Sl

Date of publication SEP-30, 2025, date of current version MAY-26, 2025.
www.computingonline.net / computing@computingonline.net

Print ISSN 1727-6209
Online ISSN 2312-5381
DOI 10.47839/ijc.24.3.4183

MASC: A Dataset for the Development and
Classification of Mobile Applications Screens

MOHEB R. GIRGIS, ALAA M. ZAKI, ENAS ELGELDAWI, MOHAMED M. ABDALLAH,
ALI A. AHMED

Computer Science Department, Faculty of Science, Minia University, El-Minia, Egypt,

Corresponding author: Moheb R. Girgis (e-mail: moheb.girgis@mu.edu.eg)

ABSTRACT Mobile applications (apps) have become an integral part of our daily lives, offering a wide range
of functionalities and services. Understanding the diversity of mobile app screens is crucial for optimizing user
experience and delivering personalized content. This paper presents a novel dataset, called MASC (Mobile App
Screens Classification) consisting of 7065 images, representing various types of mobile apps screens. MASC
dataset is collected from the well-known Rico dataset. These screens were carefully manually classified into ten
unique classes to capture the diverse nature of app interfaces. Based on the MASC dataset, this paper presents a
proposed framework for applying machine learning (ML) algorithms to the classification of mobile apps screens.
The paper presents a feature extraction algorithm that extracts, from each screenshot image of an app screen, key
characteristics related to visual elements, text, and keywords. Using the proposed framework, the paper also
presents a comprehensive study of the classification of mobile apps screens using ML algorithms. Several
classification algorithms including XGBoost, Gradient Boosting, Random Forest, SVM, Logistic Regression, and
others were trained and evaluated on MASC. Results showed high accuracy scores, above 93%, for top models
like Gradient Boosting, indicating that ML algorithms with the MASC dataset provide an effective approach to
mobile app screen classification. This study contributes to the field of mobile app analysis and user interface
understanding. In addition, the proposed mobile app screens classification framework is a promising development
that can enhance the accuracy and efficiency of mobile app screens classification. The complete code is available
on GitHub to ensure reproducibility and foster further research: https://github.com/Ali-Aahmed/MASC-Dataset.

KEYWORDS Mobile applications; Activities Classification; UI Screens Classification; MASC Dataset;

Wireframes; Machine Learning Algorithms.

I. INTRODUCTION
Mobile applications are an integral part of our daily lives,
providing us with convenience, entertainment, and
productivity at our fingertips. With the widespread adoption of
mobile apps, it has become essential to understand the nuances
of different app screens, as their layout, design, and
functionality have a significant impact on user experience and
engagement Wang, Li [1]. Today, millions of mobile apps are
available for download in various app stores, offering a wide
range of services, from communication to social media to
entertainment to productivity. The development of these apps
usually begins with an idea that is presented to a design team,
who is responsible for designing both the user experience and
the user interface architecture [2].

Android is the most popular mobile operating system in the
world, with many devices, users, and rich apps. With the
proliferation of 5G and the accelerated research and
development of 5G smart devices by major brands, global

460

smartphone shipments are expected to increase slightly in the
coming years [1].

The screen type classification along with a screen summary
can assist users of screen readers in rapidly forming a
conceptual understanding of unfamiliar mobile user interfaces,
eliminating the need to wait for the mobile Ul reader to
painstakingly navigate through each element [3, 4].

Existing Ul datasets have some common limitations that
hinder comprehensive research on mobile app UI:

e Lack of accurate, manually validated classifications of

screen types across diverse app categories

e Lack of a unified set of features extracted from Ul

elements for machine learning purposes

These limitations have hindered research in several ways:

e Training accurate screen classification models is difficult

due to inconsistent classification

e Developing automated testing methods that address

different Ul types is difficult

VOLUME 24(3), 2025

Moheb R. Girgis et al. / International Journal of Computing, 24(3) 2025, 460-473

)

o Studying design patterns and user interactions across

different screen types is limited

This research provides a Ul dataset, named MASC, which
addresses these gaps by:

¢ Providing manually validated classifications of 10 major

screen types, ensuring high-quality classifications for
machine learning

¢ Providing a unified set of 11 features extracted from each

Ul, facilitating robust and consistent analysis

e Covering a diverse range of app screens, enabling

comprehensive studies of Ul design and functionality

o Supporting the development of more effective automated

testing strategies for mobile apps.

Due to the increasing spread of mobile apps on the Internet
and the challenges of mobile app analytics, this research has the
potential to significantly improve mobile app testing
efficiency, enhance user interface design practices, and
ultimately lead to better user experiences across a wide range
of mobile applications. The contributions of this research can
be summarized in the following two main points:

1. Building a dataset of mobile app screens and then
manually classifying them.

2. Training machine learning (ML) algorithms with this
dataset to detect the type of unseen mobile screens.

This paper is organized as follows: Section II presents
related work review; Section III describes the methodology of
building and analyzing the new dataset; Section IV describes
the proposed ML model for Ul screens classification based on
the MASC dataset; Section V presents the classification
algorithms evaluation metrics; Section VI presents the results
of evaluating the efficiency of applying different ML
algorithms, with the new dataset, in the classification of Ul
screens; and Section VII presents conclusion and future work.

Il. RELATED WORK

Currently, there is no publicly available dataset that links Ul
designs to specific layout topics. Previous design mining
applications and platforms, such as Webzeitgeist [5] and
GUIfetch [6], allow users to explore and query web design
datasets, but UI layout modeling is not possible due to the lack
of labeled data. Other datasets provide fine-grained app
categories, but they do not provide information about Ul
design. For example, Berardi et al. [7] automatically inferred
app categories using app metadata analysis, and Zhu et al. [8]
annotated 680 mobile apps according to two general-purpose
levels, with Games (Level 1) including Action and Strategy
(Level 2). There is also a mobile app dataset categorized
according to Reiss' profiles, such as honor, idealism, and
power, but these categories have little practical use for Ul
designers [9]. This section examines the most used open-
source datasets in the current literature on incorporating Al
assistance into Ul classification. Table 1 lists the datasets
discussed in this section and their attributes.

The largest repository of UI datasets is the RICO dataset
[10]. It contains more than 72,000 Android smartphone UI
screenshots and their corresponding Android View hierarchy,
which were collected using a crowd-sourcing methodology.

Liu et al. [11] extended RICO by adding semantic
annotations for Ul screenshots. Using the automatic method,
the authors categorized the Ul components found in the RICO
dataset into 25 types. They further categorized these Ul element
types into 135 icon classes and 197 text button concepts. This

VOLUME 24(3), 2025

dataset has the disadvantage that the annotations are unreliable
because the UI components were classified and tagged
automatically.

Activity recognition is based on the premise that different
activities in an Android application share a similar interface
structure. To exploit this similarity, researchers have used
machine learning techniques to classify each activity in the
application into one of seven pre-defined activity types [12] .
Wang et al.[13] collected 112,085 human-annotated English
summarization for 22,417 unique Ul screens dataset from Rico
and found that deep learning models outperform heuristic
approaches. Human evaluation also favored their full model.

Several other datasets have been proposed for classifying
mobile application screens and tasks. For example,
DroidTask[14] offers a dataset of 158 labeled tasks across 13
open-source apps. While this dataset provides a foundation for
task-based analysis, However, its small dataset size and limited
diversity in application types restrict its generalizability
Similarly LlamaTouch[15] offers a more extensive dataset with
over 3,500 tasks and expert-curated metadata, significantly
improving the coverage of Ul interactions. However, it
primarily focuses on task-level interactions rather than
structural screen classification, making it less effective for
studies requiring in-depth UI component analysis.

In our research, we assembled a dataset, named MASC,
based on the well-known Rico dataset. This dataset includes a
total of 7,065 UI images representing a wide range of mobile
app activities. These activities were accurately manually
classified into 10 distinct classes. We have developed a feature
extraction technique to extract the vital features from each
image accurately, which allowed us to train machine learning
algorithms employed in predicting activity types. This
capability enables us to automatically identify the specific
activity in which the user is currently engaged. It has the
potential to enhance various tasks, including improving user
experience and providing personalized content. It also allows
developers to create a specific testing method for each of these
10 types. In what follows, we will discuss in detail the contents
of our database, followed by a comprehensive study of
applying ML algorithms, with the MASC dataset, in the
classification of mobile app screens.

MASC offers a unique contribution to the field by providing
manually verified classifications for 10 distinct screen types,
along with a standardized set of 11 extracted features per
screen. This comprehensive approach allows for a more
nuanced analysis of Ul elements associated with specific
functionalities across different types of app screens. The
combination of verified -classifications and standardized
features makes MASC particularly well-suited for training
machine learning models for app screen classification.
Furthermore, this dataset enables researchers and developers to
study design patterns more effectively, potentially supporting
the development of intelligent design tools and optimizing user
experiences in ways that were not possible with previous
datasets.

461

Sl

Moheb R. Girgis et al. / International Journal of Computing, 24(3) 2025, 460-473

Table 1. List of UI datasets and their attributes.

No. of

No. of

Dataset Description Apps | Uls Annotations Advantages Disadvantages
. Large-scale structural . Limited to XML layouts, not
Twent data visual data
Shirazi, et al. Uls created through enty-one . Covers various app . May not capture dynamic UL
400 29K | different apps .
[16] XML layout files categories categories changes
. Useful for analyzing . Potentially outdated
layout patterns (published in 2013)
indexed more than : Inclu_des Ul'flows and . No specific screen type
Ul screenshots, UI 3000 flow examples | Teractions classification
ERICA [17] wireframes, and view 2.4k | 18.6k by usin machinl; e Combines visual and L o b
hierarchy (JSON file) le};min gclassi fiers structural data .hall n inargt;e size may be
& e ML-based flow indexing chatienging o process.
. UI elements categorized by
e Largest Ul dataset available automated means, unreliable
Ul screenshots, view spanning 27 apps e Rich in Ul diversity and annotations
RICO [10] hierarchy (JSON file) 9.7k | 722K |°P S PP patterns . No classification for each
. categories
and Ul wireframes o Includes screenshots and screen
hierarchies . Challenging to process due
to size
25 types of Ul Automated annotation
components, 197 e Detailed semantic annotations .
expanded RICO by process may introduce errors
. .) text button for Ul elements .
Liu, et al. [11] adding semantic 9.7k | 72.2K . . . Focused on individual Ul
annotations to the Uls concepts, and 135 * Useful for design semantics 1 ts rather th; 11
. icon classes shared understanding :: ements rather than overall screen
across apps. ypes
o Not specifically designed for
e Textual descriptions of Ul screen type classification
screen summaries in 112.085 screen elements e May contain subjective or
Screen2Words | CSV format for P o Useful for NLP tasks related inconsistent human annotations
6.3k | 22.5k |summaries for .
[13] screens from the to Ul e No predefined categories for
22,417 screens . .
RICO e Combines visual and textual screen types
information e Primarily focused on generating
textual descriptions, not classified.
e The number of Uls in each
category is small,
. o Focused on Ul design topics o No specific feature extraction
Ul'screenshots, view 20 categories of UL e M Ily labeled dataset method for classification
Enrico [18] hierarchy (JSON file) | 1.1k | 1.4k categor! anually labeled datase ,
; design topics e Includes wireframes and o the total number of Uls is also
and Ul wireframes . : ; ¢
hierarchies small, which affects the efficiency of
using this dataset in UI classification
by AL
e Manually classified into 10
distinct categories
e Focused dataset easier to « Limited to 10 predefined
. manage and analyze .
Ul screenshots, view e Custom feature extraction categories .
MASC (Ours) hierarchy (JSON file) , 34K 71k 10 categories of UL algorithm for cach UI o Primarily based on Android, but

Ul wireframes, and
Vectors.CSV

design topics

e Validated through
comprehensive machine learning
experiments

e Specifically designed for
mobile app screen classification

the classification approach can be
potentially applied to other
platforms.

ll. METHODOLOGY
The framework, shown in Fig. 1, provides an overview of the
different phases involved in building a new dataset, called
MASC (a shorthand for Mobile App Screens Classification)
and employs an ML approach for classifying mobile
applications screens

As shown in Fig. 1, the architecture of the proposed
framework includes several phases. First, data about the
selected screens is collected from a variety of sources, such as
screenshot Ul screens, semantic wireframes, and JSON files,
then data is preprocessed and filtered to remove noise. Next,
feature extraction is performed to convert the data into a

462

numeric vector that has 11 features for each Ul screenshot.
Then, the dataset is split into training, validation, and testing
sets. The training set is used to train the machine learning
model. The validation set is used to evaluate the performance
of the model and select the best parameters for it. The testing
set is used to evaluate the final performance of the model on
unseen data. The framework can be used to optimize
classification efficiency for classifying mobile app screens.
The MASC dataset serves as the foundation for developing
machine learning models to detect and classify screen types.
MASC dataset building process includes three phases: Dataset
Collection, Data Classification, and Feature Extraction.

VOLUME 24(3), 2025

Moheb R. Girgis et al. / International Journal of Computing, 24(3) 2025, 460-473

J

A. DATASET COLLECTION

To build a mobile Ul dataset, we randomly collected 30k
screenshots from three open-source data sources: the first is the
Rico dataset [10] containing 72k Uls; the second is the
Screen2Words dataset [13] containing 22k screenshots taken
from the Rico-SCA dataset; and the Enrico dataset [16]
containing 1,460 screenshots of mobile app screens taken from
the Rico dataset. We carefully selected screenshots from a
various set of applications to ensure a diverse representation of
mobile Uls. We manually classified the 30K Uls and selected
only the Uls that belong to ten different design topics (see Table
2) to arrive at a high-quality dataset containing 7065
screenshots of mobile app Uls taken from over 3400 apps,
which we named the MASC dataset.

B. DATASET CLASSIFICATION

After collecting the dataset in the first step, three persons were
assigned to manually review each of the collected screens and
classify them into the appropriate class from the ten classes. To
ensure consistent and accurate classification, specific criteria
were established for each screen type. Table 2 outlines these
criteria in detail, providing a comprehensive guide used by the
researchers during the manual classification process.

These detailed classification criteria enabled the three
persons to systematically categorize the diverse range of
mobile app screens, ensuring consistency and accuracy
throughout the dataset creation process. Based on these criteria,
we classified our dataset as shown in Table 3, which presents
the number of UI designs belonging to each class along with a
brief description.

Table 2. Classification Criteria for Mobile App Screen

Types
Class Classification Criteria
Displays conversation threads or message bubbles - Includes a
Chat text input field for sending messages - May show online status
of contacts.

Central hub for app navigation - Displays main features or
content summary - Often has a bottom navigation bar or
prominent action buttons.

Presents data in a scrollable column format - May include items
List like articles, products, or contacts - Often have options to sort
or filter the list.

Contains username and password input fields - May include
"Sign In" or "Log In" buttons - Often has options for password
recovery or new account creation.

Displays geographic information - Includes interactive map
Map controls (zoom, pan) - May show location markers or route

information.

Displays a hierarchical list of choices or app sections - May be
a side drawer or full-screen list - Often includes icons next to
menu items.

Shows user information and preferences - May include profile
picture, bio, and personal stats - Often has options to edit
profile information.

Features a prominent search bar - May include recent search
history or suggested search terms - Often has a magnifying
glass icon.

Lists configurable options for the app - May include toggles,
dropdown menus, or input fields for various settings - Often has
a gear or cog icon.

Introductory or onboarding content for new users - May include
app highlights or brief tutorials - Often has a "Get Started" or
similar call-to-action button.

Home

Login

Menu

Profile

Search

Setting

Welcome

During the classification process, each screen was only
included in the dataset if at least two of the three classifiers
agreed on its category, ensuring consensus and reducing

VOLUME 24(3), 2025

individual bias. Screens without agreement between at least
two classifiers were excluded, maintaining data quality at the
expense of quantity. This conservative approach ensured only
screens with clear classifications were included, which is
crucial for the dataset's reliability in machine learning
applications.

/ Collecting Data \

(screenshot Ul screens, Semantic
wireframe, and JSON file)

SOLOLEARN

“Mit

Preprocessing & Filtering

\‘ (Remove unwanted data) /

-

Feature Extraction
Converts Ul to a numeric vector

- -

| I

/ | Splitting Datasets

=

v

Training

v

Testing validation

70%

\

10%

20%

-a

‘ Applying a ML Classifier ’

[Evaluation j

ML Classifier’s parameters
tuning to fit with the dataset

L

‘ Performance analysis ’

-

-

Figure 1. The proposed framework for building the MASC
dataset and using it in a ML approach for classifying mobile
apps screens.

463

)

Moheb R. Girgis et al. / International Journal of Computing, 24(3) 2025, 460-473

Table 3. Ten classes, in alphabetical order, and the
number of UI designs that belong to each class.

Class No. of Screens Description

Chat 329 Chat communication
Home 866 App navigation

List 960 Data visualization in a column
Login 889 User authentication

Map 500 Geographic display
Menu 557 Item selection
Profile 526 User profile information
Search 725 Content discovery
Setting 629 App configuration

Welcome 1084 First-run experience

Regarding challenging cases, screens with complex or
hybrid functionalities were likely the most difficult to classify.
For instance, a screen combining search functionality with a
menu layout might have caused disagreement among
classifiers. This requires careful consideration of the
underlying function of the screen to determine the most
appropriate category.

In the dataset, each screen is accompanied with a screenshot
of the user interface (UI), a JSON file of the view hierarchy, a
semantic wireframe, and a JSON file of the hierarchy of this
semantic Ul, as shown in Fig. 2. View hierarchies include
various Ul elements, such as images, buttons, and a map view,
each with specific properties like class, bounds, and
clickability, and the relationships between them. The view
hierarchy offers insights into how these elements are organized
within the app's user interface, facilitating development and
design.

u |
LOGIN |
SOLOLEAT [|
|
T]
NEW HERE? e
e |
(o ormwnoma]
]
[< o o |

a) Screenshot

a) Screenshot

b) Wireframe b) Wireframe

Figure 2. (a) screenshot Ul screens, (b) Semantic wireframe
images.

Each activity has a variety of elements that are connected to
the user interface components it includes, such as the distinct
classes of elements, their set of attributes, their relative
placement in the activity, the number of elements shown in the
activity, and so on. An activity may also have a navigation
drawer, which is a panel on the left side of the screen that
displays the application's major navigation choices. It is usually
hidden, but it is shown when the user swipes their finger from
the left side of the screen or clicks on a designated button.

C. FEATURE EXTRACTION

The extraction of important features is an essential phase in the
presented model since irrelevant features might reduce the
efficacy of the ML classifier. Careful features selection
improves classification accuracy and shorten model training
time. Feature extraction involves breaking down huge amounts

464

of raw data into smaller groups for processing, as processing
these huge datasets needs substantial computing resources due
to the large number of variables.

While building the features vector, we have to choose those
aspects that are most informative and may vary depending on
the type of activity. Wang, et al. [13] have proven that an
activity can often be identified by its visual elements, which are
the elements that the user can interact with directly, such as
buttons, text boxes, and their location on the screen. Thus, it is
assumed that the interactive elements for the user appropriately
represent the activity. By examining the core activity templates
from Android Studio's activity design guidelines, we noticed
that each activity screen can be artificially divided into three
parts: the top, middle, and bottom. We utilize the following
screen guideline division: 15%-70%-15% from top to bottom,
as illustrated in Fig. 3. where headers or navigation elements
are typically at the top, main content in the middle, and action
buttons or navigation bars at the bottom. This division allows
us to capture the spatial distribution of UI elements, which can
be crucial for distinguishing between screen types.

Our feature selection was influenced by common UI design
patterns and elements typically found in various screen types.
For example, we quantify clickable elements, text fields, and
swipeable components, as these often indicate the interactivity
level and purpose of a screen. The number of text input fields,
for instance, is usually higher on login screens, while list
screens tend to have more vertically swipeable elements.
Additionally, we incorporated keyword analysis, selecting
common words for each class based on frequency analysis
across multiple apps. For example, terms like "username" and
"password" are often associated with login screens, while
"settings" and "preferences" are common in settings screens.
This multi-faceted approach to feature extraction, combining
element counts, spatial information, and textual analysis,
contributes significantly to the accuracy of our classification
model by providing a comprehensive representation of each
screen's characteristics.

As a result, we concentrate on the following interactive
element groupings, which might exist in each of the three
activity sections:

e Clickable elements: Elements that the user can tap on to

interact with the activity.

e Swipeable elements: Horizontal swipeable elements are
those that can be swiped by the user left and right, while
vertical swipeable elements are swiped up and down.

e Text field elements: Elements where the user can enter
text.

We use the number of elements from each of the above
element groups, in the part of the activity where they are most
likely to occur, as features. Thus, the first set of features
includes 6 features, representing the number of clickable and
text field elements in each of the three activity sections of the
screen. The second set of features includes 4 features: the first
feature is the total number of elements displayed on the screen,
irrespective of their grouping or location; the second feature is
set to 1 if the activity contains a navigation drawer; the third
feature is the number of horizontal scrollable elements in the
screen's center; and the last feature is the number of vertical
scrollable elements in the screen's center. The final set includes
only one feature, which is the "keywords" found in the text on
the screen. The 11 features extracted from each screen are used
to form its feature vector, as shown in Fig. 4.

VOLUME 24(3), 2025

Moheb R. Girgis et al. / International Journal of Computing, 24(3) 2025, 460-473

)

To assist in extracting the 11 features from any given
activity, we have created lists of common clickable, text field,
vertical swipe, and horizontal swipe elements. In addition, we
have created a dictionary of common words for each of the 10
classes mentioned in Table 3. This is achieved by examining

< AppBar

Middle Part:
App main view

many screens of applications belonging to each class and
identifying the most used words for this class. For example, for
the login class, the most common keywords are "login",
"username", and "password".

‘ !
LJd

Top Part:
App Bar

Middle Part:
App main view

- - } Bottom Part: }
oo e Bottom Part:
.\ - s
avigation Layout Standard elements
App Bar App Bar
Middle Part:

\

App main view

j» Bottom Part:
No elements

| Middle Part:
App main view

Bottom Part:
Action Buttons

Figure 3. Screen divisions across common activities templates.

Features List Keywords
1 2 3 4) 6 L) § 9 10
No. of No. of No. of Does the .
No. of No. of No. of 2 No. of No. of ;.
Clickable | Clickable | Clickable | Lot Jext Text | nooofal | 2P | popontal | overtical | EYTORds
Field Field Field contain a . g
Elements | Elements | Elements - El El El Elements A swipeable | swipeable
- Middle - Bottom Top en_Jenis Emeats ementy navigation | pyments Elements
- Middle - Bottom - Top drawer?

Figure 4. The feature vector structure for an activity.

Fig. 5 shows the steps of our extract features algorithm,
Extract_Features, which extracts the 11 features from any
given activity. The inputs to this algorithm are: the JSON file,
which describes the view hierarchy of the activity to be
processed, act; the created lists of common elements:
clickable types, text field types, vertical swipe types, and
horizontal swipe_types; and the dictionary of common words:
common_words. The output of the algorithm is the feature
vector for the given activity act. The algorithm works as
follows: Line 1 creates two empty lists, FeaturesList and
Keywords, to hold the extracted features; Line 2 reads the
JSON file of act; Line 3 calls a procedure, named
Extract Children(), developed to extract all child elements of
act from the JSON file into a list: child elements; Line 3
calculates the height percentages for the top, middle, and
bottom parts of the screen act; Lines 7-38 calculate the first 10
features for the given activity act, by checking the type of each
child in child_elements and incrementing the corresponding
elements in FeaturesList; Line 39 calls a procedure, named
Extract_Words(), developed to extract important text from the
JSON file into a list: words; Lines 40-45 creates the last feature

VOLUME 24(3), 2025

(Keywords) for act, which is a list of the keywords found in the
text on the screen, by checking each word in words and adding
it to Keywords, if it is found in the dictionary common_words;
finally, Line 47 writes the feature vector (FeaturesList +
Keywords) of act to a CSV file.

The procedure Extract_Words() creates the list words as
follows: the text from each screen element and the text that
describes that element, is extracted from the JSON file; then the
extracted text is cleaned by removing unwanted content, such
as symbols, numbers, and common words, and stored in the list
words.

Table 4 shows the obtained feature vectors for some mobile
screen samples of four different classes from the MASC
dataset, and it also shows the screen type based on the manual
classification, where each screen has a unique id.

465

)

Moheb R. Girgis et al. / International Journal of Computing, 24(3) 2025, 460-473

|Algorithm Extract_Features
Input: JSON file (hierarchy for an activity act);
Lists of common clickable, text input, vertical swipe, and
horizontal swipe elements: clickable types, text_input_types,
vertical swipe_types, horizontal swipe_types; Dictionary of
common words for each of the 10 classes: common_words.
Output: The feature vector (FeaturesList and Keywords) for the given
activity act
IBegin
1. Create two empty lists to hold the extracted features: FeaturesList,
Keywords
2.Read JSON file of act.
3.child_elements = Extract Children(JSON File).
elements from JSON file
4. Calculate the height percentages for the top, middle, and bottom parts of]
the screen act.
5.For each child € child_elements do

//Extract all child

6.Begin

7. Ifchild is on top // Determine the location of the child on act
8. location = top

9. Else If child is on middle

10. location = middle

11. Else

12. location = bottom

13. End If

14. FeaturesList[7]++; // Increment no. of all elements in act

15. Ifchild € clickable_types
16. If location == middle then

then // check if child is a clickable element

17. FeaturesList[1]++; // Increment no. of clickable elements at middle
18. Else If location == bottom then

19. FeaturesList[2]++; // Increment no. of clickable elements at bottom
20. Else If location == top then

21. FeaturesList[3]++; // Increment no. of clickable elements at top
22. EndIf

23. Else If child € text_input types then
24. //check if child is a text input element
25. Iflocation == middle then

26. FeaturesList[4]++; // Increment no. of text field elements at middle
27. Else If location == bottom then

28. FeaturesList[S]++; // Increment no. of text fields elements at bottom
29. Else If location == top then

30. FeaturesList[6]++; / Increment no. of text field elements at top

31. EndIf

32. Else IF child is navigation drawer then

33. // child is a navigation drawer control

34, FeaturesList[8] =1;
35. Else IF child € horizontal swipe_types then

36. // child is a horizontal swipeable element

37. FeaturesList[9]++;

38. // Increment no. of horizontal swipeable elements

39. Else IF child € vertical swipe_types then

40. //child is a vertical swipeable element

41. FeaturesList[10]++; // Increment no. of vertical swipeable
elements

42. EndIf

43. words = Extract Words(JSON file)
44. // Get important text from the JSON file
45. For each word € words do

46. Begin

47. If word € common_words then

48. /I word is found in the dictionary of common keywords
49. Add word to Keywords

50. End If

51. End For

52. End For

53. Write feature vector (FeaturesList + Keywords) of act to a CSV file.
54. End

Figure 5. The Extract Features Algorithm.

D. MASC APPLICATIONS
Here are the potential applications of the MASC dataset,
organized by functional categories:
1) Testing and Validation:
* Ul Testing Automation: MASC dataset can be used to
train models for automated mobile app Ul testing, which

466

can significantly lower the manual effort required for
quality assurance and avoid expensive rework due to
early bug detection.

* Design System Verification: MASC dataset can be used
to build automated tools that verify compliance with
design guidelines, identify anomalies, and maintain
consistency across large-scale applications.

2) Development and Generation:

Auto UI Generation: MASC dataset can be used to train
generative models that automatically create Ul designs
based on specifications, significantly accelerating the
prototyping process and reducing initial development
time.

Code Generation Tools: MASC dataset can be used to
develop systems that automatically generate
implementation code from Ul designs, streamlining the
development process and reducing manual coding
effort.

3) Accessibility and User Experience:

Ul Accessibility Enhancement: MASC dataset can be
used to develop models that improve app accessibility,
enabling features like voice commands, gesture
navigation, and text-to-speech capabilities to make apps
more inclusive for users with disabilities.

4) Analysis and Research:

UI Pattern Analysis & Classification: MASC dataset
can be used to study Ul evolution and classify screens
by type, helping identify successful design patterns and
trends that improve user experience.

Performance Optimization: MASC dataset can be used
to study relationships between Ul patterns and app

performance, helping identify optimal design
approaches that balance aesthetics with technical
efficiency.

Competitor Analysis Tools: MASC dataset can be used
to build systems that analyze and compare UI patterns
across competing apps, providing insights for strategic
design decisions and market differentiation.

Mobile App Security Analysis: Leveraging Ul
classifications, the dataset can help identify potential
vulnerabilities in app interfaces, such as insecure input
fields or exposed sensitive actions.

IV. ML APPROACH FOR CLASSIFYING Ul SCREENS

The proposed ML model for Ul screens classification based on
the MASC dataset consists of three phases: Train/Test
Splitting, Classification Algorithms, and Parameters Tuning.

A. TRAIN/TEST SPLITTING

To ensure an unbiased evaluation of the ML model, we
randomly partitioned the dataset into three non-overlapping
subsets

e Training Set (70%, n = 4946): Used to fit model
parameters and learn the underlying patterns and
relationships between interface features and their labels.

e Validation Set (10%, n=707): Employed for
hyperparameter tuning (e.g., learning rate, regularization
strength, tree depth) and model selection, without
influencing the training process.

o Test Set (20%, n = 1412): Held out until final evaluation
to provide an unbiased benchmark of model generalization
on completely unseen mobile screen images.

VOLUME 24(3), 2025

Moheb R. Girgis et al. / International Journal of Computing, 24(3) 2025, 460-473

The training set is used to optimize the model’s weights,
whereas the validation set guides hyperparameter selection and

early stopping, preventing overfitting before assessing final
performance on the test set.

Table 4. Feature vectors extracted for screen samples.

= = 2 = s B Z
o [[= @ v O
2 v20, B0, |0, | 5% |4 5% |2% |zz|ssEo 2T, |Dss z -
s EEgé [BEZé |28 g.go dEe fmeg |S1 |2E223 (B8 |EE 2 3 ®
S EZEC|EEc. |Ec |E25 |83 g5 |88 |d8ca |8sc |28¢3 S g
= FFz2 == |z |28 |57 |87 |2 |RE25F (g2 |23 H g
= [TF T |57 |FgE |Fz2 |gd |F= |CgE° (FECFEE 5
z z z E =
1054 0 1 4 0 0 6 0 0 1 chat contacts receive Chat
10560 4 0 1 1 0 0 7 0 0 1 composing Chat
11382 5 1 2 0 1 0 20 0 0 11 chat conversation Chat
15833 5 0 2 2 0 0 9 0 0 0 username password login Login
15869 3 0 0 1 0 0 4 0 0 0 username register Login
47278 5 4 3 0 0 0 13 0 0 1 name age profile Profile
47280 1 0 0 0 0 0 2 0 0 1 name age profile Profile
18804 0 0 1 0 0 0 6 0 0 5 setting preferences Setting
18833 0 0 1 0 0 0 6 0 0 5 setting Accessibility Setting
18955 0 0 1 0 0 0 6 0 0 5 setting preferences Setting
16127 15 0 3 0 0 0 19 1 0 0 list Settings notifications Menu
16137 12 1 3 2 0 0 19 1 0 0 list Settings Help logout Menu

B. CLASSIFICATION ALGORITHMS

After finishing the data pre-processing and splitting the dataset,
we can begin deploying several classification algorithms in our
model. We will evaluate the performance of 10 different
algorithms to ensure a thorough evaluation of the model. The
training dataset are utilized to train the model with these
classification methods. Various indicators are utilized to
evaluate the success of the ML algorithms in classifying
Mobile application screens, with the testing and the validation
datasets. For developing the algorithms, we import each ML
method and several performance indicators from the Python
library Scikit-learn [19], such as accuracy, recall, precision,
ROC-AUC and F-score. As shown in Fig. 6, the ML algorithms
used include Extreme gradient boosting (XGBoost) [20],
Gradient Boosting [21], Random Forest (RF) [22], Multi-Layer
Perceptron [23], AdaBoost [24], Logistic regression (LR) [25],
Decision Tree (DT) [26], Naive Bayes (NB) [27], Support
Vector Machines (SVM) (SVM RBF, and SVM Linear) [28].

C. PARAMETERS TUNING

Modifying parameters before applying a training process can
aid in controlling the behavior of the ML algorithms. These
parameter adjustments can have a considerable influence on
model training duration, accuracy, and convergence. By
experimenting with different parameter settings, we can
optimize the behavior of the ML algorithms and achieve better
classification performance. For instance, when using the
Gradient Boosting algorithm, we use max depth=3, learning
rate=0.1 and n estimators=100 to achieve the highest
classification accuracy. In the DT algorithm, we use max
depth=5, which provides an optimal solution. For the RF
model, we found that setting max depth=>5 and n estimators=10
yielded the best classification results. We also employ several

VOLUME 24(3), 2025

kernels to ensure the accuracy of SVM classification, including
SVM RBF and SVM Linear.

Extreme gradientboosting
(XGBoost)

—l Multi-Layer Perceptron I

Gradient Boosting I

Random Forest (RF)

Adaboost

MACHINE LEARNING
ALGORITHMS

—l Decision Tree Classifiers

Naive-Bayes(NB)

SVM Linear
—' Support Vector Machine (SVM)
SVM RBF

Figure 6. The used classification algorithms.

Logistic Regression

V. EVALUATION METRICS
In the evaluation phase, two widely used evaluation metrics
were applied to assess the performance of each classification
model: Accuracy and F1 Score. A confusion matrix [29, 30] is
used in the calculation of these metrics.

Positive (1) Negative (0)

Positive(1) TP FP

Negative (0) FN N

Figure 7. The Confusion Matrix.

The confusion matrix is a performance statistic for a ML
classification task where the output might be two or more
classes. It is a table with four alternative combinations of
projected and actual values, as shown in Fig. 7, where TN refers

467

)

Moheb R. Girgis et al. / International Journal of Computing, 24(3) 2025, 460-473

to the correct number of classifications of negative instances,
TP refers to the correct number of classifications of positive
instances, FP refers to the incorrect number of classifications
of negative instances, and FN refers to the incorrect number of
classifications of positive instances.
The evaluation metrics are defined below.
Accuracy measures the percentage of occurrences that are correctly
classified relative to all instances. It is computed using the following
formula

TP + TN

Accuracy = 4o TN ¥ FP + FN')

Precision calculates the proportion of accurately predicted

positive outputs. The following formula is used to compute it:
TP
Precision = ———. 2
recision TP + FP 2)
Recall is The percentage of accurate positive predictions
based on all of the dataset's actual positives. The following

formula is used to compute it:

Recall = —" 3
et =P F PN ®

F1-Score is defined as the suitably scaled harmonic mean of a
model's precision and recall. The formula is used to compute
it:

2 * Precision * Recall

F158 = . 4
core Precision + Recall)

ROC_AUC (Receiver Operating Characteristic - Area Under
the Curve) [31] is a critical metric for assessing classification
model performance. The ROC curve is generated by
systematically adjusting the classification threshold of the
model and plotting the True Positive Rate (TPR) against the
False Positive Rate (FPR). The area under the ROC curve
(ROC-AUC) is subsequently computed by integrating the ROC
curve as follows:

TPR =)
TP + FN
FPR = 2 (6)
FP + FN

The ROC_AUC is then determined by integrating the ROC
curve, providing a reliable measure of the model's ability to
distinguish between classes and offering a comprehensive
evaluation of classification performance.

ROC_AUC = [(recall (FPR)) dFPR . @)

VL. EXPERIMENTAL RESULTS

We performed a comparative evaluation of the classification
outcomes for application screens using ten distinct machine
learning algorithms, as depicted in Figure 6. To assess their
performance, the previously defined evaluation metrics—
recall, accuracy, precision, Fl-score, and ROC-AUC—were
employed. The results of this analysis offer valuable insights
into the efficacy of each algorithm in classifying mobile
application screens. Detailed performance metrics for the ten
algorithms are summarized in Table 5, highlighting their
effectiveness in screen classification based on the established
evaluation criteria.

As illustrated in Table 5, All of the assessed algorithms
received high accuracy scores, ranging from 81.16% to
93.48%, underscoring their overall efficacy in screen
classification tasks. Notably, Gradient Boosting, Random
Forest, XGBoost, Multi-Layer Perceptron and SVM Linear

468

demonstrated superior performance, with accuracy scores
between 93.06% and 93.48%, positioning them as the most
suitable algorithms for this task. Among these, Gradient
Boosting consistently outperformed others, achieving the
highest scores across all metrics, including accuracy, recall,
precision, and Fl-score. In contrast, SVM RBF exhibited the
lowest accuracy (81.16%) and Fl-score (80.9%), indicating
comparatively weaker performance. In terms of precision,
Gradient Boosting, SVM Linear, and Logistic Regression
achieved the highest scores, exceeding 95%. This reflects their
ability to minimize false positive predictions, a critical factor
in classification tasks. Conversely, SVM RBF recorded the
lowest precision score (85.52%), further highlighting its
limitations in this context.

Table 5. Comparison of metrics scores of the 10 ML
algorithms in app screens classification.

No. | ML algorithms | Accuracy | Precision | Recall i%% F1 score
1 Gradient 93.48 96.07 | 93.46 | 99.6 | 94.39
Boosting
2 XGBoost 93.2 95.5 93.17 | 99.51 | 93.99
3 | Multi-Layer 93.2 958 | 9325 | 99.56 | 94.13

Perceptron

4 | Random Forest 93.06 95.51 93.16 99.06 94.04

5 Logistic 92.63 9581 | 9248 | 99.48 | 93.69
Regression

6 Adaboost 83.29 85.78 | 8422 | 98.36 | 83.93

7 Naive Bayes 90.65 94.63 90.77 | 99.43 91.9

8 | Decision Tree | 92.35 94.18 | 9233 | 96.91 | 93.01

9 SVM RBF 81.16 8552 | 79.02 | 98.04 | 80.9

10 | SVM Linear 93.2 9599 | 9328 | 99.48 | 94.27

For recall, most algorithms performed well, with scores
above 90%, indicating their ability to correctly identify the
majority of positive cases. The exceptions were Adaboost and
SVM RBF, which had lower recall scores in the range of 79%
to 85%, suggesting that these algorithms were less effective at
detecting positive cases.

The ROC-AUC scores for all algorithms achieved high
values, ranging from 96.91% to 99.6%, indicating excellent
discriminative power. Among them, The Gradient Boosting
method offered the best balance between true positive rate and
false positive rate, as evidenced by its highest ROC-AUC score
0 99.6%.

Based on the results provided in Table 5, Gradient
Boosting achieved the best performance with a test accuracy of
93.48%. This outstanding performance can be attributed to
several reasons: (1) its ability to handle non-linear data by
building sequential models that correct errors from previous
models, enabling it to capture complex relationships in the data;
(2) its resistance to overfitting, achieved through gradual
learning and tree pruning techniques; (3) its capability to
handle mixed features, including both numerical and textual
data extracted from mobile app screens; (4) its strong
performance in multi-class classification tasks, which aligns
well with the ten-category structure of the MASC dataset; and
(5) its high precision (96.07%) and recall (93.46%), the highest
among all models, demonstrating its ability to accurately
identify and classify instances across all classes.

VOLUME 24(3), 2025

Moheb R. Girgis et al. / International Journal of Computing, 24(3) 2025, 460-473

In comparison, SVM with RBF kernel demonstrated lower
performance, achieving a test accuracy of 81.16%. This
suboptimal performance can be attributed to several factors: (1)
the difficulty in determining optimal parameters, as SVM
heavily relies on selecting appropriate hyperparameters, which
can be challenging to optimize for complex datasets; (2) its
inherent limitations in multi-class classification tasks, since
SVM is fundamentally a binary classifier and requires
additional strategies to extend its functionality to multi-class
problems; and (3) its lower precision (85.52%) and recall
(79.02%), the lowest among all models, indicating its struggle
to accurately identify and classify instances across all classes.

It is worth noting that XGBoost, SVM Linear, and Multi-
Layer Perceptron also performed well, with test accuracies of
93.2%, 93.06%, and 93.2% respectively. These algorithms
share some similarities with Gradient Boosting in their ability
to handle complex data and perform well in multi-class
problems. The high ROC-AUC scores (above 99% for most
models except Decision Tree and SVM RBF) indicate that most
models have excellent discriminative ability across all classes.
Figures 8-12 show comparisons between the Accuracy, ROC-
AUC scores, Fl-scores, Precision, and Recall scores,
respectively, obtained for the 10 ML algorithms on the same
dataset.

Accuracy Comparison of ML Algorithms

90
85
80
75
70
65
60
55
50

SVM(rbf) SVM(linear)

XGBoost Gradient Random Multi-Layer Adaboost Logistic Decision Naive

Boosting Forest Perceptron Regression Tree Bayes

Figure 8. A comparison between the Accuracy of the 10 ML
algorithms

ROC_AUC Comparison of ML Algorithms

99.06 99.56 —_— 99.48 99.43 99.48

100 99.51 99.6 seor aRd
95
90
85
8
7
50

XGBoost ~ Gradient Random Multi-Layer Adaboost Logistic Decision Naive
Boosting Forest Perceptron Regression Tree Bayes

o oo oo N
a8 & 3 & 8

SVM(rbf) SVM(linear)

Figure 10. A comparison between the ROC-AUC for the 10
ML algorithms.

Recall Comparison of ML Algorithms

95 | 93.17 93.46 93.16 93.25 92.48 oran 93.28

90.77
90
84.22
85
% 79.02
75
70
65
60
55
50

XGBoost Gradient Random Multi-layer Adaboost Logistic Decision Naive SVM(rbf) SVM(linear)
Boosting Forest Perceptron Regression Tree Bayes

Precision Comparison of ML Algorithms

Figure 11. A comparison between the Recall for the 10 ML

algorithms.
96.07
2418 94.63
95
%0
85.78 8552
s
20
75
70
65
60
55
50
XGBoost Gradient Random Multi-Layer Adaboost Logistic Decision Naive

SVM(rbf) SVM(linear)
Boosting Forest Perceptron Regression Tree Bayes

F1 score Comparison of ML Algorithms
100

o5 93.99 94.39 94.04 94.13 93.69 93.01 94.27

919

90

85 83.93

80.9

80 -

75

70

6 |

60

55

50

XGBoost ~ Gradient ~ Random Multi-layer Adaboost Logistic ~ Decision Naive Bayes SVM(rbf) SVM(linear)
Boosting Forest Perceptron Regression Tree

Figure 9. A comparison between the F1 score for the 10 ML
algorithms.

VOLUME 24(3), 2025

Figure 12. A comparison between the Precision for the 10
ML algorithms.

To provide a comprehensive visual representation of the
performance of our ML models, we present confusion matrices
for the ten algorithms evaluated in this study. These matrices
offer valuable insights into the classification accuracy across
different mobile app screen categories and highlight areas of
strength and potential misclassification for each model. Each
matrix shows the true labels vertically and the predicted labels
horizontally, With color intensity signifying the quantity of
occurrences in each cell. Figures 13-22 show the confusion
matrices for the 10 ML algorithms on the same dataset.

469

S=llm

Moheb R. Girgis et al. / International Journal of Computing, 24(3) 2025, 460-473

470

True

True
Menu

Menu Map login List Home Chat
))) | i \ A \

Welcome Setting Search Profile

Map login Lst Home Chat

Welcome Setting Search Profile

Menu Map login List Home Chat
q 3 5 b .

Welcome Setting Search Profile

Confusion Matrix for XGBoost

0 o 0) 1 1 1

100
1 3 o o 1 10
o 0 o 1 o 1 80
o o o 0 1 2
1 0 0 0 0 1 9
o o 2 o 0 o 1 o 0
- 40
0 0 o 0 0 0 53 0 0 0
) 0 o 2 0 0 0 0 3
-20
2 o o 1 o 1 o o s
1 [0 1 0 o o 0 o
0 ' U 0 U 0 ' 0 ' -0
Chat Home Lst login Map Menu Profile Search Setting Welcome
Predicted
Figure 13. A XGBoost Confusion Matrix.
Confusion Matrix for Random Forest
29 o 0 0 o o o o 1 3 100
o o 2 o o 1 £l
0 0 0 0 1 0 1 0
) o o 0 0 1 2
1 o o o . 0 0 0 0 o 60
1 o 2 o “ o o o o
-40
0 o o o o] o o o
o 0 o o o o 0 1 4
-20
2 o [2 o 0 0 1 s
) 1 o 2 o o o 0 0
] ' 3 1 ' 3 . ‘ . -0
Chat Home List Login Map Menu Profile Search Setting Welcome
Predicted
Figure 15. A Random Forest Confusion Matrix.
Confusion Matrix for Adaboost 105
26 0 0 0 4 [o o o 7
1 4 o o 1 o o 0 24
80
2 2 0 0 23 o 1 o 2
o o 4 o o o o o 4
60
1 o o o n o o o o 0
1 0 2. 0 0 0 o o o
40
o o 0 0 o 1 n o o 5
3 o o o o 1 o o 7
o -20
5 0 0 2 L 12 0 o 39 5
7 0 o 1 o [o o o 100
' ' g . . 0 D 0 ' =Q
Chat Home Lst login Map Menu Profile Search Setting Welcome
Predicted

Figure 17. An AdaBoost Confusion Matrix.

Menu Map Login List Home Chat
| | | | \ i ' |

Welcome Setting Search Profile

Figure 14. A Gradient Boosting Confusion Matrix.

login List Home Chat

Map

Menu

Welcome Setting Search Profile

29

]

Chat

o

'
"

o

Chat

Figure 16. A Muli-Layer perception Confusion Matrix.

B_ 2

5

»

E- o

2

8- 0

3

<

&- 0

|

8- o

=

2

2. o0

=

o

E- o

€

- o

&

°

§- ©

£-

&

v

£

S- o
Chat

o

Home

Home

Confusion Matrix for Gradient Boosting

o o o 1 o 1 o 2

o 2 o o 1 10
o o o 1 9 1
o o o o o 2

2 o o H 0 9 1 0
o o o o o o o
o 1 o 0 9 0 2
o 2 o b i o)
o o o o o o
lst login Map Menu Profile Search Setting Welcome
Predicted

Confusion Matrix for Multi-Layer Perceptron

o o o o [o 1 2

o 1 o [o 1
o o o 1 o L
o o o 1 o 2

o o
2 o o . o 0 2 0
o o o o H 0 o 0
o 2 0 o o H 0 2
o 1 0 o o i 6
o 1 0 o o o 0
lst login Map Menu Profile Search Setting Welcome
Predicted

Confusion Matrix for Logistic Regression

o o o T o o 1 5

1 4 o o 1
o o 1 o 1
o o o o 1
ol o o o 1.

0 2 o o H o o b o
o o o o o E o o o
o o o o o 0 ﬂ o 4
& 2] 2 o 1 o o 6
o o 1 o o o o o
Home Lst login Map Menu Profile Search Setting Welcome
Predicted

100

100

Figure 18. A Logistic Regression Confusion Matrix.

VOLUME 24(3), 2025

Moheb R. Girgis et al. / International Journal of Computing, 24(3) 2025, 460-473

Confusion Matrix for Decision Tree
100

Chat
N
¥
-
o
N
o
o
o
N
-
w

@
E- 0 o 1 0 1 o 1
2
80
8- o o o o 2 o 2
<
- o o o o o 5 5 2
g
60
& 1 o o o 48 o o o o 1
WS
2
F s
5~ 1 o 2 1 o o o 1 o
=
- 40
@
s - o 1 o 1 o o o o [
&
€
5- o 1 1 2 [1 o 4
&
o 20
g
E - 1 2 1 2 [o o 3
&
o
£
s- 3 2 o 1 o o o o 0 102

Chat Home List Login Map Menu Profile Search Setting Welcome
Predicted

Figure 19. A Decision Tree Confusion Matrix.

Confusion Matrix for Support Vector Machine - rbf

100

Chat
5
°
°
°
o
°
°
°
3

Home
°
°
°
“w
°
™
°
&

o 3 o 1 o o o 0 o 104

] o [82 o 0 11 o 3 o 2
=3 o [} o 83 0 o 0 o] o 6
g
a 60
k] o o o o 45 3 (] 0 o 2
®
3
= =
$- o o 5 1 0 42 o o] 2 5
=
2 - 0.
- 0 o 0 o o o 53 o o o
g
5 >
5 - o [2 2 [} 5 o 54 o 9
&
& -20
g
E - o [} 0 4 o 4 o o a7 8
&
®
g
5-
&£

Chat Home List login Map Menu Profile Search Setting Welcome
Predicted

Figure 21. A Confusion Matrix for SVM RBF.

VIl. CONCLUSION AND FUTURE WORK

This paper presented a new dataset, called MASC consisting of
over 7000 UI screens manually categorized into 10 distinct
classes. The MASC dataset provides a robust foundation for
ML model development, serving as a benchmark for
classification. Based on this dataset, the paper presented a
proposed framework for applying ML algorithms to the
classification of mobile app screens. Using the proposed
framework, the paper presented a comprehensive study of the
classification of mobile app screens using various ML
algorithms. Evaluation metrics, including accuracy and F1
score, were used.

The results demonstrated that all the algorithms achieved
relatively high accuracy rates demonstrating their effectiveness
in classification. Gradient Boosting, XGBoost, SVM Linear,
Random Forest, and Multi-Layer Perceptron achieved best
accuracy, indicating that they are the most suitable algorithms.
Gradient Boosting has the highest accuracy and F1 score,
indicating that it has the best overall performance among the
algorithms. while SVM RBF has the lowest accuracy and F1
score among the algorithms.

The proposed model for mobile app screens classification
is a promising development that can enhance the accuracy and
efficiency of mobile app screen classification. However, there
are several areas where the model could be further improved,
and where its potential applications could be expanded.

VOLUME 24(3), 2025

Confusion Matrix for Naive Bayes

Chat
b3
°
w
°
°
°
°
w
~

100

HOI’IT\E

c

-
|
|
|
|
|
|

B o o 95 o o o o o o 1 80
.
=3 o o o 86 o o o o o 3
S
g o o 1 o 49 o o o o o 60
g
- § = o o 3 o o o o o o
@ - 40
5= o o o o o o o o o
&
<
E- o o 20 o o o o a8 o a
&
o -20
=0 0 2 0 0 0 0 o ‘ 7
&
.u
E
g =2 o o o o o o o o o 108
g 0 ' . ' ' .) 0 '} -0
Chat Home List Login Map Menu Profile Search Setting Welcome
Predicted
Figure 20. A Naive Bayes Confusion Matrix.
Confusion Matrix for Support Vector Machine - linear
3
8 28 0 o o] o o 1 2 2 100
.
E-] 74 1 o o 1 o o o 1
2
g, [[9% 0 0 [[1 0 3 80
.
=3 o 4 o 88 o o o o o 1
g
- o o 0 o 49 1 o 0 o 0 T
& =
4
F o5
g-) o 2 [) 51 o) 2 o
=
K - 40
L o 4 o o o o o o o
&
e
2. o o 1 0 o 1 0 0 4
&
o -20
g -) 1 o 2 o o o 0 54 6
&
:
£
g - o o o 1 o o o o o 107
é ' " . ' " " D 0 " -0
Chat Home List Login Map Menu Profile Search Setting Welcome
Predicted
Figure 22. A Confusion Matrix for SVM Linear.

Despite the promising results, the MASC dataset and our

approach have some limitations:
* Manual Classification Bias: While three independent
annotators manually labeled the dataset, no formal
measurement of inter-annotator agreement (e.g., Cohen’s
Kappa) was conducted. This introduces the potential for
subjective bias, particularly in ambiguous screens with
overlapping functionalities or unconventional layouts.
Future iterations may benefit from including such
agreement metrics to ensure consistency.
* Android-Centric Design: The dataset is based solely on
Android interfaces (from the RICO dataset), which may
limit the generalizability of the proposed framework to
other platforms such as iOS or cross-platform frameworks
like Flutter. Although the feature extraction method is
conceptually applicable to other systems, empirical
validation on different UI ecosystems is needed.
* Fixed Screen Division: Our feature extraction relies on a
static horizontal screen division (15%-70%-15%) to
analyze spatial distribution. While effective in many cases,
this approach may not suit all UI layouts, especially those
with unconventional element positioning (e.g., floating
action buttons, bottom sheets, or split-screen designs). An
adaptive or dynamic screen segmentation strategy could
better capture such variances.

471

)

Moheb R. Girgis et al. / International Journal of Computing, 24(3) 2025, 460-473

Scalability Challenges and Mitigation: Expanding the
dataset remains a labor-intensive process, as it depends on
manual annotation. To address this, future work will
explore semi-supervised and active learning approaches,
allowing machine learning models to suggest labels that are
then verified by human annotators. This could significantly
accelerate dataset growth while maintaining labeling
accuracy.

FUTURE RESEARCH DIRECTIONS:
To address these limitations and further improve the model, we
propose the following areas for future work:

Enhanced Feature Extraction: Develop more
sophisticated techniques, possibly incorporating computer
vision or deep learning approaches, to better capture
complex Ul layouts.

Dataset Expansion: Investigate semi-automated
classification methods to speed up dataset expansion while
maintaining quality. This could include exploring transfer
learning techniques to adapt the model to new app
categories or Ul design trends without extensive retraining.
Diverse App Categories: Expand the dataset to include a
wider range of app categories and UI designs, particularly
focusing on underrepresented or emerging app types.
Hyperparameter Tuning: Conduct thorough
hyperparameter tuning for each algorithm to potentially
improve performance further.

Large-Scale Validation: Investigate the performance of
the proposed model on larger datasets to validate its
effectiveness in real-world scenarios and expand its
potential applications.

Cross-Platform Extension: Extend the methodology
developed in this research to classify screens for other
mobile platforms, such as iOS.

Data availability:

The data that support the findings of this study are

publicly available. The MASC dataset can be accessed at
https://doi.org/10.5281/zenodo.14783065, and the complete

source

code 1is available on https:/github.com/Ali-

Aahmed/MASC-Dataset.

References

(1]

472

Z. Wang, et al., "A deep learning method for android application
classification using semantic features," Security and Communication
Networks, vol. 2022, Article ID 1289175, pp. 1-16, 2022.
https://doi.org/10.1155/2022/1289175.

K. Alharbi, T. Yeh, "Collect, decompile, extract, stats, and diff: Mining
design pattern changes in Android apps," Proceedings of the 17th
International Conference on Human-Computer Interaction with Mobile
Devices and Services, 2015, pp- 515-524.
https://doi.org/10.1145/2785830.2785892.

R. Kuber, A. Hastings, and M. Tretter, "Determining the accessibility of
mobile screen readers for blind users," UMBC Faculty Collection, 2020.
A. Rodrigues, et al, "Open challenges of blind people using
smartphones," International Journal of Human—Computer Interaction,
vol. 36, issue 17, pp- 1605-1622, 2020.
https://doi.org/10.1080/10447318.2020.1768672.

R. Kumar, et al, "Webzeitgeist: design mining the web," Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems, 2013,
pp. 3083-3092. https://doi.org/10.1145/2470654.2466420.

F. Behrang, S.P. Reiss, and A. Orso, "GUlIfetch: supporting app design
and development through GUI search," Proceedings of the 5th
International Conference on Mobile Software Engineering and Systems,
2018, pp. 236-246. https://doi.org/10.1145/3197231.3197244.

G. Berardi, et al., "Multi-store metadata-based supervised mobile app
classification," Proceedings of the 30th Annual ACM Symposium on

(8]

9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

(23]

[26]

(27]

Applied Computing, 2015, 585-588.
https://doi.org/10.1145/2695664.2695997.

H. Zhu, et al., "Mobile app classification with enriched contextual
information," [EEE Transactions on Mobile Computing, vol. 13, issue 7,
pp. 1550-1563, 2013. https://doi.org/10.1109/TMC.2013.113.

E. Platzer, and O. Petrovic, "Leaming mobile app design from user
review analysis," [International Journal of Interactive Mobile
Technologies (IJIM), vol. 5, ‘issue 3, pp. 43-50, 2011.
https://doi.org/10.3991/ijim.v5i3.1673.

B. Deka, et al., "Rico: A mobile app dataset for building data-driven
design applications," Proceedings of the 30th Annual ACM Symposium
on User Interface Software and Technology, UIST'2017, Canada, 2017,
pp. 845-854. https://doi.org/10.1145/3126594.3126651.

T. F. Liu, et al, "Learning design semantics for mobile apps,"
Proceedings of the 31st Annual ACM Symposium on User Interface
Software and Technology, Berlin, 2018, pp. 569-579.
https://doi.org/10.1145/3242587.3242650.

A. Rosenfeld, O. Kardashov, and O. Zang, "Automation of Android
applications testing using machine learning activities classification,"
arXiv preprint arXiv:1709.00928, 2017.
https://doi.org/10.1145/3197231.3197241.

B. Wang, et al., "Screen2words: Automatic mobile Ul summarization
with multimodal leaming," Proceedings of the 34th Annual ACM
Symposium on User Interface Software and Technology, 2021, pp. 1-13.
https://doi.org/10.1145/3472749.3474765.

H. Wen, et al., "AutoDroid: LLM-powered task automation in Android,"
ACM MobiCom '24: Proceedings of the 30th Annual International
Conference on Mobile Computing and Networking, 2024, 543-557.
https://doi.org/10.1145/3636534.3649379.

L. Zhang, et al., LlamaTouch: A Faithful and Scalable Testbed for Mobile
UI Task Automation, Proceedings of the UIST 24, October 13-16, 2024,
Pittsburgh, PA, USA, pp. 1-13.
https://doi.org/10.1145/3654777.3676382.

A. Shirazi, et al., "Insights into layout patterns of mobile user interfaces
by an automatic analysis of Android apps," Proceedings of the 5th ACM
SIGCHI Symposium on Engineering Interactive Computing Systems
EICS'13,2013, pp. 275-284. https://doi.org/10.1145/2494603.2480308.
B. Deka, Z. Huang, and R. Kumar, "ERICA: Interaction mining mobile
apps," Proceedings of the 29th Annual Symposium on User Interface
Software and Technology, 2016, pp- 767-776.
https://doi.org/10.1145/2984511.298458]1.

L. Leiva, A. Hota, and A. Oulasvirta, "Enrico: A dataset for topic
modeling of mobile UI designs," Proceedings of the 22nd International
Conference on Human-Computer Interaction with Mobile Devices and
Services MobileHCI"20, 2020, pp- 1-4.
https://doi.org/10.1145/3406324.3410710.

A. Lavanya, et al., "Assessing the performance of Python data
visualization libraries: A review," International Journal of Computer
Engineering in Research Trends (IJCERT), vol. 10, no. 1, pp. 28-39,
2023. https://doi.org/10.22362/ijcert/2023/v10/i01/v10i0104.

T. Chen, and C. Guestrin, "XGBoost: A scalable tree boosting system,"
Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 2016, pp. 785-794.
https://doi.org/10.1145/2939672.2939785.

J. Friedman, "Greedy function approximation: A gradient boosting
machine," The Annals of Statistics, vol. 29, no. 5, pp. 1189-1232, 2001.
https://doi.org/10.1214/a0s/1013203451.

L. Breiman, "Random Forests," Machine Learning, vol. 45, issue 1, pp.
5-32,2001. https://doi.org/10.1023/A:1010933404324.

M.-C. Popescu, et al., "Multilayer perceptron and neural networks,"
WSEAS Transactions on Circuits and Systems, vol. 8, issue 7, pp. 579-
588, 20009.

Y. Freund, R. E. Schapire, "A desicion-theoretic generalization of on-line
learning and an application to boosting," In: Vitanyi, P. (eds)
Computational Learning Theory. EuroCOLT 1995. Lecture Notes in
Computer Science, vol 904, 1995. Springer, Berlin, Heidelberg.
https://doi.org/10.1007/3-540-59119-2_166.

J. Peng, K. Lee, and G. Ingersoll, "An introduction to logistic regression
analysis and reporting," Journal of Educational Research, vol. 96, no. 1,
p. 3-14, 2002. https://doi.org/10.1080/00220670209598786.

L. Rokach, O. Maimon, Decision Trees, In: Maimon, O., Rokach, L. (eds)
Data Mining and Knowledge Discovery Handbook, 2005, pp. 165-192,
Springer, Boston, MA. https://doi.org/10.1007/0-387-25465-X_9.

I. Rish, "An empirical study of the Naive Bayes classifier," Proceedings
of the IJCAI 2001 Workshop on Empirical Methods in Artificial
Intelligence, Seattle, 4 August 2001, pp. 41-46.

pp-

VOLUME 24(3), 2025

Moheb R. Girgis et al. / International Journal of Computing, 24(3) 2025, 460-473

)

[28] C. Cortes, and V. Vapnik, "Support-vector networks," Machine Learning,
vol. 20, issue 3, Pp- 273-297, 1995.
https://doi.org/10.1023/A:1022627411411.

D. Valero-Carreras, J. Alcaraz, and M. Landete, "Comparing two SVM
models through different metrics based on the confusion matrix,"
Computers & Operations Research, vol. 152, pp. 106131, 2023.
https://doi.org/10.1016/j.cor.2022.106131.

J. Li, H. Sun, and J. Li, "Beyond confusion matrix: Learning from
multiple annotators with awareness of instance features," Machine
Learning, vol. 112, issue 3, pp. 1053-1075, 2023.
https://doi.org/10.1007/s10994-022-06211-x.

S. Narkhede, "Understanding auc-roc curve," Towards Data Science, vol.
26, issue 1, pp. 220-227,2018.

[29]

[30]

[31]

MOHEB R. GIRGIS received his B.Sc.
Degree from Mansoura University,
Egypt, in 1974, M.Sc. degree from
Assiut University, Egypt, in 1980, and
Ph.D. degree from the University of
Liverpool, England, in 1986. He is a
professor of computer science at
Minia University, Egypt. His research
interests include software
engineering, software testing,
information retrieval, evolutionary
algorithms, image processing, com-
puter networks, and bioinformatics.

ALAA M. ZAKI received his B.Sc.
Degree from Minia University, Egypt,
in 1999, M.Sc. degree from Mina
University, Egypt, in 2009, and Ph.D.
degree from Minia University, Egypt,
in 2015. He is an associate professor

of computer science at Minia
University, Egypt. His research
interests include Software

Engineering, Data Mining, evolutiona-
ry algorithms, computer networks, and bioinformatics.

VOLUME 24(3), 2025

ENAS ELGELDAWI received her B.Sc.
Degree from Minia University, Egypt,
in 1999, M.Sc. degree from Mina
University, Egypt, in 2005, and Ph.D.
degree from Minia University, Egypt,
in 2015. She is an associate professor
of computer science at Minia
University, Egypt. Her research
interests include Data Mining, evolu-
tionary algonthms computer networks, and bioinformatics.

MOHAMED M. ABDALLAH received
his B.Sc. Degree from Minia
University, Egypt, in 2004, M.Sc.
~ degree from Mina University, Egypt, in
2008, and Ph.D. degree from Minia
University, Egypt, in 2015. He is an
assistant professor of computer
science at Minia University, Egypt. His
research interests include information
evolutionary algorithms, computer

retrleval,

Data Mining,
networks, and bioinformatics.

ALl A. AHMED received his B.Sc.
Degree from Minia University, Egypt,
in 2015, M.Sc. degree from Minia
University, Egypt, in 2021. He is an
Assistant lecturer of computer
science at Minia University, Egypt. His
research interests include Software
Engineering, machine learning, deep
learning, big data analytics, and
mobile applications development
testing

==/
P

4

473

