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ABSTRACT The increasing use of artificial intelligence (AI) in healthcare has revolutionized medical
diagnostics, particularly in cardiology and neurology, where electrocardiograms (ECG) and electroen-
cephalograms (EEG) play a crucial role in diagnosing conditions like heart attacks and epilepsy. However,
the sensitive nature of medical data poses significant privacy concerns, limiting data sharing between
institutions for AI model training. Federated learning (FL) offers a solution by enabling collaborative
learning without sharing raw data. Traditional FL approaches rely on centralized servers, which introduce
risks such as single points of failure and communication bottlenecks. To address these limitations,
we propose a decentralized federated learning (DFL) system combined with incremental learning (IL),
allowing continuous adaptation to new data streams while preserving patient privacy. Our architecture
utilizes a CNN-BiLSTM model for physiological signal analysis, trained locally at each institution. Model
weights are exchanged in a ring topology using an incremental federated averaging algorithm (IncFedAvg),
ensuring efficient weight aggregation without a central server. The proposed system demonstrates high
accuracy in both ECG arrhythmia classification and EEG seizure detection. Moreover, the incremental
learning capability allows the model to adapt to real-time data while maintaining performance. This
approach effectively addresses the challenges of privacy preservation and dynamic healthcare data
processing, offering a scalable solution for medical institutions.

KEYWORDS Deep learning; Decentralized federated learning; Incremental learning; Physiological
signals; healthcare data privacy;

l. INTRODUCTION

The integration of Artificial Intelligence (AI) in healthcare
has revolutionized the way medical professionals diagnose
and treat diseases [/1]], particularly in fields like cardiology
and neurology [2]. Al-driven models have demonstrated
remarkable potential in analyzing complex physiological
signals such as Electrocardiograms (ECG) and Electroen-
cephalograms (EEG), which are critical for diagnosing life-

primarily related to data privacy and the availability of large,
diverse datasets [4].

Medical data is highly sensitive, and sharing it across
institutions for Al model training raises significant privacy
concerns. Regulations such as the Health Insurance Portabil-
ity and Accountability Act (HIPAA) in the United States and
the General Data Protection Regulation (GDPR) in Europe
impose strict guidelines on handling patient data, making it

threatening conditions like heart attacks and epilepsy [3].
These technologies enable faster, more accurate diag-
noses, reducing the burden on healthcare professionals and
improving patient outcomes. However, the widespread adop-
tion of Al in healthcare is hindered by several challenges,
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difficult for institutions to collaborate openly [5]]. Traditional
approaches to Al model training often require centralized
datasets, which are impractical in healthcare due to privacy
risks and legal constraints. Federated learning (FL) [6]] has
emerged as a promising solution to this problem by allowing
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institutions to collaboratively train models without sharing
raw data. Instead, only model updates are exchanged, pre-
serving the privacy of individual patient records.

Despite its advantages, Federated Learning still faces
limitations. Most FL systems rely on a central server to
aggregate model updates from participating institutions.
This introduces vulnerabilities such as a single point of
failure and communication bottlenecks [7]. Furthermore,
legal restrictions on cross-border data sharing complicate the
use of centralized servers in global healthcare collaborations
[8]. To address these issues, researchers have proposed De-
centralized Federated Learning (DFL), which eliminates the
need for a central server by enabling direct communication
between institutions in a peer-to-peer manner [9]. While
DFL mitigates some of the risks associated with traditional
FL, it introduces new challenges, such as complex coordi-
nation between institutions and difficulties in aggregating
model weights efficiently [[10].

Another critical limitation of current FL. and DFL ap-
proaches is their assumption that all participating institutions
have pre-collected datasets ready for training. In reality,
healthcare data is generated continuously, requiring models
that can adapt to new data streams in real-time [[11]]. This dy-
namic nature of healthcare data necessitates an incremental
learning approach that allows models to update continuously
without retraining from scratch [12].

In this paper, we propose a novel decentralized federated
learning architecture that integrates incremental learning
to address these challenges. Our system enables medi-
cal institutions to train a Convolutional Neural Network-
Bidirectional Long Short-Term Memory (CNN-BiLSTM)
model locally using their private data while exchanging only
model weights with other institutions in a decentralized
manner. By leveraging Incremental Federated Averaging
(IncFedAvg), our approach ensures efficient weight aggre-
gation across institutions without relying on a central server.
Additionally, the incremental learning capability allows the
model to adapt to continuous data streams while maintaining
high accuracy. This architecture preserves patient privacy
and offers a scalable solution for real-time physiological
signal analysis in healthcare.

The remainder of this paper is structured as follows: Sec-
tion 2 reviews related works from the literature, highlighting
previous approaches and their limitations. Section 3 presents
the proposed approach in detail, including both the model
architecture and system architecture, with a focus on its two
main aspects: federated learning and incremental learning.
Section 4 discusses the experimental results, demonstrating
the effectiveness of the proposed method. Finally, Section 5
summarizes the findings of this study and suggests potential
directions for future research.

Il. RELATED WORK

Recent advancements in Centralized Federated Learning
(CFL), Decentralized Federated Learning (DFL), and In-
cremental Learning (IL) have significantly contributed to
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the field of physiological signal analysis, particularly in
healthcare applications [[13]]. Several studies have explored
the use of CFL and DFL frameworks for tasks such as ECG
and EEG classification. However, many of these approaches
face limitations related to centralized coordination or fail
to address the continuous arrival of new data, which is
crucial in dynamic healthcare environments. In the context
of Continual federated learning, the study in [14]] proposed a
CFL framework for arrhythmia classification using transfer
learning, CNNs, and explainable AI (XAI), achieving supe-
rior performance on the MIT-BIH dataset. In [[15] Ying et al.
introduced Fed-ECG, a semi-supervised FL framework for
heart abnormality classification using ResNet9 and pseudo-
labeling techniques, which showed promising results despite
using a centralized server. Goto et al. developed in [16]
machine learning models for hypertrophic cardiomyopathy
classification using ECGs and echocardiograms, demon-
strating that multi-institution models trained in a feder-
ated environment showed better generalizability than single-
institution models. [17]] addressed the issue of non-I1ID data
distribution in FL with FedCluster, which clusters client
parameters based on ECG data similarity and outperformed
FedAvg on the MIT-BIH dataset. The authors of [18]]
proposed a personalized FL approach for ECG classification,
which uses feature alignment to ensure consistency between
global and local data, achieving good accuracy on private
datasets. In [19] Jimenez Gutierrez et al. used FL with Fe-
dAvg to train deep learning models on heterogeneous ECG
data from multiple sources, showing comparable results to
traditional training methods. The study in [20] proposes a
weighted Federated Learning (FL) approach for arrhythmia
classification, where the weight of each client is dynamically
adjusted based on its contribution to the global model
improvement. This method aims to enhance the accuracy
of the global model by prioritizing clients that contribute
more significantly to the model’s performance. Chen et al.
in [21]], introduce a new Federated Learning (FL) framework
called Group-FL for large-scale driver drowsiness detection.
The framework organizes clients into hierarchical groups
and gradually aggregates model parameters. A global per-
sonalized deep learning model is used to handle variations
in EEG signals among clients by extracting shared and fine-
grained features for classification.

In the context of DFL, the authors of [22] introduced a
DFL framework for epilepsy classification using adaptive
ensemble learning during local training, validated through
knowledge distillation and public dataset evaluation. [23]]
combined FL with blockchain in their MetaCL frame-
work to classify multiple physiological signals while pre-
venting catastrophic forgetting through continual learning
mechanisms, however, high computational demands lim-
ited its scalability. [24] explored improving communication
efficiency in DFL over graph-based topologies, showing
that DFL can outperform traditional methods in large-
scale datasets by reducing communication overhead. In [25]
Agrawal et al. introduced a DFL framework for emotion
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classification using CNN architecture, evaluated on the
DEAP dataset. Kim et al. introduce in [10] a decentralized
federated learning (DFL) framework for arrhythmia classifi-
cation. The framework employs a method selection process
across four different datasets to simulate a multicenter
distributed environment. Additionally, fake data generated
by a GAN was used to evaluate the framework’s perfor-
mance, which demonstrated stable results across all datasets,
comparable to traditional FL. approaches.

Although several works have employed decentralized
federated learning (DFL) to address the issue of a single
point of failure (SPoF), typically associated with centralized
servers, they often overlook the continuous arrival of data,
which is crucial in dynamic healthcare environments.

Regarding Incremental Learning, the study in [26] in-
troduced AFLEMP, a multi-modal emotion classification
framework using attention mechanisms and incremental
learning, evaluated on AMIGOS and DREAMER datasets.
Kim et al. in [27] proposed an adaptive authentication sys-
tem using ECGs with incremental learning to address signal
variations due to emotional or physical changes. Fan et al.
developed in [28] ABLS, an active and incremental learning
system for arrhythmia classification on the MIT-BIH dataset
that fine-tunes connection weights over time while reducing
time consumption compared to traditional methods. Lastly,
in [29]], Shi et al. introduced an incremental learning method
for arterial fibrillation detection using transfer learning and
active learning strategies to continuously update models as
new data arrives.

In conclusion, Federated Learning (FL) approaches have
successfully addressed the privacy concerns in healthcare
by enabling collaborative model training without sharing
raw data. However, Centralized Federated Learning (CFL)
methods are limited by their reliance on a central server,
which introduces vulnerabilities such as network bottlenecks
and security risks. To overcome these issues, Decentralized
Federated Learning (DFL) has been proposed, eliminat-
ing the need for a central server and enhancing system
resilience. Despite these improvements, DFL approaches
still face challenges in adapting to the dynamic nature of
healthcare data, particularly the continuous arrival of new
data. This highlights the need for integrating Incremental
Learning (IL) into DFL frameworks to ensure real-time
adaptability while maintaining privacy and scalability in
healthcare settings.

lll. PROPOSED APPROACH

A. DATASET DESCRIPTION AND PREPROCESSING

In this study, we utilized two well-known datasets for train-
ing and evaluating our decentralized federated learning with
incremental learning architecture: the MIT-BIH Arrhythmia
dataset [30] for ECG analysis and the Bonn University
Seizure dataset [31]] for EEG analysis. These datasets were
selected due to their widespread use in physiological signal
processing tasks, such as arrhythmia detection and seizure
classification.
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The MIT-BIH Arrhythmia Dataset consists of 48 half-
hour long two-channel ambulatory ECG recordings obtained
from 47 subjects, digitized at 360 samples per second per
channel. It is widely used for arrhythmia detection and
classification tasks. The Bonn University Seizure Dataset
contains EEG recordings from five different sets, each with
100 single-channel EEG segments, sampled at 173.61 Hz,
and is commonly used for seizure detection tasks.

The ECG dataset used in this study was highly im-
balanced, requiring class balancing techniques. To address
this, oversampling was applied to increase the number of
samples in underrepresented classes by duplicating them,
ensuring a more balanced dataset for training. For the EEG
dataset, data augmentation was necessary to increase its size.
The chosen method was Gaussian Noise Injection, where
noise following a normal distribution was added to the
signals, making the model more robust to variations. These
preprocessing steps were essential for improving model
performance and ensuring that the data was suitable for
training in a federated learning environment.

B. PROPOSED MODEL ARCHITECTURE

To process both ECG and EEG signals effectively, we
designed a hybrid deep learning architecture that combines
Convolutional Neural Networks (CNNs) with Bidirectional
Long Short-Term Memory (BiLSTM) networks. This com-
bination leverages the strengths of both architectures to
handle the spatial and temporal characteristics inherent in
physiological signals.

CNNs are particularly effective at capturing spatial fea-
tures from input data by applying convolutional filters across
the signal. In our case, CNN layers were used to auto-
matically extract meaningful features from raw ECG/EEG
signals without requiring manual feature engineering.

BiLSTMs are an extension of standard LSTM networks
designed to capture long-term dependencies in sequen-
tial data by processing information in both forward and
backward directions. This bidirectional capability allows
BiLSTMs to capture contextual information from both past
and future time steps, making them ideal for handling phys-
iological signals like ECGs or EEGs that exhibit temporal
dependencies.

The architecture consists of multiple convolutional layers
followed by BiLSTM layers, which process the extracted
features sequentially. The final output layer uses softmax
activation for multi-class classification (e.g., arrhythmia
types or seizure detection). A visual representation of this
architecture is provided in Fig. [}

C. PROPOSED SYSTEM ARCHITECTURE

In this section, we present the architecture of the proposed
system, which integrates Decentralized Federated Learning
(DFL) with Incremental Learning (IL) to address the lim-
itations of existing federated learning models in dynamic
healthcare environments. Our proposed architecture over-
comes those challenges by decentralizing communication
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Figure 1. Proposed CNN-BiLSTM model architecture

between medical institutions and incorporating incremental
learning to handle real-time data streams.

1) Overview of the hybrid architecture

The proposed system architecture is designed to decentral-
ize communication between medical institutions entirely,
enabling continuous model updates without relying on a
central server. To achieve this, a ring topology is imple-
mented, allowing institutions to exchange model updates
directly with their neighbors, as illustrated in Fig. [2] The
system consists of two primary components: Decentralized
Federated Learning (DFL) and Incremental Learning (IL).
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Figure 2. Global representation of the ring topology with
data streams coming in real time
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The DFL component facilitates privacy-preserving col-
laboration by ensuring that institutions share only model
weights rather than raw data, maintaining data confiden-
tiality. Meanwhile, the IL component allows models to
adapt incrementally to newly arriving data without requiring
complete retraining, making the system highly dynamic
and efficient. Together, these components ensure scalability,
adaptability, and robustness in handling the dynamic nature
of healthcare environments.

The system’s operation is driven by two independent and
atomic processes:

« Receive (datat), which handles incoming data batches
for incremental learning, and
o Receive (GWk-1), which handles global weights re-
ceived from the previous institution in the ring topol-
ogy.
These functions are triggered by reception events, operate
in parallel, and function independently, enabling the system
to manage decentralized communication and incremental
learning simultaneously.

2) Decentralized federated learning component

In the DFL component, each medical institution retains its
own private model and data, ensuring privacy while enabling
collaborative learning across institutions. The key innovation
in our approach is the introduction of the Incremental Fed-
erated Averaging (IncFedAvg) algorithm, inspired by tradi-
tional Federated Averaging [6]. In contrast to centralized FL,
where a central server aggregates model weights from all
clients, our ring-topology setup allows weight aggregation to
occur incrementally and sequentially across multiple rounds
until all models converge. In the weight aggregation process,
two types of weights are used:
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o Local Weights (LW): These are parameters extracted
from each model after local training.

o Global Weights (GW): These are the shared weights
exchanged between institutions.

e Cycle Index: This index tracks the position of each
institution (N) in the ring topology based on the round
number (r) and total number of institutions (n). It is
calculated using Eq. (I).

CycleIndex = N + (r+ 1) xn (1)

The aggregation process begins with each institution
calculating its Local Weights (LW) after training on its
private data. These weights are then combined with Global
Weights (GW) received from the previous institution using
the IncFedAvg algorithm (see Eq[2). This process ensures
that knowledge is shared across all institutions while main-
taining data privacy. The updated Global Weights are then
transmitted to the next institution in the ring for further
aggregation. This cycle continues over multiple rounds until
all local models converge. A visual representation of this
process is provided in Fig[3]

LWy, — GWy_y
= _ _ 2
GWi = GWe-1 + CycleIndexy, @

3) Incremental learning component

To address the limitation of the dynamic nature of healthcare
environments in traditional DFL approachs, we incorporate
Incremental Learning (IL) within each institution’s local
model. In this approach, models are updated incrementally

Hospital €

Legend

e Aggregation Function @ Federated Model State
LW Local Weights

GW 6lobal Weights
Figure 3. Decentralized federated learning component archi-
tecture and process
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as new data batches arrive, allowing them to adapt to
real-time data streams without requiring retraining from
scratch. The IL component ensures that models continuously
improve over time by learning from small batches of new
data while retaining previously acquired knowledge. The
IncFedAvg algorithm plays a crucial role in this process by
aggregating both Local Weights and Global Weights before
and after each new batch of data is processed. This allows
institutions to update their models incrementally without
storing large amounts of historical data. The aggregation
process is outlined by Eq. 3]

) —aw

) _ (t=1)
GW = GW Datalndexn,

3

With Datalndex is an index that tracks the number of
mini-batches processed during incremental learning. As with
DFL, the updated Global Weights are shared with neighbor-
ing institutions in the ring topology to ensure that all models
benefit from new knowledge acquired at each institution. A
visual representation of this incremental learning process is
provided in Fig. {]

4) Fault tolerance and dynamic ring reconfiguration
The proposed decentralized federated learning framework
incorporates a robust fault tolerance mechanism to ensure
system resilience against node failures in healthcare envi-
ronments. The system employs a monitoring and reconfigu-
ration approach that maintains operational continuity when
institutions experience connectivity issues or hardware fail-
ures.

Each participating node implements a threshold-based
monitoring system that continuously tracks communication
with neighboring institutions. When response times exceed

( Incoming Data Current Data  Disposed Dc“
—EEEE

Data

G6W K-1 6W K

Hospital K

Legend

0 Aggregation Function @ Federated Model State
LW Local Weights
@ Local Model

GW 6lobal Weights
Figure 4. Incremental learning component process at one
hospital k
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predefined thresholds, the system identifies potentially un-
responsive peers through communication timeouts.

Upon detecting an unresponsive node, the system auto-
matically initiates a dynamic topology reconfiguration proto-
col. Adjacent nodes establish direct connections that bypass
the failed institution, effectively maintaining the logical ring
structure while physically excluding the unavailable partici-
pant. This reconfiguration is reflected in the cycle index cal-
culation (Eq. , where both the total number of institutions
(n) and the position of the node following the failed one are
dynamically adjusted.

When a previously unresponsive node returns online,
it undergoes a comprehensive knowledge synchronization
phase before full reintegration into the ring. This process
involves receiving the latest model state from its predecessor
node to rapidly align with the current learning trajectory.

5) Malicious client detection and poisoning attack mitigation
Building upon our fault tolerance mechanisms, the proposed
system can also be fortified against malicious clients and
poisoning attacks through several established defensive ap-
proaches. Our framework can incorporate techniques similar
to those presented in recent research on federated learning
security. For instance, a forensic analysis approach can be
implemented to trace back malicious clients after detecting
poisoned model updates, allowing the system to identify and
exclude attackers from future training rounds [32].

Additionally, the system can employ specialized detection
mechanisms that analyze the statistical properties of client
updates to identify potentially malicious contributions be-
fore they affect the global model. This proactive detection
helps maintain model integrity even when faced with so-
phisticated poisoning attempts [33]].

For comprehensive protection, our architecture supports
the integration of blockchain-based consensus mechanisms
where a committee of trusted nodes validates updates before
integration into the global model. This approach creates an
immutable audit trail of all model contributions while estab-
lishing a verification layer that prevents compromised clients
from corrupting the collaborative learning process [34].

These defensive measures complement our fault tolerance
framework by addressing both accidental failures and delib-
erate attacks, ensuring the robustness and trustworthiness
of the decentralized federated learning system in healthcare
environments where data integrity directly impacts clinical
outcomes.

IV. EXPIRIMENTAL RESULTS

This section evaluates the proposed hybrid approach, fo-
cusing on its robustness against underfitting and overfitting,
as well as its generalization capabilities. The experimen-
tal evaluation of the proposed system is conducted in
three distinct configurations to assess its performance and
adaptability. First, the CNN-BiLSTM model is evaluated
in a local configuration, where it is trained on 100% of
the available data without any distributed or incremental
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components. This serves as a baseline to understand the
model’s standalone performance. Next, the system is tested
in a distributed configuration using Decentralized Feder-
ated Learning (DFL) without incorporating the Incremental
Learning (IL) component, allowing us to evaluate the effec-
tiveness of the decentralized approach in preserving privacy
and achieving collaborative learning. Finally, the incremen-
tal learning component is integrated into the distributed
configuration to assess its ability to handle real-time data
streams and adapt dynamically to continuously arriving data.
The evaluation metrics applied in this study are detailed
below. Furthermore, we examine the experimental outcomes
of the suggested model of architecture.

A. EVALUATION METRICS
To evaluate the performance of our proposed model, several
key metrics were used. These metrics help in understanding
the effectiveness and reliability of the models:
o Accuracy: This is a fundamental metric that measures
the proportion of correctly classified instances out of
the total instances. It is calculated as in Eq. ]

Number of correct predictions

Accuracy =
4 Total number of predictions made

“

o Precision: It measures the proportion of true positive
predictions among all positive predictions made by the
model. It is particularly useful in scenarios where false
positives are costly. Precision is calculated as in Eq. [5]

.. True positive
Precision =

True positive + False positive ©)

o Recall: Recall, or sensitivity, measures the proportion

of actual positive instances that were correctly identi-

fied by the model. It is crucial in applications where

missing a positive instance (false negative) is costly.
Recall is calculated as in Eq. [f]

Recall — 7.’7‘“ue positive ‘ ©)
True positive + False negative

e AUC: This metric evaluates the model’s ability to
distinguish between classes by plotting the true positive
rate against the false positive rate at various threshold
settings. It is calculated as in Eq

1
AUC = / TPR(t) dt %
0

B. EVALUATION OF THE TRADITIONAL DEEP
LEARNING MODEL

To evaluate the standalone performance of the CNN-
BiLSTM model, we first conducted experiments in a local
configuration using 100% of the available data. This setup
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serves as a baseline to assess the model’s capabilities with-
out any distributed or incremental components. The evalua-
tion focused on key performance metrics such as accuracy,
precision, and recall to provide insights into the model’s
effectiveness in handling physiological signal classification
tasks.

After developing the model, we employed several ad-
vanced techniques to maximize its accuracy for both ECG
and EEG datasets. A key step was hyperparameter optimiza-
tion, conducted using the KerasTuner framework in conjunc-
tion with the innovative HyperBand algorithm. This process
enabled us to identify the optimal set of hyperparameters for
our model, ensuring improved performance. Subsequently,
the model was trained on ECG and EEG data over various
epochs to determine the ideal training duration.

During the training phase, we integrated multiple callback
mechanisms, including ReduceLROnPlateau and EarlyStop-
ping, to enhance the efficiency of the learning process and
prevent unnecessary computation. The evaluation on unseen
test data yielded outstanding results, achieving accuracies
of 98.12% for ECG classification and 86.52% for EEG
classification—comparable to or exceeding current state-
of-the-art benchmarks. These results, along with additional
performance metrics, are summarized in Fig. [5] Fig. [6] and
Tab[l

Furthermore, an analysis of the learning curves confirmed
the absence of overfitting, underscoring the robustness and
generalizability of our model across both ECG and EEG
datasets. This highlights its potential as a reliable tool for

Table 1. Traditional deep CNN-BiLSTM model results for
ECG and EEG data

ECG FEEG
Accuracy 98.12 86.52
Precision 98.25 86.31
Recall 97.94 84.49
AUC 99.91 98.47
Model Accuracy
1.0 | -
—— Train
Validation
0.9 |
= 0.8
g
0.7
0.6 |
0 2 a 6 8

Epoch

Figure 5. Accuracy of traditional deep CNN-BiLSTM model
on 100% of available ECG data in a centralized configura-
tion
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Figure 6. Accuracy of traditional deep CNN-BiLSTM model
on 100% of available EEG data in a centralized configura-
tion

physiological signal analysis in real-world scenarios.

C. DECENTRALIZED FEDERATED APPROACH

To assess the performance of the proposed system in a
distributed configuration, we conducted a series of ex-
periments under varying conditions to simulate real-world
scenarios. These experiments were designed to evaluate the
impact of decentralization and data distribution on model
performance. To provide a more precise understanding, we
conducted three experiments. Below is a detailed list and
description of the experiments performed:

o Ist Experiment: Single institution in Standalone Con-
figuration with 50% of the available data.

o 2nd Experiment: Two institutions in Distributed Con-
figuration.

o 3rd Experiment: Five institutions in Ring Topology.

1) 1st experiment

In the first experiment, the dataset was split into two parts,
with only one client trained on 50% of the data. The model
achieved an accuracy of 87.43% on ECG data and 80.5%
on EEG data, which is significantly lower compared to the
accuracy obtained when the client was trained on 100% of
the dataset. This reduction in performance highlights the
sensitivity of the CNN-BiLSTM model to the size of the
training data. Tab. [2] presents the final metric values, and
Fig. [7|and Fig. [§] illustrate the accuracy progression over 10
epochs.

Table 2. Results of CNN-BiLSTM model trained on 50%
of available data in a centralized configuration

ECG EEG
Accuracy 87.43 83.5
Precision 87.32 83.39
Recall 86.87 82.12
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Figure 7. Accuracy of traditional deep CNN-BiLSTM model
on 50% of available ECG data in a centralized configuration
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Figure 8. Accuracy of traditional deep CNN-BiLSTM model
on 50% of available EEG data in a centralized configuration

2) 2nd experiment

In the second experiment, the dataset was distributed be-
tween two clients, with each client receiving 50% of the
training data. Both clients participated in the training pro-
cess using the proposed decentralized federated learning
approach. As illustrated in the accuracy graphs in Fig.[9)and
Fig. [T0} the model achieved an accuracy of 97.8% on ECG
data and 85.93% on EEG data, with additional performance
metrics provided in Tab. 3] The training was conducted over
20 communication rounds, with each round consisting of 10
epochs. These results suggest that the collaboration between
the two clients significantly contributed to the improvement
in overall accuracy compared to standalone configurations
in the first experiment.

3) 3rd experiment

In this experiment, we simulated an architecture with five
clients, where the training dataset was distributed unevenly
to reflect real-world scenarios. Two clients received 15%

8

Table 3. Results of decentralized federated model experi-
ment of two clients

ECG FEG
Accuracy 97.8 85.93
Precision 97.68 85.79
Recall 96.73 84.75

120

100

80

60

Accuracy

40

20

1 2 3 a 5 6 7 8 i=] 10 11
No. of epochs

Validation

Train

Figure 9. Accuracy of federated model experiment of the
two clients on ECG data

100

Accuracy
0
o

1 2 3 a4 o 6 4 8 =] 10 s
No. of epochs

-Validation

Train

Figure 10. Accuracy of federated model experiment of the
two clients on EEG data

of the data each, two others were assigned 20% each,
and the remaining client was allocated 30% of the data.
Each client trained independently, allowing for a comparison
of outcomes. This setup mimics practical situations where
larger institutions, such as major hospitals, have access to
more data, while smaller health centers possess signifi-
cantly less. The federated model achieved an accuracy of
97.63%, comparable to traditional deep learning approaches,
as shown in Fig. [TT] Fig. [I2] and Tab. @] The collabo-
rative nature of the federated learning framework enabled
the model to benefit from the diverse data contributions
across all five clients, the accuracy of the model improved
progressively over the communication rounds. As shown
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Table 4. Results of decentralized federated model experi-
ment with five clients

ECG FEEG
Accuracy 97.63 86.26
Precision 97.51 86.71
Recall 96.2 85.77
100
920
80
70
60
50
a0
30
20
10
(o]
1 2 = a4 5 6 7 8 S 10 i1
Train Validation

Figure 11. Accuracy of decentralized federated model ex-
periment of five clients on ECG data
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Figure 12. Accuracy of decentralized federated model ex-
periment of five clients on EEG data

in the Fig. the accuracy consistently increased with
each round, demonstrating the system’s ability to converge
effectively and leverage diverse data contributions from all
clients. The metrics further highlight the effectiveness of
the federated learning approach in enhancing both accuracy
and reliability for tasks such as seizure classification and
arrhythmia detection. These results underscore the potential
of federated learning to leverage distributed data sources for
developing robust diagnostic tools in healthcare.
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D. INCREMENTAL DECENTRALIZED FEDERATED DEEP
LEARNING

The proposed system, integrating both Decentralized Fed-
erated Learning (DFL) and Incremental Learning (IL), was
evaluated in a configuration resembling the third experiment.
This setup involved five clients organized in a ring topology,
with each client receiving data incrementally to simulate
real-world scenarios. The evaluation aimed to assess the
system’s ability to handle distributed and dynamic data
while maintaining high performance and adaptability. The
hybrid approach achieved an accuracy of 97.42%, which is
comparable to the results obtained using the DFL framework
without incremental learning. However, the inclusion of IL
enabled the model to adapt dynamically to newly arriving
data, ensuring continuous learning and improving robust-
ness. The ability to achieve similar accuracy highlights the
effectiveness of the incremental component in maintaining
performance while processing real-time data streams. As
shown in the Fig. [[4] the accuracy of the model improved
progressively with the reception of new mini-batches by
clients. This demonstrates the system’s capability to leverage
incremental updates effectively, allowing models to con-
verge as more data becomes available.

E. NETWORK BANDWIDTH ANALYSIS

The decentralized ring topology employed in the pro-
posed architecture offers significant bandwidth efficiency
compared to traditional centralized federated learning ap-
proaches. In our framework, each institution communicates
only with its immediate neighbors rather than a central
server, which distributes the communication load more
evenly across the network. This approach aligns with find-
ings from recent studies on ring-based federated architec-
tures that demonstrate substantial reductions in communi-
cation overhead [35]. Specifically, in our ring topology,
each institution transmits model weights of size M bytes to
exactly one neighbor per round, resulting in a total network
traffic of nxM bytes per round (where n is the number of
institutions). As illustrated in Fig. this is more efficient
than centralized approaches where each institution must
both send to and receive from a central server, resulting
in 2nxM bytes of traffic. Furthermore, the ring topology
eliminates the bandwidth bottleneck that typically occurs
at central servers, which would otherwise need to handle
n concurrent connections. This advantage becomes particu-
larly pronounced as the number of participating institutions
increases, making our approach highly scalable for large-
scale healthcare collaborations.

V. CONCLUSION

This paper addresses critical challenges in applying machine
learning to healthcare, particularly the issues of data avail-
ability and privacy. Traditional machine learning approaches
often require centralized access to large amounts of data,
which is impractical in healthcare due to strict privacy
regulations and the distributed nature of medical data across
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Figure 13. Evolution of accuracy of decentralized federated models experiment with five clients over rounds
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Figure 14. Accuracy of incremental decentralized federated model as data streams arrive

institutions. While Federated Learning (FL) has emerged as
a solution by enabling collaborative model training without
sharing raw data, traditional FL frameworks rely on a central
server, introducing vulnerabilities such as single points of
failure and network bottlenecks. Moreover, these frame-
works fail to account for the dynamic nature of healthcare
data, where new information continuously arrives in real-
time.

To overcome these limitations, this paper introduced a hy-
brid approach combining Decentralized Federated Learning
(DFL) and Incremental Learning (IL) to address key chal-
lenges in privacy-preserving, scalable, and adaptive health-
care applications. As a foundational step, we developed and
validated a CNN-BiLSTM model for physiological signal
analysis in a standalone configuration, demonstrating its
effectiveness in handling ECG and EEG classification tasks.

10

Building on this validated model, we extended the system
to incorporate federated and incremental components, en-
abling decentralized collaboration among institutions while
adapting dynamically to real-time data streams. The pro-
posed system leverages a ring topology for communication,
ensuring robust collaboration without reliance on a central
server. Experimental results showed that the hybrid approach
achieves high accuracy and consistent performance across
various configurations, validating its applicability in real-
world healthcare scenarios.

For future work, we plan to explore the integration of
wavelet-based layers, such as Wavelet Neural Networks
(WNN) or WaveletConv blocks, to replace the initial convo-
lutional layers in our CNN-BiLSTM architecture. This mod-
ification could potentially yield several significant benefits:
(1) enhanced capture of time-frequency features for short-

VOLUME 19(3), 2020
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Figure 15. Comparative network bandwidth usage between
the proposed ring topology and traditional centralized fed-
erated learning architecture.

lived ECG artifacts and brief EEG spikes through localized
representations; (2) reduced model size by 20-30% with
comparable expressive power, resulting in smaller commu-
nication payloads and faster convergence during incremental
fine-tuning; (3) improved noise robustness through built-in
multiresolution analysis, particularly for handling baseline
wander and artifacts without additional preprocessing; and
(4) opportunities for personalized local models where insti-
tutions could tailor mother-wavelets (e.g., Morlet for ECG,
Daubechies for EEG) to their specific sensor characteristics
while maintaining global consistency through layer-wise or
FedPer aggregation.

We also plan to conduct a comprehensive energy con-
sumption analysis of our decentralized federated incre-
mental learning framework to assess its sustainability in
resource-constrained healthcare environments. This analysis
will quantify the computational energy requirements across
participating institutions, examining how our incremental
learning approach reduces power consumption compared to
full retraining methods.

Furthermore, we intend to enhance the privacy-preserving
aspects of our framework by incorporating homomorphic
encryption techniques for secure model weight exchange
between institutions. Building upon recent advances in
homomorphic encryption-based federated learning, we will
implement fully homomorphic encryption (FHE) to enable
computations on encrypted model parameters without re-
quiring decryption during the aggregation process. This
approach would provide an additional layer of security
beyond the inherent privacy benefits of federated learning,
protecting against potential inference attacks that might at-
tempt to reconstruct private patient data from model updates.
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