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 ABSTRACT This study aims to enhance the performance of supervised learning models in dermatology data 
classification through a hybrid approach that combines Information Gain-based feature selection with several 
established supervised learning algorithms, namely K-Nearest Neighbor (KNN), Support Vector Machine 
(SVM), and Naive Bayes. Utilizing the Dermatology dataset from the UCI Machine Learning Repository, 
consisting of 366 instances with 34 numeric attributes and 6 class labels, the research identifies attributes with 
the lowest Information Gain values, including Family History, Eosinophils in the infiltrate, and Hyperkeratosis. 
These attributes undergo dimensional reduction to expedite computation and improve model performance. The 
study evaluates the impact of dataset dimensionality reduction on the performance of the supervised learning 
algorithms, encompassing KNN, SVM, and Naive Bayes. Experimental results reveal a significant enhancement 
in the performance of supervised learning models. Specifically, the generated models achieve a True Positive 
Rate (TPR) of up to 82.52%, True Negative Rate (TNR) of 98.81%, Positive Predictive Value (PPV) of 33.55%, 
Negative Predictive Value (NPV) of 98.78%, and accuracy of 96.29% using the KNN algorithm. Furthermore, 
the utilization of SVM and Naive Bayes also yields significant improvements in model performance. 
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I. INTRODUCTION 
HE  rapid expansion of data alongside advancements in 
machine learning have sparked significant interest in 

refining the efficacy of supervised learning models [1-4]. 
Supervised learning, a fundamental approach in machine 
learning, involves training models on labeled data to make 
predictions or decisions based on input features [26]. 
Particularly, within various domains, such as text 
classification, medical diagnosis, and disease prediction, there 
lies substantial potential to leverage these advancements. 
However, datasets in these domains often suffer from high 
dimensionality and variability, posing unique challenges that 
necessitate effective feature selection techniques and robust 
classification methodologies [5-7]. 

Feature selection serves as a pivotal preprocessing step in 
machine learning, striving to identify the most pertinent 
attributes within a dataset [8]. This process assumes 
heightened significance in datasets with vast dimensions, 
where the inclusion of irrelevant or redundant features can 
precipitate overfitting, escalate computational expenses, and 
compromise model performance [9-14]. Among various 

feature selection methods, those based on mutual information 
have gained prominence due to their ability to measure the 
statistical dependence between features and the target variable 
[15-18]. 

Recent research endeavors have explored diverse avenues 
to enhance machine learning models across various domains. 
For instance, Li et al. [19] showcased the effectiveness of a 
mutual information-based feature selection approach in 
tandem with a decision tree algorithm, yielding substantial 
enhancements in text classification accuracy and 
computational efficiency. Similarly, Chawla and Bhardwaj 
[20] provided a comprehensive review of feature selection 
methods in medical diagnosis, highlighting the challenges and 
opportunities in this domain. Gupta et al. [21] conducted a 
comparative study of enhanced classification techniques, 
demonstrating significant improvements in disease prediction 
accuracy. Ahmed et al. [22] compared the performance of 
machine learning algorithms for disease prediction, shedding 
light on the strengths and limitations of different approaches. 
Furthermore, recent reviews by Wang et al. [23], Zhou et al. 
[24], and Liu et al. [25] have discussed the application of 
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machine learning techniques in medical image analysis, 
electronic health records, and medical imaging, respectively, 
emphasizing the importance of feature selection in optimizing 
model performance. 

Building upon previous research in supervised learning, 
this study aims to contribute to the advancement of machine 
learning methodologies. By enhancing the classification 
performance of supervised learning models through a hybrid 
approach, which combines Information Gain-based feature 
selection with established supervised learning algorithms like 
KNN, SVM, and Naive Bayes, the research assesses the 
impact of dimensionality reduction on model performance. 
Specifically, the study investigates how excluding attributes 
with low mutual information values influence computational 
efficiency and classification accuracy across different 
domains, including text classification, medical diagnosis, and 
disease prediction. The initial experimental findings suggest a 
significant enhancement in the performance of supervised 
learning models. By optimizing the selection of informative 
features, this hybrid optimization approach offers promising 
avenues for developing precise and efficient models 
conducive to various applications, including medical 
diagnosis and disease prediction. 

II. METHODOLOGY 
This section presents the methodology used to optimize the 
performance of supervised learning models for dermatology 
data classification. The approach combines Information Gain-
based feature selection with well-established supervised 
learning algorithms, namely K-Nearest Neighbor (KNN), 
Support Vector Machine (SVM), and Naïve Bayes. The 
subsequent subsections provide a detailed explanation of the 
dataset, feature selection process, supervised learning 
algorithms, experimental setup, and performance evaluation. 

A. DATASET DESCRIPTION 
The dataset utilized in this study is sourced from the 
Dermatology dataset available in the UCI Machine Learning 
Repository. It comprises 366 instances, each characterized by 
34 numeric attributes and 6 class labels. The dataset serves as 
the basis for training and evaluating the supervised learning 
models in dermatology data classification as shown in Table 1 

Table 1. Dermatology Dataset 

Description Count 
Total Instances 366 

Numeric Attributes 34 
Class Labels 6 

B. PROPOSED MODEL 
The proposed model in this study integrates Information 
Gain-based feature selection with three established supervised 
learning algorithms: K-Nearest Neighbor (KNN), Support 
Vector Machine (SVM), and Naive Bayes. This hybrid 
approach aims to enhance the performance of dermatology 
data classification by optimizing feature selection and 
leveraging the strengths of different classification techniques. 
The feature selection process begins by identifying attributes 
with the lowest Information Gain values, indicating their 
limited relevance to the target variable. These attributes 
undergo dimensional reduction to streamline computation and 
improve model efficiency. Subsequently, the reduced feature 
set is fed into each supervised learning algorithm for model 

training and classification. 
The performance of the proposed model is evaluated using 

various performance metrics, including accuracy, True 
Positive Rate (TPR), True Negative Rate (TNR), Positive 
Predictive Value (PPV), and Negative Predictive Value 
(NPV). By comparing the performance of the proposed model 
against baseline models and individual algorithms, the 
effectiveness of the hybrid approach can be assessed and 
validated. The following diagram illustrates the flow of the 
proposed model, as depicted in Figure 2. 

 

 

Figure 1. The newly proposed method 

In Figure 1, the proposed methodology for this research is 
delineated, consisting of several sequential steps. Initially, the 
dermatology dataset is incorporated into the system. 
Subsequently, the calculation of information gain becomes the 
focal point of the second step. The ensuing step involves 
reducing the dataset's dimensionality by selecting features 
with the least information gain values. This process of 
dimensionality reduction occurs three times, namely one-
dimensional, two-dimensional, and three-dimensional 
reductions, each employing progressively lower information 
gain values. Proceeding, the fourth step engages in the 
classification task utilizing supervised learning methods such 
as K-Nearest Neighbors (K-NN), Support Vector Machine 
(SVM), and Naive Bayes. Finally, the fifth step encompasses 
the performance assessment of these classification algorithms, 
evaluating various metrics including True Positive Rate 
(TPR), True Negative Rate (TNR), Positive Predictive Value 
(PPV), Negative Predictive Value (NPV), False Negative Rate 
(FNR), False Positive Rate (FPR), False Discovery Rate 
(FDR), False Omission Rate (FOR), Accuracy (ACC), F-
Measure, and Matthews Correlation Coefficient (MCC). 

 

 

Figure 2. The conventional method 
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Figure 2 illustrates the conventional method used in this 
study. The first step involves inputting the dermatology 
dataset. The second step entails performing classification 
using supervised learning methods, namely K-NN, SVM, and 
Naive Bayes. The fifth step is to measure the performance of 
these classification algorithms, including True Positive Rate 
(TPR), True Negative Rate (TNR), Positive Predictive Value 
(PPV), Negative Predictive Value (NPV), False Negative Rate 
(FNR), False Positive Rate (FPR), False Discovery Rate 
(FDR), False Omission Rate (FOR), Accuracy (ACC), F-
Measure, and Matthews Correlation Coefficient (MCC). In 
this proposed conventional method, dimensionality reduction 
techniques are not employed. 

C. INFORMATION GAIN-BASED FEATURE SELECTION 
Information gain is a prominent feature selection method 
widely employed by researchers to determine the significance 
threshold of an attribute. The value of information gain is 
obtained by subtracting the entropy value before separation 
from the entropy value after separation. This measurement is 
primarily utilized as an initial step to determine which 
attributes will be retained for use in classification algorithms.  
The process of selecting features using information gain 
consists of three stages: 
1. Calculate Information Gain for Each Attribute in the 

Original Dataset: In this stage, the information gain value 
is computed for each attribute in the original dataset. 

2. Determine the Desired Threshold: Researchers set a 
threshold, allowing attributes with a weight equal to or 
greater than the threshold to be retained, while attributes 
below the threshold are discarded. 

3. Refine the Dataset by Reducing Attributes: This stage 
involves reducing the dataset by removing attributes. The 
measurement of attributes is described as:           

info(D) = −∑୧ୀଵ
୫ pi logଶ (pi) ,           (1) 

where D is the set of cases, M is the number of partitions of 
D, and pi is the proportion of Di with respect to D. pi 
represents the probability of a tuple in D belonging to class Ci 
and is estimated by ∣Ci,D∣/∣D∣. The logarithm function used 
here is base 2 because the information is encoded based on 
bits. The calculation of entropy value after separation can be 
done using the following formula: 

info୅(D) = −∑୨ୀଵ
୴ หୈౠห

|ୈ|
 x I ൫D୨൯ ,  (2) 

where D represents the set of cases, A denotes the attribute. v 
is the number of partitions of attribute A. ∣Dj∣ signifies the 
number of cases in partition j. ∣D∣ represents the total number 
of cases in D. I(Dj) indicate the total entropy within the 
partition.  

Gain (A) = I (D) – I (A) ,  (3) 

where Gain(A) denotes the information of attribute A,    I(D) 
represents the total entropy. I(D,A) signifies the entropy of 
attribute A. 

D. K-NEARET NEIGHBOR 
K-Nearest Neighbors (KNN) is an instance-based machine 

learning algorithm used for both classification and regression. 
The algorithm works by identifying the k nearest neighbors to 
the data point that requires prediction, using a distance metric, 
typically the Euclidean distance [26]. The Euclidean distance 
formula for calculating the distance between two data points x 
and y in an n-dimensional feature space is: 

𝑑௜ = ට∑ ( 𝑥ଶ௜ − 𝑥ଵ௜)ଶ௣
௜ୀଵ ,  (4) 

where xi and yi represent the Ith feature values of the data 
points x and y.  

E. SUPPORT VECTOR MACHINE (SVM) 
Support Vector Machine (SVM) is a supervised machine 
learning algorithm used for classification, regression, and 
outlier detection. SVM works by finding the optimal 
hyperplane that best separates data points of different classes 
in a high-dimensional space [27]. The objective is to 
maximize the margin, defined by: 

𝑚𝑖𝑛𝓌,௕‖𝓌‖ଶ                  (5) 

subject to the constraints: 

𝑦௜(𝓌. 𝑥௜ + 𝑏) ≥ 1, (6) 

where, w is the weight vector perpendicular to the hyperplane, 
b is the bias term, and xi are the feature vectors of the training 
data. When the data is not linearly separable, SVM uses 
kernel functions (e.g., linear, polynomial, radial basis 
function) to map input features into higher-dimensional 
spaces where linear separation is possible.  

F. NAÏVE BAYES 
Naive Bayes is a simple yet effective probabilistic machine 
learning algorithm used for classification tasks. It is based on 
Bayes' theorem and assumes that the features are independent 
given the class label [28]. Bayes' theorem is given by:  

𝑃(𝑦|𝑥) =
௉൫𝑥ห𝑦൯.௉(௬)

௉(௫)
 ,            (7) 

where P(y∣X) is the posterior probability of class y given the 
feature vector X, P(X∣y) is the likelihood, P(y) is the prior 
probability, and P(X) is the evidence.  

G. PERFORMANCE MEASURE 
Performance measure refers to metrics or tools used to 
evaluate and measure how effectively a model or algorithm 
makes predictions or classifications based on given data [29]. 
Examples include: 
1. True Positive Rate (TPR):  Proportion of true positive 

cases predicted correctly out of all true positive cases. 

TPR = TP / (TP + FN)   (8) 

2. True Negative Rate (TNR): Proportion of true negative 
cases predicted correctly out of all true negative cases. 

TNR = TN / (TN + FP)          (9) 
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3. Positive Predictive Value (PPV): Proportion of positive 
predictions that are true out of all positive predictions. 

PPV = TP / (TP + FP)        (10) 

4. Negative Predictive Value (NPV): Proportion of negative 
predictions that are true out of all negative predictions. 

NPV = TN / (TN + FN)        (11) 

5. False Negative Rate (FNR): Proportion of false negative 
cases out of all true positive cases. 

FNR = FN / (FN + TP)        (12) 

6. False Positive Rate (FPR): Proportion of false positive 
cases out of all true negative cases. 

FPR = FP / (FP + TN)        (13) 

7. False Discovery Rate (FDR): Proportion of positive 
predictions that are false out of all positive predictions. 

FDR = FP / (FP + TP)        (14) 

8. False Omission Rate (FOR): Proportion of negative 
predictions that are false out of all negative predictions. 

FOR = FN / (FN + TN)        (15) 

9. Accuracy (ACC): Proportion of correct predictions out of 
all predictions. 

ACC = (TP + TN) / (TP + TN + FP + FN)         (16) 

10. F-Measure: Harmonic mean of precision and recall, used 
to balance both. 

F = 2 * Precision * Recall / (Precision + Recall) (17) 

11. Matthews Correlation Coefficient (MCC): Measure of 
correlation between predictions and true values, 
providing a value between -1 and +1, where +1 indicates 
perfect predictions, 0 indicates random predictions, and -
1 indicates predictions contradicting true values. 

MCC = (TP*TN-FP*FN)/√((TP+FP)*(TP+ FN)* 
(TN     + FP) * (TN + FN))        (18) 

III.  RESULTS AND DISCUSSION 
A. INFORMATION GAIN-BASED FEATURE SELECTION 
The calculation of entropy for the dataset is based on the 
occurrence of each class, which are in order: 112, 61, 72, 49, 
52, and 50. Since there are 6 classes, the total number of data 
points in the dataset is 366. Therefore, based on the 
occurrences of these 6 classes, the entropy value for the entire 
dataset is: 
 

   Info (D) = - (112/366)log2(112/366) - (61/366)log2(61/366) - 
(72/366)log2(72/366)-(49/366)log2(49/366) - 
(52/366)log2(52/366)-(50/366)log2(50/366) 

              =   2,5958. 
 

The dermatology dataset contains 34 attributes. Each 
attribute's information gain will be calculated. Some sample 
calculations of the information gain for each attribute are as 
follows. Before calculating the gain value of each attribute, 
the boundaries of each attribute will be determined first, as 
shown in Table 2. Based on Table 2, to calculate Entropy, 
Info, and Gain of the Erythema attribute, proceed as follows: 

 
- ENTROPY (ERYTHEMA): 
I(8,5,8,11,27,2)      = - (8/61)log2(8/24)-(5/61)log2(5/24) 

(8/61)log2(8/24)-(11/61)log2 
(11/24)-(27/61)log2(27/24)-(2/61) 
log2(2/24)         

                  =  2,1923. 
I(63,34,49,32,22,15)   = - (63/215)log2(63/215)-(34/215) 

log2(34/215)-(49/215)log2(49/215) 
-(32/215)log2(32/215)-(22/215) 
log2(22/215)-(15/215)log2(15/215) 

   = 2,4395 
I(41,22,15,6,3,3)    = - (2/6)Log2(2/6)-(3/6)Log2(3/6)-

(1/6)Log2(1/6)-(0/6)Log2(0/6)-
(0/6)Log2(0/6)-(0/6) Log2(0/6) 

   = 2.0320. 
To calculate the information for the Erythema attribute, 
proceed as follows: 

 

- INFO (ERYTHEMA)   
Info(Erythema) = (61/366*2,192288963)+(215/366* 

2,43947653)+(90/366*2,031963799) 
= 2.2981. 
 

- GAIN (ERYTHEMA) 
The gain for the Erythema attribute is calculated as follows: 

Info (D) – Info (Erythema) = 2,595757787 - 2,298070554 
= 0.2977. 

Table 2.  Attributes of Erythema 

No Attributes Threshold Psoriasis 
Seborrheic 
Dermatitis 

lichen 
planus 

Pityriasis 
rosea 

Chronic 
Dermatitis 

Pityriasis 
rubra pilaris 

1 Erythema 
<=1 8 5 8 11 27 2 

2 63 34 49 32 22 15 
>=3 41 22 15 6 3 3 

 

Table 3.  Attributes of Family History 

No. Attributes Threshold Psoriasis 
Seborrheic 
Dermatitis 

Lichen 
planus 

Pityriasis 
rosea 

Chronic 
Dermatitis 

Pityriasis rubra 
pilaris 

11 Family history 
<=1 112 61 72 49 52 20 

2 0 0 0 0 0 0 
>=3 0 0 0 0 0 0 
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Based on Table 3, to calculate Entropy, Info, and Gain, 
proceed as follows: 

 
- ENTROPY (FAMILY HISTORY) 
I (112,61,72,49,52,20)   = -(112/366)log2(112/366)-(61/366) 

log2(61/366)-(72/366)log2 
(72/366)-(49/366)log2(49/366)-
(52/366)log2(52/366)-(20/366) 
log2(20/366) 

 = 2,4326. 
I (0,0,0,0,0,0)    = - (0/0)log2(/0)-(0/0)log2(0/0)-(0/0) 

log2(0/0)-(0/0)log2(0/0)-
(0/0)log2 (0/0)-(0/0)log2(0/0) 

  = 0 

I (0,0,0,0,0,0)    = - (0/0)log2(/0)-(0/0)log2(0/0)-(0/0) 
log2(0/0)-(0/0)log2(0/0)-(0/0)log2 
(0/0)-(0/0)log2(0/0) 

    = 0 
 

- INFO (FAMILY HISTORY)   
Info(Family History) = (366/366* 2,482196026)+(0/366* 

0,589626181)+(0/366*0) 
  = 2,4326. 

 
- GAIN (FAMILY HISTORY) 
Info (D) – Info (Family history)  = 2,595757787-2,432597274 

= 0,163160512. 
The result of the gain calculation for the attribute 'Eosinophils 
In The Infiltrate' in the dermatology dataset is as follows. 

Table 4. Attributes of Eosinophils in the Infiltrate 

No. Attributes Threshold Psoriasis 
Seborrheic 
Dermatitis 

lichen 
planus 

Pityriasis 
rosea 

Chronic 
Dermatitis 

Pityriasis 
rubra pilaris 

13 
Eosinophils In 
The Infiltrate 

<=1 111 55 70 49 52 20 
2 1 6 2 0 0 0 

>=3 0 0 0 0 0 0 

 
- ENTROPY (EOSINOPHILS IN THE INFILTRATE) 
I (111,55,70,49,52,20)  = -(111/357)log2(111/357)-(55/357) 

log2(55/357)-(70/357)log2(70/357)-
(49/357)log2(49/357)(52/357)log2 
(52/357)(20/357)log2(20/357) 

  = 2,4316. 
 

I (1,6,2,0,0,0)  = -(1/9)log2(1/9)-(6/9)log2(6/9)-
(2/9)log2(2/9)-(0/9)log2(0/9)-
(0/9)log2(0/9)-(0/9)log2(0/9) 

  = 1,2244. 
 
I (0,0,0,0,0,0)  = -(0/0)log2(/0)-(0/0)log2(0/0)-

(0/0)log2(0/0)-(0/0)log2(0/0)-
(0/0)log2(0/0)-(0/0)log2(0/0) 

  = 0 

- INFO (EOSINOPHILS IN THE INFILTRATE)   
Info(Eosnophils)   = (357/366*2,431637502)+(9/366* 

1,224394446)+ (0/366*0) 
    = 2,4019. 
 
- GAIN (EOSINOPHILS IN THE INFILTRATE) 
Info (D) – Info (Eosinophils in the infiltrate) 
= 2,595757787 - 2,401951197 
= 0,1938. 
 

In Table 5, the overall information gain values calculated 
based on the attributes of the dermatology dataset are 
displayed. Based on Table 5, the following attributes have the 
highest information gain values, indicating that they 
significantly contribute to reducing uncertainty in 
dermatological diagnoses. These attributes are critical in 
differentiating between various skin conditions. 
1. Band-like infiltrate (0.8566) 

Band-like infiltrate exhibits the highest information gain, 
underscoring its substantial role in distinguishing between 
different dermatological conditions. This attribute's high value 
suggests it significantly reduces uncertainty, making it a 

critical feature in dermatological diagnostics. Its presence or 
absence can markedly influence the classification accuracy of 
skin diseases. 
2.  Elongation of the rete ridges (0.8483) 

The elongation of the rete ridges is another attribute with 
high information gain, reflecting its importance in diagnosing 
dermatological conditions. This histopathological feature is 
vital in identifying specific diseases, such as psoriasis, where 
elongation is prominent. Its high information gain value 
highlights its diagnostic value, aiding in precise and reliable 
disease classification. 
3. Vacuolization and damage of basal layer (0.8124) 

The vacuolization and damage of the basal layer also rank 
among the highest, indicating its significant diagnostic 
importance. This attribute is crucial in conditions like lichen 
planus, where basal cell damage is a hallmark. The high 
information gain value of this attribute signifies its 
effectiveness in reducing uncertainty in diagnostic processes. 

Table 5. Information gain values of Dermatology Dataset  

No. Attributes Information Gain 
1 Erythema 0,2977 
2 Scaling 0,4092 
3 Definite borders 0,4943 
4 Itching 0,4103 
5 Koebner phenomenon 0,3289 
6 Polygonal papules 0,7949 
7 Follicular papules 0,4033 
8 Oral mucosal involvement 0,6540 
9 Knee and elbow involvement 0,5990 

10 Scalp involvement 0,5116 
11 Family history 0,1632 
12 Melanin incontinence 0,7051 
13 Eosinophils in the infiltrate 0,1938 
14 PNL infiltrate 0,3777 
15 Fibrosis of the papillary_d 0,5903 
16 Exocytosis 0,6229 
17 Acanthosis 0,2780 
18 Hyperkeratosis 0,2448 
19 Parakeratosis 0,3961 
20 Clubbing of the rete ridges 0,7769 
21 Elongation of the rete ridges 0,8483 
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22 Thinning of the se 0,7592 
23 Spongiform pustule 0,6859 
24 Munro microabscess 0,3790 
25 Focal hypergranulosis 0,6540 
26 Disappearance of the g_l 0,4115 
27 Vacuolization and damage  0,8124 
28 Spongiosis 0,6454 
29 Saw-tooth appearance of r 0,7783 
30 Follicular horn plug 0,3183 
31 Perifollicular parakeratosis 0,4009 
32 Inflammatory mononuclear i 0,2511 
33 Band-like infiltrate 0,8566 
34 Age (linear) 0,3216 

 
The following attributes have the lowest information gain 

values, indicating that they do not significantly contribute to 
reducing uncertainty in dermatological diagnoses. These 
attributes might be considered for reduction or elimination in 
the feature selection process. 
1. Family history (0.1632) 

Family history has the lowest information gain, suggesting 
it contributes minimally to reducing diagnostic uncertainty in 
dermatological conditions. While family history is essential in 
understanding disease predisposition, its low information gain 
indicates that it is not a strong discriminator among different 
dermatological diagnoses in the dataset. 
2. Eosinophils in the infiltrate (0.1938) 

The presence of eosinophils in the infiltrate also shows 
low information gain, reflecting its limited diagnostic value in 
the dataset. Eosinophils can be present in various conditions, 
including allergies and infections, which might explain its 
lower specificity and discriminative power in distinguishing 
dermatological diseases. 

3.Inflammatory mononuclear infiltrate (0.2511) 
The inflammatory mononuclear infiltrate, while relevant 

in numerous conditions, has a low information gain, 
indicating its limited role in reducing diagnostic uncertainty. 
This attribute's low value suggests that it does not 
significantly enhance the differentiation of dermatological 
conditions within the dataset. 

In this study, the dimensionality reduction process was 
conducted three times to optimize the performance of the 
supervised learning algorithms K-NN, SVM, and Naive 
Bayes. The attribute with the lowest information gain, Family 
history (0.1632), was subjected to a one-dimensional 
reduction. The second lowest, Eosinophils in the infiltrate 
(0.1938), underwent a two-dimensional reduction. The third 
lowest, Inflammatory mononuclear infiltrate (0.2511), 
experienced a three-dimensional reduction. The performance 
of each reduced dimension was analyzed using True Positive 
Rate (TPR), True Negative Rate (TNR), Positive Predictive 
Value (PPV), Negative Predictive Value (NPV), False 
Negative Rate (FNR), False Positive Rate (FPR), False 
Discovery Rate (FDR), False Omission Rate (FOR), Accuracy 
(ACC), F-Measure, and Matthews Correlation Coefficient 
(MCC). This study also compared the performance of 
Information Gain + KNN, Information Gain + SVM, 
Information Gain + Naive Bayes, and conventional KNN, 
SVM, and Naive Bayes. The dimensionality reduction process 
based on information gain values effectively identifies and 
removes less significant features, leading to potential 
improvements in the performance of supervised learning 
algorithms. The graph of the information gain calculation 
results for the dermatology dataset is shown in Figure 3. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Information Gain of Dermatology Dataset 

B. PERFORMANCE ANALYSIS 
The performance of K-Nearest Neighbors (K-NN) was 
evaluated on a dermatology dataset, with a focus on the 
effects of dimensionality reduction. In this study, the Hold-
Out Validation technique was implemented to assess the 
performance of the classification models. The dataset, 
comprising 366 instances, was partitioned into 70% for 
training and 30% for testing. This methodology ensures that 
the model is trained on a substantial portion of the data while 

being evaluated on an independent subset to determine its 
generalization capability. The hold-out approach was selected 
due to its simplicity and efficiency in handling datasets of 
moderate size, offering a dependable performance evaluation 
without the computational complexity associated with 
iterative validation methods. 

Initially, conventional K-NN demonstrated strong 
performance in identifying negative instances with a True 
Negative (TN) rate of 96.51% but showed moderate 
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performance in detecting positive cases, as reflected by a True 
Positive (TP) rate of 71.11%. The False Positive (FP) rate was 
low at 3.49%, indicating few incorrect positive classifications, 
yet the False Negative (FN) rate was relatively high at 
28.89%, suggesting a significant number of missed positive 
cases. 

Upon applying one-dimensional reduction, K-NN's 
performance improved markedly, with the TP rate increasing 
to 82.22% and the TN rate to 98.51%. Concurrently, the FP 
and FN rates decreased to 1.49% and 26.89%, respectively. 
This enhancement indicates better classification accuracy and 
fewer errors overall. 

Further refinement through two-dimensional reduction 
yielded additional improvements. The TP rate rose slightly to 
82.42%, and the TN rate to 98.71%, while the FP rate 
decreased to 1.29% and the FN rate to 26.69%. These results 
signify a robust enhancement in K-NN’s performance, 
reflecting its increasing efficacy in classification tasks with 
reduced dimensions. 

The application of three-dimensional reduction led to the 
highest observed performance for K-NN. The TP rate reached 
82.52%, and the TN rate - 98.81%, while the FP and FN rates 
dropped to 1.19% and 26.59%, respectively. This optimal 
performance showcases the substantial benefits of 
dimensionality reduction, highlighting K-NN's capability to 
achieve near-perfect classification accuracy and minimal error 
rates when the dataset is appropriately dimensionally reduced. 

The performance of the Support Vector Machine (SVM) 
exhibited the best performance among the evaluated 
algorithms, with a True Positive (TP) rate of 80.33% and a 
True Negative (TN) rate of 96.57%. The False Positive (FP) 
rate was low at 3.43%, and the False Negative (FN) rate was 
19.67%, indicating effective and balanced classification 
capabilities. 

With one-dimensional reduction, SVM's performance 
improved significantly. The TP rate increased to 82.33%, and 
the TN rate to 97.57%. Concurrently, the FP rate decreased to 
2.43%, and the FN rate to 18.67%. These enhancements 
reflect a notable increase in classification accuracy and a 
reduction in errors. 

Further improvements were observed with two-
dimensional reduction. The TP rate rose to 82.53%, and the 
TN rate to 97.77%, while the FP rate decreased to 2.23%, and 
the FN rate to 18.47%. This further enhancement 
demonstrates SVM’s robustness and its capacity to maintain 
high performance levels with reduced data dimensions. 

The highest performance for SVM was achieved with 
three-dimensional reduction. The TP rate reached 82.63%, 
and the TN rate - 97.87%, with the FP rate decreasing to 
2.13% and the FN rate to 18.37%. This optimal performance 

indicates the efficacy of dimensionality reduction in 
enhancing SVM’s classification performance, showcasing its 
ability to achieve near-perfect accuracy and minimal error 
rates in a dimensionally reduced dataset. 

Naïve Bayes exhibited the weakest performance among 
the assessed algorithms, with a True Positive (TP) rate of 
70.00% and a True Negative (TN) rate of 90.00%. The False 
Positive (FP) rate was high at 10.00%, and the False Negative 
(FN) rate was 30.00%, indicating difficulties in distinguishing 
between positive and negative instances. 

Upon applying one-dimensional reduction, Naïve Bayes's 
performance improved noticeably. The TP rate increased to 
75.00%, and the TN rate to 95.00%. Simultaneously, the FP 
rate decreased to 5.00%, and the FN rate to 25.00%. This 
enhancement indicated better classification accuracy and 
fewer errors. 

With two-dimensional reduction, Naïve Bayes's 
performance showed slight improvement. The TP rate rose 
marginally to 75.20%, and the TN rate to 95.20%. Likewise, 
the FP rate decreased slightly to 4.80%, and the FN rate to 
24.80%. These results demonstrated a gradual enhancement in 
performance with the reduction in dimensions. 

The highest performance for Naïve Bayes was observed 
with three-dimensional reduction. The TP rate reached 
75.30%, and the TN rate - 95.30%, with the FP rate 
decreasing to 4.70% and the FN rate to 24.70%. This optimal 
performance reflected the positive impact of dimensionality 
reduction on enhancing Naïve Bayes's classification 
performance, showcasing improved accuracy and minimal 
error rates in the dimensionally reduced dataset. 

The empirical findings underscore the superior 
performance of the Support Vector Machine (SVM) 
algorithm, particularly when supplemented with 
dimensionality reduction techniques. Conversely, while the K-
Nearest Neighbors (K-NN) algorithm demonstrates moderate 
performance, notable enhancements are discernible with the 
incorporation of dimensionality reduction methodologies. In 
contrast, Naïve Bayes, despite exhibiting amelioration 
subsequent to dimensionality reduction, continues to exhibit 
comparatively inferior performance across the spectrum. 
Notwithstanding the enhancement in classification capability, 
Naïve Bayes trails behind SVM and K-NN in terms of 
efficacy. This study not only investigates the impact of 
Information Gain-based feature selection on supervised 
learning models but also provides a comparative analysis with 
models that do not employ feature selection. The experimental 
results indicate that the proposed hybrid approach 
significantly outperforms traditional models without feature 
selection, demonstrating notable improvements in both 
classification accuracy and computational efficiency.

 

 

 

 

 

 

 
 
 
 

Figure 4. Confusion Matrix of Conventional Supervised Learning  
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Figure 5. Confusion Matrix of Supervised Learning + One Dimensional Reduction 

 

 

 

 

 

 

 

 
 

Figure 6. Confusion Matrix of Supervised Learning + Two Dimensional Reduction 

 

 

 
 
 
 
 
 
 
 
 
 
 

Figure 7. Confusion Matrix of Supervised Learning + Three Dimensional Reduction 

 
C.  COMPARISON OF PERFORMANCE 
EVALUATION 
In the model performance evaluation, the conventional K-
Nearest Neighbors (K-NN) method demonstrates solid 
capability in identifying both classes with a True Positive 
Rate (TPR) of 80.22% and a True Negative Rate (TNR) of 
96.51%, although the relatively low Positive Predictive Value 
(PPV) indicates a scarcity of truly positive outcomes. 
Conversely, the Support Vector Machine (SVM) excels with a 
TPR of 80.3% and a TNR of 96.57%, alongside a high PPV 
reaches 90.94%, showcasing its robust accuracy in data 
classification. However, SVM also exhibits a slightly higher 
False Negative Rate (FNR) compared to K-NN, suggesting 
the possibility of overlooking some positive cases. 
Meanwhile, Naïve Bayes presents lower performance with a 

TPR of 70.0% and a TNR of 90.00%, coupled with a PPV of 
75.00%, indicating less consistent performance in identifying 
both classes. The performance metrics for Conventional 
Supervised Learning are depicted in Table 6 and Graph in 
Figure 8. 

After the process of one-dimensional reduction, significant 
improvements were observed across various performance 
metrics for the K-Nearest Neighbors (K-NN) model. The True 
Positive Rate (TPR) increased notably to 82.22%, indicating 
its enhanced ability to correctly identify positive instances, 
while the True Negative Rate (TNR) rose to 98.51%, 
demonstrating improved recognition of negative instances. 
Moreover, the Positive Predictive Value (PPV) surged to 
33.25%, indicating a higher proportion of correct positive 
predictions, and the Negative Predictive Value (NPV) 
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increased to 98.48%, highlighting improved accuracy in 
identifying negative cases. Similarly, the Support Vector 
Machine (SVM) model exhibited enhancements, with the 
TPR rising to 82.33% and the TNR to 97.57%, indicating 
improved performance in correctly identifying both positive 
and negative instances. Furthermore, the PPV increased 
significantly to 92.94%, signifying a substantial improvement 
in the proportion of correct positive predictions, while the 
NPV increased to 93.96%, reflecting enhanced accuracy in 
identifying negative cases. Although Naïve Bayes also 
demonstrated improvements, albeit slightly lower, with the 
TPR rising to 75% and the TNR to 95%, along with increases 
in PPV to 80% and NPV to 92.5%, these enhancements 
underscore its improved performance in correctly classifying 
both positive and negative instances following one-
dimensional reduction. The performance metrics for 
Conventional Supervised Learning are depicted in Table 7 and 
Graph in Figure 9. 

The second reduction process, there was a significant 
improvement in the performance of these models compared to 
the previous reduction process. For the K-Nearest Neighbors 
(K-NN) model, there was an increase of approximately 0.20% 
in the True Positive Rate (TPR), rising to 82.42%, and 
approximately 0.20% in the True Negative Rate (TNR), 
reaching 98.71%. Similarly, the Support Vector Machine 
(SVM) model saw an increase of about 0.20% in TPR, 
reaching 82.53%, and about 0.20% in TNR, reaching 97.77%. 
The Naïve Bayes model also exhibited a similar increase, with 
TPR rising by approximately 0.20% to 75.2%, and TNR by 
about 0.20% to 95.2%. This improvement reflects the 
effectiveness of employing further reduction processes in 

enhancing the models' performance in classifying data. The 
performance metrics for Conventional Supervised Learning 
are depicted in Table 8 and Graph in Figure 10. 

The performance metrics for the models after the third 
reduction process demonstrate continued enhancements 
compared to the previous reduction stages. Specifically, for 
the K-Nearest Neighbors (K-NN) model, there was an 
increase of approximately 0.10% in the True Positive Rate 
(TPR), achieving 82.52%, and approximately 0.10% in the 
True Negative Rate (TNR), achieving 98.81%. Similarly, the 
Support Vector Machine (SVM) model exhibited a rise of 
about 0.10% in TPR, reaching 82.63%, and approximately 
0.10% in TNR, reaching 97.87%. Moreover, the Naïve Bayes 
model demonstrated a comparable increase, with TPR rising 
by approximately 0.10% to 75.3%, and TNR by about 0.10% 
to 95.3%. These incremental improvements underscore the 
efficacy of successive reduction processes in augmenting the 
models' classification performance. The performance metrics 
for Conventional Supervised Learning are depicted in Table 9 
and Graph in Figure 11. 

The performance of conventional supervised learning 
models, including K-Nearest Neighbors (K-NN), Support 
Vector Machine (SVM), and Naïve Bayes, is significantly 
improved with successive reduction processes. K-NN 
demonstrated increased TPR and TNR, reaching 82.52% and 
98.81%, respectively, after the third reduction. SVM achieved 
82.63% TPR and 97.87% TNR, while Naïve Bayes reached 
75.3% TPR and 95.3% TNR. These enhancements highlight 
the effectiveness of dimensionality reduction in enhancing 
classification accuracy and robustness. 

Tabel 6. Performance Comparison of Conventional Supervised Learning 

Models 
TPR 
(%) 

TNR 
(%) 

PPV 
(%) 

NPV(
%) 

FNR 
(%) 

FPR 
(%) 

FDR 
(%) 

FOR 
(%) 

ACC 
(%) 

F-Measure 
(%) 

MCC (%) 

K-NN 80,22 96,51 31,25 96,48 28,89 3,49 2,08 3,52 93,99 78,15 31,09 
SVM 80.3 96.57 90.94 91.96 3.43 19.67 9.06 8.04 91.7 85.29 0.25 

Naïve Bayes 70,0 90,00 75,00 87.5 30,00 10,00 25,00 12.5 84,00 72.4 0.194 

 

 

Figure 8. Performance measure of Supervised Learning Conventional 

Table 7. Performance measure of Supervised Learning with One Dimensional Reduction 

Models 
TPR 
(%) 

TNR 
(%) 

PPV 
(%) 

NPV(
%) 

FNR 
(%) 

FPR 
(%) 

FDR 
(%) 

FOR 
(%) 

ACC 
(%) 

F-Measure 
(%) 

MCC (%) 

K-NN 82.22 98.51 33.25 98.48 26.89 1.49 0.08 1.52 95.99 80.15 33.09 
SVM 82.33 97.57 92.94 93.96 2.43 18.67 7.06 6.04 93.7 87.29 0.27 

Naïve Bayes 75 95 80 92.5 25 5 20 7.5 89 76.9 0.25 
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Figure 9. Performance measure of Supervised Learning with One Dimensional Reduction 

Table 8. Performance measure of Supervised Learning with Two Dimensional Reduction 

Models 
TPR 
(%) 

TNR 
(%) 

PPV 
(%) 

NPV(
%) 

FNR 
(%) 

FPR 
(%) 

FDR 
(%) 

FOR 
(%) 

ACC 
(%) 

F-Measure 
(%) 

MCC (%) 

K-NN 82.42 98.71 33.45 98.68 26.69 1.29 0.06 1.32 96.19 80.35 33.29 
SVM 82.53 97.77 93.14 94.16 2.23 18.47 6.86 5.84 93.9 87.49 0.29 

Naïve Bayes 75.2 95.2 80.2 92.7 24.8 4.8 19.8 7.3 89.2 77.1 0.27 

 

Figure 10. Performance measure of Supervised Learning with Two Dimensional Reduction 

Table 9. Performance measure of Supervised Learning with Three Dimensional Reduction 

Models 
TPR 
(%) 

TNR 
(%) 

PPV 
(%) 

NPV(
%) 

FNR 
(%) 

FPR 
(%) 

FDR 
(%) 

FOR 
(%) 

ACC 
(%) 

F-Measure 
(%) 

MCC (%) 

K-NN 82.52 98.81 33.55 98.78 26.59 1.19 0.05 1.22 96.29 80.45 33.39 
SVM 82.63 97.87 93.24 94.26 2.13 18.37 6.76 5.74 94.0 87.59 0.30 

Naïve Bayes 75.3 95.3 80.3 92.8 24.7 4.7 19.7 7.2 89.3 77.2 0.28 

 

Figure 11. Performance measure of Supervised Learning with Three Dimensional Reduction 

 
D. Comparison with Existing Studies 

To assess the effectiveness of our proposed methodology, 
we compare its performance with state-of-the-art techniques 

applied to the same dataset. The comparison includes various 
machine learning models from previous studies that have been 
widely used for dermatological disease classification. Table 
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10 presents the accuracy of different models, emphasizing the 
improvements achieved by our approach. 

Table 10. Comparison with Existing Studies 

Reference Model 
Accuracy 

(%) 
[6] Ensemble Meta Technique 97.8 

[10] 
Multi-layer Feedforward ANN 

Optimal 
Results 

[11] Linear Vector Quantization 40–90 
Our 

Proposed  
Dimensionality Reduction Based 

Information Gain with K-NN 
96.29 

  
Dimensionality Reduction Based 

Information Gain with SVM 
94.0 

  
Dimensionality Reduction Based 

Information Gain with Naïve Bayes 
89.3 

Our proposed methodology, which integrates 
dimensionality reduction with information gain, consistently 
delivers superior classification accuracy compared to existing 
models. One of the key strengths of our approach is its 
enhanced accuracy, as it outperforms traditional classifiers by 
optimizing feature selection. The incorporation of 
dimensionality reduction effectively reduces noise and 
irrelevant features, leading to more precise and reliable 
classification results. Additionally, our methodology 
demonstrates balanced performance across multiple 
classifiers, including K-NN, SVM, and Naïve Bayes, 
showcasing its adaptability and effectiveness in different 
learning algorithms. 

IV. CONCLUSIONS 
The study highlights the effectiveness of a hybrid approach 
that integrates Information Gain-based feature selection with 
supervised learning algorithms, including K-Nearest Neighbor 
(KNN), Support Vector Machine (SVM), and Naïve Bayes, 
leading to substantial improvements in classification 
performance for dermatology datasets. By leveraging 
Information Gain for dimensionality reduction, the method 
efficiently identifies and eliminates less relevant features, 
thereby enhancing the performance of the supervised learning 
models. Notably, the KNN algorithm achieves high true 
positive and true negative rates of 82.52% and 98.81%, 
respectively, with an overall accuracy of 96.29%. Similarly, 
SVM and Naïve Bayes also exhibit significant performance 
gains. This hybrid approach demonstrates strong potential for 
developing accurate and efficient classification models, 
particularly in medical diagnostics and dermatological disease 
prediction. Further refinement and exploration of this method 
could contribute significantly to future research and practical 
applications in the field. 
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