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 ABSTRACT In this study, a detailed analysis is conducted to evaluate the efficiency of various keypoint 
matching filtering methods, including RANSAC and its USAC variations, namely, USAC-DEFAULT, USAC-
FAST, USAC-ACCURATE, USAC-MAGSAC, and USAC-PROSAC. Keypoints are detected and described 
using the SIFT, SURF, ORB, and BRISK methods. This work aims to assess the impact of filtering methods on 
the accuracy, stability, and processing speed of image analysis. The results show that while RANSAC has the 
slowest performance, it provides the highest stability, with a similarity coefficient deviation of 0.5%. RANSAC 
with modified parameters demonstrates higher accuracy and significantly faster processing compared to standard 
RANSAC, outperforming it by approximately 2.5 times and achieving a 4% accuracy improvement over USAC-
DEFAULT. The most rapid methods are USAC-PROSAC and USAC-FAST, whereas USAC-MAGSAC has the 
longest execution time among all USAC variations. Accuracy analysis of the different detectors shows that SIFT 
achieved the highest similarity coefficient values. SURF demonstrated slightly lower accuracy than SIFT, while 
BRISK showed results inferior to SURF. ORB is found to be the least effective among the evaluated detectors. 
This work emphasizes the importance of an adaptive approach when selecting keypoints matching filtering 
methods to achieve high accuracy, stability, and processing speed in various computer vision applications. The 
findings of this study will assist developers and researchers in choosing optimal filtering methods and improving 
the efficiency of image processing algorithms for specific tasks. 
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I. INTRODUCTION 
n the modern world, digital technologies play a crucial role 
across various fields where images and videos are utilized 

for decision-making and process automation. Computer vision 
enables machines to "see" and understand the surrounding 
environment, unlocking new opportunities for innovation and 
advancement in domains such as autonomous vehicle control, 
medical diagnostics, industrial automation, and others [1-5]. 

The development of these technologies relies on image 
processing methods, with a significant focus on the detection 
and description of keypoints - distinctive features in images 
that remain robust against changes in lighting, scale, viewpoint, 
etc. These features are essential for constructing 3D models, 
motion tracking, and change detection [6-8]. 

SIFT (Scale-Invariant Feature Transform) [9] remains one 
of the most reliable methods for keypoint detection due to its 
ability to maintain accuracy even under significant image 
variations. However, the substantial computational cost of this 
method has driven researchers to seek faster solutions. 

Alternative methods such as SURF (Speeded-Up Robust 
Features) [10], ORB (Oriented FAST and Rotated BRIEF) 
[11], and BRISK (Binary Robust Invariant Scalable 
Keypoints) [12] offer various trade-offs between 
computational speed and invariance to geometric 
transformations, as well as robustness against noise and 
changes in illumination. The choice of method depends on the 
specific task and system constraints. 

Therefore, even the most reliable keypoint detection and 
description methods encounter challenges in ensuring the 
accuracy of matches between images. The presence of outliers 
can significantly degrade analysis results, necessitating diverse 
approaches capable of mitigating these adverse effects. Notable 
strategies in this domain include voting-based approaches like 
the Hough Transform [13], local analysis methods such as k-
Nearest Neighbors, and various filtering methods like 
RANSAC [14] and advanced RANSAC variants. 

RANSAC (Random Sample Consensus) [14] is a classical 
algorithm for filtering; however, its effectiveness diminishes 
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under challenging conditions, such as varying lighting, 
viewpoints, scales, and other factors. 

Advanced variations such as USAC (Universal Sample 
Consensus) [15] methods were developed to address the 
described limitations. These methods employ adaptive 
parameter selection approaches, including inlier selection 
based on their probability of correct matches and local 
optimization to refine the model. These techniques improve the 
accuracy and robustness of filtering under high noise levels and 
complex geometric conditions while increasing processing 
speed [16]. 

For example, in autonomous transportation, the accuracy 
and speed of image processing are critical factors for ensuring 
road safety. Even minor improvements in keypoint detection 
and filtering methods can significantly enhance system 
performance, preventing accidents and ensuring smooth 
operation [1]. Similarly, high accuracy of results and the ability 
to process images in real time are essential in medical 
diagnostics for making quick and well-founded  
decisions [2, 3]. 

The application of computer vision for process automation 
in retail, particularly for product recognition and analysis, is an 
active area of research. Keypoint detection and description 
methods are used for product identification, quality assessment, 
and inventory control [17-21]. RANSAC was successfully 
applied to filter matches in product detection on shelves and to 
identify product shortages [17, 18]. However, the diversity of 
products, changes in imaging conditions, lighting, reflections, 
and limited datasets pose challenges to the effective use of 
computer vision methods in this domain [20, 21]. 

Nevertheless, selecting the optimal combination of 
keypoint detection and filtering methods for specific 
applications remains a pressing issue. Each technology has 
advantages and limitations, such as sensitivity to external 
factors, computational complexity, erroneous matches, 
etc.  [22]. 

This study focuses on a comparative analysis of keypoint 
detection and description methods and matching filtering 
techniques in the context of their ability to provide accuracy, 
speed, and result stability. The performance of SIFT, SURF, 
ORB, and BRISK methods with varying keypoint quantities is 
analyzed in combination with different matching filtering 
approaches, including the classical RANSAC and advanced 
techniques such as USAC-DEFAULT, USAC-FAST, USAC-
ACCURATE, USAC-MAGSAC, and USAC-PROSAC [16]. 

The findings provide valuable insights into the interaction 
between keypoint detection and description methods with 
RANSAC and USAC-based techniques. These results 
contribute to a better understanding of the interplay between 
detection and filtering methods, enabling the identification of 
suitable combinations for solving image similarity assessment 
tasks - an important step in developing efficient and reliable 
computer vision systems. 

Section 2 describes the keypoints detection and filtering 
methods, experimental methodology, and research parameters. 
Section 3 presents the experimental results and their discussion. 
Section 4 concludes the paper with insights and suggestions for 
future research directions. 

II.  MATERIALS AND METHODS 
This study utilized four widely known methods for detecting 
image keypoints: SIFT, SURF, ORB, and BRISK. The 
parameters used to control the number of detected keypoints 

for each method and their respective ranges are shown in 
Table 1. These adjustments allowed for an analysis of their 
impact on the effectiveness of match filtering. 

Table 1. Parameters and ranges for keypoint detection 

Method Control Parameter Range 
SIFT Number of keypoints 100-1000 
SURF hessianThreshold 300-2700 
ORB Number of keypoints 100-1000 

BRISK thresh 46-88 

 
Brute-Force matcher with cross-check validation was used 

for feature matching between two images [23]. In this method, 
each descriptor from the first image's keypoints was compared 
with all descriptors from the second image to find the closest 
pairs. Cross-check validation helped to reject ambiguous 
matches where the distance to the nearest descriptor was not 
significantly smaller than the distance to the second nearest one 
[24]. 

The following distance norms were applied for each feature 
detection method [25, 26]: 

 Euclidean distance (NORM_L2) for SIFT and SURF. 
 Hamming distance (NORM_HAMMING) for ORB and 

BRISK. 
The classical RANSAC method and its modern 

modifications grouped under USAC were utilized to filter 
potential matches between keypoints. 

RANSAC is an iterative method that randomly selects the 
minimum number of points required to estimate a model 
containing the largest number of inliers - points that fit the 
model within a defined threshold [14]. While RANSAC is a 
powerful tool, it has certain limitations, including the need for 
manual parameter tuning and sensitivity to a high number of 
outliers. 

To study the impact of RANSAC parameters [25] on its 
performance, the maximum number of iterations was reduced 
to 700, the confidence level was changed to 0.97, and the 
threshold distance for defining inliers was set to 5. This 
configuration is referred to as RANSAC_M in this work. 

USAC is an advanced extension of RANSAC that 
introduces several improvements to enhance the accuracy and 
efficiency of model estimation in the presence of outliers [22]. 
The following USAC variants available in OpenCV [16, 25, 
26] are analyzed in this study: 

 USAC_DEFAULT: Combines classical RANSAC with 
LO-RANSAC (Locally Optimized RANSAC) [27] and 
degeneracy checks. 

 USAC_FAST: Optimized for speed, employing fewer 
LO-RANSAC iterations and early stopping based on 
RANSAC consensus evaluation. 

 USAC_ACCURATE: Prioritizes accuracy over speed 
using GC-RANSAC (Graph-Cut RANSAC) [28] for 
local optimization. GC-RANSAC considers the spatial 
coherence of points and optimizes the model by 
incorporating the global structure of the data, enhancing 
both accuracy and robustness against outliers. 

 USAC_MAGSAC: Utilizes MAGSAC++ (Maximum 
Agreement Sample Consensus with PROSAC and 
Progressive Sample Consensus) [29] for robust model 
estimation and automatic threshold selection for inliers. 
It integrates PROSAC (Progressive Sample Consensus) 
[30] for efficient point sampling and Progressive 
NAPSAC [31] for improved model accuracy, making it 
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highly effective when dealing with noisy and outlier-
rich data. 

 USAC_PROSAC: Employs the PROSAC [30] method 
for point selection during model construction but 
requires pre-sorting input point pairs based on distance. 

The homography matrix was used to evaluate image 
similarity, which describes the projective transformation 
between two planes [32]. Homography allows assessing how 
well one image can be projected onto another, making it a 
valuable measure of their similarity. The number of inliers, i.e., 
the points consistent with the computed homography, was used 
as the measure of similarity between two images. The method 
cv2.findHomography from OpenCV [25, 26] was applied to 
estimate the homography between image pairs. 

The effectiveness of the various keypoint matching filtering 
methods was evaluated using a similarity coefficient, 
consistent with approaches in our work [33]. This coefficient 
was defined as the ratio of the number of inlier matches, 
determined as those keypoint correspondences consistent with 
the homography matrix, to the total number of initially detected 
keypoints. 

Experiments were conducted on a dataset of 100 images of 
beer cans, divided into ten groups according to their brand, as 
detailed in our previous work [33]. Each image was processed 
using SIFT, SURF, ORB, and BRISK to extract keypoints and 
their descriptors, followed by match filtering using various 
RANSAC and USAC variations. 

The results were evaluated using several key metrics: 
 Accuracy: Measured using similarity coefficients. 
 Stability: Assessed by analyzing the ratio of mean 

similarity coefficients and standard deviation. 
 Speed: Measured as the execution time of each filtering 

method. 
The stability metric is used to quantify the consistency of 

the outcome from a specific matching or subsequent filtering 
stage. The stability is calculated as the standard deviation of the 
similarity coefficients divided by their mean value. While the 
inherent characteristics of the keypoints provided by the 
detector/descriptor method influence all processing stages, by 
keeping the detector and initial matching strategy constant for 
comparative analysis, the measured stability primarily reflects 
the consistency of the stage being analyzed. 

III.  RESULTS AND DISCUSSION 
Figure 1 illustrates the average execution speed of filtering 
methods across different keypoint detection and description 
approaches. A similar pattern was observed in all plots. The 
RANSAC method was the slowest, lagging significantly 
behind other methods by approximately 150 seconds. 
RANSAC_M ranked second in execution time, taking twice as 
long as the third slowest method - USAC_MAGSAC. The 
remaining USAC methods demonstrated similar speeds, with 
only slight differences of a few seconds.  

USAC_PROSAC emerged as the fastest filtering method 
for SIFT, ORB, and BRISK. Its superior efficiency is directly 
linked to its strategy of pre-sorting matches based on distance. 
Following it, USAC_FAST secured the second-fastest spot, 
with USAC_ACCURATE taking third and USAC_DEFAULT 
ranking fourth. 

Conversely, for SURF, USAC_FAST proved to be the 
fastest method. USAC_ACCURATE was a close second, 
trailing by only a second. USAC_PROSAC was the third 
fastest, and USAC_DEFAULT again placed fourth. 

It is important to note that the processing time was 
inconsistent throughout the experiments. Specifically, when 
using SIFT with over 100 keypoints, processing time increased 
by nearly 100 seconds for RANSAC and about 25 seconds for 
RANSAC_M. BRISK generally followed the overall 
processing pattern, with the key difference being in its 
RANSAC performance, where time deviations were observed 
for varying numbers of keypoints. ORB also exhibited time 
deviations, though not as severe as BRISK, and its performance 
was less linear than that of SURF. 

Figure 2 shows the average similarity coefficient values 
after filtering using different methods for similar images. 
Higher similarity coefficient values indicate better method 
performance, as the goal is to achieve maximum similarity 
between identical images. 

The choice of detection and description methods also 
influenced the average similarity coefficient. The RANSAC_M 
method demonstrated the highest average values, surpassing 
USAC_DEFAULT by approximately 4%. Next were 
USAC_MAGSAC and USAC_FAST, with only slight 
differences between them. USAC_ACCURATE showed 
slightly lower results, lagging behind USAC_FAST, while 
USAC_PROSAC trailed USAC_ACCURATE by a few tenths 
of a percent. The worst results were observed for the RANSAC 
method, which fell short of USAC_PROSAC by approximately 
0.5%. 

 

 

Figure 1. Average execution speed of filtering methods:  
A) SIFT; B) SURF; C) ORB; D) BRISK. 

The analysis of the results shows that the behavior of 
filtering methods depends on the selected detection/description 
method and the number of keypoints. For instance, with SIFT, 
when the number of keypoints was up to 200, all filtering 
methods provided an increase in the similarity coefficient of 
about 1%. As the number of keypoints increased, the results 
deteriorated, with a loss of about 2%. However, when the 
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number of keypoints exceeded 700, the rate of decline slowed. 
In the case of SURF, the results consistently declined as the 
number of keypoints increased from 400 to approximately 
2000, with a loss of about 6% for each filtering method. BRISK 
demonstrated a similar degradation trend as the number of 
keypoints increased, though the losses were around 3%. 

The ORB method exhibited behavior distinct from the 
others: with up to 500 keypoints, the average similarity 
coefficient increased by approximately 2%, after which a 
decrease of about 0.5% was observed. 

 

 
Figure 2. Average similarity coefficient values after filtering 
for similar images:  A) SIFT; B) SURF; C) ORB; D) BRISK. 

The ranges of similarity coefficient values, sorted in 
descending order of the best result, are as follows: 

 SIFT: from 30% to 23% 
 SURF: from 28.3% to 15.8% 
 BRISK: from 23.3% to 16% 
 ORB: from 21% to 16.5% 
SIFT demonstrated the highest similarity coefficient values 

among all methods. SURF and BRISK were at approximately 
the same level. However, SURF showed slightly higher 
potential with the best result of 28.3% but also exhibited a more 
significant decline as the number of keypoints increased. The 
results for the ORB method had the lowest similarity 
coefficient values in all scenarios. It is worth noting that SIFT 
and ORB exhibited the smallest ranges of similarity coefficient 
variation, at 7% and 4.5%, respectively. Thus, this indicates 
that they demonstrate higher stability in comparison with 
SURF and BRISK, whose ranges were 12.5% and 7.3%, 
respectively. 

Figure 3 shows the average similarity coefficient values 
after filtering using various methods for different images. In 
this case, lower similarity coefficient values indicate better 
method performance, as the goal was to minimize similarity 

between different images. These data show that the choice of 
keypoint detection and description methods influenced the 
average similarity coefficient values after filtering for different 
images. Overall, the RANSAC_M demonstrated the highest 
average values, slightly surpassing RANSAC, which ranked 
second. Other methods did not exhibit a clear pattern that 
repeated across all detection and description methods. 
However, a general trend was observed: the rate of change in 
average similarity values decreased as the number of keypoints 
increased. 

All filtering methods showed similar behavior within a 
single detection and description method: the average similarity 
coefficient decreased as the number of keypoints increased for 
different images. For SIFT, the average value ranged from 6% 
to 0.7%. A notable characteristic was the behavior of the 
USAC_PROSAC method, which exhibited the lowest values 
up to 400 keypoints but outperformed other USAC methods 
afterward. 

 

 
Figure 3. Average similarity coefficient values after filtering 

for different images: A) SIFT; B) SURF; C) ORB; D) BRISK. 

For SURF, the change in the average value ranged from 2% 
to 0.25%, with all USAC methods demonstrating similar 
dynamics, with variations of only a few hundredths of a 
percent. The BRISK method showed identical behavior, but its 
values ranged from 3% to 0.5%. In this case, USAC_PROSAC 
exhibited the lowest results up to approximately 1000 
keypoints, after which USAC_ACCURATE demonstrated the 
lowest values, although the difference between them was 
minor. 

Finally, for ORB, the filtering methods showed behavior 
and values similar to those observed for SIFT, with the 
difference that after 400 keypoints USAC_PROSAC aligned 
with the other USAC methods. 
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The observed tendency for the similarity coefficient to 
decrease as the number of detected keypoints increases is 
consistent with the expectation that a larger initial pool of 
keypoints may also contain a higher proportion of outliers. 
When such outliers are not eliminated by the filtering process, 
a reduction in the similarity coefficient can be anticipated, 
consequently lowering its calculated value. 

Figures 4 and 5 present the ratio of the standard deviation 
of similarity coefficient values to their average for both similar 
and different images. Lower values of this ratio indicate a 
smaller spread in possible similarity coefficient values, which 
reflects higher stability and predictability of the method's 
performance. 

When comparing similar images, high similarity coefficient 
values and stability are desirable, as they ensure the algorithm 
reliably identifies identical or very similar images, even in the 
presence of minor changes in lighting, perspective, etc. Low 
similarity coefficient values and stability are critical when 
comparing different images, as they enable the algorithm to 
distinguish dissimilar images clearly, minimizing the risk of 
false positives. 

The stability of initial matches obtained directly from the 
Brute-Force matcher with cross-check validation (named as 
BF_DATA) was analyzed to provide a comprehensive baseline 
for result consistency. The stability of BF_DATA represents 
the consistency of the output from the initial keypoint detection 
and raw matching stages before applying any robust geometric 
filtering techniques. 

It may be observed from Figures 4 and 5 that the stability 
for BF_DATA can be lower, indicating higher numerical 
stability than that of some RANSAC or USAC-filtered results. 
The Brute-Force matching with cross-check validation 
inherently performs a preliminary filtering step, potentially 
leading to a relatively consistent count of initial matches, 
especially if the underlying keypoint detector's output is also 
stable. Subsequently, while RANSAC and USAC variants aim 
to enforce geometric correctness, the number of inliers they 
identify can exhibit greater variability relative to their mean. 
This increased variability can occur if the geometric model 
fitting is sensitive to scene-specific nuances or the filtering 
process substantially reduces the mean number of matches. A 
significant reduction in the mean, even with a standard 
deviation that is not proportionally smaller, often results in a 
higher stability for the filtered set. 

Therefore, while a lower stability for BF_DATA suggests 
higher numerical consistency in the number of initial matches, 
the stability of the filtered methods must be interpreted in 
conjunction with their primary objective: to ensure the 
geometric validity of correspondences. The BF_DATA line 
serves as an essential reference for assessing the impact of the 
filtering techniques on the consistency of results, beyond just 
the retention of geometrically sound matches. 

According to Figure 4, the choice of detection and 
description method influenced the stability of the filtering 
results. For SIFT, a decrease in the ratio of standard deviation 
to the mean was observed with an increasing number of 
keypoints, indicating improved stability. For SURF and 
BRISK, this ratio consistently increased as the number of 
keypoints grew, suggesting reduced stability with more 
features. Most filtering methods for ORB showed a general 
increase in the ratio with some fluctuations. An exception was 
RANSAC_M, where the ratio initially increased but decreased 
after reaching 200 keypoints. 

 
Figure 4. The ratio of standard deviation to the average value 
for similar images: A) SIFT; B) SURF; C) ORB; D) BRISK. 

Regardless of the detection and description method, 
RANSAC_M provided the lowest ratio of standard deviation to 
the mean, indicating the highest stability. It was followed by 
USAC_DEFAULT, which also demonstrated high stability, 
except for ORB with fewer than 300 keypoints, where 
RANSAC yielded better results. The highest ratios were 
observed for USAC_PROSAC with SIFT, BRISK, and ORB, 
while for SURF, RANSAC demonstrated the worst results. 

The USAC_FAST, USAC_ACCURATE, and 
USAC_MAGSAC methods exhibited similar results with some 
variations. For instance, with SURF, USAC_ACCURATE 
showed reduced stability as the number of keypoints increased 
compared to USAC_PROSAC. Conversely, for ORB, 
USAC_ACCURATE outperformed other USAC methods. 

The following observations were made after the range of 
the standard deviation-to-mean ratio for similar images 
analyses: 

 For SIFT, the ratio ranged from 50% to 38%, indicating 
increased stability with more keypoints. 

 For SURF, the ratio increased from 38% to 50%, 
suggesting reduced stability as the number of keypoints 
grew. 

 For BRISK, the ratio also increased, from 42% to 52%, 
showing a similar trend of declining stability. 

 The ratio varied from 53% to 60% for ORB, generally 
indicating reduced stability, though with some 
fluctuations. 

Figure 5 illustrates the ratio of the standard deviation of 
similarity coefficients to their mean values for various images, 
highlighting the influence of the detection and description 
method on this ratio. 
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Figure 5. The ratio of the standard deviation to the mean value 
for different images: A) SIFT; B) SURF; C) ORB; D) BRISK. 

In the case of SIFT, the ratio initially decreased overall, but 
after reaching 300 keypoints, it gradually increased. For SURF, 
the ratio consistently decreased as the number of keypoints 
increased, indicating a steady improvement in the stability of 
the results. A similar trend was observed for BRISK. For ORB, 
most filtering methods exhibited a general increase in the ratio, 
with various fluctuations, except for USAC_PROSAC, whose 
results initially decreased and then gradually increased after 
200 keypoints. 

For all detection and description methods except BRISK, 
RANSAC was the filtering method that provided the lowest 
standard deviation-to-mean ratio among all methods, indicating 
the highest stability. For BRISK, the most stable method was 
RANSAC_M. In most cases, the following best method after 
RANSAC was RANSAC_M, except for SIFT with more than 
200 keypoints, where USAC_MAGSAC demonstrated better 
results. 

The USAC_PROSAC method had the highest ratio values 
when using SIFT and SURF, whereas the USAC_MAGSAC 
method showed the worst results for BRISK. For ORB, 
USAC_PROSAC had the worst performance up to 400 
keypoints, after which USAC_MAGSAC exhibited the highest 
ratio values. 

It is worth noting that the ratio values differed only slightly 
when using SIFT, SURF, and BRISK for other filtering 
methods. In the case of ORB, other methods consistently 
showed an increase in the ratio, with differences between them 
amounting to a few percentage points. 

The following observations were made after the range of 
the standard deviation-to-mean ratio values for different 
images analyses: 

 For SIFT, the ratio values varied from 18% to 10%, then 
rose to 18%, indicating an initial improvement in 

stability followed by its deterioration as the number of 
keypoints increased. An exception was the 
USAC_PROSAC method, where the ratio sharply 
decreased from 48% to 17%. 

 In the case of SURF, the ratio values decreased from 
42.5% to 27.5%, demonstrating consistent stability 
improvement with an increasing number of keypoints. 

 The most significant stability improvement for BRISK 
was observed, with the ratio values decreasing from 
110% to 45%. 

 ORB exhibited the smallest variation in values, ranging 
from 12% to 17%, indicating relatively stable behavior. 
An exception was the USAC_PROSAC method, which 
initially showed improved stability, with a reduction 
from 15.7% to 13.8%, but later stability declined, 
similar to other methods. 

The efficiency of filtering depends on the quality of the 
detected and described keypoints [22]. Therefore, careful 
tuning of the detector and descriptor parameters is vital in 
achieving optimal results. Proper parameter selection can 
significantly impact the accuracy and stability of the outcomes. 
These conclusions align with our previous studies [33, 34], 
which analyzed the influence of Lowe's ratio parameters and 
limitations on the number of keypoints on the performance of 
SIFT, SURF, ORB, and BRISK methods. 

The obtained results are consistent with the conclusions of 
other studies [35, 36], which also emphasize the importance of 
an adaptive approach to selecting keypoint matching filtering 
methods. The efficiency of each method depends on numerous 
factors, such as the number of keypoints, image quality, noise 
level, scene complexity, and requirements for accuracy and 
speed. 

IV. CONCLUSIONS 
This study provides a detailed analysis of the effectiveness of 
keypoint matching filtering methods, specifically RANSAC 
and its USAC variations. Keypoint detection and description 
were performed using SIFT, SURF, ORB, and BRISK 
methods. 

It should be acknowledged that certain methodological 
decisions define the scope of the presented comparative 
analysis. The investigation was centered on a specific selection 
of keypoint detection, description, and filtering techniques. 
Furthermore, the experimental outcomes were generated using 
a dataset with particular visual attributes, while image 
similarity was assessed using the homography model. The 
performance benchmarks reported also correspond to the 
specific parameter configurations chosen for the algorithms 
under evaluation. These factors naturally delineate the current 
study's scope and offer valuable perspectives for guiding future 
research endeavors. 

The SIFT method demonstrated high accuracy and stability, 
confirming its effectiveness in tasks where recognition 
precision is a priority. However, its computational complexity 
can be a limiting factor in applications where processing speed 
is critical. The SURF and BRISK methods offered a 
compromise between accuracy and speed, making them 
suitable for applications requiring a balance between these 
parameters. Although ORB lagged in accuracy, it exhibited 
high speed, which is advantageous for resource-constrained 
applications. 
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The results of this study highlight the importance of an 
adaptive approach to selecting keypoint matching filtering 
methods. USAC_PROSAC and USAC_FAST demonstrated 
the highest processing speeds, making them attractive for 
applications where speed is essential. Among the USAC 
variations, USAC_MAGSAC had the longest execution time. 

At the same time, RANSAC provided the highest stability, 
although it lagged in terms of speed. Notably, parameter tuning 
for RANSAC significantly impacted its performance. 
Reducing the number of iterations, lowering the confidence 
level, and adjusting the inlier distance threshold improved its 
accuracy compared to USAC_DEFAULT without sacrificing 
stability. 

Future research will expand the analysis by using additional 
matching filtering methods, such as MLESAC, LMedS, 
SCRAMSAC FSASAC, and others. Furthermore, studies will 
explore different approaches for evaluating image similarity. 
The FLANN method will also be considered to determine its 
impact on match search accuracy and speed. These efforts aim 
to provide a more comprehensive understanding of the 
efficiency of various filtering approaches and develop 
recommendations for their selection in specific applications. 
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