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 ABSTRACT The Wireless Access in Vehicular Environment (WAVE) aims to facilitate communication 
between vehicles and infrastructure, primarily for safety improvements. Despite more than a decade of research, 
significant technological hurdles still remain before this potentially life-saving technology can be seamlessly 
integrated into modern automobiles. However, the frequent transmission of Cooperative Awareness Messages 
(CAMs) and Decentralized Environmental Notification Messages (DENMs) from each mobile device is the 
leading cause of broadcast storms, especially considering the limited 10 MHz channel bandwidth. Therefore, to 
mitigate some of these challenges, making use of the Feed Forward Neural Network (FFNN) and the Levenberg-
Marquardt Algorithm (LMA), the current work focuses on designing, developing, and modeling Packet Error Rate 
(PER) in the Vehicular Ad hoc Network (VANET) environment to enable mobile devices to predict the PER based 
on such factors as the available Bandwidth (BW) and Signal-to-Noise Ratio (SNR). Following model development 
and training, rigorous testing and verification are conducted to demonstrate the system's effectiveness and 
efficiency in predicting PER based on SNR and BW parameters. The resulting evaluation proved that the 
developed model has the ability to accurately predict PER with an accuracy of 85%. 
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I. INTRODUCTION 
nitiated around a decade ago, Vehicle-to-Vehicle (V2V) and 
Vehicle-to-Infrastructure (V2I) technologies are integral 

components of Vehicular Ad-hoc Networks (VANETs), aimed 
at fostering seamless communication between vehicles and 
infrastructure elements. Their primary goal is to enhance road 
safety, alleviate traffic congestion, and ultimately optimize 
transportation efficiency [1]. These technologies operate within 
the framework of Cooperative Intelligent Transport Systems 
(C-ITS), which seek to enable vehicles to communicate with 
each other to prevent accidents, provide timely warnings to 
drivers, and streamline traffic flow [2]. Two key features of C-
ITS, Turn Assist (TA) and Junction Movement Assist (JMA), 
serve as vital tools in ensuring safe driving practices. By 
combining these features, the United States Department of 
Transportation (US DoT) estimates the potential to prevent a 
substantial number of accidents annually. Additionally, a study 
performed by the US DoT showed that the combined 
implementation of TA and JMA could save up to 600,000 
accidents annually [3]. The significance of these technologies 
is further underscored by findings from the National Highway 

Traffic Safety Administration (NHTSA), which suggest that a 
significant portion of motor vehicle crashes could have been 
averted through the implementation of V2V communication. 
This assertion was subsequently supported by J. Koon, 
showing that 615,000 motor vehicle crashes in the year 2020 
could have been prevented using V2V communication 
technology [4]. Globally, there were an estimated 1.19 million 
road traffic deaths in 2021 [5]. Road traffic accidents have been 
the leading cause of death and a major contributor to disability; 
road traffic injuries also impose an enormous economic cost on 
societies. It was estimated that the global macroeconomic cost 
of road traffic injuries was over US$1.8 trillion in 2021 [6]. 

Moreover, the prevalence of human error in a large 
proportion of road traffic accidents highlights the urgent need 
for advanced technological interventions like VANET. The 
promise of VANET technology lies in its potential to 
significantly reduce fatalities and injuries resulting from road 
accidents on a global scale. Operating under the Wireless 
Access in Vehicular Environments (WAVE) standard, vehicles 
equipped with V2V capabilities can exchange critical 
information, such as their respective positions and speeds, 
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within a limited radius. This exchange of data empowers 
drivers with real-time alerts about potential hazards, including 
imminent collisions, lane changes, and adverse road 
conditions. In fact, under the WAVE standard, vehicles have 
the capability to communicate with each other through V2V, 
sharing data such as position, speed, and direction. Within a 
300-meter radius, vehicles can exchange these signals up to ten 
times per second [2], providing them with a comprehensive 
360-degree "view" of their surroundings and other cars in the 
vicinity. Drivers can receive alerts from V2V regarding 
potential crashes, lane changes, rear-end cross traffic, blind 
spots, and slippery road conditions. This will only be possible 
if there is a successful message exchange between the involved 
nodes. 

However, the effectiveness of VANET is not without its 
challenges. Broadcast Storms (BrS) pose a significant threat to 
communication reliability when the available channel 
bandwidth becomes overwhelmed by the volume of message 
transmissions. Although the Channel Busy Ratio (CBR) can be 
locally estimated [2], there is no direct relation between the 
CBR and the PER. Undoubtedly, PER estimation becomes a 
big challenge in such an environment. To mitigate this risk of 
BrS, the proposed approach involves modeling the Packet Error 
Rate (PER) estimation in VANET using Machine Learning and 
Levenberg-Marquardt algorithm. This innovative method 
utilizes locally computed metrics like the Signal-to-Noise Ratio 
(SNR) and available Bandwidth (BW) obtained from the CBR 
to predict the likelihood of successful data transmission.  

The significance of this work in the realm of VANET 
cannot be overstated. By offering a systematic methodology for 
generating and analyzing data, developing robust neural 
network models, and addressing complex challenges of the 
PER estimation, the research contributes substantially to 
advancing the capabilities of VANET technology. As of the 
time of writing, no comparable literature exists in the area of 
PER estimation based on SNR and BW using Machine 
Learning (ML), making this research a pioneering effort in the 
field.  

The work demonstrates how to: 
 Generate a valid dataset from a model simulation. 
 Explore and analyze complex data. 
 Create a robust NN model from a valid dataset. 
 Use NN to Model a complex V2V PER estimation. 
The remainder of this work is arranged as follows: a 

literature review is presented in Section 2. The packet error rate 
derivation is explained in Section 3. The data generation is 
discussed in Section 4. The proposed ML algorithm is 
introduced in Section 5. The model testing and evaluation are 
shown in Section 6. And finally, the conclusion is provided in 
Section 7. 

II. LITERATURE REVIEW 
While the concepts of Packet Error Rate (PER) derivation, 
calculation, and estimation are not new, to the best of our 
knowledge, very little work has been done in the area of 
Vehicular Ad-hoc Networks (VANETs) due to the complexity 
of their formulation, particularly in the case of the PER 
estimation model as a function of Signal-to-Noise Ratio (SNR) 
and available Bandwidth (BW). However, there are a few 
papers in the literature for PER formulation and derivation. A 
new Packet Error Rate (PER) degradation model for VANETs 
was presented in [7]. The study presented a novel method for 

channel modelling that takes into account the random 
behaviour of wireless networks in the setting of frequent 
topology changes and significant node mobility in automotive 
contexts. The model utilizes Markov-based trace analysis to 
study the dynamics of packet error rate degradation concerning 
SNR and Doppler Shift (DS). The study gives a way to fine-
tune the model based on actual observations in VANET 
settings and delivers insights into packet-level channel 
performance.  

A closed-form equation of the packet loss probability, 
outage probability, packet collision probability at the MAC 
layer, and packet error probability at the physical layer were all 
explored numerically to examine the performance of VANETs 
in [8]. The study investigated a VANET model for several 
fading channels, including Nakagami-m, Weibull, Rician, and 
Rayleigh channels, while accounting for the minimal safety 
distance between vehicles. There was further discussion of the 
variables impacted by many cars, vehicle speed, contention 
window size, packet size, and distances between vehicles. 
Based on the results of the simulation research, it was evident 
that under various fading channels (Nakagami-m, Weibull, 
Rician, and Rayleigh channels), the packet error and loss 
probability are consistently lower than those without the 
minimum safety distance. In [9], authors adopted the cluster-
based approach to analytically model VANETs. Closed-form 
expressions of packet loss probability for different fading 
models (i.e., Rayleigh, Rician, Nakagami-m, and Weibull 
channels), which consider both MAC and Physical Layer 
characteristics, were provided. The derived expressions also 
encompassed the effect of decoding failure and packet collision 
based on SNR and back-off timer, respectively. Using 
extensive simulations, the results characterized the impact of 
channel conditions, vehicle speed, and contention window on 
the performance of the cluster-based VANETs.  

In [10], the authors conducted a comparative analysis 
between a Realistic Packet Error model [11] and a Basic Error 
Model, the latter relying solely on antenna sensitivity. 
Simulations were performed on capacity channels of 6, 12, and 
27 Mbps, aligning with the IEEE standard recommendation 
802.11p [12] for reduced packet error rates. The findings 
suggested no statistically significant difference between the 
two packet error models for low and medium-rate channels. 
However, a notable distinction emerges in high-capacity 
channels (27 Mbps) due to the inability of high antenna 
sensitivity to mitigate interference effects, even in scenarios 
with low data traffic. It is emphasized that while configurations 
with high sensitivity and basic error models may yield reliable 
results in some cases, such outcomes are not guaranteed. A 
heuristic function employing regression methods to calculate 
the packet loss rate (PLR) in a vehicle network, which 
considers varying vehicle density, transmission speed, and 
transmission power values, was introduced in [13]. Regression 
algorithms were tested on a variety of urban and highway 
situations utilizing realistic traffic scenarios simulated with 
Omnet++, Sumo, and Veins environments. A PLR dataset was 
created from the resultant transmissions from connected cars, 
which were then used as test and training data for several 
regression methods. Based on numerical results, the Catboost 
regression approach predicts PLR with the least amount of 
error when compared to other methods. With the help of the 
proposed heuristic, PLR may be directly determined given a 
particular set of transmission parameters. This allows system 
designers to choose solutions that meet PLR criteria or change 
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the transmission parameters to lower PLR below the desired 
level.  

A novel approach for enhancing reliable vehicle-to-vehicle 
(V2V) communication across diverse environments was 
explored in [14]. Performance metrics, including time to 
collision, bit error rate (BER), packet error rate (PER), average 
throughput (Mbps), beam selection probability, and 
computational complexity factors, demonstrate the proposed 
system's excellence through extensive experiments and 
simulations compared to traditional methods. The approach 
achieves notable improvements, with an average throughput of 
1.7 Mbps, a 0.1 reduction in BER, and near 100% beam power 
efficiency at a computational factor of 34. These results signify 
the efficiency and robustness of the proposed method, 
highlighting its potential for advancing V2V communication 
reliability in various scenarios.  

Even though a large number of previous studies were 
assessed on various platforms, the majority of the suggested 
models could be very sophisticated, making them difficult to 
execute and assess in actual VANET circumstances. 
Furthermore, the accuracy of the results might be impacted by 
some models' reliance on assumptions that might not always 
hold true in real-world VANET setups. In order to avoid 
requiring difficult mathematical derivation, the current study 
aims to create a Neural Network (NN) model that might assist 
in quickly estimating the PER as a function of SNR and BW in 
VANETs. 

III. PACKET ERROR RATE DERIVATION 
Before deciding on the Machine Learning (ML) algorithm to 
be used, it is imperative to understand the nature of the problem 
at hand. The model consists of estimating the Packet Error Rate 
(PER) as a function of the Signal-to-Noise Ratio (SNR) and the 
available channel Bandwidth (BW) in a vehicular environment. 
In essence, PER is used in communication systems to measure 
the dependability and quality of data delivery. It shows the 
proportion of packets that are incorrectly received among all 
the packets that are transmitted. PER is often expressed as a 
fraction or as a percentage. 

During transmission, packets may become damaged or lost 
due to various reasons, including noise, interference, fading, or 
congestion. One metric that aids in our comprehension of how 
these errors affect system performance is the PER. Based on 
the PER derivation theory under the Wireless Access in 
Vehicular Environment (WAVE) [15], assuming that all 
mobiles are equipped with Global Positioning System (GPS) 
receivers and sensors, from which the state of other neighbour 
vehicles (e.g., location, speed, direction, and acceleration) can 
be easily obtained [16]. 

Before calculating the PER, it is important to first calculate 
the Packet collision probability (Pcol) in a MAC layer 
separately, followed by the Packet Error probability (Perr) in 
the physical layer. If τ is used to express the probability that a 
given node transmits after the backoff time counter reaches 
zero [16], then it can be defined as 
 

, 
(1) 

 
where p is signified the freezing of the backoff counter when 
the channel is detected idle, and CW is the contention window 
size. Then the probability of collision subjected by the 

transmitted packed over the VANET with N-1 neighbours can 
be expressed as  
 

. (2) 

 
Additionally, the average SNR received at the distance R 

under the impacted path loss [17] can be defined as 
 

, 
(3) 

 
where Gr and Gt are the antenna gain for the receiver and 
transmitter and both values are equal to one.  
 

 , 
(4) 

 
where λ is signal wavelength (c=3x108m/s is speed of light and 
fc=5GHz is carrier frequency). All the vehicles have the same 
transmitted power Pt and N0 is Additive White Gaussian Noise 
power (AWGN). Parameter α is denoted as the path loss 
exponent. 

During transmission a packet is divided in an M block size 
and each block is also affected by the vehicular mobility. 

 

, 
(5) 

 
where Lp is the packet size and γth is the SNR threshold, Tcoh is 
the coherence time which is presented by 
 

, 
(6) 

 
where fD is the Doppler Shift which is calculated as 
 

, (7) 

 
where v is the receiver velocity towards the transmitter in the 
direction of motion, c is the speed of light, fc is the carrier 
frequency, θ is the arrival angle of the received signal relative 
to the direction of motion. Now, considering the Rayleigh 
fading channel in our model, the PDF of SNR under Rayleigh 
fading channel [18] is expressed as 
 

. 
(8) 

 
Thereafter, the outage probability Pout is defined as the 

probability when the average SNR of the received signal 
�̅�(𝑅) is less than the SNR threshold 𝛾௧. If and only m=1 (m is 
the level Nakagami-m fading) then the Pout of Rayleigh fading 
channel [19] is defined as 
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packets is defined as 
 

. 
(10) 

 
Therefore, if total N packets are transmitted over the 

medium, then the PER is defined as  
 

. (11) 

IV. DATA GENERATION 
Before embarking on data generation, the communication 
channel model needs to be explored to clarify and ascertain 
whether the model was developed in a valid VANET 
environment. 

A. CHANNEL MODEL  
The MATLAB-based channel model utilized in this research 
proved to be effective in simulating the V2V wireless channel 
environment [20]. In this model, the communication begins 
with the transmission of the Medium Access Control (MAC) 
Protocol Data Unit (MPDU) from the transmitter, which is then 
passed to the physical layer. At the physical layer, the MPDU 
is encapsulated to create the Physical Layer Convergence 
Protocol (PLCP) Service Data Unit (PSDU), which is further 
used to generate waveform packets transmitted over the 
wireless channel. The wireless channel is structured using the 
V2V channel model compliant with IEEE802.11p [21], 
enhanced with Additive White Gaussian Noise (AWGN).  
 

Packet 
Wave 

generation
ReceiverAWGNV2V 

ChannelPSDU

Transmitter Channel Receiver

 
Figure 1. V2V channel model. 

This configuration operates at a sampling rate of 10 MHz, 
taking into account the desired V2V communication delay 
profile. Two delay profiles are employed: Non-Line of Sight 
(NLOS) for urban communication and Line of Sight (LOS) for 
highway communication. At the receiver end, tasks include 
packet detection, coarse carrier frequency offset estimation and 
correction, symbol timing, and fine carrier frequency offset 
estimation and correction. The Long Training Field (L-LTF) is 
extracted from the synchronized received waveform, followed 
by OFDM demodulation and initial channel estimates 
acquisition. Channel tracking, if enabled, updates channel 
estimates per symbol using decision-directed channel tracking 
[22]. If disabled, initial channel estimates from L-LTF are used 
for the entire packet duration. The non-HT Data field is then 
extracted from the synchronized received waveform, and the 
PSDU is recovered using the extracted data field along with the 
channel estimates and noise power estimate. 

B.  PER DATA GENERATION 
Using the described channel model and the simulation 
parameters depicted in Table 1, data were generated by 
simulating the packet error rate (PER) as a function of the 
signal-to-noise ratio (SNR), data size, and the channel 
bandwidth. Simulations were performed for both line-of-sight 

(LOS) and non-line-of-sight (NLOS) scenarios, with and 
without channel tracking.  

Table 1. Simulation Parameters 

Simulation parameters Value 

Channel Sampling Rate 10 MHz

MCS BPSK 1/2

Number of frames 10000

Frame length 600 Byte

Channel type V2V

Channel bandwidth 5, 10, 20 MHz

SNR 2 to 40 dB

Channel Delay Profile LOS, NLOS

Maxi number of errors 1000  
 

For each SNR point, multiple packets were transmitted, and 
the PER was calculated. The following processing steps 
occurred for each packet: 

a) A protocol data unit (PDU) was created and encoded to 
form a single packet waveform. 

b) The waveform was transmitted through the channel. 
c) The long-training field (L-LTF) was extracted from the 

synchronized received waveform. The L-LTF was OFDM 
demodulated, and initial channel estimates were obtained. 

d) Channel tracking was activated for the first set of 
simulations and deactivated for the second set. The PDU was 
recovered using the extracted data field, the channel estimates, 
and the noise power estimate. 

After transmitting 10,000 frames of 600 bytes each at each 
SNR point and a specified channel bandwidth (5, 10, or 20 
MHz), Figures 2 and 3 were generated for the LOS and NLOS 
scenarios with and without channel tracking. 

 

 

Figure 2. Data generation with channel tracking. 

 

Figure 3. Data generation with No channel tracking. 

It is noteworthy that the default VANET channel BW is set 
at 10 MHz, this default value made it difficult to execute a 

𝑃𝑒𝑟𝑟 = 1 − 𝑒𝑥𝑝 ቀ−𝑀
𝛾𝑡ℎ 𝑁0(4𝜋)2𝑅𝛼

𝐺𝑟 𝐺𝑡𝜆2𝑃𝑡
ቁ

𝑃𝐸𝑅 = 𝑁
𝑃𝑒𝑟𝑟
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 = 𝑃𝑒𝑟𝑟



 Etienne A. Feukeu et al. / International Journal of Computing, 24(2) 2025, 298-307 

302 VOLUME 24(2), 2025 

simulation with a bandwidth (BW) variation of 1 to 10 MHz 
which was our region of interest, based on the V2V 
communication model suggested by MATLAB [20]. In 
MATLAB, the communication model's default BW values, 
were set to 5, 10, 20, or other higher numbers, which made it 
difficult for us to change the BW to the desired value. 
Developing our desired model began with overcoming this 
obstacle. 

It is clear from looking at both numbers that raising the SNR 
level lowers the PER. Fig. 2 shows that beginning with SNR 
values of 30 dB and 38 dB, respectively, a PER of less than 10-

2 may be attained for data production with channel tracking, 
especially with BWs of 20 and 10 MHz. Fig. 2 shows that all 
situations performed well below the PER of 10-1 for SNRs 
larger than 30 dB. Nonetheless, the 5 MHz, LOS with channel 
tracking is the least effective performance in this figure. 

Only the 20 MHz, LOS scenario, beginning at an SNR 
value of 28 dB and higher, was able to obtain a PER lower than 
10-1 in the event of data transmission without channel tracking, 
as shown in Fig. 3. 

Every other scenario outperformed the 10-1 PER during the 
whole simulation run. Even though it was crucial to examine 
the response in both figures, only Fig. 2 data will be taken into 
consideration for the remainder of the study because most V2V 
communication instances function effectively with channel 
tracking. 

C. DATA EXPLORATION 
Table 2 displays our interest-specific data selections. The three 
parameters in this table are called PER, SNR, and BW.  

Table 2. Dataset 

PER 0.932

9SNR 2

BW 20

Sample 1

Dataset

0.992

4

5

2

0.690

6

10

3

.  . .

.  . .

.  . .

.  . .

.  . .

.  . .

.  . .

.  . .

0.009

536

20

118

0.037

738

5

119

0.015

40

10

120      

Every parameter has 120 samples, which correspond to all 
the data points that were collected to create Fig. 2. As of right 
now, a cursory glance at the table only reveals variations in 
each parameter's values collected throughout the whole range 
of sample sizes.  

Fig. 4 was built to assist comprehend the association 
between each relevant parameter in order to provide a greater 
understanding of the data displayed in this table.  
 

 

Figure 4. Data exploration 

When examining the relationship between BW and PER in 
Fig. 4, it is evident that all three bandwidths (5, 10, and 20 
MHz) remain constant while the PER changed from zero to its 
maximum. 

Incidentally, this observation demonstrates that despite the 
constant values of BW, there seems to be no direct relation with 
the variation of PER. Analyzing the correlation between SNR 
and PER, it can be observed that at higher SNR values, there is 
a lower PER, and when the SNR starts dropping, the PER 
begins to rise at a certain corresponding ratio. In this case, there 
is a sort of direct relationship between SNR and PER. Lastly, 
examining the connection between SNR and BW in the same 
figure, the BW values remain constant across the entire SNR 
range. These BW values exhibit no discontinuities and remain 
constant. This suggests that the BW is fully indifferent to 
variations in SNR.  

Further exploration of the dataset histogram as depicted in 
Fig. 5 shows that our data does neither follow positively 
skewered nor sparse distribution. This representation therefore 
proves that in order to create a good model, a data 
preprocessing is highly required. The resultant data analysis 
makes it evident that certain parameters are wholly independent 
of one another, and this is the point at which model building is 
essential. The ability to see a fluctuation in BW from 1 to 10 
MHz, regardless of our generated data, which only has default 
values of 5, 10, and 20 MHz as required by MATLAB [20], is 
one of the main issues that we want to solve with the proposed 
model response. 
 

 

Figure 5. Dataset Histogram. 

Understanding the significance of creating a PER 
estimating model becomes more obvious after looking at the 
intricacy of the PER derivation as indicated by equations 1 
through 11. Additionally, it is seen in Table 2 and the data 
exploration picture in Fig. 4 that three of our parameters (SNR, 
BW, and PER) seem to depend on each other very little or not 
at all. Therefore, if an analytical model were to be derived, this 
would make it more complicated. These days, complicated 
issues may be represented using one or more Artificial 
Intelligence (AI) system algorithms, thanks to scientific 
developments. The AI subsystem's machine learning (ML) 
approaches include a variety of algorithms designed to tackle 
various kinds of issues. Given the intricacy of our issue, the 
Neural Network (NN) will be the best option in this instance. 
Generally speaking, NNs are able to learn and model complex 
and nonlinear relationships between inputs and outputs, draw 
conclusions and generalizations, find hidden patterns, 
correlations, and predictions, and model very volatile data and 
variances needed to forecast unexpected events [23]. This 
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means that the model will consist of two input layers, one 
hidden layer with ten neurons, and one output layer as we are 
dealing with a single target or label (PER) prediction based on 
input parameter values or features (SNR and BW). 

V. PROPOSED MACHINE LEARNING MODEL 
The proposed ML model presented in Fig. 6 describes all main 
components of our approach. The model is made of 
combination of a Neural Network (NN) and the Levenberg-
Marquardt Algorithm. 
 

Data (SNR, BW, PER)

LEVENBERG-
MARQUARDT 

Training & Validation Testing & Evaluation

PROPOSED MODEL

FF Neural Network

 

Figure 6. Proposed ML Model. 

In order to construct a robust model, the data is first pre-
processed, then explored to determine if any recognized 
patterns exist. Subsequently, the explored data is fed into the 
proposed model which then trained, validated, tested, and 
evaluated. Each component of this proposed model is 
extensively described and elaborated in the subsequent 
subsections. 

A. NEURAL NETWORK MODEL  
A Neural Network (NN), which is modelled after organic nerve 
systems, uses fundamental parts that function in parallel to 
integrate processing at several levels. An input layer, one or 
more hidden layers, and an output layer make up the network. 
There are many nodes, or neurons, in each layer. Because the 
nodes in each layer get all of the outputs from the layer before 
it, there is connectivity between neurons at different levels. 
Usually, each neuron is given a weight that might fluctuate 
during the learning process. These weights automatically 
change during training in line with a preset learning rule until 
the artificial neural network completes the specified job. A 
decrease or increase in weight causes a variation in the neuron's 
signal intensity [19]. Because of its single hidden layer 
topology, the neural network used in this study as depicted in 
Fig. 7 is also known as a Feedforward Shallow Neural Network 
(FFNN). The SNR and BW vectors are connected to the input 
layers, I1 and I2, respectively. There are ten neurons in this 
hidden layer, numbered 1 through 10, and the output layer, 
denoted by 'y,' generates the estimated PER. It should be noted 
that the middle-layer neurons use a sigmoid activation function, 
while the upper layer uses a Rectified Linear Unit (ReLU) 
activation function, providing convenience in error 
computation and loss minimization through the use of chain 
rules and the backpropagation approach. The sigmoid function 
is crucial because the step function includes only flat segments, 
lacking a gradient for Gradient Descent to navigate, whereas 
the sigmoid function has a well-defined nonzero derivative 
everywhere, enabling progress at each step. Conversely, 
although the ReLU (z) function is continuous and not 

differentiable at z = 0, it performs effectively and is 
computationally efficient. 
 

1

I2 I1

y
5 4 3 2610 9 8 7

SNR

PER

BW

 

Figure 7. Feed Forward Neural Network. 

The next stage is choosing the optimization algorithm after 
the neural network has been constructed. To achieve speedy 
convergence, the 'Levenberg-Marquardt technique (LMA)' was 
adopted as an effective optimization technique. The initial 
description of the Levenberg-Marquardt method can be found 
in [24], and a discussion of its use in neural network training 
can be found in [25], which covers pages 12 through 19 of [26]. 
It is noteworthy that this algorithm is the most effective method 
for training feedforward neural networks of modest size, 
usually up to several hundred weights. The unique quality of 
LMA is that it combines the Gauss-Newton method with 
steepest descent to get consistently optimum results. LMA 
operates as an iterative technique, pinpointing the minimum of 
a function expressed as the sum of squares of nonlinear 
functions. Its remarkable performance has established it as a 
standard method for addressing nonlinear least-squares 
problems. Additional insights into the proposed optimization 
algorithm (LMA) can be found in references [24], [25], and 
[26]. 

B. LEVENBERG-MARQUARDT ALGORITHM  
Based on the proposed Neural Network (NN), the mathematical 
exploration of each neuron analysis proved that the optimal 
point will only be achieved when the error or loss is adequately 
minimized. The weight and bias variables are adjusted 
according to the Levenberg-Marquardt method, and the 
backpropagation algorithm is used to calculate the Jacobian 
matrix of the performance function with respect to the weight 
and bias variables. Based on the mentioned iterative processes, 
the NN estimation model will be well trained. The proposed 
neural network has a single output, and therefore, for each 
training dataset there is an error. The error vector for each 
training dataset will be:  
 

.                     (12) 
 

If E stands for the whole error, then the network activity 
function is defined as below and the purpose of the training 
process which consists of adjusting the weight vectors to 
minimize E is described by the subsequent equations.  
 

,        (13) 
 
where 𝑦 is the actual value and 𝑦ො is the estimated value. The 

𝑒𝑇= (𝑒1, 𝑒2, … … . 𝑒𝑁 )                                                                                                                            

𝐸(𝑤) =
1

2
 ∑ ൫𝑦𝑞 − 𝑦ො𝑞 ൯

2
=𝑁

𝑞=1
1

2
 ∑ 𝑒2𝑁

𝑞=1                                                                                                                    
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weight adjustment used in the LMA is performed by the 
following equation: 
 

 ,                      (14) 
 
where the Jacobian “J” matrix can be defined as follows: 
 

.                         (15) 
 
Then let 
 

, (16) 
 
where the subscript “s” defined the number of hidden layers. 
Thereafter, the Jacobian matrix element is calculated using the 
chain rule method as follows: 
 

.      (17) 
 

Thus, it becomes possible to calculate .  
Let us assume that the neural network has a hidden (h) layer 

and an output layer (o) numbered as m 1,2, …  where the layer 
number 1 is the hidden layer “h” and layer number 2 is the 
output layer “o”, then by substitution, m  h,o, … .The weight 
vector of the network is then represented as follows: 
 

,           (18) 
 
then the Jacobian matrix is expressed by equation 19 as  
 

, (19) 
 
consequently, 
 

.                                (20) 
 

For each training data point (each pattern), we have an 
error, and for each error per network weight (𝑤் =
[𝑤 𝑤ை]), one row of the Jacobian matrix is formed. 
Therefore, for each q-th training data, we will have: 
 

 .                       (21) 
 

Now let 𝑤 be a vector of the composed weights obtained 
at the k-th iteration, then the weights vector 𝑤ାଵ of the (k+1)-

th iteration can be expressed as 
 

.                      (22) 
 
The formula to calculate the weight increment of the neural 
network is obtained after solving the extreme values of the 
second order Taylor formula of E(w) by the least square 
method as follows:  
 

,         (23) 
 
where I is the identity matrix and 𝜇 the learning rate.  

Like the quasi-Newton methods, the Levenberg-Marquardt 
algorithm was designed to approach second-order training 
speed without having to compute the Hessian matrix. When the 
performance function has the form of a sum of squares (as is 
typical in training feedforward networks), then the Hessian 
matrix can be approximated as 
 

,                                    (24) 
 

and the gradient can be computed as follows: 
 

,                                   (25) 
 

where J is the Jacobian matrix that holds the first derivatives of 
the network errors with respect to the weight and biases, 
and e is a vector of network errors. The Jacobian matrix can be 
computed through a standard backpropagation technique [26] 
that is much less complex than computing the Hessian matrix. 

The Levenberg-Marquardt algorithm uses this 
approximation to the Hessian matrix in the following Newton-
like update: 
 

.           (26) 
 
When the scalar µ is zero, this is just Newton’s method, 

using the approximate Hessian matrix. When µ is large, this 
becomes a gradient descent with a small step size. Newton’s 
method is faster and more accurate near an error minimum, so 
the aim is to shift toward Newton’s method as quickly as 
possible. Thus, µ is decreased after each successful step 
(reduction in performance function) and is increased only when 
a tentative step would increase the performance function. In 
this way, the performance function is always reduced at each 
iteration of the algorithm. Further and detailed explanation of 
the employed LMA can be found in the work proposed by some 
authors in [27, 28].  

In summary, the specific steps needed to predict and select 
the right PER based on the SNR and the BW are as follows: 

1) Start by choosing the initial parameters for the training 
error ℇ, µ0, θ and the weight w0. Then let k=0 and µ= µ0 . 

 2) Then the error output and network index function 𝐸(𝑤) 
are calculated using equation 13. 

3) The Jacobian matrix J(w) of the partial derivative e(w) is 
calculated using equation 19. 

4) Calculate the weight increment of the network ∆𝑤 using 
equation 23. 

5) Then the error output and network index function 𝐸(𝑤) 
are calculated using equation 13. 
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6) If 𝐸(𝑤) < ℇ go to step 8. Else calculate 𝑤ାଵ and 
𝐸(𝑤ାଵ) using equation 22 and 13, respectively. 

7) If 𝐸(𝑤ାଵ) <  𝐸(𝑤), let k=k+1, 𝜇 =
ఓ

ఏ
 , go back to step 

2. Otherwise 𝑤ାଵ =  𝑤, then µ= θµ and go to step 4. 
8) Stop.  

VI. MODEL TESTING AND EVALUATION 
 

 

Figure 10. Estimated PER response from the model. 

To investigate the model's response in terms of SNR and 
PER, Figures 10 and 11 were generated. Fig. 10 illustrates the 
estimated PER response from the model, while Fig. 11 shows 
a magnified version of the PER response. 

 

 

Figure 11. Magnified PER response from the model. 

 
Figures 10 and 11 were generated for channel bandwidths 

ranging from 1 to 10 MHz. This range is crucial because 
initially, due to default constraints in MATLAB for V2V 
communication channels, it was practically infeasible to 
compute PER for bandwidths of 1 to 4 and 6 to 9 MHz, as 
MATLAB's default bandwidth values are 5, 10, 20 MHz, etc. 
However, it was imperative to explore the response across the 
entire range of 1 to 10 MHz to understand how bandwidth 
variation affects PER from 1MHz to the dedicated channel 
bandwidth of 10 MHz for V2V communication. This figure 
comprises 10 curves, each corresponding to a specific 
bandwidth with SNR ranging from 2 to 40 dB. The analysis of 
this figure reveals minimal variation in PER for bandwidths 
less than 7 MHz when SNR exceeds 30 dB. However, the 
magnified view in Fig. 11 clearly shows noticeable differences 
in estimated PER from 1 to 10 MHz within the SNR range of 
23 to 30 dB. Additionally, when the bandwidth exceeds 7 MHz, 
a significant difference in PER estimation becomes apparent. 
This observation aligns with communication theory 

fundamentals, indicating that higher bandwidth leads to lower 
PER. 

Now in view to compare the predicted response of the 
generated model in Fig10 with that used to create the model 
(actual) in Fig. 2, Figures 12,13 and 14 were computed.  

 

 

Figure 12. Model Performance at 5 MHz.                

Figures 12 and 13 represent the performance of the model 
at 5 MHz and 10 MHz bandwidths, respectively. The 5 and 10 
MHz bandwidths were chosen because those were the only 
default MATLAB values available to create the model initially. 
In both Figures 12 and 13, “Actual” represents the recorded 
data used to create the model, whereas “Pred5MHz" and 
"Pred10MHz” represent the currently predicted values 
generated by the created model.  

 

      

Figure 13. Model Performance at 10 MHz. 

Looking at Fig. 12, it can be observed that the predicted 
value aligns well with the actual data, despite some small 
discrepancies when the SNR becomes greater than 20 dB. This 
discrepancy is acceptable because it indicates that the predicted 
value is slightly lower than the actual value, indicating 
underperformance of the model in this SNR range. The analysis 
of Fig. 13 shows that the model performs well when the SNR 
is below 20 dB. However, from 20 dB upward, the predicted 
response slightly overperforms the actual data. Moreover, it is 
important to know the magnitude of these discrepancies in 
order to understand the tolerance or margin of error embedded 
in our model. To quantify these discrepancies, Fig. 14 was 
computed. In Fig. 14, the error or discrepancy curves of both 5 
MHz and 10 MHz bands are depicted. The 5 MHz bandwidth 
is represented in black, while the 10 MHz bandwidth is 
displayed in blue.  
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Figure 14. Performance Discrepancy. 

The analysis of Fig. 14 reveals that contrary to the 
observations in Figures 12 and 13, the maximum error occurs 
below the 20 dB SNR value, with the minimal error occurring 
when the SNR is beyond 20 dB. This is justified by the fact 
that, using a logarithmic scale in PER, the curves indicate 
higher PER values at lower SNR ranges, and a slight 
discrepancy in this range is also amplified. This underscores 
the importance of computing Fig. 14. Additionally, it can be 
observed that the maximum error occurs between the 5 dB to 
15 dB SNR range in both bandwidths. In general, it is 
noticeable that the maximum discrepancy of the entire model 
is 15%, as depicted in Fig. 14. Based on this value, we can 
confidently deduce that the developed model is capable of 
providing a valid PER prediction with a maximum tolerance of 
15%. Therefore, it can be concluded that the developed model 
is 85% accurate at all times. 

VII. CONCLUSIONS 
This study introduces a model designed to predict the Packet 
Error Rate (PER) in V2V communication. The prevalence of 
broadcast storms in VANETs, caused by frequent 
transmissions, can rapidly deplete channel resources, hindering 
communication. To optimize transmission decisions and 
reduce the risk of packet loss, this study proposes a model that 
predicts PER based on factors like Signal-to-Noise Ratio 
(SNR) and available bandwidth derived from the Distributed 
Congestion Control (DCC). The computation of PER is 
inherently intricate, influenced by various factors that are 
difficult for individual devices to measure directly. 
Consequently, this study aims to streamline this process by 
developing a PER prediction model using Machine Learning 
(ML) techniques. The model is then developed and validated 
through a combination of data simulation, analysis, and testing. 
This ensures the model effectiveness and efficiency in 
determining PER based on SNR and available bandwidth in the 
vehicular network. The evaluation demonstrates that the 
developed model has the ability to predict PER with 85% 
accuracy. 

This work's primary contributions include: 
 Generating a valid dataset through model simulation. 
 Exploring and analyzing complex data. 
 Constructing a robust Neural Network (NN) model from 

the validated dataset.  
 Utilizing NN to model intricate V2V PER estimation. 
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