregating the ratings of all identified vulnerabilities, 
weighted by their likelihood of exploitation. Mathematically it 
is expressed as: 

 

𝐺𝐴𝑉𝑅 =  
∑ (𝑉௜ ∗ 𝑃௜)

ே
௜ୀଵ

𝑁
 , (2) 

 
where: 
𝐺𝐴𝑉𝑅 is a general application vulnerability rating. 
𝑁 is the total number of vulnerabilities detected in the 

application.  
𝑉௜  is the rating of the i–th vulnerability determined earlier. 
𝑃௜  is the probability of exploitation of the i–th vulnerability, 

normalized on a scale from 0 to 1. This probability is then 
converted to a CVSS–equivalent scale from 0 to 10 to be 
consistent with the CVSS scoring mechanism (Fig. 2). The 
qualitative assessment on this scale is expressed as follows: 

 low level of vulnerability – from 0.1 to 3.9; 
 medium level of vulnerability – from 4.0 to 6.9; 
 high level of vulnerability – from 7.0 to 8.9; 
 critical level – from 9.0 to 10.0. 
 

 

Figure 2. Scale for assessing the likelihood of vulnerabilities. 

The weight-setting method is based on empirical security 
analysis data, considering exploitability trends observed in 
real-world attack scenarios. The probability values are 
influenced by publicly available threat intelligence reports, 
CVE exploitation frequency, and expert judgment in risk 
assessment methodologies. To ensure reproducibility, all 
factors used in weighting are sourced from standardized 
frameworks such as NIST, MITRE ATT&CK, and OWASP 
Top 10 rankings. 

The proposed methodology for calculating the GAVR 
effectively integrates the severity and probability of 
exploitation of each vulnerability, providing a comprehensive 
assessment of application security vulnerabilities. This metric 
facilitates the prioritization of remediation efforts based on the 
aggregated risk profile, thereby increasing the effectiveness of 
the security measures implemented in the application. 

This scientific approach to quantifying web application 
vulnerabilities using GAVR provides a systematic and 
objective basis for assessing security risks. By using the CVSS 
3.1 scoring system in combination with the Probability of 
Exploitation factor, security analysts and web application 
developers can gain a detailed understanding of the 
application's vulnerability landscape and make strategic 
decisions about the secure development of web applications in 
the early stages of development. 

Consider an example of a web application GAVR 
assessment. As an example of such an application, we have 
chosen a task from the HackTheBox learning platform called 
'Proxy as a Service'. 

There are various SAST tools available, each offering 
unique features and advantages. Selecting the best tool depends 
on multiple factors, such as integration capabilities, 
vulnerability detection accuracy, and ease of use. To determine 
the most effective solutions, we analyze three leaders from 
Gartner’s Magic Quadrant for Application Security Testing: 
Veracode, Checkmarx, and Synopsys (Figure 3). 

 

 

Figure 3. Magic Quadrant for Application Security 
Testing [10] 

Veracode provides an advanced SAST solution with 
seamless integration into popular IDEs (Visual Studio, IntelliJ, 
Eclipse) and CI/CD pipelines, allowing developers to receive 
automated security feedback during coding. Its policy-driven 
scanning before deployment ensures clear guidance for 
prioritizing and addressing security issues across an 
organization’s software ecosystem. 

Checkmarx offers extensive programming language 
support and highly customizable scanning rules, making it 
adaptable to various enterprise security policies. Its deep code 
analysis capabilities and integration with CI/CD environments 
provide robust security assurance. 

Synopsys delivers a comprehensive SAST solution tailored 
for complex enterprise environments. Its ability to scan 



Anastasiia Bryhynets et al. / International Journal of Computing, 24(1) 2025, 163–170  

VOLUME 24(1), 2025 167 

applications of all sizes efficiently, combined with in-depth 
vulnerability detection and remediation guidance, enhances 
security at scale. 

Snyk Code, which we utilized in our case study, 
distinguishes itself with real-time IDE integration, AI-
enhanced threat intelligence, and a developer-friendly 
approach. It prioritizes vulnerabilities based on contextual risk, 
ensuring efficient security management throughout 
development. One of the advantages of using Snyk Code is that 
it offers a free version, making it accessible for researchers and 
developers to conduct security testing without financial 
constraints. This allows our experiment to be easily replicated 
by other researchers, ensuring the reproducibility of findings. 
By leveraging a widely available tool, future studies can 
expand on our work, comparing results across different 
environments and applications. This accessibility promotes 
further research and improvements in SAST methodologies. 

A comparative analysis of these tools reveals their strengths 
in different use cases (Table 1). Veracode excels in enterprise-
wide risk visibility, Checkmarx provides highly configurable 
security policies, Synopsys ensures comprehensive 
vulnerability coverage, and Snyk Code emphasizes real-time, 
developer-centric security. 

Table 1. Comparative analysis of SAST tools 

Feature Snyk Code Checkmarx Synopsys Veracode 

Integration IDEs, 
CI/CD, 
real-time 
scanning 

IDEs, CI/CD, 
customizable 
rules 

IDEs, 
CI/CD, 
enterprise-
focused 

IDEs, 
CI/CD, 
policy-
driven 
scanning 

Program-
ming 
Support 

Wide 
language 
support 

Extensive 
language 
support 

Broad 
coverage 

Multiple 
languages 

Customiza-
tion 

AI-
enhanced 
recommen
dations 

Highly 
customizable 

Enterprise-
level 
configurati
ons 

Policy-
driven 

Detection 
Accuracy 

Context-
aware 
prioritizati
on 

High Comprehen
sive 

High 

Ease of Use Developer-
friendly, 
real-time 
fixes 

Configurable 
security 
policies 

Complex 
but detailed 
analysis 

Enterprise 
risk 
visibility 

Unique 
Strengths 

Free 
version, 
AI-
enhanced 
insights 

Customizable 
scanning 
rules 

Deep code 
analysis for 
large orgs 

Strong 
enterprise 
security 
features 

 
This information is derived from publicly available reports, 

including Gartner’s Magic Quadrant for Application Security 
Testing, vendor documentation, and independent research 
studies on SAST tool capabilities. Future research should 
extend testing to include multiple SAST tools across a diverse 
range of web applications, ensuring broader applicability of our 
methodology. 

In order to enhance application security and integrate best 
practices within the development lifecycle, we have chosen to 
deploy Snyk’s product [24, 25] for SAST tool. 

Snyk offers a comprehensive suite of products designed to 
enhance security at every stage of the software development 
lifecycle. For example, it has Snyk Open Source that provides 
advanced software composition analysis (SCA) backed by 
industry-leading security and application intelligence or Snyk 

Container which helps developers and DevOps find, prioritize, 
and fix vulnerabilities throughout the SDLC. In case of static 
testing, the best product to deploy is Snyk Code, a solution that 
keeps pace with modern development, analyzing source code 
precisely across the software development lifecycle. 

Snyk Code is a security tool that is fast and accurate and 
produces fewer false positives, making it easier for developers 
to remediate issues and build secure software. As an advantage, 
using Snyk Command Line interface, the development team 
can run Snyk Code tests locally or incorporate them into CI/CD 
pipeline to scan source code for security vulnerabilities, which 
makes the process automated and fast-pacing. 

Let us scan the web application with the command “snyk 
code test”. As a result of the scan, the solution returns 2 critical 
vulnerabilities (Fig. 4). 

 

 

Figure 4. Results of the source code scanning with Snyk Code 
SAST solution. 

The vulnerabilities found include XSS and incorrect 
certificate validation (Figures 5–6).  

A cross–site scripting attack occurs when an attacker tricks 
a legitimate web application or website into accepting a request 
as coming from a trusted source [6]. This is done by leaving the 
context of the web application; the application then passes this 
data to its users along with other trusted dynamic content 
without checking it. The browser unwittingly executes a 
malicious client–side script (using client–side languages, 
usually JavaScript or HTML) to perform actions that would 
otherwise be blocked by the same browser's origin policy. 

Regarding the second vulnerability, communication over 
encrypted TLS/SSL protocols can only take place if a server 
has a valid certificate that associates that server with a valid 
public key identifier issued by a third–party authority [18, 19]. 

  

 

Figure 5. XSS vulnerability found with SAST solution. 

If the certificate validation is cursory or incomplete, this 
creates a vulnerability that could allow an attacker to spoof one 
or more certificate details (such as the expiration date) and gain 
unauthorized access to sensitive data and privileged actions. 



 Anastasiia Bryhynets et al. / International Journal of Computing, 24(1) 2025, 163–170 

168 VOLUME 24(1), 2025 

 

 

Figure 6. Improper certificate validation vulnerability found 
with SAST solution. 

One of the key benefits of using Snyk Code's SAST solution 
is its prioritization, which is directly proportional to the level 
of vulnerability exploitation. In the case of this particular web 
application, the probability of the vulnerability being exploited 
is calculated based on empirical data and expressed as Pi = 0.8, 
corresponding to a CVSS-equivalent score of 8. 

Based on the information in CWE and [17], let us calculate 
[26] the rate of the XSS vulnerability Vxss (3) using the formula 
of 𝑉௜ (1). So, for the above runtime environment: 

 
𝑉௫௦௦ = 𝐴𝑉: 𝑁/𝐴𝐶: 𝐿/𝑃𝑅: 𝑁/𝑈𝐼: 𝑁/𝑆: 𝐶/𝐶: 𝐻/𝐼: 𝐿/𝐴: 𝑁 =

9.3 , 
where: 
𝐴𝑉: 𝑁 – Attack Vector: Network; 
𝐴𝐶: 𝐿 – Attack Complexity: Low; 
𝑃𝑅: 𝑁 – Privileges Required: None; 
𝑈𝐼: 𝑁 – User Interaction: None; 
𝑆: 𝐶 – Scope: Changed; 
𝐶: 𝐻 – Confidentiality: High; 
𝐼: 𝐿 – Integrity: Low; 
𝐴: 𝑁 – Availability: None. 
 
Now, based on the information in CWE, we will similarly 

calculate the rate of improper certificate validation (ICV) 
vulnerability Vicv (4) using formula (1). So, for the above 
runtime environment: 

 
𝑉௜௖௩ = 𝐴𝑉: 𝑁/𝐴𝐶: 𝐿/𝑃𝑅: 𝑁/𝑈𝐼: 𝑁/𝑆: 𝑈/𝐶: 𝐻/𝐼: 𝐻/

𝐴: 𝑁 = 9.1, 
 
where: 
𝐴𝑉: 𝑁 – Attack Vector: Network; 
𝐴𝐶: 𝐿 – Attack Complexity: Low; 
𝑃𝑅: 𝑁 – Privileges Required: None; 
𝑈𝐼: 𝑁 – User Interaction: None; 
𝑆: 𝑈 – Scope: Unchanged; 
𝐶: 𝐻 – Confidentiality: High; 
𝐼: 𝐻 – Integrity: High; 
𝐴: 𝑁 – Availability: None. 
At this point, it is possible to calculate the General 

Application Vulnerability Rate (5): 
 

𝐺𝐴𝑉𝑅 =  
(𝑉௫௦௦ ∗ 𝑃௫௦௦) +  (𝑉௜௖௩ ∗ 𝑃௜௖௩)

2
=

=  
(9,3 ∗ 0,8) + (9,1 ∗ 0,8)

2
= 7,36, (5)

 

where: 

 𝑉௫௦௦ – rate of XSS vulnerability; 
 𝑃௫௦௦ – probability of realization of XSS vulnerability; 
 𝑉௜௖௩ – rate of improper certificate validation vulnerability; 
 𝑃௜௖௩  – probability of realization of improper certificate 

validation vulnerability. 
Therefore, the general application vulnerability rate is 7.36. 

Considering the scale in Figure 2, according to the qualitative 
scale, this vulnerability level can be rated as “high”, so the web 
application cannot be considered secure. In this case it is 
recommended to fix the existing vulnerabilities in the code and 
perform a second scan. 

One of the tools for fixing the detected vulnerabilities is the 
built-in functionality of the Snyk Code solution, which allows 
viewing possible options for fixing the vulnerability (Fig. 7). 

 

 

Figure 7. Recommendations for remediation of the 
vulnerability based on the other projects. 

In summary, the enhanced methodology for calculating the 
General Application Vulnerability Rate (GAVR) presented in 
this paper offers a refined and quantifiable approach to 
assessing security risks in web applications. By utilizing the 
Common Vulnerability Scoring System (CVSS) version 3.1 as 
a foundation, and augmenting it with a mathematical model that 
incorporates the probability of exploitation, our methodology 
provides a robust mechanism for determining the overall 
security posture of applications. 

The calculation of GAVR encompasses an aggregate of 
scores derived from the CVSS base, temporal, and 
environmental metrics, tailored to each identified vulnerability 
within the application's ecosystem. This holistic view allows 
for a nuanced understanding of potential security threats, 
considering both their inherent risks and the specific contextual 
factors of the operating environment. The integration of the 
probability of exploitation further enhances this model, 
ensuring that the severity of vulnerabilities reflects not only 
their potential impact but also their likelihood of being 
exploited. 

Ultimately, this refined approach aids in prioritizing 
remediation efforts more effectively, directing resources 
towards the most significant vulnerabilities, and enhancing the 
security measures within the application development 
lifecycle. This not only mitigates the risks of potential breaches 
but also aligns with best practices in secure software 
development, promoting a proactive stance in addressing 
security from the earliest stages of application design and 
development. By adopting such methodologies, organizations 
can significantly bolster their defense mechanisms against the 
evolving landscape of cyber threats, ensuring that their 
applications remain robust and resilient against attacks. 

 
 

(3) 

(4) 

= 

= 



Anastasiia Bryhynets et al. / International Journal of Computing, 24(1) 2025, 163–170  

VOLUME 24(1), 2025 169 

VII. DISCUSSION 
The results of our study underline the significant impact of 
incorporating SAST into the Software Development Life Cycle 
(SDLC) for enhancing web application security. The 
identification of critical vulnerabilities such as cross-site 
scripting (XSS) and improper certificate validation emphasizes 
the necessity of early detection and mitigation of security risks. 

The primary hypothesis of this study was that the use of 
SAST, particularly with the Snyk Code tool, would provide a 
comprehensive and effective means of identifying and 
quantifying web application vulnerabilities. Our findings 
support this hypothesis, demonstrating that SAST can uncover 
severe security issues early in the development process, thereby 
reducing the potential for exploitation and enhancing overall 
application security. 

The approach to quantifying vulnerabilities using the 
General Application Vulnerability Rate (GAVR) model, which 
integrates the Common Vulnerability Scoring System (CVSS) 
with the probability of exploitation, offers a balanced and 
objective method for prioritizing security patches. The GAVR 
model's ability to provide a holistic assessment of application 
security facilitates strategic decision-making in the remediation 
process. The identification of a high GAVR score in this test 
case highlights the model's effectiveness in pinpointing areas 
requiring immediate attention. 

Compared to previous studies that primarily focused on 
qualitative assessments or isolated quantitative measures, our 
integrated approach provides a more comprehensive 
understanding of the vulnerability landscape. The inclusion of 
both severity and exploitability factors in our model aligns with 
the findings of studies emphasizing the importance of early and 
detailed vulnerability detection in the SDLC. 

The practical implications of our findings are substantial. 
By employing SAST tools like Snyk Code, developers can 
receive real-time feedback on security issues, enabling faster 
and more efficient remediation. This proactive approach not 
only reduces the risk of security breaches but also aligns with 
industry best practices for secure software development. 
Additionally, the ability to provide specific recommendations 
for fixing identified vulnerabilities demonstrates the practical 
utility of our approach in real-world scenarios. 

While this study provides a robust framework for web 
application security assessment, it is not without limitations. 
The reliance on a single SAST tool and the specific test cases 
used may limit the generalizability of our findings. Future 
research could explore the integration of multiple security 
testing tools and a broader range of applications to validate and 
refine the proposed methodology. Additionally, examining the 
long-term effectiveness of the implemented security measures 
through repeated scans could provide deeper insights into the 
sustainability of our approach. 

In summary, this study highlights the critical role of SAST 
in the early detection and mitigation of web application 
vulnerabilities. The developed GAVR model offers a valuable 
tool for quantifying and prioritizing security risks, thereby 
enhancing the overall security posture of web applications. By 
integrating these practices into the SDLC, developers can 
create more secure applications, ultimately protecting sensitive 
data and maintaining user trust. 

 
VIII. CONCLUSION 
Therefore, the study proposed the use of the SAST method 
using the Snyk Code tool to assess the security of a web 

application. The developed algorithm for scanning a web 
application using the SAST method allowed us to identify 
critical vulnerabilities, namely cross-site scripting (XSS) and 
incorrect certificate validation. The use of the GAVR 
comprehensive security assessment of the web application 
showed the level of criticality of the web application.  

Based on the results, recommendations are made to fix the 
identified vulnerabilities and, in accordance with the developed 
methodology, to perform a rescan to verify the effectiveness of 
the measures taken. This approach helps to improve the 
security of the web application, minimizing potential risks to 
end users and the system as a whole. 

The results of the study demonstrate the need for an 
integrated approach to security that includes regular testing and 
analysis of software security. For example, the algorithm 
developed to scan a web application using the SAST method 
demonstrates the importance and effectiveness of integrating 
security measures in the early stages of software development. 

References 

[1] A. S. Gillis, "What is the software development lifecycle (SDLC)? A 
definition from WhatIs.com," Search Software Quality. [Online]. 
Available: 
https://www.techtarget.com/searchsoftwarequality/definition/software-
development-life-cycle-SDLC. 

[2] Verizon Business, "2024 Data Breach Investigations Report," 2024. 
[Online]. Available at: 
https://www.verizon.com/business/resources/reports/dbir/. 

[3] C. Harris, "50 Web Security Stats You Should Know In 2025," Expert 
Insights, Jan. 10, 2024. [Online]. Available at: 
https://expertinsights.com/insights/50-web-security-stats-you-should-
know/. 

[4] E. Moyle, "5 ways to automate security testing in DevSecOps | 
TechTarget," Search Security. [Online]. Available: 
https://www.techtarget.com/searchsecurity/tip/5-ways-to-automate-
security-testing-in-DevSecOps. 

[5] K. Brush, "What is static application security testing (SAST)? Definition 
from WhatIs.com," Search Software Quality. [Online]. Available: 
https://www.techtarget.com/searchsoftwarequality/definition/static-
application-security-testing-SAST. [Accessed: Mar. 27, 2025]. 

[6] F. T. Alssir and M. Ahmed, "Web security testing approaches: 
comparison framework," in Proc. 2nd Int. Cong. Comput. Applications 
Computational Science, Springer, 2012, pp. 225–238. 
https://doi.org/10.1007/978-3-642-28314-7_23. 

[7] A. Horváth, P. M. Erdősi, and F. Kiss, "The Common Vulnerability 
Scoring System (CVSS) generations – usefulness and deficiencies," in IT 
és hálózati sérülékenységek társadalmi-gazdasági hatásai, F. Kiss and A. 
Horváth, Eds., Infota, 2016, pp. 137–153. 

[8] S. A. Vaddadi, R. Thatikonda, A. Padthe, and P. R. R. Arnepalli, "Shift-
left testing paradigm process implementation for quality of software 
based on fuzzy," Soft Computing, Art. no. 87, 2023. 
https://doi.org/10.1007/s00500-023-08741-5. 

[9] Synopsys, "2023 Gartner Magic Quadrant for Application Security 
Testing," [Online]. Available at: https://www.synopsys.com/software-
integrity/resources/analyst-reports/gartner-magic-quadrant-appsec.html.  

[10] O. Trofymenko, A. Dyka, and Y. Loboda, "Analysis of web application 
testing tools," Cybersecurity: Education, Science, Technique, vol. 4, no. 
20, pp. 62–71, 2023. https://doi.org/10.28925/2663-4023.2023.20.6271. 

[11] V. Susukailo, "Using the devsecops approach to analyze current 
information security threats," Cybersecurity: Education, Science, 
Technology, vol. 2, no. 14, pp. 26–35, 2021. 

[12] F. A. Alaba, M. Othman, I. A. T. Hashem, and F. Alotaibi, "Internet of 
Things security: A survey," J. Network Comput. Appl., vol. 88, pp. 10–
28, 2017. https://doi.org/10.1016/j.jnca.2017.04.002. 

[13] A. O. Gapon, V. M. Fedorchenko, and O. V. Sievierinov, "Methods and 
means of static and dynamic code analysis," Radiotekhnika, vol. 212, pp. 
7–13, 2023. https://doi.org/10.30837/rt.2023.1.212.01. 

[14] Q. Yas, A. Alazzawi, and B. Rahmatullah, "A Comprehensive Review of 
Software Development Life Cycle methodologies: Pros, Cons, and Future 
Directions," Iraqi J. Comput. Sci. Math., pp. 173–190, 2023. 
https://doi.org/10.52866/ijcsm.2023.04.04.014. 



 Anastasiia Bryhynets et al. / International Journal of Computing, 24(1) 2025, 163–170 

170 VOLUME 24(1), 2025 

[15] H. S. Lisda, M. Y. R. Madhika, and E. Bayunanda, "Systematic literature 
review SDLC in software engineering," Int. J. Comput. Inf. Technol., vol. 
12, no. 1, 2023. 

[16] H. D. Jayawardana, M. I. Uyanahewa, V. Hapugala, and T. 
Thilakarathne, "An analysis of XSS vulnerabilities and prevention of 
XSS attacks in web applications," Int. J. Comput. Appl., vol. 182, no. 20, 
pp. 1–8, 2023. 

[17] K. Wang, Y. Zheng, Q. Zhang, G. Bai, M. Qin, D. Zhang, and J. S. Dong, 
"Assessing certificate validation user interfaces of WPA supplicants," in 
Proc. ACM MobiCom '22: 28th Annu. Int. Conf. Mobile Comput. 
Networking, 2022. https://doi.org/10.1145/3495243.3517026. 

[18] M. Luo, B. Feng, L. Lu, and K. Ren, "On the complexity of the Web's 
PKI: Evaluating certificate validation of mobile browsers," IEEE Trans. 
Dependable Secure Comput., vol. 20, no. 1, pp. 1–14, 2023. 
https://doi.org/10.1109/TDSC.2023.3255869. 

[19] H. Howland, "CVSS: Ubiquitous and Broken," Digital Threats: Res. 
Pract., 2021. https://doi.org/10.1145/3491263. 

[20] M. Walkowski, M. Krakowiak, M. Jaroszewski, J. Oko, and S. Sujecki, 
"Automatic CVSS-based vulnerability prioritization and response with 
context information," in 2021 Int. Conf. Soft., Telecommun. Comput. 
Networks (SoftCOM), 2021. 
https://doi.org/10.23919/SoftCOM52868.2021.9559094. 

[21] J. Franklin, C. Wergin, and H. Booth, "CVSS implementation guidance," 
National Institute of Standards and Technology, 2014. 
https://doi.org/10.6028/NIST.IR.7946. 

[22] A. Balsam, M. Nowak, M. Walkowski, J. Oko, and S. Sujecki, "Analysis 
of CVSS vulnerability base scores in the context of exploits’ availability," 
in Proceedings of the 2023 23rd Int. Conf. Transparent Optical Networks 
(ICTON), 2023. https://doi.org/10.1109/ICTON59386.2023.10207394. 

[23] K. Kuszczyński and M. Walkowski, "Comparative analysis of open-
source tools for conducting static code analysis," Sensors, vol. 23, no. 18, 
Art. no. 7978, 2023. https://doi.org/10.3390/s23187978. 

[24] A. War, A. Habib, A. Diallo, J. Klein, and T. F. Bissyandé, "Security 
vulnerabilities in Infrastructure as Code: What, how many, and who?" 
Res. Square, 2023. https://doi.org/10.21203/rs.3.rs-3600645/v1. 

[25] A. G. Korchenko, B. B. Akhmetov, S. V. Kazmirchuk, and E. A. 
Chasnovskyi, "Information security risk assessment system – ‘RISK-
CALCULATOR’," Ukrainian Sci. J. Inf. Sec., vol. 23, no. 2, 2017. 
https://doi.org/10.18372/2225-5036.23.11824. 

[26] P. Maslianko and I. Savchuk, "DevOps – concept and structural 
representation," KPI Sci. News, no. 4, pp. 39–51, 2022. 
https://doi.org/10.20535/kpisn.2021.4.261938. 

 

 

Anastasiia BRYHYNETS Bachelor of 
cybersecurity, lead engineer of 
cryptographic laboratory. Field of 
scientific interests: application of 
machine learning methods in cyber 
security systems, vulnerability 
assessment methodologies, 
information security compliance, 
incident response and protection of 
confidential data systems. 

 
Halyna HAIDUR Doctor of Technical 
Sciences, Professor, Head of 
Department of Information and Cyber 
Security. Field of scientific interests: 
cyber security technologies, 
application of machine learning 
methods in cyber security systems, 
methods and means of detecting 
anomalies in network traffic. 

 
Sergii GAKHOV Candidate of Military 
Sciences, an Associated professor, 
associate professor of Department of 
Information and Cyber Security. Field 
of scientific interests: cyber security 
technologies, application of machine 
learning methods in cyber security 
systems, methods and means of 
detecting malicious processes. 

 

 

Vitalii MARCHENKO PhD, Associate 
professor of Department of 
Information and Cyber Security  
Field of scientific interests: cyber 
security technologies, malware 
analysis, cryptanalysis, ML in cyber 
security systems, steganography. 

 
 
 

 


