Sl

Date of publication SEP-30, 2025, date of current version MAR-02, 2025.
www.computingonline.net / computing@computingonline.net

Print ISSN 1727-6209
Online ISSN 2312-5381
DOI 10.47839/ijc.24.3.4187

Association Rule Mining in SQL to
Improve Demand Forecasting using LSTM

PANDEGA ABYAN ZUMARSYAH', FARIZA EKA AULIA'

'Department of Electrical and Information Engineering, Universitas Gadjah Mada, Yogyakarta, Indonesia

Corresponding author: Fariza Eka Aulia (e-mail: farizackaaulia@mail.ugm.ac.id).

ABSTRACT Association Rule Mining (ARM) and demand forecasting are vital in business intelligence,
especially in commerce. ARM algorithms can be computationally expensive and require data migration to
environments like R or Python. Meanwhile, demand forecasting often needs separate models for each product and
is sensitive to data quality. To address ARM challenges, we implemented Apriori and Eclat algorithms, well-
known itemsets generation algorithms, along with a rules generation algorithm in PostgreSQL. Additionally, we
developed multivariate Long Short-Term Memory (LSTM) models with grouped data based on itemsets
generation. Evaluation on the Online Retail II dataset (~one million rows) showed that our SQL ARM
implementation achieved low overhead time (3.3s) and acceptable processing times (Eclat: 3s, rules generation:
0.1s). Our method is comparable to the state-of-the-art R implementations (overhead: 4.4s, Eclat: 0.66s, rules
generation: 0.4s). For demand forecasting, the multivariate LSTM with grouped data reduced training time from
280.1s to 122.1s, improved Mean Squared Error from 1.045 to 0.882, and Mean Absolute Error from 0.471 to

0.433.

KEYWORDS Business Intelligence; Market Basket Analysis; Association Rule Mining; Apriori; Eclat; SQL;
Forecasting; Demand Forecasting; Long Short-Term Memory; Multivariate.

. INTRODUCTION

Predictive analytics is an important part of business
intelligence that is useful in transforming raw data into

meaningful information for improving organizational

performance [1], [2]. It includes association rule mining

(ARM) and demand forecasting [3], which is useful for

commerce and other business cases.

ARM is useful for Market Basket Analysis to discover
patterns of online purchasing behaviors of customers. Such
information can be used for promotion, product placement, or
other things [4]Meanwhile, demand forecasting is useful for
predicting demand needs based on historical purchase data. As
business develops, the growing sales data should be used to
prepare supplies efficiently. Customers may be more likely to
move to other competitors if their supply needs are unmet.

ARM allows decision makers to find a product set X that is
frequently purchased, then find another product set Y that has
a high probability of being related to X. Various algorithms
have been proposed for ARM, such as Apriori [5], FP-tree [6],
and Eclat [7].

These algorithms have been used to solve many cases in
commerce. Hamdani et al. [8] used the Apriori algorithm with
RapidMiner software to calculate minimum support and
confidence values. The algorithm generates association rules

VOLUME 24(3), 2025

that reflect purchasing activities. Fajrianti et al. [9] analyzed
historical data from visitors and customers using the Apriori
algorithm. From the analysis, user preferences can be
identified, allowing the creation of accurate product
recommendations. Experiments show that ARM can generate
precise recommendations with a confidence value of 76.92%.
Hameed et al. [10] conduct research to help small online gift
store retailers that have not yet implemented a recommendation
system using association rules to provide personalized product
recommendations to their customers. The results highlight the
top 10 frequent itemsets and their support values, as well as a
list of association rules, showing that some items are often
bought together. Sipahutar et al. [11] developed a website
application using the ARM with the Apriori algorithm to
identify patterns of relationships between products purchased
by customers. The system, built using PHP and 4,820
transaction data entries, analyzed the Antoni store dataset to
derive association rules. Another research done by Wang et al.
[12] to address the issues of inefficient mining and insufficient
rules caused by the large and complex data, an improved
method combining K-Means and Eclat algorithms is proposed.

The search space for ARM is exponential in the number of
items in the database. This can lead to high computational costs
and long processing times, especially with large datasets [5].

505

)

Pandega Abyan Zumarsyah et al. / International Journal of Computing, 24(3) 2025, 505-512

Since the Apriori algorithm needs to scan the database many
times, large datasets will make it significantly slower and more
memory-intensive [13]. The Eclat algorithm does not require
multiple scans. However, its performance can degrade with
large datasets due to the need to intersect arrays for candidate
generation [14]. In addition, the implementation of ARM
sometimes requires data migration from a database to
environments such as R [15] or Python [16].

Meanwhile, many operations are known to be much more
efficient when performed using SQL directly on the database.
There are studies implementing linear algebra operations [17],
Einstein summation [18], and even a full machine learning
workflow [19] in SQL. These studies demonstrated that SQL
offers near-data processing, portability, and efficient
computation compared to other programming languages. With
this consideration, an optimized implementation of ARM using
SQL can be a useful alternative.

Related to demand forecasting, deep learning has been
widely used. Deep learning is a subset of artificial intelligence
that mimics the human brain using neural networks. It has
become prevalent in various fields such as healthcare, visual
recognition, text analytics, and cybersecurity [20].

Several studies have used deep learning forecasting to
predict demand using historical data. Chandriah et al. [21]
proposes research using Recurrent Neural Networks (RNN)
and Long-Short Term Memory (LSTM) with a modified Adam
optimizer to predict spare parts demand. Meanwhile, Li et al.
[22] compares Light Gradient Boosting Machine (LGBM) and
LSTM sales prediction models using real sales data. Models
forecast product sales for stores over the next three days.
Another study by Taha et al. [23] compares the quality of two
methods, Seasonal Autoregressive Integrated Moving Average
(SARIMA) and LSTM. Their study uses actual retail sales data
from an Austrian retailer. Both models produced reasonable to
good results, with LSTM performing better for products with
stable demand and SARIMA showing better results for
products with seasonal behavior. In addition, Zhang et al. [24]
combine LSTM with attention mechanism that achieves better
performance but needs more computational resources than
traditional methods.

Demand or time series forecasting is highly sensitive to the
quality of the data. Missing values, outliers, and noise can
significantly affect the accuracy of forecasts. Thus, data pre-
processing is crucial [25]. Overfitting is also a common
problem in time series forecasting, especially when using
complex models such as neural networks [26]. Furthermore,
demand forecasting may need separate models for different
products or items, increasing the complexity and computational
cost. Selecting an appropriate model for time series forecasting
can also be challenging since there are numerous models with
their own strengths and weaknesses. Choosing the wrong
model can lead to poor performance [27].

In this study, LSTM is chosen simply because it is widely
used in recent studies and performs well in many cases [21],
[22], [23], [24]. However, instead of using single product data,
we propose the usage of grouped product data. Thus, the task
can be considered multivariate time series forecasting and
LSTM can be used for such task [28].

The grouping is based on the results of ARM algorithms.
We believe this approach can reduce the effect of bad data
quality, avoid overfitting, and reduce computational time and
cost. A study also showed that multivariate forecasting
performs better than univariate ones [29].

506

The contributions of this study are as follows:

e Implementation of ARM algorithms, including Apriori
and Eclat, in SQL

e Evaluation of ARM implementations in R, Python, and
SQL

e Development, training, and evaluation of LSTM models
for demand forecasting of multiple products

e Usage of week sequence and grouped product based on
ARM results for improving the performance of LSTM
models

Il. MATERIAL AND METHODS

A. DATASET

The dataset used in this study is Online Retail II, which is
available at the UCI Machine Learning Repository [30]. It
contains transactions from a UK-registered online retail
between 2009-12-01 and 2011-12-09. The business primarily
offers a variety of unique gifts, with the majority of customers
being wholesalers.

The dataset consists of two CSV files with the same
columns. When combined, the dataset contains 1,067,371
rows, excluding the header. Each row represents a transaction
of a product and contains the following columns [30]:

e [nvoiceNo: A unique 6-digit number assigned to each

transaction, where a leading “C” denotes a cancellation.

o StockCode: A unique, most likely 5-digit number

identifying each product.

e Description: The name of the product.

e Quantity: The number of units of the product purchased

in the transaction.

e InvoiceDate: The date and time when the transaction

occurred in the format “M/d/yyyy H:mm”.

e UnitPrice: The cost per unit of the product in pounds

sterling (£).

e CustomerID: A unique 5-digit number identifying the

customer.

e Country: The country where the customer is located.

Some processing steps were taken to clean the dataset:

1. Remove rows where the InvoiceNo contains the letter
"A" or "C".

2. Remove rows with missing (NaN) values in the
Description.

3. Remove rows where the Quantity is less than 0.

4. Convert the InvoiceDate column to a more standard
datetime format “yyyy-MM-dd HH:mm:ss”.

The cleaned dataset contains 1,018,784 rows. In this study,
only some columns are used: /nvoiceNo, StockCode, Quantity,
and InvoiceDate.

B. ARM ALGORITHMS

The ARM process can be divided into two main steps: frequent
itemsets generation and rules generation. For the former, two
popular algorithms are Apriori [5] and Eclat [7]. Both take a
minimum support threshold (min_supp) as input. In ARM, the
support of an itemset is the proportion of transactions that
contain the itemset [16]:

number of transactions with X

X) = . 1
supp(X) total number of transactions &

VOLUME 24(3), 2025

=g
Sl

Pandega Abyan Zumarsyah et al. / International Journal of Computing, 24(3) 2025, 505-512

Source Generate Count Filter 1-ltemsets
m itomset g g itemsot | Count R mnm
1 A A 3
1 (o] B B 2 B 2
2 & © © g 3 Itemsets
L = B3 mmm
2 (¢} 3
Generate
e A ‘ 2-ltemsets B 2 2/9
3 B Count Filter
Iy -~ [Ty — IR s e
= & A,B A B 2 2/9
8 P A,C A, C 3 A, C 3 AC 3 3/9
‘ Aggregate B.C B,C 2 B,C 2 BC 2 2/9
Horizontal A,B,C 2: 2/9
TID c Generate |
4 A,C ‘ Coun Fllter 3-Itemsets
3 A,BC,D A,B,C A,B,C

Figure 1. Flow of Apriori Algorithm.)

Source 3-ltemsets
Lo Lo m—»mm mm
1 A,B,C A,B,C A,B,C
1 c
5 7 —’l Merge
1 Itemsets
2 B 2-ltemsets
3 A AB AB B 2 2/9
3 B A, C 1,2,3 A,C 1,2,3 3 A,C 1,253 3 Ui 3 3/9
3 C B,C 2,3 B,C 2,3 2. B,C 2.3 2 A B 2 2/9
3 D 1 Merge AC 3 3/9
‘ Aggregate L 1 B,C 2 2/9

Vertical " 1-ltemsets

A 123 A 1,28/ 8 A 1,2,3 3

B 2,3 B 2,3 2 B 258 2

C 17253 C 1,12) 3 3 C 11253 3

D 3 D 3 1 =

Figure 2. Flow of Eclat Algorithm.

Fig. 1 shows the flow of the Apriori algorithm. Recent
studies have used similar flows [31], [32]. In this case, TID
refers to the transaction ID while Item refers to the product. In
Apriori, the source data is aggregated to create a horizontal
view. Candidates for the 1-itemsets are generated directly from
the source data. Then, the candidates are counted using the
horizontal view and filtered based on min_supp, creating the
frequent 1-itemsets. Candidates for the k-itemsets are generated
from the frequent (k-7)-itemsets. Candidates are counted and
filtered as before.

Fig. 2 shows the flow of the Eclat algorithm. There are also
recent studies using similar flows [33], [34]. The flow starts by
aggregating the source data to create a vertical view.
Candidates for the 1-itemsets are simply the vertical view.
Since the candidates contain TIDs, counting can be done easily.
The candidates are filtered based on min_supp, creating the
frequent 1-itemsets. Candidates for the k-itemsets are created
by merging the frequent (k-7)-itemsets and the vertical view in
some way. Candidates are counted and filtered as before.

Itemsets Rules (X Y)
i R

A 3/9 A 1

2 209 B A 2/9 2/9 1

g N — © 2/9 2/9 1
G 20 B AC 2/9 2/9 1
&G g2 © A 3/9 3/9 1
B.iC s AB © 2/9 2/9 1
Lo & B,iC A 2/9 2/9 1

Figure 3. Association Rules Generation from Itemsets

VOLUME 24(3), 2025

The generated frequent itemsets are used to generate
association rules as in Fig. 3. A rule (X — Y) is a pair of
itemsets, antecedent (X) and consequent (Y), where the
antecedent implies the consequent. The rules generation takes
a minimum confidence threshold (min_conf) as input. In ARM,
confidence is the conditional probability of the consequent
given the antecedent [16]:

supp(X NnY)
supp(X)

In addition, there are other metrics that can be used, such as
lift, leverage, conviction, and Zhang [16].

conf(X - Y)=P(Y|X) = 2)

C. ARM EXISTING IMPLEMENTATIONS

There are many implementations of ARM in various
programming languages. One of the most powerful is the arules
package in R [15]. It provides a wide range of functions for
ARM, including the Apriori and Eclat algorithms.

Source

[D item |

Sparse

W W W W N NN =
S O 5 > @) © B O Be

Figure 4. Sparse Binary Matrix from Source Data

507

Pandega Abyan Zumarsyah et al. / International Journal of Computing, 24(3) 2025, 505-512

Iltemsets 1-Subsets 3

m Suppolt by Itemset Subset ss oset
A 3/9 upport
B T AB A 3/9
© o AB B 2/9
AB 575 AC A 3/9 - -
AG e AC C 3/9
B,C B 2/9 % & C
B,C 2/9 g o 5 | BE
ABC 29 B,C c 3/9 & -
S B A
ABC A 3/9
ABC B 2/9 >E ©
= B A C
AB,C C 3/9 z 5
3 (o] A
2
—‘J 3 NERNE
w
2-Subsets =4 Cc A B
2 A G
Itemset Subset Subsst S
Support AC B
AB,C AB 2/9 BC A
AB,C AC 3/9
A,B,C B,C 2/9

3/9
3/9
2/9
2/9
2/9
3/9
3/9
3/9
2/9
3/9
2/9

AllRules (X»Y)

XnY =
o e e
3/9 2/9

2/3 Filtered Rules (X~ Y)

DT EEea
Support

29 208 A © 3/9 a/9 1

29 ! B A 2/9 2/9 1

219 1 BB © 2/9 2/9 1

219 1 B AC 29 2/9 1

519 L c A 3/9 3/9 1

29 23 AB C 2/9 2/9 1

29 243 BC A 2/9 2/9 1

2/9 1

2/9 2/3

2/9 1

Figure 5. Flow of Association Rules Generation.

For Python, one of the most popular libraries is mixtend
[16]. It consists of useful tools for various data science tasks,
including ARM. However, it does not provide an Eclat
implementation. There is another library called pyECLAT [35],
but it is not as optimized as mixtend.

Itemset generation in all three libraries takes a sparse matrix
as input. The matrix is a binary matrix where rows represent
transactions and columns represent items. Thus, the source data
must be transformed into a format as shown in Fig. 4.

D. ARM SQL IMPLEMENTATIONS
While there are some SQL implementations of ARM, it is not
as many and powerful as the R ones. Thus, we develop our own
SQL implementation of Apriori, Eclat, and rules generation. It
is done in PostgreSQL, a powerful open-source relational
database management system. To improve performance, the
source data elements are transformed to integers and the
intarray extension is used to handle arrays of integers.

Listing 1 shows the SQL implementation of Apriori based
on Fig. 1. The implementation uses common table expressions
(CTE) to create modular and readable code.

Listing 1. SQL Implementation of Apriori

WITH item counts AS (
SELECT item, count (*)
FROM source_data
GROUP BY item HAVING count (*)
), horizontal data AS (
SELECT sd.tid, array agg(sd.item) AS items
FROM source data sd
INNER JOIN item counts ic ON sd.item =
GROUP BY sd.tid
), itemsets_1 AS (
SELECT ARRAY[item] AS itemset, cnt
FROM item counts
), itemsets 2 AS (
SELECT

(s.itemset || ic.item)
FROM itemsets 1 s
INNER JOIN item counts ic ON ic.item > s.itemset[1]
INNER JOIN horizontal data hd

ON hd.items @> (s.itemset || ic.item)
GROUP BY s.itemset, ic.item HAVING count (*
)

AS cnt

> %L

ic.item

AS itemset, count(*) AS cnt

> %L

In Listing 1, CTE item_counts is a helper CTE that counts
the occurrences of each item in the source data. CTE
horizontal data is the horizontal view created using array
aggregation. Joining with item_counts filters out infrequent
items. CTE sets [/ simply generates the /-itemsets from

508

item_counts. The next CTEs generate the k-itemsets from the
(k-1)-itemsets. Joining with ifem_counts expands the itemsets
and generates the candidates. Meanwhile, joining with
horizontal data, followed by the use of GROUP BY and
HAVING statements, counts itemsets occurrences and filters
out infrequent itemsets. The itemsets CTEs are then combined
using UNION to generate the frequent itemsets. Regarding the
symbols, “%L” is a placeholder for min_supp. Operation “A ||
B” concatenates arrays A and B while operation “A @> B”
checks if array A contains array B.

Listing 2 shows the SQL implementation of Eclat based on
Fig. 2. CTE vertical _data is the vertical view created using
array aggregation. CTE itemsets is a recursive CTE containing
base and recursive terms. The base one simply generates the /-
itemsets from vertical data. The recursive one generates the k-
itemsets from the (k-7)-itemsets. The (k-1)-itemsets are joined
with vertical data to expand and generate the candidates. The
candidates are directly filtered using the WHERE statement.

Listing 2. SQL Implementation of Eclat

WITH RECURSIVE vertical data AS (
SELECT item, array_agg(tid) AS tids
FROM source data

GROUP BY item HAVING count (*) > %L
), ltemsets AS (
SELECT ARRAY[item] AS itemset, tids

FROM vertical data

UNION ALL
SELECT (i.itemset || p.item) AS itemset,
(i.tids & p.tids) AS tids

FROM itemsets i
INNER JOIN vertical data vd
ON vd.item > i.itemset[icount (i.itemset)]

WHERE icount(i.tids & vd.tids) > $L
AND icount (i.itemset) < %L

)

SELECT itemset, icount(tids) AS cnt

FROM itemsets

In Listing 2, the first and second “%L” are placeholders for
min_supp while the third “%L” is a placeholder for the
maximum number of items in an itemset (max_len). Operation
“A & B” returns the intersection of arrays A and B. The intarray
function icount() from intarray returns the number of elements
in an array.

Compared to the Apriori implementation, the Eclat
implementation is better due to various reasons:

e The vertical view usually has fewer rows than the

horizontal view, resulting in faster processing.

VOLUME 24(3), 2025

=m
Sl

Pandega Abyan Zumarsyah et al. / International Journal of Computing, 24(3) 2025, 505-512

e Stored TIDs can be used to directly count itemset
occurrences, instead of using JOIN and GROUP BY
statements.

e Filtering using the WHERE statement is simpler and
more efficient than using the HAVING statement.

e The absence of GROUP BY and HAVING allows the
use of recursive CTE, which is simpler and more
efficient.

After generating the frequent itemsets, the next step is to
generate the association rules. Listing 3 shows the SQL
implementation with Fig. 5 illustrating the flow. It takes
itemsets and min_conf as inputs. First, the function unnest()
is used to create CTE unnested by unnesting itemset column
of itemsets. Next, CTE subsets contains subsets of itemsets
that are generated recursively. The base term creates the /-
subsets via a simple transformation of unnested and looking
up the support of the subsets from itemsets. The recursive
term generates the k-subsets by joining the (k-1)-subsets
with unnested. There is also a lookup of the support of the
subsets. The association rules are generated by obtaining
the antecedent, consequent, support of antecedent, support
of union, and confidence. Finally, the rules are filtered
based on min_conf. It should be noted that metrics other
than confidence can be easily calculated using SQL
statements.

Listing 3. SQL Implementation of Association Rules
Generation

WITH RECURSIVE unnested AS (

SELECT itemset, supp, unnest (itemset) AS item

FROM itemsets

), subsets AS (

SELECT itemset, supp, ARRAY[item] AS subset,

(SELECT supp FROM itemsets

WHERE itemset = ARRAY[item])

FROM unnested

AS sub_ supp

UNION ALL
SELECT u.itemset, u.supp, s.subset || u.item,
(SELECT supp FROM itemsets
WHERE itemset = (s.subset || u.item))

FROM subsets s
INNER JOIN unnested u
ON s.itemset = u.itemset
AND icount (s.subset) < icount(s.itemset) - 1
AND u.item > s.subset[icount (s.subset)]
)
SELECT
subset AS ante, (itemset - subset) AS cons,
subset_supp AS ante_ supp, supp AS union_supp,
(supp/subset_supp) AS confidence
FROM subsets

WHERE icount (itemset) > 1 AND (supp/subset supp) > S$L

E. FORECASTING NETWORKS

Fig. 6 is the neural networks model for the forecasting. It takes
F-features S-steps data as input and outputs G-features 1-step
forecast. The values of F, S, and G are based on the scenario.
There are four LSTM layers with 64 units each. The last output
of'the last layer is fed into two dense layers with 32 and G units,
respectively. The activation function is “tanh” for the LSTM
layers and dense_act for the dense layers. All layers are subject
to L1 regularization with a value of // reg. LSTM layers are
also subject to dropout with a value of drop_rate.

The model is compiled using the Adam optimizer [36] with
the learning rate /r. The loss function and the primary metric
are “mean_squared error” (MSE). The variables dense act,
Il _reg, drop_rate, and Ir are subject to hyperparameter tuning.

VOLUME 24(3), 2025

F. FORECASTING SCENARIOS

In this study, forecasting is performed on the weekly quantity
of some products. Six high-selling products are selected. The
weekly quantity is preferred over the daily and monthly
quantities because the daily quantity contains many zero values
while the monthly quantity contains too few data points. Since
the first and last weeks may be incomplete, they are removed,
resulting in 104 weeks. Thus, the used data contains six
sequences of 104 data points each.

In this study, there are four forecast scenarios. All use a
sequence length of 12 weeks (S=/2). The first uses simple
univariate models where it takes a sequence (F=/) from a
product and returns a value as a forecast of that sequence
(G=F=1). In this scenario, each product is forecast separately
using different models. It is not efficient in terms of
computation and the number of models.

The second scenario addresses that issue by using
multivariate models. It takes multiple sequences from a group
of products (F>1) and returns multiple values as the forecast
for each sequence (G=F>1). In this scenario, the groupings are
based on the results of itemsets generation. Products in the
same itemset with high support are grouped together. The
number of models is reduced and the computation can be more
efficient.

The third and fourth scenarios are similar to the first and
second, respectively, but with the addition of a week sequence.
Thus, the number of input features is increased by one
(F=G+1). The week sequence v is generated from sinusoidal
encoding of the week number w that goes from 1 to 104:

v =sin(tw/26 —5). 3)

The encoding is designed so that the end of quarter ¢ is
represented by ¢ times 90 degrees angle. With the addition of
the week sequence, the model is expected to capture the
seasonality of the data.

dense2¢

Dense
G units

dense132

Dense
32 units

I lstm4g4

BN LSTM
64 units

lstm3g,% lstm3g54

LSTM IR N L STM
64 units 64 units
! lstm3,%4 ! lstm3,54

lstm21] lstm2,54 lstmzsﬁ“ I lstm24%4
LstM IR R LSTM LSTM
64 units 64 units 64 units
lstm1 54] lstm1,8%4 lstm1s164 lstm1s
LSTM I LSTM N LSTM
64 units 64 units 64 units
In1F In2 Ins,1 lnsF

Figure 6. Neural Networks Architecture for Forecasting

509

)

Pandega Abyan Zumarsyah et al. / International Journal of Computing, 24(3) 2025, 505-512

fhante ¥ |iiicons ¥ |123 union_supp ¥ |123antesupp ¥ |123conssupp ¥ |123 conf ¥ |123 lift = ’123 leverage ¥ |123conviction v |1231hang v
» » {723} 0.02535689 0.03828492 0.05924927 0.66232073 11.178546 0.02308854 2.7859297 0.94679075
» {4239} » {4245} 0.02603075 0.05056404 0.05008985 0.5148075 10.277682 0.023498 1.9578006 0.95077693
» {4245} » {4239} 0.02603075 0.05008985 0.05056404 0.5196811 10.277681 0.023498 1.9766784 0.9503023
» {1215} » {5154} 0.02984926 0.04559748 0.13828991 0.65462506 4733715 0.02354358 2494999 0.8264327

Figure 7. Results and Metrices of Rules Generation using SQL

G. FORECASTING IMPLEMENTATIONS

Forecasting is done using Python with a minor involvement of
SQL queries. NumPy [37] and pandas [38] are used for data
manipulation and processing. Tensorflow Keras [39] is used to
build, train, and evaluate the neural networks model.

Some processing steps need to be done before the data are

used for training and evaluation:

1. Each sequence should be split into input and output
sequences using the sliding window technique. In this
case, a sequence of length 104 is split into (104 - 12)
pairs of input sequences of length 12 and output
sequences of length 1.

2. Each split input sequences are scaled so that the
minimum and maximum values are 0 and 1,
respectively. The output sequences should be scaled
accordingly.

3. Pairs of scaled input and output sequences are split into
train, validation, and test sets with a ratio of 80%, 10%,
and 10%, respectively.

Grid search is used to find the best hyperparameters for the
model. It is implemented manually using validation MSE as the
metric. The hyperparameters and their ranges are as follows:

e dense_act: [“relu”, None]

/1_reg: [0.0001, 0.00001, 0.000001]
drop_rate: [0.2, 0.4]
Ir:[0.001, 0.0001, 0.00001]

The best hyperparameters are used to train the final models
using the train set. The final models are evaluated using the test
set. Besides MSE, there are Mean Absolute Error (MAE),
Mean Absolute Percentage Error (MAPE), and Mean Squared
Logarithmic Error (MSLE) to compare models predictions ()
and true values (y):

1
MAE ZHZ ly =9I 4)
100 [y —
MAPE === |T| ©)
1
MSLE = HZ(log(l +y) —log(1 + $))2. (6)

lll. RESULTS
A. ARM PERFORMANCE

Table 1. Processing Time Comparison of Multiple ARM
Implementations in Cleaned Dataset with Parameters:
min_supp = 0.025, max_len =5, min_conf= 0.5

Language Package / OH Apriori Eclat Rules

guag Tools Time Time Time Time
mixtend [16] & too

Python PYECLAT [35] 92s 1.93s long 0.01s

R arules [15] 44s 0.7 s 0.66 s 0.4s

SQL - 33s 780 s 3s 0.1s

510

Table 1 shows the processing times of the ARM
implementations in R, Python, and SQL. Processing times can
be divided into four parts: data preparation or overhead (OH),
Apriori, Eclat, and rules generation. Data preparation in R and
Python is sparse matrix generation (excluding data migration)
while in SQL is materialized view creation. The materialized
view is the simplified version of the source data with two
indexed integer columns, one representing transactions while
the other representing items.

SQL has the fastest overhead time (3.3 s) since the
operation is simpler. Python overhead time (92 s) is much
slower than R time (4.4 s) despite obtaining the same output. In
terms of overhead space, the created materialized view only
takes 50 MB while the sparse matrix takes 188 MB in Python
and 65 MB in R. However, the sparse matrix in R can be
compressed to only 4.4 MB as transaction data. It should be
noted that the materialized view uses disk space while the
sparse matrix uses memory space. Moreover, the materialized
view has a general structure that can be used for other purposes.

Itemsets generation in R is the fastest (0.66 s), followed by
Python (1.93 s) and SQL (3 s). The SQL implementation of
Apriori is much slower than that of Eclat. It is expected since
the implementation is not efficient, as explained before. The
Python implementation of Eclat is too slow to be measured.
When checking the PYECLAT source code, we found that it
tries to generate all possible itemsets, which is very inefficient.

Rules generation in Python is the fastest (0.01 s), followed
by SQL (0.1 s) and R (0.4 s). Since only less than 200 itemsets
are used as input, the rules generation is fast. However, the
rules generation in SQL and R is slower than expected. The
SQL one may be slow since it generates many possible subsets
before filtering them. It should be noted that rules generation in
Python and SQL also includes the calculation of various
metrics, not only support and confidence as in Listing 3. Fig. 7
shows some of the SQL-generated rules with their metrics.

B. FORECASTING PERFORMANCE

As previously mentioned, the results of itemsets generation are
used to group products for forecasting in scenarios 2 and 4.
There selected itemsets as in Fig. 7 are {722, 723}, {4239,
4245}, and {1215, 5154}. Thus, there are six items for the I/IIT
scenario and three groups of two items for the II/IV scenario.
Fig. 8 shows the weekly quantity of two products in one of the
groups. It can be seen that the sequences are very noisy and
hard to predict.

150

100 4

50 A

0

Figure 8. Sequence Samples of Two Products in the Same
Group, x-axis is quantity while y-axis is week

VOLUME 24(3), 2025

)

Pandega Abyan Zumarsyah et al. / International Journal of Computing, 24(3) 2025, 505-512

Table 2. Performance Comparison of Multiple Scenarios

Metrics Scenario | Scenario | Scenario | Scenario
1 11 I v
train duration 280.1s 122.6 s 4684 s 176.3 s
train MSE 0.21007 | 0.58666 | 0.13754 | 0.41921
val MSE 0.20773 020782 | 0.16838 | 0.16840
test MSE 1.04456 | 0.88170 | 0.98381 0.92671
test MAE 0.47079 | 0.43305 | 0.48488 | 0.43471
test MAPE 422336 | 389.610 | 386.394 | 326.256
test MSLE 0.13476 | 0.11648 | 0.15214 | 0.12705

Table 2 shows the performance comparison of the four
forecasting scenarios. The train duration is the total time taken
to train all models, six for the I/IIl scenario and three for the
II/TV scenario. All other metrics correspond to the best models
that are obtained from the grid search and evaluated in train,
validation, and test sets. Train and validation metrics are not
discussed here. They are not as valid as test metrics since the
models have already "seen" the train and validation sets.

Since the data is quite challenging, the errors can be
considered high. However, the obtained metrics can still be
used to compare the scenarios.

Product grouping can reduce the number of models and
computation time. In this case, the training time is reduced by
more than half. Moreover, it can be seen that product grouping
can improve performance in all test metrics.

The addition of a week sequence can also improve
performance, but at the cost of increased computation time. In
this case, the training time is increased by about 40 - 70 percent.
Comparing I with III scenarios, week sequence addition gives
better MSE and MAPE but slightly worse MAE and MSLE.
Comparing II with IV scenarios, week sequence addition only
improves MAPE while the other metrics are worse. It can be
concluded that adding the week sequence increases
computation time but does not guarantee better performance.

IV. CONCLUSIONS
In this study, we develop SQL implementations of ARM
algorithms, including Apriori, Eclat, and rules generation. The
implementations are done in PostgreSQL by utilizing the
extension 'intarray', CTE, materialized view, and recursive
query. We also develop LSTM models to forecast the weekly
quantity of products. The models are built using Tensorflow
Keras with grid search for hyperparameter tuning. Forecasting
is done in four scenarios: single product, grouped products,
single product with week sequence, and grouped products with
week sequence. The grouping is based on the results of itemsets
generation. Our methods are evaluated on a challenging dataset
with around one million rows named Online Retail II.

Evaluation shows that our SQL implementations of ARM
have the lowest overhead time (3.3s) compared to R (4.4s) and
Python (92s). The R implementation of itemsets generation is
the fastest (Apriori: 0.7s, Eclat: 0.66s), but Python (Apriori:
1.93s) and SQL (Eclat: 3s) are not far behind. The current
Python implementation of Eclat is too slow to be measured,
while the SQL implementation of Apriori is hard to optimize.
Rules generation in Python is the fastest (0.01s), followed by
SQL (0.1s) and R (0.4s). It can be concluded that SQL is a
viable alternative for ARM implementations.

Related to forecasting, grouping products reduces the

VOLUME 24(3), 2025

number of models and reduces training time by more than half.
Grouping products also improves performance on all test
metrics. Meanwhile, week sequence addition significantly
increases training time by about 40 - 70 percent, but does not
guarantee better performance.

In the future, SQL implementations of ARM can be further
optimized. SQL can perform better than R or Python, but
current SQL implementations are relatively less mature.
Meanwhile, the forecasting scenario of grouped products can
be further evaluated using other datasets and other models.

References

[1] D. Jangam and A. R. Deshpande, “Business analytics using predictive
algorithms,” International Journal on Recent and Innovation Trends in
Computing and Communication, vol. 11, issue 8s, pp. 595-609 2023,
https://doi.org/10.17762/ijritcc.v11i8s.7242.

[2] A. Gunasekaran et al., “Big data and predictive analytics for supply chain
and organizational performance,” Journal of Business Research, vol. 70,
pp. 308-317, 2017, https://doi.org/10.1016/].jbusres.2016.08.004.

[3] B. Tierney, Predictive Analytics using Oracle Data Miner: Develop &
use Data Mining Models in ORACLE DATA MINER, SQL & PL/SQL.
New York: McGraw-Hill Education, 2014.

[4] B. Christian and K. Rudolf, “Induction of association rules: Apriori
implementation,” Proceedings of the Compstat 2002, Berlin, Germany:
Physica, Heidelberg, 2002, pp. 395-400. https://doi.org/10.1007/978-3-
642-57489-4 59.

[5] R. Agrawal, R. Srikant, “Fast algorithms for mining association rules,”
Proceedings of the 20th International Conference on Very Large Data
Bases, VLDB, Santiago, Chile, September 1994, pp. 487-499. [Online].
Available at: http:/www.vldb.org/conf/1994/P487.PDF.

[6] H. Jiawei and P. Jian, “Mining frequent patterns without candidate
generation,” ACM SIGMOD Record, vol. 29, no. 2, pp. 1-12, 2000,
https://doi.org/10.1145/335191.335372.

[71 M. J. Zaki, “Scalable algorithms for association mining,” /EEE Trans.
Knowl. Data Eng., vol. 12, no. 3, pp. 372-390, 2000,
https://doi.org/10.1109/69.846291.

[8] S. M. Hamdani, “Application of association rule method using apriori
algorithm to find sales patterns case study of indomaret tanjung anom,”
Brilliance: Research of Artificial Intelligence, vol. 1, no. November
2021, pp. 54-66, 2021, https://doi.org/10.47709/brilliance.v1i2.1228.

[91 S. Fajrianti, O. M. Prabowo, R. R. Nurmalasari, and R. Ramdani,
“Application of the association rule in online stores using apriori
algorithm for product recommendations at promotional events,”
Proceedings of the 2023 9th International Conference on Wireless and
Telematics (ICWT), Jul. 2023, pp. 1-5.
https://doi.org/10.1109/ICWT58823.2023.10335465.

[10] V. A. Hameed, M. E. Rana, and L. H. Enn, “Apriori algorithm based
association rule mining to enhance small-scale retailer sales,”
Proceedings of the 2023 IEEE 6th International Conference on Big Data
and Artificial Intelligence (BDAI), Jul. 2023, pp. 187-191.
https://doi.org/10.1109/BDAI59165.2023.10256952.

[11] S. Y. K. Sipahutar, A. A. Panjaitan, D. P. Sitanggang, and L
Fitriyaningsih, “Implementation of association rules with apriori
algorithm in determining customer purchase patterns,” Proceedings of the
2022 IEEE International Conference of Computer Science and
Information Technology (ICOSNIKOM), Oct. 2022, pp. 1-6.
https://doi.org/10.1109/ICOSNIKOMS56551.2022.10034921.

[12] L. Wang, Y. Guo, and Y. Guo, “An improved eclat algorithm based
association rules mining method for failure status information and
remanufacturing machining schemes of retired products,” Proceedings of
the 16th CIRP Conference on Intelligent Computation in Manufacturing
Engineering, CIRP ICME"22, Italy: Procedia CIRP, 2023, pp. 572-577.
https://doi.org/10.1016/j.procir.2023.06.098.

[13] C. Borgelt, “An implementation of the FP-growth algorithm,”
Proceedings of the 1st International Workshop on Open Source Data
Mining: Frequent Pattern Mining Implementations, 2010, pp. 1-5.
https://doi.org/10.1145/1133905.1133907.

[14] G. G., “Efficiently Using Prefix-trees in Mining Frequent Itemsets,”
presented at the FIMI'03, Frequent Itemset Mining Implementations,
Proceedings of the ICDM 2003 Workshop on Frequent Itemset Mining
Implementations, Melbourne, Florida, USA, 2003. [Online]. Available at:
https://www.researchgate.net/publication/220845998 Efficiently Using

Prefix-trees_in_Mining_Frequent Itemsets.

511

)

Pandega Abyan Zumarsyah et al. / International Journal of Computing, 24(3) 2025, 505-512

[15]

[16]

[17]

[22

—

[23

—

[24]

512

M. Hahsler, B. Griin, and K. Hornik, “Arules - A Computational
Environment for Mining Association Rules and Frequent Item Sets,” J.
Stat. Soft., vol. 14, no. 15, 2005, https://doi.org/10.18637/jss.v014.i15.
S. Raschka, “MLxtend: Providing machine learning and data science
utilities and extensions to Python’s scientific computing stack,” JOSS,
vol. 3, no. 24, p. 638, 2018, https://doi.org/10.21105/j0ss.00638.

M. Blacher, J. Giesen, S. Laue, J. Klaus, and V. Leis, “Machine learning,
linear algebra, and more: Is SQL all you need?,” Proceedings of the
Conference on innovative data systems research, 2022. [Online].
Auvailable: https://api.semanticscholar.org/CorpusID:249872850.

M. Blacher, J. Klaus, C. Staudt, S. Laue, V. Leis, and J. Giesen, “Efficient
and portable Einstein summation in SQL,” Proc. ACM Manag. Data, vol.
1, no. 2, p. 121:1-121:19, 2023, https://doi.org/10.1145/3589266.

M. Schule, H. Lang, M. Springer, A. Kemper, T. Neumann, and S.
Gunnemann, “In-database machine learning with SQL on GPUs,” in
Proceedings of the 33rd International Conference on Scientific and
Statistical Database Management, in SSDBM 21. New York, NY, USA:
Association for Computing Machinery, Aug. 2021, pp. 25-36.
https://doi.org/10.1145/3468791.3468840.

1. H. Sarker, “Deep learning: A comprehensive overview on techniques,
taxonomy, applications and research directions,” SN COMPUT. SCL., vol.
2, no. 6, p. 420, 2021, https://doi.org/10.1007/s42979-021-00815-1.

K. K. Chandriah and R. V. Naraganahalli, “RNN / LSTM with modified
Adam optimizer in deep learning approach for automobile spare parts
demand forecasting,” Multimed Tools Appl, vol. 80, no. 17, pp. 26145—
26159, 2021, https://doi.org/10.1007/s11042-021-10913-0.

Z. Li and N. Zhang, “Short-term demand forecast of e-commerce
platform based on ConvLSTM network,” Computational Intelligence and
Neuroscience, vol. 2022, no. 1, p. 5227829, 2022,
https://doi.org/10.1155/2022/5227829.

F. Taha, D. Farzaneh, B. Patrick, and U. Chibuzor, “Predictive analytics
for demand forecasting — A comparison of SARIMA and LSTM in retail
SCM,” Procedia Computer Science, vol. 200, no. 2022, pp. 993-1003,
2022, https://doi.org/10.1016/j.procs.2022.01.298.

X. Zhang, P. Li, X. Han, Y. Yang, and Y. Cui, “Enhancing time series
product demand forecasting with hybrid attention-based deep learning
models,” [EEE Access, vol. 12, pp. 190079-190091, 2024,
https://doi.org/10.1109/ACCESS.2024.3516697.

C. Chatfield, Time-Series Forecasting (1st ed.), 1st ed. Chapman and
Hall/CRC, 2000. https://doi.org/10.1201/9781420036206.

P. Zhang, “Time series forecasting using a hybrid ARIMA and neural
network model,” Neurocomputing, vol. 50, no. 17, pp. 159-175, 2003,
https://doi.org/10.1016/S0925-2312(01)00702-0.

J. Robin and G. Athanasopoulos, Forecasting: Principles and Practice,
2nd ed. OTexts, 2018. [Online]. Available at: https://otexts.org/fpp2/.

B. Nguyen-Thai, V. Le, N.-D. T. Tieu, T. Tran, S. Venkatesh, and N.
Ramzan, “Learning evolving relations for multivariate time series
forecasting,” Appl Intell, vol. 54, no. 5, pp. 3918-3932, 2024,
https://doi.org/10.1007/s10489-023-05220-0.

Q. Zhao, G. Yang, K. Zhao, J. Yin, W. Rao, and L. Chen, “Multivariate
time-series forecasting model: Predictability analysis and empirical
study,” /IEEE Trans. Big Data, vol. 9, no. 6, pp. 1536-1548, 2023,
https://doi.org/10.1109/TBDATA.2023.3288693.

Daqing Chen, “Online Retail II.” UCI Machine Learning Repository,
2012. https://doi.org/10.24432/C5CG6D.

K. Dahdouh, A. Dakkak, L. Oughdir, and A. Ibriz, “Association rules
mining method of big data for e-learning recommendation engine,”
Proceedings of the Advanced Intelligent Systems for Sustainable

[33]

[34]

[35]
[36]

[37]

[38]

[39]

Development (A12SD°2018), vol. 915, M. Ezziyyani, Ed., in Advances in
Intelligent Systems and Computing, vol. 915., Cham: Springer
International Publishing, 2019, pp- 477-491.
https://doi.org/10.1007/978-3-030-11928-7 43.

Z. Zhao, Z. Jian, G. S. Gaba, R. Alroobaeca, M. Masud, and S. Rubaice,
“An improved association rule mining algorithm for large data,” Journal
of Intelligent Systems, vol. 30, mno. 1, pp. 750-762, 2021,
https://doi.org/10.1515/jisys-2020-0121.

H. Lan, X. Ma, L. Ma, and W. Qiao, “Pattern investigation of total loss
maritime accidents based on association rule mining,” Reliability
Engineering & System Safety, vol. 229, p. 108893, 2023,
https://doi.org/10.1016/j.ress.2022.108893.

X. Wang, X. Huang, Y. Zhang, X. Pan, and K. Sheng, “A data-driven
approach based on historical hazard records for supporting risk analysis
in complex workplaces,” Mathematical Problems in Engineering, vol.
2021, pp. 1-15, 2021, https://doi.org/10.1155/2021/3628156.

J. R. Dias, jeffrichardchemistry/pyECLAT: pyECLAT. (Sep. 08, 2020).
Zenodo. https://doi.org/10.5281/ZENODO.4019037.

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
Jan. 29, 2017, arXiv: arXiv:1412.6980. doi: 10.48550/arXiv.1412.6980.
C. R. Harris et al., “Array programming with NumPy,” Nature, vol. 585,
no. 7825, pp. 357-362, 2020, https://doi.org/10.1038/s41586-020-2649-
2.

The pandas development team, pandas-dev/pandas: Pandas. (Apr. 10,
2024). Zenodo. https://doi.org/10.5281/ZENODO.3509134.

TensorFlow Developers, TensorFlow. (Jun. 18, 2024). Zenodo.
https://doi.org/10.528 1/ZENODO.4724125.

PANDEGA ABYAN ZUMARSYAH
received his Bachelor in Electrical
Engineering and Master’s in
Information Technology from
Universitas Gadjah Mada (UGM),
Indonesia. Currently, he is pursuing
his PhD in Electrical Engineering from
UGM. His current research focuses on
medical image processing, while his
fields of interest include web develop-

ment, signal processing, data analytics, and machine learning.

Email: pandegaabyanzumarsyah @mail.ugm.ac.id

FARIZA EKA AULIA currently
pursuing master’s degree in
information technology at Department
of Electrical and Information
Engineering Universitas Gadjah Mada
Yogyakarta, Indonesia. Main research
interests include Data Mining and
Machine Learning. Email:
farizaekaaulia@mail.ugm.ac.id

VOLUME 24(3), 2025

