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 ABSTRACT Association Rule Mining (ARM) and demand forecasting are vital in business intelligence, 
especially in commerce. ARM algorithms can be computationally expensive and require data migration to 
environments like R or Python. Meanwhile, demand forecasting often needs separate models for each product and 
is sensitive to data quality. To address ARM challenges, we implemented Apriori and Eclat algorithms, well-
known itemsets generation algorithms, along with a rules generation algorithm in PostgreSQL. Additionally, we 
developed multivariate Long Short-Term Memory (LSTM) models with grouped data based on itemsets 
generation. Evaluation on the Online Retail II dataset (~one million rows) showed that our SQL ARM 
implementation achieved low overhead time (3.3s) and acceptable processing times (Eclat: 3s, rules generation: 
0.1s). Our method is comparable to the state-of-the-art R implementations (overhead: 4.4s, Eclat: 0.66s, rules 
generation: 0.4s). For demand forecasting, the multivariate LSTM with grouped data reduced training time from 
280.1s to 122.1s, improved Mean Squared Error from 1.045 to 0.882, and Mean Absolute Error from 0.471 to 
0.433. 
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I. INTRODUCTION 
redictive analytics is an important part of business 
intelligence that is useful in transforming raw data into 

meaningful information for improving organizational 
performance [1], [2]. It includes association rule mining 
(ARM) and demand forecasting [3], which is useful for 
commerce and other business cases. 

ARM is useful for Market Basket Analysis to discover 
patterns of online purchasing behaviors of customers. Such 
information can be used for promotion, product placement, or 
other things [4]Meanwhile, demand forecasting is useful for 
predicting demand needs based on historical purchase data. As 
business develops, the growing sales data should be used to 
prepare supplies efficiently. Customers may be more likely to 
move to other competitors if their supply needs are unmet.  

ARM allows decision makers to find a product set X that is 
frequently purchased, then find another product set Y that has 
a high probability of being related to X. Various algorithms 
have been proposed for ARM, such as Apriori [5], FP-tree [6], 
and Eclat [7]. 

These algorithms have been used to solve many cases in 
commerce. Hamdani et al. [8] used the Apriori algorithm with 
RapidMiner software to calculate minimum support and 
confidence values. The algorithm generates association rules 

that reflect purchasing activities. Fajrianti et al. [9] analyzed 
historical data from visitors and customers using the Apriori 
algorithm. From the analysis, user preferences can be 
identified, allowing the creation of accurate product 
recommendations. Experiments show that ARM can generate 
precise recommendations with a confidence value of 76.92%. 
Hameed et al. [10] conduct research to help small online gift 
store retailers that have not yet implemented a recommendation 
system using association rules to provide personalized product 
recommendations to their customers. The results highlight the 
top 10 frequent itemsets and their support values, as well as a 
list of association rules, showing that some items are often 
bought together. Sipahutar et al. [11] developed a website 
application using the ARM with the Apriori algorithm to 
identify patterns of relationships between products purchased 
by customers. The system, built using PHP and 4,820 
transaction data entries, analyzed the Antoni store dataset to 
derive association rules. Another research done by Wang et al. 
[12] to address the issues of inefficient mining and insufficient 
rules caused by the large and complex data, an improved 
method combining K-Means and Eclat algorithms is proposed.  

The search space for ARM is exponential in the number of 
items in the database. This can lead to high computational costs 
and long processing times, especially with large datasets [5]. 

P
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Since the Apriori algorithm needs to scan the database many 
times, large datasets will make it significantly slower and more 
memory-intensive [13]. The Eclat algorithm does not require 
multiple scans. However, its performance can degrade with 
large datasets due to the need to intersect arrays for candidate 
generation [14]. In addition, the implementation of ARM 
sometimes requires data migration from a database to 
environments such as R [15] or Python [16].  

Meanwhile, many operations are known to be much more 
efficient when performed using SQL directly on the database. 
There are studies implementing linear algebra operations [17], 
Einstein summation [18], and even a full machine learning 
workflow [19] in SQL. These studies demonstrated that SQL 
offers near-data processing, portability, and efficient 
computation compared to other programming languages. With 
this consideration, an optimized implementation of ARM using 
SQL can be a useful alternative. 

Related to demand forecasting, deep learning has been 
widely used. Deep learning is a subset of artificial intelligence 
that mimics the human brain using neural networks. It has 
become prevalent in various fields such as healthcare, visual 
recognition, text analytics, and cybersecurity [20].  

Several studies have used deep learning forecasting to 
predict demand using historical data. Chandriah et al. [21] 
proposes research using Recurrent Neural Networks (RNN) 
and Long-Short Term Memory (LSTM) with a modified Adam 
optimizer to predict spare parts demand.  Meanwhile, Li et al. 
[22] compares Light Gradient Boosting Machine (LGBM) and 
LSTM sales prediction models using real sales data. Models 
forecast product sales for stores over the next three days. 
Another study by Taha et al. [23] compares the quality of two 
methods, Seasonal Autoregressive Integrated Moving Average 
(SARIMA) and LSTM. Their study uses actual retail sales data 
from an Austrian retailer. Both models produced reasonable to 
good results, with LSTM performing better for products with 
stable demand and SARIMA showing better results for 
products with seasonal behavior. In addition, Zhang et al. [24] 
combine LSTM with attention mechanism that achieves better 
performance but needs more computational resources than 
traditional methods.  

Demand or time series forecasting is highly sensitive to the 
quality of the data. Missing values, outliers, and noise can 
significantly affect the accuracy of forecasts. Thus, data pre-
processing is crucial [25]. Overfitting is also a common 
problem in time series forecasting, especially when using 
complex models such as neural networks [26]. Furthermore, 
demand forecasting may need separate models for different 
products or items, increasing the complexity and computational 
cost. Selecting an appropriate model for time series forecasting 
can also be challenging since there are numerous models with 
their own strengths and weaknesses. Choosing the wrong 
model can lead to poor performance [27]. 

In this study, LSTM is chosen simply because it is widely 
used in recent studies and performs well in many cases [21], 
[22], [23], [24]. However, instead of using single product data, 
we propose the usage of grouped product data. Thus, the task 
can be considered multivariate time series forecasting and 
LSTM can be used for such task [28]. 

The grouping is based on the results of ARM algorithms. 
We believe this approach can reduce the effect of bad data 
quality, avoid overfitting, and reduce computational time and 
cost. A study also showed that multivariate forecasting 
performs better than univariate ones [29]. 

 
The contributions of this study are as follows: 
 Implementation of ARM algorithms, including Apriori 

and Eclat, in SQL 
 Evaluation of ARM implementations in R, Python, and 

SQL 
 Development, training, and evaluation of LSTM models 

for demand forecasting of multiple products 
 Usage of week sequence and grouped product based on 

ARM results for improving the performance of LSTM 
models 

II. MATERIAL AND METHODS 
A. DATASET 
The dataset used in this study is Online Retail II, which is 
available at the UCI Machine Learning Repository [30]. It 
contains transactions from a UK-registered online retail 
between 2009-12-01 and 2011-12-09. The business primarily 
offers a variety of unique gifts, with the majority of customers 
being wholesalers.  

The dataset consists of two CSV files with the same 
columns. When combined, the dataset contains 1,067,371 
rows, excluding the header. Each row represents a transaction 
of a product and contains the following columns [30]: 

 InvoiceNo: A unique 6-digit number assigned to each 
transaction, where a leading “C” denotes a cancellation. 

 StockCode: A unique, most likely 5-digit number 
identifying each product. 

 Description: The name of the product. 
 Quantity: The number of units of the product purchased 

in the transaction. 
 InvoiceDate: The date and time when the transaction 

occurred in the format “M/d/yyyy H:mm”. 
 UnitPrice: The cost per unit of the product in pounds 

sterling (£). 
 CustomerID: A unique 5-digit number identifying the 

customer. 
 Country: The country where the customer is located. 

Some processing steps were taken to clean the dataset: 
1. Remove rows where the InvoiceNo contains the letter 

"A" or "C". 
2. Remove rows with missing (NaN) values in the 

Description. 
3. Remove rows where the Quantity is less than 0. 
4. Convert the InvoiceDate column to a more standard 

datetime format “yyyy-MM-dd HH:mm:ss”. 

The cleaned dataset contains 1,018,784 rows. In this study, 
only some columns are used: InvoiceNo, StockCode, Quantity, 
and InvoiceDate. 

B. ARM ALGORITHMS 
The ARM process can be divided into two main steps: frequent 
itemsets generation and rules generation. For the former, two 
popular algorithms are Apriori [5] and Eclat [7]. Both take a 
minimum support threshold (min_supp) as input. In ARM, the 
support of an itemset is the proportion of transactions that 
contain the itemset  [16]: 

supp(𝑋) =
number of transactions with 𝑋

total number of transactions
. (1) 
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Fig. 1 shows the flow of the Apriori algorithm. Recent 
studies have used similar flows [31], [32]. In this case, TID 
refers to the transaction ID while Item refers to the product. In 
Apriori, the source data is aggregated to create a horizontal 
view. Candidates for the 1-itemsets are generated directly from 
the source data. Then, the candidates are counted using the 
horizontal view and filtered based on min_supp, creating the 
frequent 1-itemsets. Candidates for the k-itemsets are generated 
from the frequent (k-1)-itemsets. Candidates are counted and 
filtered as before. 

Fig. 2 shows the flow of the Eclat algorithm. There are also 
recent studies using similar flows [33], [34]. The flow starts by 
aggregating the source data to create a vertical view. 
Candidates for the 1-itemsets are simply the vertical view. 
Since the candidates contain TIDs, counting can be done easily. 
The candidates are filtered based on min_supp, creating the 
frequent 1-itemsets. Candidates for the k-itemsets are created 
by merging the frequent (k-1)-itemsets and the vertical view in 
some way. Candidates are counted and filtered as before. 

The generated frequent itemsets are used to generate 
association rules as in Fig. 3. A rule (X → Y) is a pair of 
itemsets, antecedent (X) and consequent (Y), where the 
antecedent implies the consequent. The rules generation takes 
a minimum confidence threshold (min_conf) as input. In ARM, 
confidence is the conditional probability of the consequent 
given the antecedent [16]: 

conf(𝑋 → 𝑌) = 𝑃(𝑌|𝑋) =
supp(𝑋 ∩ 𝑌)

supp(𝑋)
. (2) 

In addition, there are other metrics that can be used, such as 
lift, leverage, conviction, and Zhang [16]. 

C. ARM EXISTING IMPLEMENTATIONS 
There are many implementations of ARM in various 
programming languages. One of the most powerful is the arules 
package in R [15]. It provides a wide range of functions for 
ARM, including the Apriori and Eclat algorithms. 

 
Figure 2. Flow of Eclat Algorithm. 

 
Figure 1. Flow of Apriori Algorithm. 

 
Figure 3. Association Rules Generation from Itemsets 

 
Figure 4. Sparse Binary Matrix from Source Data 



 Pandega Abyan Zumarsyah et al. / International Journal of Computing, 24(3) 2025, 505-512 

508 VOLUME 24(3), 2025 

For Python, one of the most popular libraries is mlxtend 
[16]. It consists of useful tools for various data science tasks, 
including ARM. However, it does not provide an Eclat 
implementation. There is another library called pyECLAT [35], 
but it is not as optimized as mlxtend. 

Itemset generation in all three libraries takes a sparse matrix 
as input. The matrix is a binary matrix where rows represent 
transactions and columns represent items. Thus, the source data 
must be transformed into a format as shown in Fig. 4.  

D. ARM SQL IMPLEMENTATIONS 
While there are some SQL implementations of ARM, it is not 
as many and powerful as the R ones. Thus, we develop our own 
SQL implementation of Apriori, Eclat, and rules generation. It 
is done in PostgreSQL, a powerful open-source relational 
database management system. To improve performance, the 
source data elements are transformed to integers and the 
intarray extension is used to handle arrays of integers. 

Listing 1 shows the SQL implementation of Apriori based 
on Fig. 1. The implementation uses common table expressions 
(CTE) to create modular and readable code.  

 Listing 1. SQL Implementation of Apriori 

WITH item_counts AS ( 
SELECT item, count(*) AS cnt 
FROM source_data 
GROUP BY item HAVING count(*) > %L 
), horizontal_data AS ( 
SELECT sd.tid, array_agg(sd.item) AS items 
FROM source_data sd 
INNER JOIN item_counts ic ON sd.item = ic.item 
GROUP BY sd.tid 
), itemsets_1 AS ( 
SELECT ARRAY[item] AS itemset, cnt 
FROM item_counts 
), itemsets_2 AS ( 
SELECT  
  (s.itemset || ic.item) AS itemset, count(*) AS cnt 
FROM itemsets_1 s 
INNER JOIN item_counts ic ON ic.item > s.itemset[1] 
INNER JOIN horizontal_data hd  
  ON hd.items @> (s.itemset || ic.item) 
GROUP BY s.itemset, ic.item HAVING count(*) > %L 
) 
... 

In Listing 1, CTE item_counts is a helper CTE that counts 
the occurrences of each item in the source data. CTE 
horizontal_data is the horizontal view created using array 
aggregation. Joining with item_counts filters out infrequent 
items. CTE sets_1 simply generates the 1-itemsets from 

item_counts. The next CTEs generate the k-itemsets from the 
(k-1)-itemsets. Joining with item_counts expands the itemsets 
and generates the candidates. Meanwhile, joining with 
horizontal_data, followed by the use of GROUP BY and 
HAVING statements, counts itemsets occurrences and filters 
out infrequent itemsets. The itemsets CTEs are then combined 
using UNION to generate the frequent itemsets. Regarding the 
symbols, “%L” is a placeholder for min_supp. Operation “A || 
B” concatenates arrays A and B while operation “A @> B” 
checks if array A contains array B. 

Listing 2 shows the SQL implementation of Eclat based on 
Fig. 2. CTE vertical_data is the vertical view created using 
array aggregation. CTE itemsets is a recursive CTE containing 
base and recursive terms. The base one simply generates the 1-
itemsets from vertical_data. The recursive one generates the k-
itemsets from the (k-1)-itemsets. The (k-1)-itemsets are joined 
with vertical_data to expand and generate the candidates. The 
candidates are directly filtered using the WHERE statement. 

Listing 2. SQL Implementation of Eclat 

WITH RECURSIVE vertical_data AS ( 
SELECT item, array_agg(tid) AS tids 
FROM source_data 
GROUP BY item HAVING count(*) > %L 
), itemsets AS ( 
SELECT ARRAY[item] AS itemset, tids 
FROM vertical_data 
UNION ALL 
SELECT (i.itemset || p.item) AS itemset,  
  (i.tids & p.tids) AS tids 
FROM itemsets i 
INNER JOIN vertical_data vd  
  ON vd.item > i.itemset[icount(i.itemset)] 
WHERE icount(i.tids & vd.tids) > %L  
  AND icount(i.itemset) < %L 
) 
SELECT itemset, icount(tids) AS cnt 
FROM itemsets 

In Listing 2, the first and second “%L” are placeholders for 
min_supp while the third “%L” is a placeholder for the 
maximum number of items in an itemset (max_len). Operation 
“A & B” returns the intersection of arrays A and B. The intarray 
function icount() from intarray returns the number of elements 
in an array. 

Compared to the Apriori implementation, the Eclat 
implementation is better due to various reasons: 

 The vertical view usually has fewer rows than the 
horizontal view, resulting in faster processing. 

 
Figure 5. Flow of Association Rules Generation. 



Pandega Abyan Zumarsyah et al. / International Journal of Computing, 24(3) 2025, 505-512  

VOLUME 24(3), 2025 509 

 Stored TIDs can be used to directly count itemset 
occurrences, instead of using JOIN and GROUP BY 
statements. 

 Filtering using the WHERE statement is simpler and 
more efficient than using the HAVING statement. 

 The absence of GROUP BY and HAVING allows the 
use of recursive CTE, which is simpler and more 
efficient. 

After generating the frequent itemsets, the next step is to 
generate the association rules. Listing 3 shows the SQL 
implementation with Fig. 5 illustrating the flow. It takes 
itemsets and min_conf as inputs. First, the function unnest() 
is used to create CTE unnested by unnesting itemset column 
of itemsets. Next, CTE subsets contains subsets of itemsets 
that are generated recursively. The base term creates the 1-
subsets via a simple transformation of unnested and looking 
up the support of the subsets from itemsets. The recursive 
term generates the k-subsets by joining the (k-1)-subsets 
with unnested. There is also a lookup of the support of the 
subsets. The association rules are generated by obtaining 
the antecedent, consequent, support of antecedent, support 
of union, and confidence. Finally, the rules are filtered 
based on min_conf. It should be noted that metrics other 
than confidence can be easily calculated using SQL 
statements. 

Listing 3. SQL Implementation of Association Rules 
Generation 

WITH RECURSIVE unnested AS ( 
SELECT itemset, supp, unnest(itemset) AS item 
FROM itemsets 
), subsets AS ( 
SELECT itemset, supp, ARRAY[item] AS subset, 
  (SELECT supp FROM itemsets  
    WHERE itemset = ARRAY[item]) AS sub_supp 
FROM unnested 
UNION ALL 
SELECT u.itemset, u.supp, s.subset || u.item, 
  (SELECT supp FROM itemsets  
    WHERE itemset = (s.subset || u.item)) 
FROM subsets s 
INNER JOIN unnested u 
  ON s.itemset = u.itemset 
    AND icount(s.subset) < icount(s.itemset) - 1 
    AND u.item > s.subset[icount(s.subset)] 
) 
SELECT 
  subset AS ante, (itemset - subset) AS cons, 
  subset_supp AS ante_supp, supp AS union_supp, 
  (supp/subset_supp) AS confidence 
FROM subsets 
WHERE icount(itemset) > 1 AND (supp/subset_supp) > %L 
 

E. FORECASTING NETWORKS 
Fig. 6 is the neural networks model for the forecasting. It  takes 
F-features S-steps data as input and outputs G-features 1-step 
forecast. The values of F, S, and G are based on the scenario. 
There are four LSTM layers with 64 units each. The last output 
of the last layer is fed into two dense layers with 32 and G units, 
respectively. The activation function is “tanh” for the LSTM 
layers and dense_act for the dense layers. All layers are subject 
to L1 regularization with a value of l1_reg. LSTM layers are 
also subject to dropout with a value of drop_rate. 

The model is compiled using the Adam optimizer [36] with 
the learning rate lr. The loss function and the primary metric 
are “mean_squared_error” (MSE). The variables dense_act, 
l1_reg, drop_rate, and lr are subject to hyperparameter tuning. 

F. FORECASTING SCENARIOS 
In this study, forecasting is performed on the weekly quantity 
of some products. Six high-selling products are selected. The 
weekly quantity is preferred over the daily and monthly 
quantities because the daily quantity contains many zero values 
while the monthly quantity contains too few data points. Since 
the first and last weeks may be incomplete, they are removed, 
resulting in 104 weeks. Thus, the used data contains six 
sequences of 104 data points each.  

In this study, there are four forecast scenarios. All use a 
sequence length of 12 weeks (S=12). The first uses simple 
univariate models where it takes a sequence (F=1) from a 
product and returns a value as a forecast of that sequence 
(G=F=1). In this scenario, each product is forecast separately 
using different models. It is not efficient in terms of 
computation and the number of models. 

The second scenario addresses that issue by using 
multivariate models. It takes multiple sequences from a group 
of products (F>1) and returns multiple values as the forecast 
for each sequence (G=F>1). In this scenario, the groupings are 
based on the results of itemsets generation. Products in the 
same itemset with high support are grouped together. The 
number of models is reduced and the computation can be more 
efficient. 

The third and fourth scenarios are similar to the first and 
second, respectively, but with the addition of a week sequence. 
Thus, the number of input features is increased by one 
(F=G+1). The week sequence v is generated from sinusoidal 
encoding of the week number w that goes from 1 to 104: 

𝑣 = sin(𝜋𝑤/26 − 5). (3) 

The encoding is designed so that the end of quarter q is 
represented by q times 90 degrees angle. With the addition of 
the week sequence, the model is expected to capture the 
seasonality of the data. 

 
Figure 6. Neural Networks Architecture for Forecasting 
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G.  FORECASTING IMPLEMENTATIONS 
Forecasting is done using Python with a minor involvement of 
SQL queries. NumPy [37] and pandas [38] are used for data 
manipulation and processing. Tensorflow Keras [39] is used to 
build, train, and evaluate the neural networks model. 

Some processing steps need to be done before the data are 
used for training and evaluation: 

1. Each sequence should be split into input and output 
sequences using the sliding window technique. In this 
case, a sequence of length 104 is split into (104 - 12) 
pairs of input sequences of length 12 and output 
sequences of length 1. 

2. Each split input sequences are scaled so that the 
minimum and maximum values are 0 and 1, 
respectively. The output sequences should be scaled 
accordingly. 

3. Pairs of scaled input and output sequences are split into 
train, validation, and test sets with a ratio of 80%, 10%, 
and 10%, respectively. 

Grid search is used to find the best hyperparameters for the 
model. It is implemented manually using validation MSE as the 
metric. The hyperparameters and their ranges are as follows: 

 dense_act: [“relu”, None] 
 l1_reg: [0.0001, 0.00001, 0.000001] 
 drop_rate: [0.2, 0.4] 
 lr: [0.001, 0.0001, 0.00001] 

The best hyperparameters are used to train the final models 
using the train set. The final models are evaluated using the test 
set. Besides MSE, there are Mean Absolute Error (MAE), 
Mean Absolute Percentage Error (MAPE), and Mean Squared 
Logarithmic Error (MSLE) to compare models predictions (𝑦ො) 
and true values (𝑦): 

𝑀𝐴𝐸 =
1

n
෍ |𝑦 − 𝑦ො|  (4) 

𝑀𝐴𝑃𝐸 =
100

n
෍ ฬ

𝑦 − 𝑦ො

𝑦
ฬ (5) 

𝑀𝑆𝐿𝐸 =
1

n
෍(log(1 + 𝑦) − log(1 + 𝑦ො))ଶ. (6) 

III. RESULTS 
A. ARM PERFORMANCE 

Table 1. Processing Time Comparison of Multiple ARM 
Implementations in Cleaned Dataset with Parameters: 

min_supp = 0.025, max_len = 5, min_conf = 0.5 

Language 
Package / 

Tools 
OH 

Time 
Apriori 
Time 

Eclat 
Time 

Rules 
Time 

Python 
mlxtend [16] & 
PyECLAT [35] 

92 s 1.93 s 
too 

long 
0.01 s 

R arules [15] 4.4 s 0.7 s 0.66 s 0.4 s 

SQL - 3.3 s 780 s 3 s 0.1 s 

 
 

Table 1 shows the processing times of the ARM 
implementations in R, Python, and SQL. Processing times can 
be divided into four parts: data preparation or overhead (OH), 
Apriori, Eclat, and rules generation. Data preparation in R and 
Python is sparse matrix generation (excluding data migration) 
while in SQL is materialized view creation. The materialized 
view is the simplified version of the source data with two 
indexed integer columns, one representing transactions while 
the other representing items. 

SQL has the fastest overhead time (3.3 s) since the 
operation is simpler. Python overhead time (92 s) is much 
slower than R time (4.4 s) despite obtaining the same output. In 
terms of overhead space, the created materialized view only 
takes 50 MB while the sparse matrix takes 188 MB in Python 
and 65 MB in R. However, the sparse matrix in R can be 
compressed to only 4.4 MB as transaction data. It should be 
noted that the materialized view uses disk space while the 
sparse matrix uses memory space. Moreover, the materialized 
view has a general structure that can be used for other purposes. 

Itemsets generation in R is the fastest (0.66 s), followed by 
Python (1.93 s) and SQL (3 s). The SQL implementation of 
Apriori is much slower than that of Eclat. It is expected since 
the implementation is not efficient, as explained before. The 
Python implementation of Eclat is too slow to be measured. 
When checking the PyECLAT source code, we found that it 
tries to generate all possible itemsets, which is very inefficient. 

Rules generation in Python is the fastest (0.01 s), followed 
by SQL (0.1 s) and R (0.4 s). Since only less than 200 itemsets 
are used as input, the rules generation is fast. However, the 
rules generation in SQL and R is slower than expected. The 
SQL one may be slow since it generates many possible subsets 
before filtering them. It should be noted that rules generation in 
Python and SQL also includes the calculation of various 
metrics, not only support and confidence as in Listing 3. Fig. 7 
shows some of the SQL-generated rules with their metrics. 

B. FORECASTING PERFORMANCE 
As previously mentioned, the results of itemsets generation are 
used to group products for forecasting in scenarios 2 and 4. 
There selected itemsets as in Fig. 7 are {722, 723}, {4239, 
4245}, and {1215, 5154}. Thus, there are six items for the I/III 
scenario and three groups of two items for the II/IV scenario. 
Fig. 8 shows the weekly quantity of two products in one of the 
groups. It can be seen that the sequences are very noisy and 
hard to predict.  

 
Figure 7. Results and Metrices of Rules Generation using SQL 

 
Figure 8. Sequence Samples of Two Products in the Same 

Group, x-axis is quantity while y-axis is week 
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Table 2. Performance Comparison of Multiple Scenarios 

Metrics 
Scenario 

I 
Scenario 

II 
Scenario 

III 
Scenario 

IV 

train duration 280.1 s 122.6 s 468.4 s 176.3 s 

train MSE 0.21007 0.58666 0.13754 0.41921 

val MSE 0.20773 0.20782 0.16838 0.16840 

test MSE 1.04456 0.88170 0.98381 0.92671 

test MAE 0.47079 0.43305 0.48488 0.43471 

test MAPE 422.336 389.610 386.394 326.256 

test MSLE 0.13476 0.11648 0.15214 0.12705 

Table 2 shows the performance comparison of the four 
forecasting scenarios. The train duration is the total time taken 
to train all models, six for the I/III scenario and three for the 
II/IV scenario. All other metrics correspond to the best models 
that are obtained from the grid search and evaluated in train, 
validation, and test sets. Train and validation metrics are not 
discussed here. They are not as valid as test metrics since the 
models have already "seen" the train and validation sets. 

Since the data is quite challenging, the errors can be 
considered high. However, the obtained metrics can still be 
used to compare the scenarios.  

Product grouping can reduce the number of models and 
computation time. In this case, the training time is reduced by 
more than half. Moreover, it can be seen that product grouping 
can improve performance in all test metrics. 

The addition of a week sequence can also improve 
performance, but at the cost of increased computation time. In 
this case, the training time is increased by about 40 - 70 percent. 
Comparing I with III scenarios, week sequence addition gives 
better MSE and MAPE but slightly worse MAE and MSLE. 
Comparing II with IV scenarios, week sequence addition only 
improves MAPE while the other metrics are worse. It can be 
concluded that adding the week sequence increases 
computation time but does not guarantee better performance. 

IV. CONCLUSIONS 
In this study, we develop SQL implementations of ARM 
algorithms, including Apriori, Eclat, and rules generation. The 
implementations are done in PostgreSQL by utilizing the 
extension 'intarray', CTE, materialized view, and recursive 
query. We also develop LSTM models to forecast the weekly 
quantity of products. The models are built using Tensorflow 
Keras with grid search for hyperparameter tuning. Forecasting 
is done in four scenarios: single product, grouped products, 
single product with week sequence, and grouped products with 
week sequence. The grouping is based on the results of itemsets 
generation. Our methods are evaluated on a challenging dataset 
with around one million rows named Online Retail II. 

Evaluation shows that our SQL implementations of ARM 
have the lowest overhead time (3.3s) compared to R (4.4s) and 
Python (92s). The R implementation of itemsets generation is 
the fastest (Apriori: 0.7s, Eclat: 0.66s), but Python (Apriori: 
1.93s) and SQL (Eclat: 3s) are not far behind. The current 
Python implementation of Eclat is too slow to be measured, 
while the SQL implementation of Apriori is hard to optimize. 
Rules generation in Python is the fastest (0.01s), followed by 
SQL (0.1s) and R (0.4s). It can be concluded that SQL is a 
viable alternative for ARM implementations. 

Related to forecasting, grouping products reduces the 

number of models and reduces training time by more than half. 
Grouping products also improves performance on all test 
metrics. Meanwhile, week sequence addition significantly 
increases training time by about 40 - 70 percent, but does not 
guarantee better performance. 

In the future, SQL implementations of ARM can be further 
optimized. SQL can perform better than R or Python, but 
current SQL implementations are relatively less mature. 
Meanwhile, the forecasting scenario of grouped products can 
be further evaluated using other datasets and other models. 
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