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 ABSTRACT This work addresses the problem of detecting GPS spoofing attacks on Unmanned Aerial Vehicles 
(UAVs) using a multilayer perceptron (MLP). Such attacks allow adversaries to inject artificial signals of increased 
power that confuse the drone’s navigation system and cause deviations from its planned route. The open-source 
TEXBAT dataset was used for experimental research, with separate highlights of the DS3 and DS7 scenarios that 
simulate synchronous GPS spoofing. During the data preparation stage, the signal parameters (pseudorange, power, 
and Doppler shift) were leveraged, and their statistical analysis was performed using correlation matrices and mean-
value distributions. The proposed MLP model, featuring an optimized architecture with three hidden layers and a 
sigmoid activation function at the output, demonstrated a detection accuracy of 93% on the validation data. The 
advantages of this approach include high performance and ease of integration into navigation systems. However, the 
relatively small amount of real data limits scalability and comprehensiveness of the evaluation. 
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I.  INTRODUCTION 
he importance of security measures for 
telecommunication and electronic systems has grown 

significantly, prompting the development of various methods 
for signal protection. This is due to the fact that smart devices 
and unmanned aerial vehicles (UAVs, drones) use their 
communication systems [1], which are typically based on 
Internet of Things (IoT) networks and GPS channels. GPS-
based communication systems between UAVs and satellites 
face two main threats: jamming and spoofing attacks [1]. 
During a jamming attack, the attacker aims to cause a denial 
of service (DOS) (Disk Operating System), so that the UAV 
cannot receive GPS signals. During a spoofing attack, the 
attacker creates a replica of the GPS signal and boosts its 
power so that it becomes the UAV’s positioning reference. 
The increased power affects the correlation between signals 
from the GPS and the navigation system. Therefore, once the 
spoofed signal is transmitted to the UAV, it ignores the 
genuine GPS signal [2] and begins to drift from its original 
path. 

In a spoofing attack, the targeted UAV is unable to 
immediately detect the deviation because, if the attack is 
effectively executed, there are no abrupt changes in the 
received GPS signal. Furthermore, there is no known correct 
location that could help the UAV detect the drift. For these 

reasons, spoofing attacks are difficult to detect. In addition, 
the attacker gains the ability to move the targeted UAV by 
changing the characteristics of the reference signal. 

Global Positioning System (GPS) signals require reliable 
protection against attacks. One of the most common types of 
threats is GPS spoofing, whose goal is to deceive the receiver 
by transmitting fake signals. The attacker increases power 
until the fake signal overpowers the real one, which confuses 
the missile. Typically, such signals have a slightly higher 
power than authentic ones. They can be generated by delaying 
and re-emitting protected GPS signals [3]. Since GPS systems 
use wireless communication, receivers are vulnerable to 
cyberattacks, including GPS spoofing. A spoofer (attacker) 
generates fake GPS signals and transmits them [4]. A nearby 
GPS receiver tracks these spoofed signals and thus obtains 
incorrect timestamps [5]. 

The task of early warning and detection of SPOOFING 
attacks on unmanned aerial vehicles (UAVs) and drones is 
particularly relevant in the military sphere. UAVs are 
frequently used not only for military purposes but also for 
logistics. Commercial UAVs can operate autonomously for 
tasks such as cargo delivery, infrastructure monitoring, and 
agriculture [6]. A large number of civilian UAVs use control 
and navigation systems that rely on unencrypted and 
unauthenticated signals broadcast by the Global Positioning 
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System (GPS). Consequently, they are vulnerable to GPS 
spoofing attacks. 

Over the past decade, a number of studies have focused on 
security issues related to aircraft and navigation. In recent 
years, UAVs have become increasingly popular and, 
consequently, more vulnerable in terms of security. The most 
common threats to UAVs rely on Internet of Things (IoT) 
protocols or GPS communication. 

The authors of [7] categorize UAV threats into three 
types: navigation attacks (hijacking), routing attacks (based on 
IoT networks), and data attacks (where data are stolen from 
captured drones). Regarding navigation attacks, jamming and 
spoofing attacks are identified as the primary threats. 

Several works have been dedicated to detecting spoofing 
attacks. In [8], the Monte Carlo method is employed to 
compare two detectors: the sum-of-squares detector and the 
D3 detector. The authors of [2] take a more traditional 
approach: they test models such as the Bayesian classifier and 
the k-nearest neighbors (K-NN) classifier, achieving 
accuracies of 62.31% and 77.29%, respectively, when 
detecting synchronous spoofing attacks. 

Due to the rapid growth of data volumes and limited 
resources for their annotation, recent studies have paid special 
attention to the optimal selection of training samples. In [9], 
strategies were introduced that combine classifier uncertainty 
(margin sampling) with sample diversity (k-center clustering), 
enabling the same level of accuracy to be achieved using 30 
% less data. The authors of [10] analyzed the sample size 
requirements for popular classification algorithms (RF, SVM, 
KNN, and Naive Bayes) and identified empirical relationships 
between dataset characteristics (minority class proportion, 
nonlinearity, number of features) and the number of samples 
needed to reach an AUC within 0.02 of that obtained on the 
full dataset. 

The use of the Haar wavelet transform as a 
feature‐extraction method for classification is gaining 
popularity. In [11], a visual‐information classification method 
based on Haar wavelet coefficients and their Shannon‐entropy 
measurement was proposed, resulting in a 20 % reduction in 
class‐boundary detection time without any loss in accuracy. 

In [2], the authors explore the use of supervised learning 
algorithms to detect GPS spoofing attacks on UAVs. They 
compared three models, training each on labeled examples of 
UAV sensor data from both normal autonomous flights and 
GPS spoofing attacks, then comparing their performance. 
They also repeated the tests with Gaussian noise added to the 
dataset and with a reduced amount of spoofing data. The 
evaluated models included a support vector machine (SVM) 
classifier with principal component analysis (PCA) for 
dimensionality reduction, a logistic regression classifier with a 
long short-term memory (LSTM) autoencoder for 
dimensionality reduction, and a logistic regression classifier 
with a standard autoencoder. The combination of PCA and 
SVM was the most effective model in all tests. 

In [8], researchers compared several supervised and 
unsupervised learning models for detecting GPS spoofing 
attacks on UAVs. Most research on detecting UAV GPS 
spoofing using machine learning focuses on supervised 
approaches, making this particular work unique. The 
unsupervised models compared were PCA, k-means 
clustering, and an autoencoder. These models analyze a 
dataset of unlabeled GPS signals and attempt to classify 
anomalies. They use various signal features, which makes this 

approach less suitable for civilian UAVs with basic 
equipment. 

In [12], the researchers compared three one-class 
classifiers for detecting GPS spoofing and jamming in UAVs, 
aiming to find the best model for general UAV attack 
detection. This study also provided the dataset used in [2]. 
One-class classification (the main focus of this study) is 
typically considered a form of unsupervised learning. In this 
context, only benign data are provided to the classifier for 
training, and the trained model must then classify samples 
from the test data as either belonging to those training data or 
as outliers. This is well-suited for detecting GPS spoofing in 
civilian UAVs, as it is unlikely that civilians would have 
access to the data or equipment needed to conduct spoofing. 
The algorithms compared were Local Outlier Factor, an 
autoencoder, and a one-class support vector machine. 

In [13], a multilayer perceptron was developed to process 
flight parameters and GPS signals, signaling GPS spoofing 
attacks on UAVs. The accuracy achieved in [13] ranges from 
83.23% for the TEXBAT dataset to 99.93% for the 
MAVLINK dataset. 

Summarizing the results of previous studies on the 
detection of synchronous spoofing attacks, one can see that 
their accuracy ranges from 93.4% to 99%. An important 
drawback of these studies is their use of synthetic datasets and 
the lack of comparison with other deep learning models. Only 
one general dataset (based on simulated flight parameters) has 
been used for verifying spoofing attack detection [14], but 
overall metrics for comparison with other research were not 
considered. 

Although the above-mentioned methods are robust and 
theoretically grounded, they are not capable of quickly 
detecting deviations from the target UAV's original course 
during spoofing attacks, since in the case of synchronous 
SPOOFING, there are no abrupt changes in the received GPS 
signal. Moreover, there is no information about the UAV’s 
true position to help it recognize drift (deviation). For these 
reasons, spoofing attacks are difficult to detect. 

The goal of our work is to develop an optimized MLP 
architecture to detect GPS spoofing attacks on UAVs with 
high accuracy (>90%). 

II.  MATERIAL AND METHODS 
A.  TYPES OF GPS SPOOFING ATTACKS 
For UAV flight path determination and navigation, a 
connection between GPS satellites and the UAV is required. 
UAV navigation relies on a minimum of four satellites. In 
addition, GPS satellites provide positional referencing for the 
UAV [8]. To improve accuracy and security, sensors such as 
inertial measurement units, magnetometers, and gyroscopes 
are often used [8]. 

An attacker can use either a synchronous spoofing 
attack [1] or an asynchronous one. In a synchronous spoofing 
attack [1] (Figure 1 – curve solid line), the attacker tracks the 
target UAV, which makes it possible to precisely determine 
its location and obtain the corresponding reference GPS signal 
(Figure 1 – solid straight line). The attacker generates a 
spoofed signal that is a copy of the reference signal but with a 
higher power than the authentic one. The spoofed signal, sent 
back to the target UAV, becomes the new “reference” signal 
because of its higher power. As a result, the attacker gains the 
ability to move the UAV by altering the characteristics of the 
reference signal. 
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In an asynchronous attack (Figure 1 – dashed line), the 
attacker does not control the target’s GPS reference signal. 
Generating a spoofed signal without knowledge of the 
reference signal leads to differences in the signal 
characteristics and simply broadcasts a different location to 
the UAV. Thus, in an asynchronous attack, abrupt positional 
changes are transmitted to the UAV, making these attacks 
easier to detect than synchronous attacks [1]. 

Figure 1 shows the power-versus-phase relationships for 
three types of signals: the synchronous spoofing signal (curve 
solid line); the asynchronous spoofing signal (dashed line); 
the authentic GPS signal (solid straight line). 

 

 

Figure 1. Signal graphs of synchronous, asynchronous 
spoofing attacks and authentic GPS signal in power-phase 

coordinates. 

As can be seen from Figure 1, the power of the authentic 
GPS signal remains constant for all phase values, which is a 
characteristic feature of a genuine satellite GPS signal. This is 
explained by the fact that satellites provide a uniform signal to 
ground receivers. The absence of power fluctuations allows 
the system to determine coordinates with high accuracy.  

The power of the synchronous spoofing signal changes 
smoothly depending on the phase value, indicating 
synchronized spoofed signals. The UAV’s software-defined 
radio (SDR) accepts these fake signals as legitimate, causing 
the UAV to follow an incorrect route defined by the 
synchronous spoofing signal.  

The power of the asynchronous spoofing signal fluctuates 
unevenly with respect to the phase value due to the mismatch 
of phases and amplitudes in the spoofed signals. The 
irregularity in power is explained by random changes in the 
phases and amplitudes of the signals, which can result in 
chaotic UAV behavior—abrupt course changes, loss of 
control, or even crashes. 

This approach to signal analysis helps identify spoofing 
attacks based on the nature of power changes relative to phase 
values. These characteristics are used in security systems to 
detect spoofing attacks by examining signal power and phase 
behavior. 

For effective protection of UAVs and FPV drones from 
GPS spoofing attacks, it is advisable to combine several 
approaches. For example, one can integrate multi-channel 
signal analysis, use INS, employ encrypted data, and apply 
machine learning. 

To monitor multi-channel signals, it is worthwhile to use 
software-defined radios (SDRs), which can detect and analyze 
anomalies in the signals. These receivers can simultaneously 

analyze signals from several satellites and compare 
parameters such as power, phase, and frequency. 

Multi-factor signal authentication systems use algorithms 
that encrypt the satellite’s data, and the receiver verifies the 
authenticity of the signal using predefined keys. 

Based on an analysis of the signal’s time characteristics 
(Time-Based Analysis) — specifically the time of arrival 
(ToA) — the distance to the signal source can be determined. 
Authentic signals have an expected time of arrival 
corresponding to the distance between the satellite and the 
receiver. Spoofed signals may exhibit an incorrect time of 
arrival. For example, an algorithm based on Time Difference 
of Arrival (TDoA) can calculate the precise location of the 
signal source and detect fake transmitters. 

In cases where spoofing is suspected, the drone switches 
to an inertial navigation system (INS), which operates on 
gyroscopes and accelerometers, or it can use alternative 
satellite systems such as Galileo, BeiDou, or GLONASS. 

Deep neural networks (MLP, CNN, LSTM, GRU) [15–
17], as well as their combinations, can automatically detect 
differences in real time between authentic GPS signals and 
spoofed signals. 

B.  GPS SPOOFING ATTACK DETECTION ON UAVS 
The GPS spoofing attack detection algorithm for UAVs 
includes the following steps: 

1. Intercepting GPS signals (Intercept). This is done using 
an SDR (Software-defined radio). An SDR is a radio system 
that uses software to perform functions such as modulation, 
demodulation, signal processing, and frequency changes. 
Instead of dedicated hardware, software-configurable 
equipment is used, which can be adapted to work with 
different frequencies and communication protocols such as 
GSM, LTE, Wi-Fi, and Bluetooth. The SDR receives real-
time GPS signals transmitted by satellites to the UAV, 
analyzing their frequency, modulation, and structure. These 
signals contain data about the satellite’s coordinates, the 
signal transmission time, and error correction algorithms. 

2. Generating spoofed GPS signals (Spoofing). The 
spoofer (attacker) creates a fake GPS signal that “imitates” the 
signal from a satellite. This signal transmits false coordinate 
or timing data and alters the UAV’s location coordinates. By 
using SDR, the attacker can modify navigation parameters 
(coordinates, altitude) and mimic authentic satellite signals. 
The signal power is increased so that the UAV “trusts” it 
more than the real satellite signals. Specifically, based on 
GPS-SDR-SIM software, the attacker creates a signal with 
spoofed coordinates. This signal is transmitted via SDR at a 
power level sufficient to override the genuine satellite signals 
[18–20]. 

3. Transmitting a higher-power signal. The SDR 
broadcasts the spoofed GPS signal with greater power than 
that of the legitimate satellite signals. This boosted power 
affects the correlation between the GPS signals and the 
navigation system. Consequently, once the spoofed signal is 
sent to the UAV, it ignores the real GPS signal [2] and begins 
to drift (deviate) from its original path. An SDR device, such 
as HackRF One or USRP, allows the attacker to adjust 
amplitude and transmission frequency in order to “fool” the 
UAV’s GPS receiver. For example, a fake signal at a 
frequency of 1575.42 MHz could be transmitted at -50 dBm, 
whereas legitimate satellite signals arrive at about -120 dBm. 
The GPS receiver automatically selects the stronger signal. 
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4. Deviation from the route (Manipulation). After 
accepting the spoofed signal, the UAV changes its route; in 
other words, it “believes” it is at a different location and starts 
to execute commands corresponding to that new position. All 
GPS parameters (coordinates, altitude, speed) can be changed 
in real time, enabling precise control over the UAV’s route. 
For instance, a UAV intended to fly to location A now 
perceives coordinates for location B and may land at that 
specified point. 

An attack scenario with a real-world example of “drone 
hijacking” involves an attacker transmitting a signal with 
coordinates corresponding to their own location, causing the 
UAV to land nearby. More advanced attacks are used to 
precisely redirect the aircraft to a chosen location [21]. Figure 
2 illustrates how an attacker uses GPS spoofing to force an 
autonomous drone to deviate from its intended destination. 

 

 

Figure 2. Scheme of how the spoofing signal is applied. 

GPS spoofing detection is typically carried out using 
hardware-based methods that analyze various characteristics 
of the GPS signal: 

1. Analysis of GPS signal amplitudes from satellites and 
attackers (spoofers). Satellite GPS signals typically have low 
power because they are transmitted from a great distance. 
Spoofing signals often have abnormally high amplitude since 
the spoofer’s transmitter is much closer to the receiver. This 
kind of analysis is performed using RSSI (Received Signal 
Strength Indicator), based on the following steps: -Measure 
the signal power for each received satellite signal.  

- If several signals exhibit significantly higher power 
compared to standard values, this may indicate spoofing.  

- Hardware implementation is achieved with a GNSS 
(Global Navigation Satellite System) receiver equipped with 
integrated signal analyzers [22–24]. 

2. Analysis of Doppler shift. Due to the relative motion of 
satellites and the receiver, satellite signals exhibit a 
predictable Doppler frequency shift. A spoofer usually does 
not account for these shifts or does so inaccurately. This 
analysis relies on high-precision GPS receivers, such as those 
equipped with quartz oscillators, to determine frequency 
shifts. The hardware module calculates the Doppler shift for 
each GPS signal. Any anomalies, such as all signals having 
the same Doppler shift, are indicative of spoofing. 

3. Analysis of signal time of arrival (TOA). Authentic 
GPS signals have different arrival times at the receiver 
because of varying distances to each satellite. Spoofing 

signals are typically synchronized to appear credible, but their 
arrival times may be identical or inconsistent. This analysis is 
performed by high-precision GNSS receivers equipped with 
atomic clock–based synchronizers. Specifically: 

- The difference in arrival times of signals at the receiver’s 
antenna is analyzed.  

- Synchronized arrivals—uncharacteristic of real satellite 
signals—are identified. 

4. Analysis of multipath propagation. Signals from 
satellites may reflect off objects, creating multipath effects.  
Authentic GPS signals have a typical multipath profile; 
spoofing signals can produce an unnatural multipath profile. 
Multipath analysis is performed by multi-channel GNSS 
receivers with built-in signal analyzers. 

5. Analysis of signal synchronization. GNSS receivers 
with embedded algorithms analyze signal synchronization. 
GPS satellites synchronize their signals using atomic clocks.  
Spoofers often lack this level of synchronization precision. 
The accuracy of synchronization among several satellites’ 
signals is examined. Any discrepancies in synchronization 
may indicate spoofing. 

6. Use of phased array antenna arrays.  For example, 
CRPA (Controlled Reception Pattern Antennas). Anomalies 
in the direction of signal arrival can indicate spoofing. Real 
satellite signals come from different directions based on 
satellite positions. An antenna array with multiple elements 
measures the incoming direction of each signal. If all signals 
arrive from one direction, this suggests spoofing. 

7. Use of additional sensors — GNSS receivers integrated 
with INS. Integrating GPS data with other sensors (inertial, 
magnetometers, barometers) makes it possible to verify GPS 
data reliability. GPS data are compared with readings from the 
Inertial Navigation System (INS) [25]. Discrepancies can be 
detected, for instance, a change in coordinates that does not 
align with the UAV’s INS-derived speed. 

These methods are often combined to ensure reliable 
detection of GPS spoofing. For instance, modern GNSS 
receivers for critical applications (aviation, UAVs [26], 
military systems) can simultaneously use signal power 
analysis, TOA, and Doppler shift assessment. 

С.  DESCRIPTION OF THE DATASET AND MODEL 
TEXBAT Dataset. TEXBAT [27] is a publicly available 
dataset commonly used to test the robustness of GPS 
receivers. It contains digital recordings of authentic static and 
dynamic GPS L1 C/A spoofing tests. The characteristics of 
TEXBAT allow the dataset to generalize the problem of 
spoofing-attack detection, addressing not only UAVs but also 
any GPS-equipped vehicles. 

Among all the spoofing attacks covered by the TEXBAT 
dataset, scenarios DS3 and DS7 exhibit characteristics of a 
synchronous spoofing attack. Scenario DS3 is based on static 
attacks with matched power. Scenario DS7 explores the same 
spoofing attack as DS3, but with carrier phase alignment. 
Since DS7 is based on DS3 and introduces new alignment that 
increases the complexity of intrusion detection, our focus is 
on scenario DS7. 

The TEXBAT dataset contains binary data. Using GRID 
code [28], we convert the binary file into navigation data, 
which we then use to train our model in this work. 

To detect synchronous GPS spoofing attacks with high 
accuracy (>90%) based on real TEXBAT data, this paper 
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proposes an MLP architecture with the following morphology 
(Figure 3). 

 

Figure 3. Diagram of a multilayer perceptron model. 

After preliminary processing of the TEXBAT data with 
GNSS-SDR (Global Navigation Satellite System software-
defined receiver), we extracted features from the files 
generated by GNSS-SDR.  

After the dataset is processed in GNSS-SDR, the following 
types of files are obtained, each containing different GNSS 
data aspects: 

1. rinex (Receiver INdependent EXchange format) 
 - A standard format for exchanging GNSS data. 
- Contains raw measurements from the GNSS receiver, 

including pseudorange data, carrier phase, Doppler shift, and 
signal-to-noise ratio. 

- Used for post-processing position, signal analysis, or 
correction computations. 

2. kml (Keyhole Markup Language) 
- A format for geospatial visualization. 
- Contains information on the GNSS receiver’s trajectory, 

including coordinates (latitude, longitude, altitude) and 
timestamps. 

- Used for viewing the route in software such as Google 
Earth. 

3. gpx (GPS Exchange Format) 
- A format for exchanging GPS data.  
- Contains waypoints, tracks, or paths collected by the 

GNSS receiver. 
- Used for route analysis and for uploading data to other 

GPS devices or navigation apps. 
4. geojson 
- A JSON-based format for storing geospatial data. 
- Contains trajectory coordinates along with possible 

additional information (timestamps, speed, direction of 
movement). 

- Used in geographic information systems (GIS) for data 
processing and visualization. 

5. nmea (National Marine Electronics Association) 
- A standard format for transmitting GNSS data. 
- Contains messages with information on position, speed, 

time, and other parameters. 
- Used for real-time applications and integration with other 

systems, such as autopilots or mapping programs. 
The MLP receives three primary input parameters: 
1. Signal Power (S1): This parameter (in dB/Hz) indicates 

the signal level and its reliability. Attacks are often 
accompanied by an increase in this value. 

2. Doppler Shift (D1): This frequency shift indicates the 
relative velocity of the satellite with respect to the receiver. 

Unnatural changes in this parameter signal a potential attack. 
3. Pseudorange (C1): This is the distance estimated by the 

receiver based on the signal transmission time. Deviations 
indicate possible manipulation. 

To ensure the correct operation of the MLP model, a data 
preprocessing stage is carried out: 

1. Data Transformation: Each feature (S1, D1, C1) is 
normalized to align the input values. Methods such as min-
max normalization (0–1 range) or standardization (mean = 0, 
standard deviation = 1) may be employed. 

2. Aggregation by Timestamps: Signal values are averaged 
for each point in time, reducing data dimensionality and 
improving processing efficiency. 

3. Handling Missing Values: Any missing (NaN) values 
are handled by either interpolation or by removing incomplete 
records to avoid errors during model training. 

Model Architecture: The MLP model comprises an input 
layer with 12 neurons. The structure includes three hidden 
layers with 12, 64, and 32 neurons, respectively, each using 
the ReLU activation function for efficient training [29-32]. 
The output layer consists of a single neuron with a sigmoid 
activation function, which is used for binary classification of 
the signal as authentic or spoofed. The model is trained using 
the Adam optimizer with a learning rate of 0.001 and a binary 
cross-entropy loss function, ensuring stable and accurate 
classification. 

The dataset used in this work consists of two subsets: 
3,016 “clean” signal samples and 2,737 spoofed samples, for a 
total of 5,753 instances. For model training and evaluation of 
its generalization performance, a 70%/15%/15% split was 
applied to the training, validation, and test sets, respectively. 
This corresponds to 4,027 samples in the training set, 863 in 
the validation set, and 863 in the test set. 

III.  RESULTS 
The MLP model was trained and tested on the TEXBAT 
dataset, focusing on the DS3 and DS7 spoofing scenarios and 
the clean scenario. The model achieved a detection accuracy 
of 93%. 

 

Figure 4. Accuracy and loss graphs over epochs. 

To estimate the model’s computational cost, we used the 
THOP library to compute FLOPS per inference. Our model 
was profiled with THOP using a random input tensor. The 
resulting value is approximately 24,000 FLOPS per 
prediction. This assessment confirms the extremely low 
computational overhead of the MLP network, making it 
suitable for real-time detection even on embedded platforms. 

Correlation matrices were constructed for three types of 
data: clean, attacked (DS7), and attacked (DS3). These 
matrices show how the parameters relate to each other. 
Comparing the three correlation matrices revealed significant 
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changes in the statistical relationships among key GNSS 
signal parameters (pseudorange, signal_strength, 
doppler_shift) in the presence of spoofing attacks. 

 

Figure 5. Data correlation matrices. 

Clean Data: In non-spoofed data, there is a strong negative 
correlation (-0.93) between pseudorange and signal strength, 
which is typical for authentic reception conditions, where an 
increase in the distance to the satellite is accompanied by a 
decrease in signal strength. Other indicators (e.g., Doppler 
shift) do not exhibit significant correlations, reflecting the 
physical independence of those parameters. 

DS7 (phase-aligned spoofing): The correlation between 
pseudorange and signal_strength decreases to -0.82. This 
indicates a disruption in the natural relationship between these 
signal parameters due to the spoofer’s interference. In this 
scenario, the phase and frequency of the spoofed signal were 
carefully aligned with the authentic signal, so the changes 
appear rather smooth. However, even this is enough to affect 
the internal correlation structure. 

DS3 (matched-power spoofing without full phase control): 
The lowest correlation between pseudorange and 
signal_strength (-0.68) is observed in DS3. This result points 
to the greatest break in statistical relationships. It may stem 
from the fact that in DS3 the spoofer did not have a significant 
power advantage, and phase alignment was less precise. This 
led to constant interaction between authentic and spoofed 
signals, creating chaotic interference and distorting the 
expected correlations. 

Even carefully masked spoofing attacks (as in DS7) leave 
noticeable traces in the statistical characteristics of the signals. 
A reduction or distortion in the correlation relationships 
between parameters can be a reliable indicator of an attack. 
Monitoring changes in the relationship between pseudorange 
and signal_strength can be particularly effective, as this pair 
shows the greatest deviations in the presence of spoofed 
signals. 

Additionally, an analysis of the mean distributions of the 
signal parameters (Pseudorange Mean Distribution, Signal 
Strength Mean Distribution, Doppler Shift Mean Distribution) 
was performed for clean vs. spoofed scenarios. The density in 
the graphs shows the proportion of data values falling into 
each interval (or histogram bin). The higher the bar, the more 
data values occur in that interval. 

 

 
Figure 6. Analysis of the distribution of mean values of signal 

parameters. 

Pseudorange Mean Distribution (left): The chart 
demonstrates a clear difference between the mean 
pseudoranges in clean and spoofed data. The clean data 
exhibits two pronounced peaks at the extreme values, 
indicating greater spread. The spoofed data has a single, 
distinct peak in the lower range, suggesting a stable, 
controlled generation of pseudorange by the spoofer. 

Signal Strength Mean Distribution (center): This 
distribution shows that clean signals have two distinct peaks 
(around 41.5 and 42.5 dB·Hz), reflecting the natural variation 
of signal strength in a real environment. The spoofed signals 
display a smoother, more dispersed distribution with reduced 
peak values. This may indicate non-constant or unstable 
signal generation by the spoofer, or partial signal 
jamming/overlap. 

Doppler Shift Mean Distribution (right): This chart reveals 
the smallest difference between the classes: both groups have 
similar distributions, with clean data showing a slightly higher 
concentration around 400 Hz, but overall the values overlap 
considerably. This confirms that Doppler shift is well-imitated 
in spoofed scenarios—a typical result of using the frequency 
lock mode in TEXBAT. 

The average values of the signal parameters can serve as 
additional indicators of spoofing (solid lines). Pseudorange 
emerges as the most informative, with a pronounced 
difference in density and peak positions. Signal Strength 
shows changes in variability that can also be used for 
detection. Doppler Shift is less informative for detection, 
since spoofers effectively mimic it. 

These distributions can be useful for classification based 
on statistical features in machine learning tasks. 

A combined data correlation matrix was created. 

 

Figure 7. Combined data correlation matrices. 

This heat map reflects pairwise correlations among the 12 
statistical features of the three main GNSS parameters: 
pseudorange, signal_strength, and doppler_shift. For each 
parameter, the mean, minimum, maximum, and standard 
deviation (std) were considered. The data combines both clean 
and spoofed observations. 

1. Pseudorange. All pseudorange-related features 
(especially mean, max, std) show extremely high positive 
intercorrelations (0.91–1.00). This indicates a very strong 
internal dependency, which is expected: as the mean value 
increases, the range and maximum also increase. In contrast, 
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pseudorange_min exhibits weaker correlations with the other 
pseudorange features. This may be linked to spoofers being 
limited in creating lower pseudorange values. 

2. Signal Strength. signal_strength_min strongly 
negatively correlates with pseudorange values (to about 
−0.81, −0.66) and their standard deviation. This makes sense 
physically: greater distance corresponds to weaker signal 
strength.  signal_strength_max and mean show moderate 
positive correlations with pseudorange_std but weaker or 
almost no correlation with pseudorange_mean. A high 
correlation between signal_strength_max and 
signal_strength_std (0.86) suggests that amplitude changes 
(peaks in signal strength) are sensitive to extremes in the 
signal, potentially serving as a spoofing marker. 

3. Doppler Shift. doppler_shift_mean, min, and max are 
strongly interrelated (correlation > 0.92), indicative of smooth 
signal shifts without abrupt changes. They negatively 
correlate with pseudorange measures (up to −1.0 with 
pseudorange_min and pseudorange_max), which may be an 
indirect indication of a spoofer’s attempt to simulate a stable 
relationship. doppler_shift_std shows a strong negative 
correlation with pseudorange_std (−0.94) and a positive 
correlation with doppler_shift_max/min (~0.5), suggesting a 
significant sensitivity of Doppler shift to signal dynamics. 

4. Role of the `std` Features. The standard deviation 
blocks for all three parameters turn out to be especially 
informative for detecting anomalies, especially 
pseudorange_std, which correlates with many other metrics. 

5. Strong Negative Correlations. The most pronounced 
negative correlations are between pseudorange and 
signal_strength/doppler_shift, which aligns well with GNSS 
physics. 

6. High Within-Block Correlation. Each parameter’s 
features (mean, min, max, std) show high internal correlation, 
implying that some metrics may be redundant and could 
potentially be reduced in the model. 

Advantages of the Proposed Approach 
1. Processing Speed. The model is capable of operating in 

real time. Thanks to a limited number of parameters and an 
optimized architecture, the processing time per signal is 
minimal. This is especially important for drones, which 
require immediate decisions to mitigate threats. 

2. High Accuracy. The obtained metrics indicate that the 
model effectively recognizes synchronized spoofing signals 
even in the presence of noise in the data. This makes it 
suitable for real-world applications. 

3. Flexibility. Our model can be adapted for other GNSS 
systems, such as Galileo or GLONASS. Additionally, it can 
be employed not only for drones but also for other navigation 
devices. 

4. Ease of Integration. The multilayer perceptron 
architecture is straightforward to implement in existing 
onboard systems. 

Limitations 
1. Dataset Size. Although TEXBAT is a real and high-

quality source of data, it covers a limited number of scenarios. 
To further improve the model, a larger volume of data is 
needed, including more real-world attacks and signal 
variations. 

Potential Improvements 
1. Expanding the Feature Set. We plan to add new 

parameters, such as signal time delay and multipath effects, 
which can also be indicative of spoofing. 

2. Use of Ensemble Methods. Incorporating other machine 
learning models, such as Random Forest or Gradient 
Boosting, may improve the system’s accuracy and robustness. 

3. Development of Optimized Hybrid Neural Network 
Systems. Investigations could include methods based on 
Unsupervised Wavelet Adversarial-Refinement GAN and 
CNN+SOP (Self-Organizing Polynomial Network) 
architectures to further enhance spoofing detection 
performance. 

IV. CONCLUSIONS 
This paper addresses the task of GPS spoofing detection, 
focusing on synchronous attack scenarios (DS3 and DS7) 
using the open-source TEXBAT dataset. The main emphasis 
is on applying a multilayer perceptron (MLP) and performing 
a detailed statistical analysis of the signals. The results of the 
computational experiment can be summarized as follows: 

1. Correlation Matrices. Matrices were constructed for 
three datasets: “clean” signals and spoofed signals under the 
DS3 and DS7 scenarios. These matrices allow us to monitor 
how key GPS signal parameters—namely pseudorange, 
signal_strength, and doppler_shift—are interrelated. To 
deepen the analysis, these parameters are considered not only 
as instantaneous values but also through statistical measures 
(mean, min, max, std).  

- In “clean” data, the correlation patterns reflect the 
physical nature of the signals. Pseudorange and power 
typically exhibit a strong negative correlation (e.g., -0.93). 
The farther the satellite, the weaker the signal. Pseudorange 
and Doppler shift are often less correlated because Doppler 
shift arises from satellite and/or receiver movement, which 
does not always directly depend on instantaneous distance. 
Power and Doppler shift correlate primarily when the drone’s 
speed or trajectory changes relative to the satellite; however, 
this correlation is seldom as strong as that of the 
pseudorange–signal_strength pair.  

- Under spoofing (specifically in DS3 and DS7), the 
attacker attempts to artificially “idealize” or simulate these 
parameters. However, completely preserving the natural 
relationships is difficult. In DS3, pronounced fluctuations or 
“chaotic” behavior significantly weaken the negative 
correlation between pseudorange and power (from -0.93 to -
0.68). In DS7, the correlation shifts are less abrupt since the 
attack is more carefully synchronized; nonetheless, the 
statistics still deviate from the “typical” values, revealing the 
signals to be spoofed.  

- The practical value of such an analysis lies in the fact 
that correlation matrices can be computed in real time for data 
“windows.” If the system detects significant deviations from 
the correlations typical of a legitimate signal, it raises a “red 
flag” indicating a potential attack. Since drones use GPS 
continuously, constant monitoring of correlation relationships 
helps quickly detect spoofing and trigger countermeasures 
(e.g., switching to alternative navigation systems or 
immediately alerting the operator). 

2. Mean Value Distributions. 
Significant shifts were observed in the mean values of 

pseudorange and signal strength. In the “clean” signal, two 
distinct “peaks” are typical, whereas in spoofed scenarios, the 
data more frequently cluster into a single or shifted region. 
This confirms the presence of distortions deliberately 
introduced by an attacker. 

3. Model Accuracy. The proposed MLP architecture, 
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which includes three hidden layers, achieved a detection 
accuracy of 93%. This demonstrates the promise of using 
machine learning for the rapid recognition of spoofing. 

In summary, this work gathers and systematizes real GPS 
data, develops an MLP model, and provides a detailed 
analysis of the resulting correlation matrices and distributions. 
The results confirm that even carefully orchestrated spoofing 
attacks alter the signal’s characteristics, and machine learning 
can reliably distinguish genuine data from counterfeit. This 
finding opens the possibility of applying the developed 
approach in real-world conditions to enhance UAV security. 
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