
 

VOLUME 24(2), 2025 233 

Date of publication JUN-30, 2025, date of current version MAY-08, 2025. 
www.computingonline.net / computing@computingonline.net 

Print ISSN 1727-6209 
Online ISSN 2312-5381 
DOI 10.47839/ijc.24.2.XXXX 

Long-term Land Surface Temperature 
Forecasting in Different Climate Zones 

using Long Short-term Memory 
TETIANA HOVORUSHCHENKO1, OLGA PAVLOVA1, VITALII ALEKSEIKO1, ANDRII KUZMIN1, 

ELENA ZAITSEVA2 
1Computer Engineering and Information Systems Department, Khmelnytskyi National University, 29016, Khmelnytskyi, Ukraine 

2Department of Informatics, Zilina University, Univerzitná 8215, 010 26 Žilina, Slovakia 

Corresponding author: Vitalii Alekseiko (e-mail: vitalii.alekseiko@khmnu.edu.ua). 

 

 ABSTRACT Climate change, which has been observed for several decades, is becoming increasingly widespread. 
The consequences of such changes are a negative impact on ecosystems in different regions of the planet, as well as on 
the biosphere. The Sustainable Development Goals define climate action as one of the key goals, which covers a wide 
range of actions to avoid and mitigate the consequences caused by climate change. To preserve biodiversity, increase 
the safety of residents of cities and communities located in vulnerable regions, it is necessary to form an integrated 
approach that will ensure sustainable development and improve the quality of life. Understanding the future climate 
situation and potential consequences is impossible without high-quality forecasting of climate indicators. One of the 
main indicators is the temperature of the Earth’s surface. The article analyzes the use of a recurrent neural network with 
a long short-term memory for long-term forecasting of temperature in different climatic zones. A study of the forecast 
accuracy for different time periods, considering climatic zoning, was conducted. The results indicate the feasibility of 
using the proposed approach for forecasting future Earth surface temperatures based on historical data. 
 

 KEYWORDS recurrent neural networks; long short-term memory; long-term temperature forecasting; temperature 
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I. INTRODUCTION 
orecasting number series is an important task in the field of 
climate monitoring. Analysis of changes in climatic 

indicators such as temperature, precipitation, sea level, etc., 
allows for comprehensive monitoring of changes and 
prediction of negative consequences. 

The World Meteorological Organization (WMO) has 
officially confirmed that 2024 was the warmest year on record. 
The previous warmest year, by a significant margin, was 
2023 [1]. This indicates an annual trend of increasing 
temperatures. 

One of the important aspects of climate change research is 
the study of changes in Land Surface Temperature (LST). The 
temperature of the Earth’s surface is affected by a number of 
factors, in particular: 

 solar radiation; 
 movement of air masses; 
 geographical latitude; 
 height above sea level; 
 distance to large bodies of water; 
 type of relief; 

 type of soil. 
Thus, the LST is influenced by a combination of factors, 

and for accurate forecasting it is necessary to conduct a 
comprehensive analysis of a specific region, which is 
extremely costly in terms of resources involved. On the other 
hand, the study of historical data [2] and their main trends can 
significantly simplify the forecasting task. 

II. DOMAIN ANALYSIS 
Previous works analyzed the application of machine learning 
methods for forecasting LST in the short- and medium-
term [3], investigated its role in the context of the development 
of sustainable cities and communities [4], proposed the concept 
of an information system, and identified the features of its 
design [5]. 

Various technologies and approaches are used to forecast 
time series. It is used different techniques for time-series 
analysis [6-8]. 

The article [9] discusses the long-term time series 
forecasting model SparseTSF, which is based on the Cross-
Period Sparse Forecasting technique, which simplifies the 
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forecasting task by separating periodicity and trends in time 
series data. 

The study [10] examines the use of deep learning 
techniques and presents a hybrid model that combines 
convolutional neural networks (CNN) and long short-term 
memory (LSTM) networks to predict historical temperature 
data. 

In the research [11] presented LSTM model which uses 
Global Temperature Data for climate forecasting. 

In the article [12] presented a predictive model for 
predicting future values of multivariate temperature Time 
Series. 

The research [13] presents data-driven approaches for LST 
forecasting in Tiruchirappalli, India. 

The study [14] analyzes the use of machine learning 
methods XG-Boost, Bagging-XG-Boost, and AdaBoost for 
forecasting satellite data obtained using Landsat-8. 

Series with seasonal patterns are predicted with high 
accuracy for short-term forecasting by autoregressive ARIMA 
models [15] and their modifications [16-18], as well as by 
classical machine learning methods (random forest, gradient 
boosting) [19, 20]. However, for long-term forecasting, it is 
advisable to consider more complex models, in particular 
recurrent neural networks (RNNs) [21-23], including the 
LSTM [24, 25] method or combination of RNN with CNNs 
[26-32] or other technologies (e.g. Transformer-Based models 
[33, 34], modified RNN [35]). 

Based on the analysis, it is advisable to conduct a study of 
the effectiveness of using LSTM for forecasting LST. It is 
planned to conduct research for each climatic zone and each 
hemisphere. The exceptions are countries and regions located 
simultaneously in both hemispheres, since there are complex 
patterns that are difficult to predict, as well as the lack of results 
for the continental type of climate in the southern hemisphere, 
due to its absence, due to the lack of continental territories 
sufficient for the formation of this type of climate [36]. 

III. METHODOLOGY 
Methodology of the research presented in Figure 1. 

A. DATASET STRUCTURE 
It should be noted that it is impossible to accurately establish 
dependencies based on short-term observations, therefore, the 
analysis of climate data requires accurate measurements, long-
term observations and modern data processing methods. This 
is a complex and multifaceted task, the solution of which will 
contribute to the development of effective strategies for 
adapting to climate change and reducing its negative 
consequences. Therefore, data covering a significant period of 
time should be selected for training the model. It is used the 
GlobalLandTemperatures dataset [37] from the Kaggle 
platform. The dataset was modified due to the specifics of the 
study by establishing correspondences between countries and 
the climatic zones in which they are located [38]. 

B. LONG SHORT-TERM MEMORY 
An LSTM model is a type of RNN that is suitable for time 
series forecasting due to its ability to store information for both 
short and long periods of time [39, 40]. 

The LSTM architecture involves three main gates (forget, 
input, and output) that control the flow of information [41]. 

The forget gate decides which information from the 

previous state of the cell should be discarded. In formalized 
form, the function has the form: 

 
𝑓௧ = 𝜎(𝑊 ∙ [ℎ௧ିଵ, 𝑥௧] + 𝑏), (1) 

 
where ft – activation function of the forgetting gate, xt – 

input parameter of time t, ht−1 – hidden state from the previous 
time step, Wf – weight matrix, bf – bias, σ – sigmoid activation 
function. 

 

Figure 1. Research Methodology. 

The input gate determines what new information will be 
stored in the cell state. It consists of two parts: 

 
𝑖௧ = 𝜎(𝑊 ∙ [ℎ௧ିଵ, 𝑥௧] + 𝑏), (2) 

 
where it – activation of the entrance gate. 
 

𝐶ሚ௧ = 𝑡𝑎𝑛ℎ(𝑊 ∙ [ℎ௧ିଵ, 𝑥௧] + 𝑏), (3) 
 
where C෨ ୲ – candidate cell state. 
The state of the cell Ct at time t is updated using the forget 

gate and the input gate: 
 

𝐶௧ = 𝑓௧ ∙ 𝐶௧ିଵ + 𝑖௧ ∙ 𝐶ሚ௧, (4) 
 
The output gate controls the output of the cell state by 

affecting the hidden state ht: 
 

𝑜௧ = 𝜎(𝑊 ∙ [ℎ௧ିଵ, 𝑥௧] + 𝑏), (5) 
ℎ௧ = 𝑜௧ ∙ tanh (𝐶௧). (6) 

 
These gates allow the LSTM to retain relevant past 

information, discarding what is not needed, solving the 
problem of gradient vanishing that is commonly encountered 
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in RNNs, and allowing the LSTM to capture long-term 
dependencies. 

In the context of LST forecasting, short-term dependencies 
are necessary to capture instantaneous weather variations, 
while long-term dependencies allow the model to recognize 
seasonal trends, cycles, and anomalies over longer periods of 
time. 

The state of the Ct cell helps maintain an internal 
representation of LST patterns over long periods, which is 
particularly useful for recognizing patterns such as annual 
temperature cycles, temperature anomalies, and gradual 
climate trends. 

During training, LSTMs use backpropagation in time 
(BPTT) to optimize the weights associated with each gate. The 
objective function that is commonly used is the mean square 
error (MSE): 

 
 

𝑀𝑆𝐸 =
ଵ


∑ (𝑦 − 𝑦ො)

ଶ
ୀଵ , (7) 

 
where n – the number of observations, yi – the actual value 

of the i-th observation, ŷi – is the predicted value of the i-th 
observation. 

Figure 2 displays LSTM memory cell. 
 

 

Figure 2. LSTM memory cell. 

IV. CASE STUDY & RESULTS 
Typically, machine learning model evaluation is performed by 
splitting the initial sample in a ratio of 1 to 4, where the training 
set is the largest part, however, given the lack of a sufficient 
number of measurements, the approach is slightly modified in 
this study. The model was fitted on data from 1800 to 1900 and 
then tested in each climate zone to make a 100-year forecast 
(1900-2000). Although current climate trends are changing 
rapidly, it should be noted that the study period covers the times 
of the Industrial Revolution, meaning that the climate indicators 
of this period cannot be considered stable. 

The study was conducted for a model with LSTM 
architecture, 50 epochs were used for training. Adam was chosen 
as the optimizer. The loss function was estimated using the mean 
square error. 

Figure 3 and 4 show training and validation loss for tropical 
climate zone. 

Figure 3. Training and validation loss for tropical climate zone 
in North Hemisphere. 

Figure 4. Training and validation loss for tropical climate zone 
in South Hemisphere. 

Figures 5 and 6 show forecasted and observed temperatures 
in tropical climate zone in North Hemisphere and Figures 7 and 
8 in South Hemisphere for first and last decades of 20th century. 

Figure 5. Forecasted and observed temperatures in tropical 
climate zone in North Hemisphere in first decade of 20th 

century. 

The graphs clearly show that the model tries to smooth the 
data at the top of the curve. The maximum temperatures for the 
studied region have a somewhat unusual character compared to 
other climate zones, which will be discussed below. First, there 
is a maximum of annual temperatures, after which there is a 
slight decrease in temperature, and then an increase again before 
a monotonous decline to a minimum. 

However, such a sequence is not observed every year, which 
makes the tropical climate zone a difficult region to predict. 
Based on this, forecasting in the region using the LSTM method 
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is inefficient, therefore it is advisable to conduct additional 
analysis of the considered Time Series. 

 

Figure 6. Forecasted and observed temperatures in tropical 
climate zone in North Hemisphere in last decade of 20th 

century. 

Figure 7. Forecasted and observed temperatures in tropical 
climate zone in South Hemisphere in first decade of 20th 

century. 

Figure 8. Forecasted and observed temperatures in tropical 
climate zone in South Hemisphere in last decade of 20th 

century. 

Table 1 presents the calculated metrics for each decade of the 
20th century for the tropical climate zone. 

The values of the metrics indicate the impossibility of using 
the model for forecasting. The R2 metric demonstrates a 
downward trend in the Northern Hemisphere, which indicates 

the inability of the model to capture changes. At the same time, 
in the Southern Hemisphere, the metric indicators, although 
remaining low, demonstrate some stability. 

Table 1. Metrics evaluation for tropical climate zone. 

Decade MAE MSE RMSE R2 Score 
North Hemisphere 

1901–1910 0.4085 0.2190 0.4680 0.7176 
1911–1920 0.4048 0.2250 0.4743 0.6931 
1921–1930 0.4371 0.2610 0.5109 0.6041 
1931–1940 0.4172 0.2453 0.4953 0.6060 
1941–1950 0.4474 0.2849 0.5337 0.5392 
1951–1960 0.5240 0.3780 0.6148 0.4532 
1961–1970 0.4709 0.3323 0.5764 0.5058 
1971–1980 0.5025 0.3667 0.6055 0.4913 
1981–1990 0.5363 0.4163 0.6452 0.3960 
1991–2000 0.5586 0.4729 0.6877 0.3296 

South Hemisphere 
1901–1910 0.3149 0.1404 0.3748 0.8483 
1911–1920 0.3440 0.1709 0.4135 0.8446 
1921–1930 0.3612 0.1884 0.4340 0.8446 
1931–1940 0.3536 0.1741 0.4172 0.8355 
1941–1950 0.3609 0.1804 0.4247 0.8358 
1951–1960 0.3792 0.2009 0.4482 0.8216 
1961–1970 0.3546 0.1820 0.4266 0.8366 
1971–1980 0.3848 0.1976 0.4446 0.8101 
1981–1990 0.4028 0.2254 0.4747 0.8027 
1991–2000 0.3988 0.2322 0.4819 0.7883 

 
Figures 9 and 10 demonstrate training and validation loss for 

dry or arid climate zone. 

 

Figure 9. Training and validation loss for arid climate zone in 
North Hemisphere. 

 

Figure 10. Training and validation loss for arid climate zone in 
South Hemisphere. 

Figures 11 and 12 show forecasted and observed 
temperatures in arid climate zone in North Hemisphere and 
Figures 13 and 14 in South Hemisphere for first and last decades 
of 20th century. In this climate zone, high accuracy is observed 
for the Northern Hemisphere, since the graphs almost coincide. 
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Vice versa in the Southern Hemisphere, model doesn’t follow 
increasing trend. 

Table 2 highlights metrics evaluation for arid climate zone. 
 

Figure 11. Forecasted and observed temperatures in arid 
climate zone in North Hemisphere in first decade of 20th 

century. 

Figure 12. Forecasted and observed temperatures in arid 
climate zone in North Hemisphere in last decade of 20th 

century. 

Figure 13. Forecasted and observed temperatures in arid 
climate zone in South Hemisphere in first decade of 20th 

century. 

For the dry climate zone, there is a significant difference 
between the forecast results in the Northern and Southern 
Hemispheres. In the Northern Hemisphere, the forecast 
demonstrates high accuracy throughout the century. Thus, the 
model captures patterns well and allows long-term forecasting of 

the LST values with high accuracy. At the same time, for the 
Southern Hemisphere, there is a decrease in forecast accuracy 
over time, i.e. the model is suitable for short-term forecasting, 
but does not capture long-term trends. 

 

Figure 14. Forecasted and observed temperatures in arid 
climate zone in South Hemisphere in last decade of 20th 

century. 

Table 2. Metrics evaluation for arid climate zone. 

Decade MAE MSE RMSE R2 Score 
North Hemisphere 

1901–1910 0.7043 0.6873 0.8291 0.9800 
1911–1920 0.6839 0.7127 0.8442 0.9785 
1921–1930 0.7832 0.8985 0.9479 0.9735 
1931–1940 0.7667 0.8362 0.9144 0.9747 
1941–1950 0.7968 0.8979 0.9476 0.9735 
1951–1960 0.7042 0.7124 0.8440 0.9780 
1961–1970 0.7146 0.8032 0.8962 0.9749 
1971–1980 0.8094 0.9483 0.9738 0.9718 
1981–1990 0.7718 0.8190 0.9050 0.9761 
1991–2000 0.7004 0.7355 0.8576 0.9784 

South Hemisphere 
1901–1910 0.5438 0.4299 0.6556 0.9608 
1911–1920 0.8328 0.9463 0.9728 0.9225 
1921–1930 0.8756 1.0667 1.0328 0.9163 
1931–1940 0.8464 1.0011 1.0005 0.9151 
1941–1950 1.0586 1.5293 1.2367 0.8725 
1951–1960 0.9620 1.3136 1.1462 0.8885 
1961–1970 1.0932 1.5764 1.2555 0.8712 
1971–1980 0.9836 1.4951 1.2227 0.8714 
1981–1990 1.6086 3.1377 1.7714 0.7283 
1991–2000 1.7892 3.9845 1.9961 0.6383 

 
Figures 15 and 16 demonstrate training and validation loss 

for temperate climate zone. 

Figure 15. Training and validation loss for temperate climate 
zone in North Hemisphere. 
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Figures 17 and 18 show forecasted and observed 
temperatures in arid climate zone in North Hemisphere and 
Figures 19 and 20 in South Hemisphere for first and last decades 
of 20th century. The graph indicates that in the temperate climate 
zone, different amplitudes of oscillations are observed, that is, 
the minimum and maximum values vary unevenly each year 
within certain ranges. Models are difficult to capture this pattern, 
although data that are not extremes are predicted with high 
accuracy. 

Figure 16. Training and validation loss for temperate climate 
zone in South Hemisphere. 

Figure 17. Forecasted and observed temperatures in temperate 
climate zone in North Hemisphere in first decade of 20th 

century. 

Figure 18. Forecasted and observed temperatures in temperate 
climate zone in North Hemisphere in last decade of 20th 

century. 

Table 3 shows metrics evaluation for temperate climate zone. 
For the temperate climate zone, a similar trend is observed in 

both hemispheres. In the Northern Hemisphere, the indicators are 

somewhat higher. The values of the R2 metric indicate the 
possibility of using the model for long-term forecasting. At the 
same time, for the Southern Hemisphere, the values remain quite 
high, but are insufficient, so the model needs to be refined and 
improved. 

Figure 19. Forecasted and observed temperatures in temperate 
climate zone in South Hemisphere in first decade of 20th 

century. 

Figure 20. Forecasted and observed temperatures in temperate 
climate zone in South Hemisphere in last decade of 20th 

century. 

Table 3. Metrics evaluation for temperate climate zone. 

Decade MAE MSE RMSE R2 Score 
North Hemisphere 

1901–1910 0.6685 0.6524 0.8077 0.9757 
1911–1920 0.7095 0.7723 0.8788 0.9686 
1921–1930 0.6840 0.7572 0.8702 0.9717 
1931–1940 0.6956 0.7653 0.8748 0.9722 
1941–1950 0.7084 0.7544 0.8686 0.9739 
1951–1960 0.6166 0.6709 0.8191 0.9748 
1961–1970 0.7380 0.7998 0.8943 0.9710 
1971–1980 0.6096 0.5331 0.7301 0.9784 
1981–1990 0.6428 0.6540 0.8087 0.9760 
1991–2000 0.6431 0.5886 0.7672 0.9781 

South Hemisphere 
1901–1910 0.5438 0.3995 0.6321 0.9366 
1911–1920 0.5369 0.4110 0.6411 0.9393 
1921–1930 0.5245 0.3756 0.6129 0.9484 
1931–1940 0.5019 0.3744 0.6119 0.9432 
1941–1950 0.5774 0.4841 0.6958 0.9343 
1951–1960 0.5035 0.3812 0.6174 0.9432 
1961–1970 0.5107 0.3791 0.6157 0.9427 
1971–1980 0.4915 0.3686 0.6071 0.9427 
1981–1990 0.4554 0.2967 0.5447 0.9549 
1991–2000 0.5458 0.4205 0.6484 0.9337 
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Figure 21 demonstrates training and validation loss for 
temperate climate zone. 

Figure 21. Training and validation loss for continental climate 
zone. 

Figures 22 and 23 show forecasted and observed 
temperatures in continental climate zone. 

Figure 22. Forecasted and observed temperatures in continental 
climate zone in first decade of 20th century. 

Figure 23. Forecasted and observed temperatures in continental 
climate zone in last decade of 20th century. 

Table 4 presents metrics evaluation for continental climate 
zone. 

Metrics for the continental climate zone are high, meaning 
the model is suitable for predicting data for this type of climate. 
Slightly higher error rates are observed than for the tropical, arid, 
and temperate climate zones, which is due to the larger 
temperature amplitude characteristic of this type of climate. 

Table 4. Metrics evaluation for continental climate zone. 

Decade MAE MSE RMSE R2 Score 
North Hemisphere 

1901–1910 0.7468 0.9031 0.9503 0.9876 
1911–1920 0.8898 1.2080 1.0991 0.9834 
1921–1930 0.9705 1.5181 1.2321 0.9804 
1931–1940 1.1403 1.8850 1.3729 0.9760 
1941–1950 1.0967 1.7626 1.3276 0.9779 
1951–1960 0.9940 1.5310 1.2374 0.9796 
1961–1970 1.0048 1.5381 1.2402 0.9805 
1971–1980 0.9077 1.3784 1.1740 0.9808 
1981–1990 1.2662 2.3105 1.5200 0.9689 
1991–2000 1.3862 2.6174 1.6178 0.9632 

 
Figures 24 and 25 demonstrate training and validation loss 

for polar climate zone. 

Figure 24. Training and validation loss for polar climate zone in 
North Hemisphere. 

Figure 25. Training and validation loss for polar climate zone in 
South Hemisphere. 

Figures 26 and 27 show forecasted and observed 
temperatures in arid climate zone in North Hemisphere and 
Figures 28 and 29 in South Hemisphere for first and last decades 
of 20th century. Similar to the tropical climate zone, maximum 
and minimum temperature data in the polar climate zone can 
vary. Although the graphs show that the model is trying to adapt 
to the characteristics of this climatic zone, demonstrating a 
forecast without smoothing the extremes, the pattern of the 
forecast values does not always correspond to the pattern that is 
actually observed. 

Table 5 demonstrates metrics evaluation for polar climate 
zone. 

The R2 metric indicators, close to 95%, indicate sufficient 
forecasting accuracy for using the proposed model in the polar 
climatic zone of the Northern Hemisphere, however, 
significantly lower indicators are observed in the Southern 
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Hemisphere, which indicates the need to improve the model in 
order to enable accurate forecasting in the fire region of the 
Southern Hemisphere. 

Figure 26. Forecasted and observed temperatures in polar 
climate zone in North Hemisphere in first decade of 20th 

century. 

Figure 27. Forecasted and observed temperatures in polar 
climate zone in North Hemisphere in last decade of 20th century. 

Figure 28. Forecasted and observed temperatures in polar 
climate zone in South Hemisphere in first decade of 20th 

century. 

Long-term LST forecasting plays a key role in achieving 
the Sustainable Development Goals (SDGs) by enabling 
informed decision-making on environmental sustainability, 
climate change resilience and human well-being. 

Long-term LST forecasting helps to predict future climate 
parameters and, as a result, identify potential periods of extreme 
temperature fluctuations, heat waves, droughts and other impacts 
of climate change. 

Figure 29. Forecasted and observed temperatures in polar 
climate zone in South Hemisphere in last decade of 20th 

century. 

Table 5. Metrics evaluation for polar climate zone. 

Decade MAE MSE RMSE R2 Score 
North Hemisphere 

1901–1910 1.1667 2.1028 1.4501 0.9669 
1911–1920 1.2794 2.8402 1.6853 0.9544 
1921–1930 1.1427 2.0580 1.4346 0.9610 
1931–1940 1.2723 2.8613 1.6916 0.9477 
1941–1950 1.0931 2.1041 1.4506 0.9615 
1951–1960 0.9606 1.4867 1.2193 0.9728 
1961–1970 1.0962 2.0643 1.4368 0.9622 
1971–1980 1.2866 2.9787 1.7259 0.9473 
1981–1990 1.0849 1.9899 1.4107 0.9665 
1991–2000 1.1057 1.9444 1.3944 0.9663 

South Hemisphere 
1901–1910 0.8300 1.0868 1.0425 0.8306 
1911–1920 0.8904 1.2883 1.1350 0.8127 
1921–1930 0.8654 1.2769 1.1300 0.7955 
1931–1940 0.9181 1.3060 1.1428 0.7816 
1941–1950 0.8448 1.2414 1.1142 0.7812 
1951–1960 0.9131 1.2384 1.1128 0.7864 
1961–1970 0.8019 0.9435 0.9713 0.8099 
1971–1980 0.8636 1.1667 1.0801 0.8123 
1981–1990 0.8903 1.2544 1.1200 0.7918 
1991–2000 0.7117 0.8503 0.9221 0.8496 

 
Thus, accurate forecasting will contribute to increasing the 

preparedness of communities to extreme climate events, 
including extreme heat or cold, droughts, forest fires, etc. 

V. DISCUSSION 
The conducted study allows us to conclude that the use of a 
neural network with LSTM architecture for predicting the 
temperature regime of the earth's surface demonstrates 
different accuracy in different climatic zones. Thus, the use of 
the proposed model is highly effective for predicting clearly 
expressed seasonal dependencies observed in arid, temperate 
and continental climatic zones. At the same time, the equatorial 
climatic zone has distinctive patterns that are not always 
captured.  

Another important aspect is the limitation of the proposed 
approach due to the lack of accurate instruments and 
technologies for measuring the temperature of the earth's 
surface over significant time periods in certain regions. Such 
inaccuracies can provoke errors in the data and affect the 
forecasting. At the same time, the emergence of modern 
technologies, in particular satellite data, allows for monitoring 
temperatures in different regions without significant 
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differences. However, the period of such observations is not 
long-term and at this stage does not allow for high-quality long-
term forecasting. 

Another limitation is the small amount of observational data 
in polar regions, which is explained by their remoteness and 
harsh climate. Overall, the LSTM method demonstrates high 
accuracy, making it suitable for predicting temperature 
dependences in most regions. 

Analysis of LST change presents a holistic picture for 
government officials, indicating the effectiveness of existing 
strategies. 

Long-term LST forecasting is key for agricultural planning, 
as it helps to determine the correlation between LST values and 
yields, predicting future crop cycles and thus improving food 
security. 

In general, long-term LST forecasting can help achieve 
some SDGs as Zero Hunger (SDG-2), Good Health and Well-
being (SDG-3), Sustainable Cities and Communities (SDG-
11), Climate Change (SDG-13), Life on Land (SDG-15). Also 
there are indirect impact on some else SDGs as Life below 
Water (SDG-14) and Partnership for the Goals (SDG-17). 

VI. CONCLUSIONS 
LSTM is an effective method used for a wide range of 
forecasting problems. Since climate data, such as temperature 
indicators, represent time series, this method is appropriate to 
use for forecasting future climate parameters. The LSTM 
method is appropriate to use for the problem of long-term 
forecasting, given that due to its architecture, it is less prone to 
decay, compared to other machine learning methods, such as 
random forest, gradient boosting, vector regression, etc., and is 
also able to take into account long-term trends. 

The results of experiments show different accuracy due to 
climate zones and hemispheres. Although in some regions 
model demonstrates high accuracy, but metrics in most regions 
are not high enough for forecasting. 

There is also a significant difference in the data of the 
northern and southern hemispheres, which is due to 
geographical features. The assessment by the P2 metric shows 
that the proposed approach is advisable to use for forecasting 
in regions with clearly defined seasonality. Thus, in arid, 
temperate and continental zones, the results reach 95-98% in 
the northern and 92-95% in the southern hemispheres. Slightly 
lower results are observed for polar regions: 93-96% for the 
Arctic region and 78-85% for the Antarctic. For the tropical 
climatic zone, the results are not satisfactory, since they are 
within 70% for the northern and 80% for the southern 
hemisphere and demonstrate a tendency to attenuation. Thus, 
for the tropical region, more comprehensive studies and 
evaluation of various models for forecasting are required. 

Thus, it is considered to provide further research to improve 
models’ accuracy for this regions by providing data 
preprocessing or architecture specification. 
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