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 ABSTRACT Mobile applications (apps) have become an integral part of our daily lives, offering a wide range 
of functionalities and services. Understanding the diversity of mobile app screens is crucial for optimizing user 
experience and delivering personalized content. This paper presents a novel dataset, called MASC (Mobile App 
Screens Classification) consisting of 7065 images, representing various types of mobile apps screens. MASC 
dataset is collected from the well-known Rico dataset. These screens were carefully manually classified into ten 
unique classes to capture the diverse nature of app interfaces. Based on the MASC dataset, this paper presents a 
proposed framework for applying machine learning (ML) algorithms to the classification of mobile apps screens. 
The paper presents a feature extraction algorithm that extracts, from each screenshot image of an app screen, key 
characteristics related to visual elements, text, and keywords. Using the proposed framework, the paper also 
presents a comprehensive study of the classification of mobile apps screens using ML algorithms. Several 
classification algorithms including XGBoost, Gradient Boosting, Random Forest, SVM, Logistic Regression, and 
others were trained and evaluated on MASC. Results showed high accuracy scores, above 93%, for top models 
like Gradient Boosting, indicating that ML algorithms with the MASC dataset provide an effective approach to 
mobile app screen classification. This study contributes to the field of mobile app analysis and user interface 
understanding. In addition, the proposed mobile app screens classification framework is a promising development 
that can enhance the accuracy and efficiency of mobile app screens classification. The complete code is available 
on GitHub to ensure reproducibility and foster further research: https://github.com/Ali-Aahmed/MASC-Dataset. 
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I. INTRODUCTION 
obile applications are an integral part of our daily lives, 
providing us with convenience, entertainment, and 

productivity at our fingertips. With the widespread adoption of 
mobile apps, it has become essential to understand the nuances 
of different app screens, as their layout, design, and 
functionality have a significant impact on user experience and 
engagement Wang, Li [1]. Today, millions of mobile apps are 
available for download in various app stores, offering a wide 
range of services, from communication to social media to 
entertainment to productivity. The development of these apps 
usually begins with an idea that is presented to a design team, 
who is responsible for designing both the user experience and 
the user interface architecture [2]. 

Android is the most popular mobile operating system in the 
world, with many devices, users, and rich apps. With the 
proliferation of 5G and the accelerated research and 
development of 5G smart devices by major brands, global 

smartphone shipments are expected to increase slightly in the 
coming years [1]. 

The screen type classification along with a screen summary 
can assist users of screen readers in rapidly forming a 
conceptual understanding of unfamiliar mobile user interfaces, 
eliminating the need to wait for the mobile UI reader to 
painstakingly navigate through each element [3, 4]. 

Existing UI datasets have some common limitations that 
hinder comprehensive research on mobile app UI: 

 Lack of accurate, manually validated classifications of 
screen types across diverse app categories 

 Lack of a unified set of features extracted from UI 
elements for machine learning purposes 

These limitations have hindered research in several ways: 
 Training accurate screen classification models is difficult 

due to inconsistent classification 
 Developing automated testing methods that address 

different UI types is difficult 

M
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 Studying design patterns and user interactions across 
different screen types is limited 

 This research provides a UI dataset, named  MASC, which 
addresses these gaps by: 

 Providing manually validated classifications of 10 major 
screen types, ensuring high-quality classifications for 
machine learning 

 Providing a unified set of 11 features extracted from each 
UI, facilitating robust and consistent analysis 

 Covering a diverse range of app screens, enabling 
comprehensive studies of UI design and functionality 

 Supporting the development of more effective automated 
testing strategies for mobile apps. 

Due to the increasing spread of mobile apps on the Internet 
and the challenges of mobile app analytics, this research has the 
potential to significantly improve mobile app testing 
efficiency, enhance user interface design practices, and 
ultimately lead to better user experiences across a wide range 
of mobile applications. The contributions of this research can 
be summarized in the following two main points:  

1. Building a dataset of mobile app screens and then 
manually classifying them. 

2. Training machine learning (ML) algorithms with this 
dataset to detect the type of unseen mobile screens. 

This paper is organized as follows: Section II presents 
related work review; Section III describes the methodology of 
building and analyzing the new dataset; Section IV describes 
the proposed ML model for UI screens classification based on 
the MASC dataset; Section V presents the classification 
algorithms evaluation metrics; Section VI presents the results 
of evaluating the efficiency of applying different ML 
algorithms, with the new dataset, in the classification of UI 
screens; and Section VII presents conclusion and future work. 

II. RELATED WORK 
Currently, there is no publicly available dataset that links UI 
designs to specific layout topics. Previous design mining 
applications and platforms, such as Webzeitgeist [5] and 
GUIfetch [6], allow users to explore and query web design 
datasets, but UI layout modeling is not possible due to the lack 
of labeled data. Other datasets provide fine-grained app 
categories, but they do not provide information about UI 
design. For example, Berardi et al. [7] automatically inferred 
app categories using app metadata analysis, and Zhu et al. [8] 
annotated 680 mobile apps according to two general-purpose 
levels, with Games (Level 1) including Action and Strategy 
(Level 2). There is also a mobile app dataset categorized 
according to Reiss' profiles, such as honor, idealism, and 
power, but these categories have little practical use for UI 
designers [9]. This section examines the most used open-
source datasets in the current literature on incorporating AI 
assistance into UI classification. Table 1 lists the datasets 
discussed in this section and their attributes. 

The largest repository of UI datasets is the RICO dataset 
[10]. It contains more than 72,000 Android smartphone UI 
screenshots and their corresponding Android View hierarchy, 
which were collected using a crowd-sourcing methodology.  

Liu et al. [11] extended RICO by adding semantic 
annotations for UI screenshots. Using the automatic method, 
the authors categorized the UI components found in the RICO 
dataset into 25 types. They further categorized these UI element 
types into 135 icon classes and 197 text button concepts. This 

dataset has the disadvantage that the annotations are unreliable 
because the UI components were classified and tagged 
automatically. 

Activity recognition is based on the premise that different 
activities in an Android application share a similar interface 
structure. To exploit this similarity, researchers have used 
machine learning techniques to classify each activity in the 
application into one of seven pre-defined activity types [12] . 
Wang et al.[13]  collected 112,085 human-annotated English 
summarization for 22,417 unique UI screens dataset from Rico 
and found that deep learning models outperform heuristic 
approaches. Human evaluation also favored their full model.  

Several other datasets have been proposed for classifying 
mobile application screens and tasks. For example, 
DroidTask[14]  offers a dataset of 158 labeled tasks across 13 
open-source apps. While this dataset provides a foundation for 
task-based analysis, However, its small dataset size and limited 
diversity in application types restrict its generalizability 
Similarly LlamaTouch[15] offers a more extensive dataset with 
over 3,500 tasks and expert-curated metadata, significantly 
improving the coverage of UI interactions. However, it 
primarily focuses on task-level interactions rather than 
structural screen classification, making it less effective for 
studies requiring in-depth UI component analysis. 

In our research, we assembled a dataset, named MASC, 
based on the well-known Rico dataset. This dataset includes a 
total of 7,065 UI images representing a wide range of mobile 
app activities. These activities were accurately manually 
classified into 10 distinct classes. We have developed a feature 
extraction technique to extract the vital features from each 
image accurately, which allowed us to train machine learning 
algorithms employed in predicting activity types. This 
capability enables us to automatically identify the specific 
activity in which the user is currently engaged. It has the 
potential to enhance various tasks, including improving user 
experience and providing personalized content. It also allows 
developers to create a specific testing method for each of these 
10 types. In what follows, we will discuss in detail the contents 
of our database, followed by a comprehensive study of 
applying ML algorithms, with the MASC dataset, in the 
classification of mobile app screens. 

MASC offers a unique contribution to the field by providing 
manually verified classifications for 10 distinct screen types, 
along with a standardized set of 11 extracted features per 
screen. This comprehensive approach allows for a more 
nuanced analysis of UI elements associated with specific 
functionalities across different types of app screens. The 
combination of verified classifications and standardized 
features makes MASC particularly well-suited for training 
machine learning models for app screen classification. 
Furthermore, this dataset enables researchers and developers to 
study design patterns more effectively, potentially supporting 
the development of intelligent design tools and optimizing user 
experiences in ways that were not possible with previous 
datasets. 
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Table 1. List of UI datasets and their attributes. 

Dataset Description 
No. of 
Apps 

No. of 
UIs 

Annotations Advantages Disadvantages 

Shirazi, et al. 
[16] 

UIs created through 
XML layout files 

400 29K 
Twenty-one 
different apps 
categories  

 Large-scale structural 
data 
 Covers various app 
categories 
 Useful for analyzing 
layout patterns 

 Limited to XML layouts, not 
visual data 
 May not capture dynamic UI 
changes 
 Potentially outdated 
(published in 2013) 

ERICA [17] 
UI screenshots, UI 
wireframes, and view 
hierarchy (JSON file) 

2.4k 18.6k 

indexed more than 
3000 flow examples 
by using machine 
learning classifiers 

 Includes UI flows and 
interactions 
 Combines visual and 
structural data 
 ML-based flow indexing 

 No specific screen type 
classification. 
 Large size may be 
challenging to process. 

RICO [10] 
UI screenshots, view 
hierarchy (JSON file) 
and UI wireframes 

9.7k 72.2K 
spanning 27 apps 
categories   

 Largest UI dataset available 
 Rich in UI diversity and 
patterns 
 Includes screenshots and 
hierarchies 

 UI elements categorized by 
automated means, unreliable 
annotations 
 No classification for each 
screen 
 Challenging to process due 
to size 

Liu, et al. [11]  
expanded RICO by 
adding semantic 
annotations to the UIs. 

9.7k 72.2K 

25 types of UI 
components, 197 
text button 
concepts, and 135 
icon classes shared 
across apps. 

 Detailed semantic annotations 
for UI elements 
 Useful for design semantics 
understanding 

 Automated annotation 
process may introduce errors 
 Focused on individual UI 
elements rather than overall screen 
types 

Screen2Words 
[13] 

screen summaries in 
CSV format for 
screens from the 
RICO 

6.3k 22.5k 
112,085 screen 
summaries for 
22,417 screens 

 Textual descriptions of UI 
elements 
 Useful for NLP tasks related 
to UI 
 Combines visual and textual 
information 

 Not specifically designed for 
screen type classification 
 May contain subjective or 
inconsistent human annotations  
 No predefined categories for 
screen types 
 Primarily focused on generating 
textual descriptions, not classified. 

Enrico [18] 
UI screenshots, view 
hierarchy (JSON file) 
and UI wireframes 

1.1k 1.4k 
20 categories of UI 
design topics 

 Focused on UI design topics 
 Manually labeled dataset 
 Includes wireframes and 
hierarchies 

 The number of UIs in each 
category is small,  
 No specific feature extraction 
method for classification 
 the total number of UIs is also 
small, which affects the efficiency of 
using this dataset  in UI classification 
by AI. 

MASC (Ours) 

UI screenshots, view 
hierarchy (JSON file) , 
UI wireframes, and  
Vectors.CSV 

3.4k 7.1k 
10 categories of UI 
design topics 

 Manually classified into 10 
distinct categories 
 Focused dataset easier to 
manage and analyze 
 Custom feature extraction 
algorithm for each UI 
 Validated through 
comprehensive machine learning 
experiments 
 Specifically designed for 
mobile app screen classification 

 Limited to 10 predefined 
categories . 
 Primarily based on Android, but 
the classification approach can be 
potentially applied to other 
platforms. 

III. METHODOLOGY 
The framework, shown in Fig. 1, provides an overview of the 
different phases involved in building a new dataset, called 
MASC (a shorthand for Mobile App Screens Classification) 
and employs an ML approach for classifying mobile 
applications screens 

As shown in Fig. 1, the architecture of the proposed 
framework includes several phases. First, data about the 
selected screens is collected from a variety of sources, such as 
screenshot UI screens, semantic wireframes, and JSON files, 
then data is preprocessed and filtered to remove noise. Next, 
feature extraction is performed to convert the data into a 

numeric vector that has 11 features for each UI screenshot. 
Then, the dataset is split into training, validation, and testing 
sets. The training set is used to train the machine learning 
model. The validation set is used to evaluate the performance 
of the model and select the best parameters for it. The testing 
set is used to evaluate the final performance of the model on 
unseen data. The framework can be used to optimize 
classification efficiency for classifying mobile app screens. 

The MASC dataset serves as the foundation for developing 
machine learning models to detect and classify screen types. 
MASC dataset building process includes three phases: Dataset 
Collection, Data Classification, and Feature Extraction. 
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A.   DATASET COLLECTION 
To build a mobile UI dataset, we randomly collected 30k 
screenshots from three open-source data sources: the first is the 
Rico dataset [10] containing 72k UIs; the second is the 
Screen2Words dataset [13] containing 22k screenshots taken 
from the Rico-SCA dataset; and the Enrico dataset [16] 
containing 1,460 screenshots of mobile app screens taken from 
the Rico dataset. We carefully selected screenshots from a 
various set of applications to ensure a diverse representation of 
mobile UIs. We manually classified the 30K UIs and selected 
only the UIs that belong to ten different design topics (see Table 
2) to arrive at a high-quality dataset containing 7065 
screenshots of mobile app UIs taken from over 3400 apps, 
which we named the MASC dataset. 

B.  DATASET CLASSIFICATION 
After collecting the dataset in the first step, three persons were 
assigned to manually review each of the collected screens and 
classify them into the appropriate class from the ten classes. To 
ensure consistent and accurate classification, specific criteria 
were established for each screen type. Table 2 outlines these 
criteria in detail, providing a comprehensive guide used by the 
researchers during the manual classification process. 

These detailed classification criteria enabled the three 
persons to systematically categorize the diverse range of 
mobile app screens, ensuring consistency and accuracy 
throughout the dataset creation process. Based on these criteria, 
we classified our dataset as shown in Table 3, which presents 
the number of UI designs belonging to each class along with a 
brief description. 

Table 2. Classification Criteria for Mobile App Screen 
Types 

Class Classification Criteria 

Chat 
Displays conversation threads or message bubbles - Includes a 
text input field for sending messages - May show online status 

of contacts. 

Home 
Central hub for app navigation - Displays main features or 
content summary - Often has a bottom navigation bar or 

prominent action buttons. 

List 
Presents data in a scrollable column format - May include items 
like articles, products, or contacts - Often have options to sort 

or filter the list. 

Login 
Contains username and password input fields - May include 

"Sign In" or "Log In" buttons - Often has options for password 
recovery or new account creation. 

Map 
Displays geographic information - Includes interactive map 
controls (zoom, pan) - May show location markers or route 

information. 

Menu 
Displays a hierarchical list of choices or app sections - May be 
a side drawer or full-screen list - Often includes icons next to 

menu items. 

Profile 
Shows user information and preferences - May include profile 

picture, bio, and personal stats - Often has options to edit 
profile information. 

Search 
Features a prominent search bar - May include recent search 
history or suggested search terms - Often has a magnifying 

glass icon. 

Setting 
Lists configurable options for the app - May include toggles, 

dropdown menus, or input fields for various settings - Often has 
a gear or cog icon. 

Welcome 
Introductory or onboarding content for new users - May include 

app highlights or brief tutorials - Often has a "Get Started" or 
similar call-to-action button.  

 
During the classification process, each screen was only 
included in the dataset if at least two of the three classifiers 
agreed on its category, ensuring consensus and reducing 

individual bias. Screens without agreement between at least 
two classifiers were excluded, maintaining data quality at the 
expense of quantity. This conservative approach ensured only 
screens with clear classifications were included, which is 
crucial for the dataset's reliability in machine learning 
applications. 
 

 

Figure 1. The proposed framework for building the MASC 
dataset and using it in a ML approach for classifying mobile 

apps screens. 
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Table 3. Ten classes, in alphabetical order, and the 
number of UI designs that belong to each class. 

Class No. of Screens Description 

Chat 329 Chat communication 

Home 866 App navigation 

List 960 Data visualization in a column 

Login 889 User authentication 

Map 500 Geographic display 

Menu 557 Item selection 

Profile 526 User profile information 

Search 725 Content discovery 

Setting 629 App configuration 

Welcome 1084 First-run experience 

 
Regarding challenging cases, screens with complex or 

hybrid functionalities were likely the most difficult to classify. 
For instance, a screen combining search functionality with a 
menu layout might have caused disagreement among 
classifiers.  This requires careful consideration of the 
underlying function of the screen to determine the most 
appropriate category. 

In the dataset, each screen is accompanied with a screenshot 
of the user interface (UI), a JSON file of the view hierarchy, a 
semantic wireframe, and a JSON file of the hierarchy of this 
semantic UI, as shown in Fig. 2. View hierarchies include 
various UI elements, such as images, buttons, and a map view, 
each with specific properties like class, bounds, and 
clickability, and the relationships between them. The view 
hierarchy offers insights into how these elements are organized 
within the app's user interface, facilitating development and 
design. 

 
Figure 2. (a) screenshot UI screens, (b) Semantic wireframe 

images. 

Each activity has a variety of elements that are connected to 
the user interface components it includes, such as the distinct 
classes of elements, their set of attributes, their relative 
placement in the activity, the number of elements shown in the 
activity, and so on. An activity may also have a navigation 
drawer, which is a panel on the left side of the screen that 
displays the application's major navigation choices. It is usually 
hidden, but it is shown when the user swipes their finger from 
the left side of the screen or clicks on a designated button. 

C.  FEATURE EXTRACTION 
The extraction of important features is an essential phase in the 
presented model since irrelevant features might reduce the 
efficacy of the ML classifier. Careful features selection 
improves classification accuracy and shorten model training 
time. Feature extraction involves breaking down huge amounts 

of raw data into smaller groups for processing, as processing 
these huge datasets needs substantial computing resources due 
to the large number of variables. 

While building the features vector, we have to choose those 
aspects that are most informative and may vary depending on 
the type of activity. Wang, et al. [13] have proven that an 
activity can often be identified by its visual elements, which are 
the elements that the user can interact with directly, such as 
buttons, text boxes, and their location on the screen. Thus, it is 
assumed that the interactive elements for the user appropriately 
represent the activity. By examining the core activity templates 
from Android Studio's activity design guidelines, we noticed 
that each activity screen can be artificially divided into three 
parts: the top, middle, and bottom. We utilize the following 
screen guideline division: 15%-70%-15% from top to bottom, 
as illustrated in Fig. 3. where headers or navigation elements 
are typically at the top, main content in the middle, and action 
buttons or navigation bars at the bottom. This division allows 
us to capture the spatial distribution of UI elements, which can 
be crucial for distinguishing between screen types. 

Our feature selection was influenced by common UI design 
patterns and elements typically found in various screen types. 
For example, we quantify clickable elements, text fields, and 
swipeable components, as these often indicate the interactivity 
level and purpose of a screen. The number of text input fields, 
for instance, is usually higher on login screens, while list 
screens tend to have more vertically swipeable elements. 
Additionally, we incorporated keyword analysis, selecting 
common words for each class based on frequency analysis 
across multiple apps. For example, terms like "username" and 
"password" are often associated with login screens, while 
"settings" and "preferences" are common in settings screens. 
This multi-faceted approach to feature extraction, combining 
element counts, spatial information, and textual analysis, 
contributes significantly to the accuracy of our classification 
model by providing a comprehensive representation of each 
screen's characteristics. 

As a result, we concentrate on the following interactive 
element groupings, which might exist in each of the three 
activity sections: 

 Clickable elements: Elements that the user can tap on to 
interact with the activity.    

 Swipeable elements: Horizontal swipeable elements are 
those that can be swiped by the user left and right, while 
vertical swipeable elements are swiped up and down. 

 Text field elements: Elements where the user can enter 
text. 

We use the number of elements from each of the above 
element groups, in the part of the activity where they are most 
likely to occur, as features. Thus, the first set of features 
includes 6 features, representing the number of clickable and 
text field elements in each of the three activity sections of the 
screen. The second set of features includes 4 features: the first 
feature is the total number of elements displayed on the screen, 
irrespective of their grouping or location; the second feature is 
set to 1 if the activity contains a navigation drawer; the third 
feature is the number of horizontal scrollable elements in the 
screen's center; and the last feature is the number of vertical 
scrollable elements in the screen's center. The final set includes 
only one feature, which is the "keywords" found in the text on 
the screen.  The 11 features extracted from each screen are used 
to form its feature vector, as shown in Fig. 4. 
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To assist in extracting the 11 features from any given 
activity, we have created lists of common clickable, text field, 
vertical swipe, and horizontal swipe elements. In addition, we 
have created a dictionary of common words for each of the 10 
classes mentioned in Table 3. This is achieved by examining 

many screens of applications belonging to each class and 
identifying the most used words for this class. For example, for 
the login class, the most common keywords are "login", 
"username", and "password". 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Screen divisions across common activities templates. 

 

 

 

 
Figure 4. The feature vector structure for an activity. 

Fig. 5 shows the steps of our extract features algorithm, 
Extract_Features, which extracts the 11 features from any 
given activity. The inputs to this algorithm are: the JSON file, 
which describes the view hierarchy of the activity to be 
processed, act; the created lists of common elements: 
clickable_types, text_field_types, vertical_swipe_types, and 
horizontal_swipe_types; and the dictionary of common words: 
common_words. The output of the algorithm is the feature 
vector for the given activity act. The algorithm works as 
follows: Line 1 creates two empty lists, FeaturesList and 
Keywords, to hold the extracted features; Line 2 reads the 
JSON file of act; Line 3 calls a procedure, named 
Extract_Children(), developed to extract all child elements of 
act from the JSON file into a list: child_elements; Line 3 
calculates the height percentages for the top, middle, and 
bottom parts of the screen act; Lines 7-38 calculate the first 10 
features for the given activity act,  by checking the type of each 
child in child_elements and incrementing the corresponding 
elements in FeaturesList; Line 39 calls a procedure, named 
Extract_Words(), developed to extract important text from the 
JSON file into a list: words; Lines 40-45 creates the last feature 

(Keywords) for act, which is a list of the keywords found in the 
text on the screen, by checking each word in words and adding 
it to Keywords, if it is found in the dictionary common_words; 
finally, Line 47 writes the feature vector (FeaturesList + 
Keywords) of act to a CSV file.  

The procedure Extract_Words() creates the list words as 
follows: the text from each screen element and the text that 
describes that element, is extracted from the JSON file; then the 
extracted text is cleaned by removing unwanted content, such 
as symbols, numbers, and common words, and stored in the list 
words.  

Table 4 shows the obtained feature vectors for some mobile 
screen samples of four different classes from the MASC 
dataset, and it also shows the screen type based on the manual 
classification, where each screen has a unique id. 
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Algorithm Extract_Features 
Input:  JSON file (hierarchy for an activity act); 

Lists of common clickable, text input, vertical swipe, and 
horizontal swipe elements: clickable_types, text_input_types, 
vertical_swipe_types, horizontal_swipe_types; Dictionary of 
common words for each of the 10 classes: common_words. 

Output: The feature vector (FeaturesList and Keywords) for the given 
activity act 
Begin 

1. Create two empty lists to hold the extracted features: FeaturesList, 
Keywords    

2. Read JSON file of act. 
3. child _elements = Extract_Children(JSON File).  //Extract all child 

elements from JSON file 
4. Calculate the height percentages for the top, middle, and bottom parts of 

the screen act. 
5. For each child  child_elements do 
6. Begin  
7.       If child is on top          // Determine the location of the child on act 
8.               location = top 
9.       Else If child is on middle 
10.    location = middle 
11. Else 
12.    location = bottom 
13. End If 
14. FeaturesList[7]++;      // Increment no. of all elements in act 

15. If child  clickable_types    then   // check if child is a clickable element 

16.    If location == middle then            
17.  FeaturesList[1]++;     // Increment no. of clickable elements at middle 
18.    Else If location == bottom then   
19.   FeaturesList[2]++;  // Increment no. of clickable elements at bottom      
20.    Else If location == top then            
21.   FeaturesList[3]++;    // Increment no. of clickable elements at top 
22.    End If 
23. Else If child  text_input_types then        
24.    //check if child is a text input element 
25.    If location == middle then             
26.        FeaturesList[4]++;   // Increment no. of text field elements at middle        
27.     Else If location == bottom then   
28.          FeaturesList[5]++;    // Increment no. of text fields elements at bottom      
29.    Else If location == top then            
30.          FeaturesList[6]++; // Increment no. of text field elements at top 
31.    End If 
32. Else IF child is navigation drawer then      
33.     // child is a navigation drawer control  
34. FeaturesList[8] =1;       
35. Else IF child  horizontal_swipe_types then  
36. // child is a horizontal swipeable element 
37. FeaturesList[9]++;         
38. // Increment no. of horizontal swipeable elements  
39. Else IF child  vertical_swipe_types then   
40. //child is a vertical swipeable element 
41. FeaturesList[10]++;  // Increment no. of vertical swipeable 

elements   
42. End If  
43. words = Extract_Words(JSON file)     
44. // Get important text from the JSON file 
45. For each word  words do   
46. Begin 
47. If word  common_words then  
48.   // word is found in the dictionary of common keywords 
49.   Add word to Keywords 
50. End If  
51. End For 
52. End For 
53. Write feature vector (FeaturesList + Keywords) of act to a CSV file. 
54. End 

Figure 5. The Extract_Features Algorithm. 

D.  MASC APPLICATIONS 
Here are the potential applications of the MASC dataset, 
organized by functional categories: 

1) Testing and Validation: 
• UI Testing Automation: MASC dataset can be used to 

train models for automated mobile app UI testing, which 

can significantly lower the manual effort required for 
quality assurance and avoid expensive rework due to 
early bug detection. 

• Design System Verification: MASC dataset can be used 
to build automated tools that verify compliance with 
design guidelines, identify anomalies, and maintain 
consistency across large-scale applications. 

2) Development and Generation: 
• Auto UI Generation: MASC dataset can be used to train 

generative models that automatically create UI designs 
based on specifications, significantly accelerating the 
prototyping process and reducing initial development 
time. 

• Code Generation Tools: MASC dataset can be used to 
develop systems that automatically generate 
implementation code from UI designs, streamlining the 
development process and reducing manual coding 
effort. 

3) Accessibility and User Experience: 
• UI Accessibility Enhancement: MASC dataset can be 

used to develop models that improve app accessibility, 
enabling features like voice commands, gesture 
navigation, and text-to-speech capabilities to make apps 
more inclusive for users with disabilities. 

4) Analysis and Research: 
• UI Pattern Analysis & Classification: MASC dataset 

can be used to study UI evolution and classify screens 
by type, helping identify successful design patterns and 
trends that improve user experience. 

• Performance Optimization: MASC dataset can be used 
to study relationships between UI patterns and app 
performance, helping identify optimal design 
approaches that balance aesthetics with technical 
efficiency. 

• Competitor Analysis Tools: MASC dataset can be used 
to build systems that analyze and compare UI patterns 
across competing apps, providing insights for strategic 
design decisions and market differentiation. 

• Mobile App Security Analysis: Leveraging UI 
classifications, the dataset can help identify potential 
vulnerabilities in app interfaces, such as insecure input 
fields or exposed sensitive actions. 

IV. ML APPROACH FOR CLASSIFYING UI SCREENS  
The proposed ML model for UI screens classification based on 
the MASC dataset consists of three phases: Train/Test 
Splitting, Classification Algorithms, and Parameters Tuning. 

A.  TRAIN/TEST SPLITTING 
To ensure an unbiased evaluation of the ML model, we 
randomly partitioned the dataset into three non-overlapping 
subsets  
 Training Set (70%, n = 4946): Used to fit model 

parameters and learn the underlying patterns and 
relationships between interface features and their labels. 

 Validation Set (10%, n=707): Employed for 
hyperparameter tuning (e.g., learning rate, regularization 
strength, tree depth) and model selection, without 
influencing the training process. 

 Test Set (20%, n = 1412): Held out until final evaluation 
to provide an unbiased benchmark of model generalization 
on completely unseen mobile screen images. 
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The training set is used to optimize the model’s weights, 
whereas the validation set guides hyperparameter selection and 

early stopping, preventing overfitting before assessing final 
performance on the test set. 
 

Table 4. Feature vectors extracted for screen samples. 

Screen Id 

N
o. of 

C
lickable 

E
lem

ents - 
M

id
dle 

N
o. of 

C
lickable 

E
lem

ents - 

N
o. of 

C
lickable 

E
lem

ents - T
op 

N
o. of T

ext 
F

ield E
lem

en
ts 

- M
iddle 

N
o. of T

ext 
F

ield E
lem

en
ts 

- B
ottom

 

N
o. of T

ext 
F

ield E
lem

en
ts 

- T
op 

N
o. of all 

E
lem

ents 

D
oes the 

activity contain
 

a navigation 
draw

er? 

N
o. of 

horizontal 
sw

ipeable 
E

lem
ents 

N
o. of vertical 
sw

ipeable 
E

lem
ents 

K
eyw

ords 

L
abel 

1054 0 1 4 0 0 0 6 0 0 1 chat contacts receive Chat 

10560 4 0 1 1 0 0 7 0 0 1 composing Chat 

11382 5 1 2 0 1 0 20 0 0 11 chat conversation Chat 

15833 5 0 2 2 0 0 9 0 0 0 username password login Login 

15869 3 0 0 1 0 0 4 0 0 0 username register Login 

47278 5 4 3 0 0 0 13 0 0 1 name age profile Profile 

47280 1 0 0 0 0 0 2 0 0 1 name age profile Profile 

18804 0 0 1 0 0 0 6 0 0 5 setting preferences Setting 

18833 0 0 1 0 0 0 6 0 0 5 setting Accessibility Setting 

18955 0 0 1 0 0 0 6 0 0 5 setting preferences Setting 

16127 15 0 3 0 0 0 19 1 0 0 list Settings notifications Menu 

16137 12 1 3 2 0 0 19 1 0 0 list Settings Help logout Menu 

B.  CLASSIFICATION ALGORITHMS 
After finishing the data pre-processing and splitting the dataset, 
we can begin deploying several classification algorithms in our 
model. We will evaluate the performance of 10 different 
algorithms to ensure a thorough evaluation of the model. The 
training dataset are utilized to train the model with these 
classification methods. Various indicators are utilized to 
evaluate the success of the ML algorithms in classifying 
Mobile application screens, with the testing and the validation 
datasets. For developing the algorithms, we import each ML 
method and several performance indicators from the Python 
library Scikit-learn [19], such as accuracy, recall, precision, 
ROC-AUC and F-score. As shown in Fig. 6, the ML algorithms 
used include Extreme gradient boosting (XGBoost) [20], 
Gradient Boosting [21], Random Forest (RF) [22], Multi-Layer 
Perceptron [23], AdaBoost   ]24[ , Logistic regression (LR) [25], 
Decision Tree (DT) [26], Naive Bayes (NB) [27], Support 
Vector Machines (SVM) (SVM RBF, and SVM Linear)  [28]. 

C.  PARAMETERS TUNING 
Modifying parameters before applying a training process can 
aid in controlling the behavior of the ML algorithms. These 
parameter adjustments can have a considerable influence on 
model training duration, accuracy, and convergence. By 
experimenting with different parameter settings, we can 
optimize the behavior of the ML algorithms and achieve better 
classification performance. For instance, when using the 
Gradient Boosting algorithm, we use max depth=3, learning 
rate=0.1 and n estimators=100 to achieve the highest 
classification accuracy. In the DT algorithm, we use max 
depth=5, which provides an optimal solution. For the RF 
model, we found that setting max depth=5 and n estimators=10 
yielded the best classification results. We also employ several 

kernels to ensure the accuracy of SVM classification, including 
SVM RBF and SVM Linear.  
 

 

Figure 6. The used classification algorithms. 

V. EVALUATION METRICS 
In the evaluation phase, two widely used evaluation metrics 
were applied to assess the performance of each classification 
model: Accuracy and F1 Score. A confusion matrix [29, 30] is 
used in the calculation of these metrics. 

 

Figure 7. The Confusion Matrix. 

The confusion matrix is a performance statistic for a ML 
classification task where the output might be two or more 
classes. It is a table with four alternative combinations of 
projected and actual values, as shown in Fig. 7, where TN refers 
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to the correct number of classifications of negative instances, 
TP refers to the correct number of classifications of positive 
instances, FP refers to the incorrect number of classifications 
of negative instances, and FN refers to the incorrect number of 
classifications of positive instances. 
The evaluation metrics are defined below. 
Accuracy measures the percentage of occurrences that are correctly 
classified relative to all instances. It is computed using the following 
formula 

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 =
𝑇𝑃 +  𝑇𝑁

𝑇𝑃 +  𝑇𝑁 +  𝐹𝑃 +  𝐹𝑁
.                    (1) 

Precision calculates the proportion of accurately predicted 
positive outputs. The following formula is used to compute it: 

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 =
𝑇𝑃

𝑇𝑃 +  𝐹𝑃
.                 (2) 

Recall is The percentage of accurate positive predictions 
based on all of the dataset's actual positives. The following 
formula is used to compute it: 

𝑹𝒆𝒄𝒂𝒍𝒍 =
𝑇𝑃

𝑇𝑃 +  𝐹𝑁
.               (3) 

F1-Score is defined as the suitably scaled harmonic mean of a 
model's precision and recall. The formula is used to compute 
it: 

𝑭𝟏 𝑺𝒄𝒐𝒓𝒆 =
2 ∗  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗  𝑅𝑒𝑐𝑎𝑙𝑙 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙
.      (4) 

 
ROC_AUC (Receiver Operating Characteristic - Area Under 

the Curve) [31] is a critical metric for assessing classification 
model performance. The ROC curve is generated by 
systematically adjusting the classification threshold of the 
model and plotting the True Positive Rate (TPR) against the 
False Positive Rate (FPR). The area under the ROC curve 
(ROC-AUC) is subsequently computed by integrating the ROC 
curve as follows: 

𝑻𝑷𝑹 =
்௉

்௉ ା ிே
 .              (5) 

 𝑭𝑷𝑹 =
ி௉

ி௉ ା ிே
  .  (6) 

The ROC_AUC is then determined by integrating the ROC 
curve, providing a reliable measure of the model's ability to 
distinguish between classes and offering a comprehensive 
evaluation of classification performance. 

 
𝑹𝑶𝑪_𝑨𝑼𝑪 = ∫(𝑟𝑒𝑐𝑎𝑙𝑙 (𝐹𝑃𝑅)) 𝑑𝐹𝑃𝑅 .  (7) 

VI. EXPERIMENTAL RESULTS 
We performed a comparative evaluation of the classification 
outcomes for application screens using ten distinct machine 
learning algorithms, as depicted in Figure 6. To assess their 
performance, the previously defined evaluation metrics—  
recall, accuracy, precision, F1-score, and ROC-AUC—were 
employed. The results of this analysis offer valuable insights 
into the efficacy of each algorithm in classifying mobile 
application screens. Detailed performance metrics for the ten 
algorithms are summarized in Table 5, highlighting their 
effectiveness in screen classification based on the established 
evaluation criteria. 

As illustrated in Table 5, All of the assessed algorithms 
received high accuracy scores, ranging from 81.16% to 
93.48%, underscoring their overall efficacy in screen 
classification tasks. Notably, Gradient Boosting, Random 
Forest,  XGBoost, Multi-Layer Perceptron and SVM Linear  

demonstrated superior performance, with accuracy scores 
between 93.06% and 93.48%, positioning them as the most 
suitable algorithms for this task. Among these, Gradient 
Boosting consistently outperformed others, achieving the 
highest scores across all metrics, including accuracy, recall, 
precision, and F1-score. In contrast, SVM RBF exhibited the 
lowest accuracy (81.16%) and F1-score (80.9%), indicating 
comparatively weaker performance. In terms of precision, 
Gradient Boosting, SVM Linear, and Logistic Regression 
achieved the highest scores, exceeding 95%. This reflects their 
ability to minimize false positive predictions, a critical factor 
in classification tasks. Conversely, SVM RBF recorded the 
lowest precision score (85.52%), further highlighting its 
limitations in this context. 

Table 5. Comparison of metrics scores of the 10 ML 
algorithms in app screens classification. 

No. ML algorithms Accuracy Precision Recall 
ROC-
AUC 

F1 score 

1 
Gradient 
Boosting 

93.48 96.07 93.46 99.6 94.39 

2 XGBoost 93.2 95.5 93.17 99.51 93.99 

3 
Multi-Layer 
Perceptron 

93.2 95.8 93.25 99.56 94.13 

4 Random Forest 93.06 95.51 93.16 99.06 94.04 

5 
Logistic 

Regression 
92.63 95.81 92.48 99.48 93.69 

6 Adaboost 83.29 85.78 84.22 98.36 83.93 

7 Naive Bayes 90.65 94.63 90.77 99.43 91.9 

8 Decision Tree 92.35 94.18 92.33 96.91 93.01 

9 SVM RBF 81.16 85.52 79.02 98.04 80.9 

10 SVM Linear 93.2 95.99 93.28 99.48 94.27 

For recall, most algorithms performed well, with scores 
above 90%, indicating their ability to correctly identify the 
majority of positive cases. The exceptions were Adaboost and 
SVM RBF, which had lower recall scores in the range of 79% 
to 85%, suggesting that these algorithms were less effective at 
detecting positive cases. 

The ROC-AUC scores for all algorithms achieved high 
values, ranging from 96.91% to 99.6%, indicating excellent 
discriminative power. Among them, The Gradient Boosting 
method offered the best balance between true positive rate and 
false positive rate, as evidenced by its highest ROC-AUC score 
of 99.6%. 

Based on the results provided in Table 5, Gradient 
Boosting achieved the best performance with a test accuracy of 
93.48%. This outstanding performance can be attributed to 
several reasons: (1) its ability to handle non-linear data by 
building sequential models that correct errors from previous 
models, enabling it to capture complex relationships in the data; 
(2) its resistance to overfitting, achieved through gradual 
learning and tree pruning techniques; (3) its capability to 
handle mixed features, including both numerical and textual 
data extracted from mobile app screens; (4) its strong 
performance in multi-class classification tasks, which aligns 
well with the ten-category structure of the MASC dataset; and 
(5) its high precision (96.07%) and recall (93.46%), the highest 
among all models, demonstrating its ability to accurately 
identify and classify instances across all classes. 



Moheb R. Girgis et al. / International Journal of Computing, 24(3) 2025, 460-473  

VOLUME 24(3), 2025 469 

In comparison, SVM with RBF kernel demonstrated lower 
performance, achieving a test accuracy of 81.16%. This 
suboptimal performance can be attributed to several factors: (1) 
the difficulty in determining optimal parameters, as SVM 
heavily relies on selecting appropriate hyperparameters, which 
can be challenging to optimize for complex datasets; (2) its 
inherent limitations in multi-class classification tasks, since 
SVM is fundamentally a binary classifier and requires 
additional strategies to extend its functionality to multi-class 
problems; and (3) its lower precision (85.52%) and recall 
(79.02%), the lowest among all models, indicating its struggle 
to accurately identify and classify instances across all classes. 

It  is worth noting that XGBoost, SVM Linear, and Multi-
Layer Perceptron also performed well, with test accuracies of 
93.2%, 93.06%, and 93.2% respectively. These algorithms 
share some similarities with Gradient Boosting in their ability 
to handle complex data and perform well in multi-class 
problems.  The high ROC-AUC scores (above 99% for most 
models except Decision Tree and SVM RBF) indicate that most 
models have excellent discriminative ability across all classes. 
Figures 8-12 show comparisons between the Accuracy, ROC-
AUC scores, F1-scores, Precision, and Recall scores, 
respectively, obtained for the 10 ML algorithms on the same 
dataset. 

 

 

Figure 8. A comparison between the Accuracy of the 10 ML 
algorithms 

 

Figure 9. A comparison between the F1 score for the 10 ML 
algorithms. 

 

Figure 10. A comparison between the ROC-AUC for the 10 
ML algorithms. 

 

Figure 11. A comparison between the Recall for the 10 ML 
algorithms. 

 

Figure 12. A comparison between the  Precision for the 10 
ML algorithms. 

To provide a comprehensive visual representation of the 
performance of our ML models, we present confusion matrices 
for the ten algorithms evaluated in this study. These matrices 
offer valuable insights into the classification accuracy across 
different mobile app screen categories and highlight areas of 
strength and potential misclassification for each model. Each 
matrix shows the true labels vertically and the predicted labels 
horizontally, With color intensity signifying the quantity of 
occurrences in each cell. Figures 13-22 show the confusion 
matrices for the 10 ML algorithms on the same dataset. 
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Figure 13. A XGBoost Confusion Matrix. Figure 14. A Gradient Boosting Confusion Matrix. 

Figure 15. A Random Forest  Confusion Matrix. 
Figure 16. A Muli-Layer perception Confusion Matrix. 

Figure 17. An AdaBoost Confusion Matrix. Figure 18. A Logistic Regression Confusion Matrix. 
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VII. CONCLUSION AND FUTURE WORK 
This paper presented a new dataset, called MASC consisting of 
over 7000 UI screens manually categorized into 10 distinct 
classes. The MASC dataset provides a robust foundation for 
ML model development, serving as a benchmark for 
classification. Based on this dataset, the paper presented a 
proposed framework for applying ML algorithms to the 
classification of mobile app screens. Using the proposed 
framework, the paper presented a comprehensive study of the 
classification of mobile app screens using various ML 
algorithms. Evaluation metrics, including accuracy  and F1 
score, were used. 

The results demonstrated that all the algorithms achieved 
relatively high accuracy rates demonstrating their effectiveness 
in classification. Gradient Boosting, XGBoost, SVM Linear, 
Random Forest, and Multi-Layer Perceptron achieved best 
accuracy, indicating that they are the most suitable algorithms. 
Gradient Boosting has the highest accuracy and F1 score, 
indicating that it has the best overall performance among the 
algorithms. while SVM RBF has the lowest accuracy and F1 
score among the algorithms. 

The proposed model for mobile app screens classification 
is a promising development that can enhance the accuracy and 
efficiency of mobile app screen classification. However, there 
are several areas where the model could be further improved, 
and where its potential applications could be expanded. 

LIMITATIONS: 
Despite the promising results, the MASC dataset and our 
approach have some limitations: 

•  Manual Classification Bias: While three independent 
annotators manually labeled the dataset, no formal 
measurement of inter-annotator agreement (e.g., Cohen’s 
Kappa) was conducted. This introduces the potential for 
subjective bias, particularly in ambiguous screens with 
overlapping functionalities or unconventional layouts. 
Future iterations may benefit from including such 
agreement metrics to ensure consistency. 
•  Android-Centric Design: The dataset is based solely on 
Android interfaces (from the RICO dataset), which may 
limit the generalizability of the proposed framework to 
other platforms such as iOS or cross-platform frameworks 
like Flutter. Although the feature extraction method is 
conceptually applicable to other systems, empirical 
validation on different UI ecosystems is needed. 

  •  Fixed Screen Division: Our feature extraction relies on a 
static horizontal screen division (15%-70%-15%) to 
analyze spatial distribution. While effective in many cases, 
this approach may not suit all UI layouts, especially those 
with unconventional element positioning (e.g., floating 
action buttons, bottom sheets, or split-screen designs). An 
adaptive or dynamic screen segmentation strategy could 
better capture such variances. 

 

Figure 19. A Decision Tree Confusion Matrix. Figure 20. A Naive Bayes Confusion Matrix. 

Figure 21. A Confusion Matrix for SVM RBF. Figure 22. A Confusion Matrix for SVM Linear. 
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•  Scalability Challenges and Mitigation: Expanding the 
dataset remains a labor-intensive process, as it depends on 
manual annotation. To address this, future work will 
explore semi-supervised and active learning approaches, 
allowing machine learning models to suggest labels that are 
then verified by human annotators. This could significantly 
accelerate dataset growth while maintaining labeling 
accuracy. 

FUTURE RESEARCH DIRECTIONS: 
To address these limitations and further improve the model, we 
propose the following areas for future work: 

• Enhanced Feature Extraction: Develop more 
sophisticated techniques, possibly incorporating computer 
vision or deep learning approaches, to better capture 
complex UI layouts. 

• Dataset Expansion: Investigate semi-automated 
classification methods to speed up dataset expansion while 
maintaining quality. This could include exploring transfer 
learning techniques to adapt the model to new app 
categories or UI design trends without extensive retraining. 

• Diverse App Categories: Expand the dataset to include a 
wider range of app categories and UI designs, particularly 
focusing on underrepresented or emerging app types. 

• Hyperparameter Tuning: Conduct thorough 
hyperparameter tuning for each algorithm to potentially 
improve performance further. 

• Large-Scale Validation: Investigate the performance of 
the proposed model on larger datasets to validate its 
effectiveness in real-world scenarios and expand its 
potential applications. 

• Cross-Platform Extension: Extend the methodology 
developed in this research to classify screens for other 
mobile platforms, such as iOS. 

Data availability:   

The data that support the findings of this study are 
publicly available. The MASC dataset can be accessed at 
https://doi.org/10.5281/zenodo.14783065, and the complete 
source code is available on https://github.com/Ali-
Aahmed/MASC-Dataset. 
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