

VOLUME 24(3), 2025 513

Date of publication SEP-30, 2025, date of current version APR-06, 2025.
www.computingonline.net / computing@computingonline.net

Print ISSN 1727-6209
Online ISSN 2312-5381
DOI 10.47839/ijc.19.3.XX

Multi-Coalition Multi-Agent Decision
Making System Synthesis

VICTOR ABABII, VIORICA SUDACEVSCHI, SILVIA MUNTEANU,
VIOREL CARBUNE, OLESEA BOROZAN

Technical University of Moldova, Chisinau, Republic of Moldova

Corresponding author: Victor Ababii (e-mail: victor.ababii@calc.utm.md).

The research presented in this paper supports the objectives of the doctoral thesis. The design and evaluation of the scientific results were
facilitated by the expertise and facilities of the 'Artificial Intelligence and Multi-Agent Systems' Laboratory, within the Department of
Informatics and Systems Engineering at the Technical University of Moldova.

 ABSTRACT This research explores the interdisciplinary field of nature-inspired computing, which relies on
biological models and processes to develop innovative algorithms and computational systems. The paper analyzes the
main categories in this field: evolutionary computing, collective intelligence, biological systems, as well as advanced
approaches, such as cellular and membrane models. These paradigms provide robust and scalable solutions to
complex problems that are difficult to address by traditional methods. The research places particular emphasis on cell
computing, which reproduces the structure and functionality of biological cells, and on membrane computing, which
introduces concepts of hierarchy and distributed processing. At the same time, the paper proposes an innovative
methodology for the design of Multi-Agent systems, based on these biological models, including the dynamic
formation of coalitions and the optimization of interactions between autonomous agents. The main contribution lies in
the development of a mathematical model and a functional architecture for the integration of these paradigms,
promoting collaborative, resilient, and innovative solutions for the future of distributed artificial intelligence.

 KEYWORDS nature-inspired computing; membrane computing; cell computing; P-systems; swarm computing;
collective decision making; multi-agent systems; multi-criteria optimization; genetic algorithm; goal; strategy;
reconfigurable architecture.

I. INTRODUCTION
ature-inspired Computing is an interdisciplinary field of
computer science, which relies on patterns, processes

and behaviors observed in nature to develop algorithms,
methods and computational systems. Inspired by natural
phenomena, such as evolution, population dynamics, colony
formation or biological and physical processes, this type of
computing offers efficient and creative solutions to complex
problems.

The main categories of nature-inspired calculus include:
Evolutionary calculus – based on Darwin's theory of

biological evolution, it uses mechanisms such as selection,
crossover, mutation, and reconfiguration for optimization
(e.g., genetic algorithms, genetic programming, evolutionary
strategies);

Computation based on collective intelligence – inspired
by the coordinated behavior of groups of organisms, with
applications in logistics, computing networks and robotics
(e.g. Ant Colony Optimization or Particle Swarm
Optimization);

Biological systems-based computing – successfully
applied in the modeling of biological processes, particularly in

optimization and data analysis (e.g., artificial neural networks,
immuno-inspired algorithms, bioinformatics).

These methods offer new paradigms for approaching
complex problems that are difficult to solve by traditional
means [1].

Cellular computing, based on biological processes and
cellular organization in living organisms, deserves special
attention in the design of computing systems inspired by
nature. It explores models and methods that simulate the
interaction and functioning of biological cells, using these
principles to develop efficient algorithms and computational
systems.

Nature-inspired methods used in cell computing include:
Cellular automata – inspired by the local interaction

between cells in a network or grid, in which each cell applies
a set of simple rules to determine its future state based on the
state of its neighbors [31];

Gene networks and biochemical reactions – inspired by
the interactions between genes and biological molecules, they
shape cell population dynamics or metabolic behavior;

Membrane computing – inspired by the

N

 Victor Ababii et al. / International Journal of Computing, 24(3) 2025, 513-519

514 VOLUME 24(3), 2025

compartmentalized structure of biological cells, which uses
membranes to divide computing space into compartments,
each with its own rules for transforming data;

Cellular genetic algorithms – based on selection,
mutation and crossing, they use a localized space of a cellular
system to adapt solutions to optimization problems;

DNA-based systems – inspired by genetic encoding and
decoding processes, they use the manipulation of DNA
sequences to store data and solve problems.

These methods provide innovative tools for the
development of efficient algorithms and computational
systems, mentioned in the papers [2, 3, 28, 29].

II. RELATED WORK
Nature-inspired computing offers multiple advantages by
using the principles, processes, and behaviors observed in
nature. Depending on the field of research, some of the
essential benefits offered by nature-inspired computing can be
mentioned [4 - 7]: robustness and ability to adapt to dynamic
environments; scalability and decentralization; the ability to
provide effective solutions to complex problems, which are
often unsolvable by classical methods; Collaboration and
distribution in multi-agent systems modeling.

One of the directions of research inspired by nature is
collective decision-making computing (swarm computing) [8,
9, 32], an interdisciplinary field that uses the mechanisms,
algorithms and strategies of groups of agents (humans,
software or robots) [10, 11] to make decisions collectively.
These computational models are based on the idea that a
collective, through information exchange, cooperation, data
collection and aggregation, negotiation, consensus, and
evaluation of alternatives, can make better decisions than an
autonomous individual [12, 13].

At the basis of these computing methods and techniques
are: collective optimization algorithms (multicriteria
optimization) [13 - 15]; distributed learning models [16];
game theory and decision analysis [17].

By using collective decision-making computing, more
efficient, innovative and resilient solutions are obtained, with
promising potential for future developments, including their
integration into artificial intelligence and global distributed
systems [18].

III. STATEMENT OF THE RESEARCH PROBLEM
The synthesis of Multi-Agent Multi-Coalition decision-
making systems is a complex process, requiring theoretical
and practical knowledge from various fields of science and
technology. The paper proposes the following: synthesis of
the computing cell model; definition of the topology of the
Multi-Agent system based on membrane computing models
(P-Systems); elaboration of a mathematical model for the
dynamic configuration of the membrane computing
architecture, to model coalition formation processes in Multi-
Agent systems.

IV. SYNTHESIS OF THE COMPUTATIONAL CELL MODEL
The computing cell model is a fundamental concept in the
field of nature-inspired computing, used for the development
of distributed systems that are both efficient and scalable.
Inspired by the structure and functioning of biological cells,
this model aims to create computational architectures that
mimic how natural units tackle and solve complex problems.

A computing cell is defined as a basic unit in a distributed
computational system, characterized by autonomy,
collaboration, communication, and adaptability to
environmental changes or specific requirements.

The synthesis of the computing cell model requires
multidisciplinary knowledge that integrates concepts from
biology, mathematics, and computer science. In order to
ensure synchronization and cooperation between the
computing cells, it is necessary to observe the following
essential steps:

Defining the set of local behavioral rules – These rules
express the autonomy of cells by performing basic functions,
such as data storage and processing;

Establishing interaction rules – Rules that allow cells to
communicate with each other and exchange information
efficiently;

Optimization of load distribution – The distribution of
loads must ensure a balance between complexity and cost,
avoiding overloading of cells and enhancing system
performance;

Integrating self-healing mechanisms – These
mechanisms detect and correct errors locally and, in
exceptional cases, redistribute loads to other cells or replace
defective cells.

These steps contribute to the development of a robust,
scalable, and adaptable computing system. Figure 1 presents
the functional diagram of the computing cell, highlighting its
key components and interactions.

Figure 1. Functional diagram of a computing cell.

The functional diagram of the computing cell includes:
Input port and Output port – for data communication

with the environment;
Data Storage Memory – stores input data from the

environment, the current state of the computing cell, and
output information to be transmitted back to the environment;

Control Unit – generates synchronization signals required
to execute operations defined by the set of rules;

Data Input Rules – the set of rules that manage access to
data from the environment into the internal memory (Data
Storage Memory);

Data Output Rules – the set of rules that manage the
transmission of data from the Data Storage Memory to the
environment;

Victor Ababii et al. / International Journal of Computing, 24(3) 2025, 513-519

VOLUME 24(3), 2025 515

Data Processing Rules – the set of rules intended for
processing data stored in the Data Storage Memory.

The cell membrane ensures the structure and autonomy of
the computing cell.

The membrane structure includes the following
components: Input channel – channels that belong to the
Input port structure; Output channel – channels that belong to
the Output port structure; Outside data – data originating
from the environment; Inside data – data stored and
processed within the calculation cell.

The activity of the stone cell, inspired by the metabolism
of living cells, operates based on the following principles:

The Control Unit generates the following signals: SIC
(Synchronization of Input Control) – synchronizes data
acquisition from the environment; REC (Rules Execution
Control) – manages the execution of rules; SOC
(Synchronization of Output Control) – synchronizes data
transmission to the environment.

According to the defined rules: The Data Input Rules
block generates RIC (Rules Input Control) signals, which
manage data acquisition through the Input port (Input
channel); The Data Output Rules block generates ROC
(Rules Output Control) signals, which manage data
transmission through the Output port (Output channel); The
Data Processing Rules block generates RMC (Rules Memory
Control) signals, which access the Data Storage Memory and
process the data according to the defined rules.

V. SYNTHESIS OF MULTI-AGENT DECISION MAKING
SYSTEM BASED ON CELL COMPUTING MODEL

The compute cell model provides a solid foundation for
defining the structure and functionality of computational
units. However, to efficiently model complex systems and
architectures, Membrane Computing (P-Systems) models can
be utilized.

Cell Computing and Membrane Computing are two
biologically inspired paradigms that share common principles
while exhibiting distinct characteristics. These paradigms are
complementary: Cellular Computing offers an ideal
framework for spatial simulations with simple rules;
Membrane Computing enables hierarchical, parallel, and
concurrent processes, making it particularly suitable for
problems involving multi-level communication and
processing. Both approaches contribute to the development of
innovative and effective solutions to complex problems across
various fields [2, 19].

Figure 2 shows a Venn diagram illustrating the key
characteristics of an abstract membrane computing system,
emphasizing hierarchy, concurrency, and parallelism [20].

Figure 2. Venn diagram of the Membrane computing model.

The components of the Venn diagram for defining the
membrane computing system are as follows: Skin (outer
membrane): Forms the structure and topology of the
computing system, enabling data exchange with the external
environment; Membranes: Structures that separate the
functional logic and ensure the autonomy of computing cells,
exchanging data with the environment based on defined rules;
Elementary Membranes: Simple computing cells that
perform basic data processing operations; Complex
Membranes: Complex structures integrating multiple
elementary computing cells or other complex membranes;
Regions: Refer to the internal architecture of computing cells,
as described in Figure 1.

The hierarchy of the membrane computing model
explains the connection between membranes and their mode
of interaction: At the top level is Membrane 1; Membranes 2,
3, 4, and 5 operate in parallel or concurrent mode; Similarly,
membranes 6–9, 10–11, and 12–13 also operate in parallel or
concurrently.

Membrane calculus is inspired by the biological
structures and processes that occur in living cells. It uses the
concept of compartments bounded by membranes to process
information in a parallel and distributed manner, simulating
processes that occur simultaneously in multiple cells, a
characteristic feature of nature.

The formal model of the membrane computing system (P-
System)  is defined by expression (1) [2, 3, and 20]:

  1 1, , , ,..., , ,..., ,M M j jO C R R      , (1)

where:  
1

M

m
m

O O


 - is the set of objects (variables)

operated by the computing cells, where, NO R and

 
1

M

m
m

O


  ;  1mC c , m ,...M   - is the set of

catalyst elements (representing a collection of synchronization
signals that validate the operations planned by the rule set R ;
 - is the structure (topology) of the membrane computing

system consisting of 1 M,...,  membranes (see Figure 2);

1 M,...,  - is the set of objects (variables) and state data

belonging to the computing cell 1m , m ,M   , where

m mO  ; 1 MR ,...,R - is the set of rules for

processing/transforming the objects (variables) and state data

associated with computing cell 1m ,M ;

  1j j , j ,M   - is the set of computing cells that, based

on the set of objects (variables) and state data j generate

intermediate or final results, thereby acting upon the activity
environment and controlling its evolution.

Let the Multi-Agent System (MAS)  1iA A , i ,M 

(Figure 3) consisting of M Autonomous Agents AA
operating in a N dimensional space based on model (2) and

 
1

M

i
i

A A


 :

 Victor Ababii et al. / International Journal of Computing, 24(3) 2025, 513-519

516 VOLUME 24(3), 2025

 
   

 

,

,
1...

,

.

N
i i

i i

i i

E X R

Q X opt X
i M

S X opt X

f X Y

 



 


 

, (2)

where:  i iE X - is the domain of definition for Agent iA ,

determining the set of objects (variables) used by the Agent,

where     
1

M

i i
i

E X E X


 ;    Q X opt X - the

objective function of the Multi-Agent System for global

optimization in the definition space NR ;  i iS X opt X

- the set of strategies defined for each Agent iA ensuring the

optimization condition for variables iX , respecting the

condition  i iX E X ; i if X Y - the set of functions

for computing the action values applied to the activity
environment  E X .

Figure 3 shows the initial state of the Multi-Agent System.
In this state, each Agent operates autonomously, focusing
solely on its own objectives as defined in its individual
strategy. The results of an Agent's actions become visible to
others only through their effect on the shared environment.
This mode of operation is inefficient because the Agents'
actions are uncoordinated, making it impossible to achieve the
overall optimization objectives within the specified time
frames.

The proactive formation of coalitions, which is necessary
to improve the efficiency of the Multi-Agent System,
becomes impossible as each Agent adapts its strategy in
response to changes in the environment over time and space.
A viable solution to forming effective coalitions involves
applying dynamic coalition methods that consider both overall
objectives and individual Agent strategies [13, 21, 27].

Figure 3. The initial state of the Multi-Agent System.

In Figure 4 is presented diagram of the membrane
computing model (P-Systems) of the Multi-Agent System -

Agent  1iA A , i ,M  for the initial condition of

autonomous activity of the Agents.

Figure 4. Venn Diagram for Multi-Agent System Membrane
Computing Model for Initial Condition.

Figure 5 shows the diagram of the calculation cell for
modeling the Multi-Agent System based on membrane
computing.

Figure 5. Calculation cell diagram for modeling the Multi-
Agent System (MAS) based on membrane computing.

Specifications of the compute cell used for the modeling
of the Multi-Agent System based on membrane computing.
This architecture is oriented to be implemented using Micro-
Controller ESP32 [22, 23], Genuino 101 [24] or Raspberry Pi
[25, 26] devices:

Input/Output port – ports for perceiving the environment,
acting on the activity environment and communicating with
other Agents (depending on the environment and sensor
technology, the following may be recommended: analog
ports; digital GPIO (General Purpose Input/Output), PWM
(Pulse Width Modulation) ports; serial ports based on RS-
232/RS-485 protocols, UART (Universal Asynchronous
Receiver-Transmitter), SPI (Serial Peripheral Interface), I²C
(Inter-Integrated Circuit); USB ports; Ethernet ports; wireless
Wi-Fi (IEEE-802.11), Bluetooth, ZigBee, Lora WAN ports;
or CAN (Controller Area Network) ports). ;

iRI - rules for controlling the process of data acquisition

from the surrounding environment and forming coalitions
with other Agents:

 

     
 

  

, 1,..., , 1,..., :

min & 0

.

N
i i

i i
i i

j

j i

E X R i M j M

Q X
IF Q X

X

THEN A C A

     

             




, (3)

where

Environment

0
A1 A2 A3

A4 A5 AM

Victor Ababii et al. / International Journal of Computing, 24(3) 2025, 513-519

VOLUME 24(3), 2025 517

 

     
 

  

, 1,..., , 1,..., :

max & 0

.

N
i i

i i
i i

j

j i

E X R i M j M

Q X
IF Q X

X

THEN A C A

     

             




, (4)

where      
 

min 0i i
i i

j

Q X
Q X &

X

 
  
  

 and

     
 

max 0i i
i i

j

Q X
Q X &

X

 
  
  

 is the condition of the

Agent's membership jA to belong to the coalition formed by

Agent iA where  j iA C A .

 iRAM  - The storage of working data in memory

for the Agent iA , where   1i j iA C A , j ,...,M    it

is the set of data obtained from all Agents jA which form the

coalition for the Agent iA , including the state data of the

Agent;

iRP - it is the set of rules that implement the strategy.

i iS opt  and function i i if Y  for computing the

output data and the state of the computing cell;

iRO - it is the set of rules that identify the set of data for

output and communication with all the Agents forming the

coalition  iC A .

Membrane computing (P-systems) offers advantages in
modeling computational architectures, ranging from
functional logic circuits (such as registers, counters, adders,
encoders, decoders, multiplexers, and demultiplexers) to
multi-core microprocessor architectures and global computing
networks (e.g., the Internet and Intranets) [5, 6, 25, 26, 30]. In
this paper, the notion of an Agent is used to abstract and
encapsulate specific functionalities into a functional logic
entity enhanced with artificial intelligence.

The mathematical expressions (3) and (4) define the
dynamics of the Multi-Agent decision-making system
architecture in relation to the objectives of each Agent. If an
Agent’s actions accelerate the convergence of the objective
function toward the optimal value, that Agent is included in
the coalition. The inclusion of an Agent in the coalition
ensures efficient organization of data exchange among Agents
by applying the multicast data transfer method.

The Multi-Agent Decision System is a reconfigurable
distributed computing architecture characterized by the
following advantages: dynamic scalability, fault tolerance and
robustness, flexibility in involving Agents in solving complex
problems, collective decision-making, and support for the
implementation of distributed artificial intelligence.

The specific areas of application for the Multi-Agent
decision-making system with multiple coalitions, which
provide the aforementioned advantages, include industrial and
technological processes, smart agriculture, transport and
logistics, smart cities, and the gaming industry.

VI. EXAMPLE OF COALITIONS FORMATION
To validate the results, we will examine a Multi-Agent

decision-making process applied in Smart Agriculture, with
two contradictory objectives:

a) Minimization of resources used in the production
process: involving labor - 1 1A (X) , water

consumption - 2 2A (X) , and fertilizer expenses -

3 3A (X) ;

b) Maximization of total profit (Profit = Income -
Expenses): involving a market specialist in the
agricultural products production market - 4 4A (X) ,

energy expenditure - 5 5A (X) , and logistics

expenses - 6 6A (X) .

Based on the data we will define the Multi-Agent system
A , where:

 
 
 

 
 

1 2 3

4 5 6

1 6

1 1 1 2 3

4 4 4 5 6

6

min,

max

M ,

Q X , X , X

Q X , X , X ,
A

S S ,...,S ,

Y f X , X , X ,

Y f X , X , X .


 
   
 

 

, (5)

In the process of the evolution of the topology of the
membrane computing system, two coalitions were formed:

   1 1 2 3C A A ,A ,A and    4 4 5 6C A A ,A ,A with two

action variables upon the activity environment 1Y and 4Y .

Figure 6 shows the Venn diagram for the membrane
computational model (P-Systems) of the Multi-Agent System
defined by the mathematical model (5).

Figure 6. Venn Diagram for a Multi-Agent System in a
Membrane Computing Model Defined by Mathematical

Equation (5).

The coalitions formed by the Agent 1A and 4A ensure

more efficient collaboration in order to solve the objectives
defined by applying those strategies.

VII. CONCLUSIONS
This paper addresses one of the global challenges in the

design of collaborative computing systems, focusing on
Multi-Agent systems and models inspired by nature. The
concept of nature-inspired computing, through its
interdisciplinary approach, provides a solid framework for

 Victor Ababii et al. / International Journal of Computing, 24(3) 2025, 513-519

518 VOLUME 24(3), 2025

developing innovative, efficient, and scalable algorithms and
computational systems. This methodology offers solutions to
complex problems that classical methods cannot solve,
providing benefits such as robustness, adaptability, and
distribution.

The computing cell model, proposed here, is a central
concept in the design of distributed systems inspired by
biological processes. It integrates mechanisms for autonomy,
collaboration, and communication, enabling the development
of systems capable of handling complex tasks efficiently and
robustly. By utilizing the principles of hierarchy, parallelism,
and concurrency, membrane computing extends the
applicability of biology-inspired models, facilitating
distributed and parallel processing of information. This model
is particularly suited for problems involving interactions
across multiple levels of complexity.

The integration of membrane computing models into
Multi-Agent systems offers a systematic approach for
dynamic coalition formation, agent coordination, and overall
strategy optimization. This framework enables objectives to
be achieved through collaboration and adaptability in
complex, variable environments. To validate the ideas
developed in the paper, we propose a mathematical model for
the synthesis of multi-coalition Multi-Agent systems,
demonstrating the potential of nature-inspired computation to
provide efficient solutions to optimization problems through
dynamic strategies for system configuration and
reconfiguration.

The research reveals that coalition building and the
application of multi-agent systems based on membrane
computing show significant promise for integrating these
models into emerging fields such as artificial intelligence,
distributed networks, and robotics. These research directions
offer new opportunities for the design of complex,
autonomous systems.

References

[1] N. Dey, A. S. Ashour & S. Bhattacharyya, Applied nature-inspired
computing: algorithms and case studies, Springer Singapore, 2020,
275 p., https://doi.org/10.1007/978-981-13-9263-4.

[2] G. Paun, Membrane computing: an introduction. Springer Berlin,
Heidelberg, 2012, 420 p, https://doi.org/10.1007/978-3-642-56196-2.

[3] S. Patnaik, X. S. Yang & K. Nakamatsu, Nature-inspired computing
and optimization. Theory and Application (Vol. 10). Heidelberg:
Springer, 2017, 494 p., https://doi.org/10.1007/978-3-319-50920-4.

[4] N. Siddique & H. Adeli, “Nature inspired computing: an overview and
some future directions,” Cognitive computation, vol. 7, pp. 706-714,
2015. https://doi.org/10.1007/s12559-015-9370-8.

[5] B. Song, K. Li, D. Orellana-Martín, M. J. Pérez-Jiménez & I. Pérez-
Hurtado, “A survey of nature-inspired computing: Membrane
computing,” ACM Computing Surveys (CSUR), vol. 54, issue 1, pp. 1-
31, 2021, https://doi.org/10.1145/3431234.

[6] S. Kaul, Y. Kumar, U. Ghosh, et al. “Nature-inspired optimization
algorithms for different computing systems: novel perspective and
systematic review,” Multimed Tools Appl, vol. 81, pp. 26779–26801,
2022, https://doi.org/10.1007/s11042-021-11011-x.

[7] L. Jiao, J. Zhao, C. Wang, X. Liu, F. Liu, & S. Yang, “Nature-Inspired
Intelligent Computing: A Comprehensive Survey,” Research, vol. 7,
Article 0442, 2024. https://doi.org/10.34133/research.0442.

[8] S. Garnier, & M. Moussaïd, “We the swarm – Methodological,
theoretical, and societal (r)evolutions in collective decision-making
research,” Collective Intelligence, vol. 1, issue 2, 2022,
https://doi.org/10.1177/26339137221133400.

[9] A. Almansoori, M. Alkilabi & E. Tuci, “On the evolution of
mechanisms for three-option collective decision-making in a swarm of
simulated robots,” Proceedings of the Genetic and Evolutionary
Computation Conference, 2023 (GECCO’23), pp. 4-12,
https://doi.org/10.1145/3583131.3590385.

[10] A. Dorri, S. S. Kanhere & R. Jurdak, Multi-agent systems: A survey.
IEEE Access, vol. 6, pp. 28573-28593, 2018,
https://doi.org/10.1109/ACCESS.2018.2831228.

[11] J. Qin, Q. Ma, Y. Shi & L. Wang, “Recent advances in consensus of
multi-agent systems: A brief survey,” IEEE Transactions on Industrial
Electronics, vol. 64, issue 6, pp. 4972-4983, 2016,
https://doi.org/10.1109/TIE.2016.2636810.

[12] A. M. Uhrmacher & D. Weyns (Eds.), Multi-Agent systems: Simulation
and applications. CRC press, 2018, 543 p., ISBN: 978-1-4200-7023-1.

[13] R. Melnic, V. Ababii, V. Sudacevschi, O. Sachenko, O. Borozan & T.
Lendiuk, “Multi-objective based multi-agent decision-making system,”
Proceedings of the 2023 IEEE 12th International Conference on
Intelligent Data Acquisition and Advanced Computing Systems:
Technology and Applications (IDAACS), vol. 1, 2023, pp. 834-839,
https://doi.org/10.1109/IDAACS58523.2023.10348725.

[14] R. Rădulescu, P. Mannion, D. M. Roijers & A. Nowé, “Multi-objective
multi-agent decision making: a utility-based analysis and survey,”
Autonomous Agents and Multi-Agent Systems, vol. 34, issue 1, Article
10, 2020. https://doi.org/10.1007/s10458-019-09433-x.

[15] A. S. Akopov & M. A. Hevencev, “A multi-agent genetic algorithm for
multi-objective optimization,” Proceedings of the 2013 IEEE
International Conference on Systems, Man, and Cybernetics, 2013, pp.
1391-1395, https://doi.org/10.1109/SMC.2013.240.

[16] E. Lavrov, N. Pasko, A. Tolbatov and N. Barchenko, “Development of
adaptation technologies to man-operator in distributed E-learning
systems,” Proceedings of the 2017 2nd International Conference on
Advanced Information and Communication Technologies (AICT), Lviv,
Ukraine, 2017, pp. 88-91,
https://doi.org/10.1109/AIACT.2017.8020072.

[17] E. N. Barron, Game theory: an introduction, Third Edition, John Wiley
& Sons, 2024, 547 p.

[18] R. Casado-Vara, F. Prieto-Castrillo & J. M. Corchado, “A game theory
approach for cooperative control to improve data quality and false data
detection in WSN,” International Journal of Robust and Nonlinear
Control, vol. 28, no. 16, pp. 5087-5102, 2018.
https://doi.org/10.1002/rnc.4306.

[19] P. Frisco, Computing with cells: Advances in membrane computing.
OUP Oxford, 2009, 336 p.
https://doi.org/10.1093/acprof:oso/9780199542864.001.0001.

[20] S. Munteanu, V. Sudacevschi, V. Ababii, “Computer systems synthesis
inspired from biologic cells structures,” Journal of Engineering Science,
Vol. XXIX (2), pp. 91-107, 2022.
https://doi.org/10.52326/jes.utm.2022.29(2).09.

[21] V. Ababii, V. Sudacevschi, A. Turcan, R. Melnic, V. Carbune, I.
Cojuhari, “Multi-objective decision making system based on spatial-
temporal logics,” Proceedings of the 24th International Conference on
Control Systems and Computer Science (CSCS-2023), 24-26 May 2023,
Bucharest, Romania, pp. 6-10,
https://doi.org/10.1109/CSCS59211.2023.00010.

[22] N. Cameron, “ESP32 Microcontroller,” In: ESP32 Formats and
Communication. Maker Innovations Series. Apress, Berkeley, CA, 2023,
pp. 1-54, https://doi.org/10.1007/978-1-4842-9376-8_1.

[23] A. Maier, A. Sharp and Y. Vagapov, “Comparative analysis and
practical implementation of the ESP32 microcontroller module for the
internet of things,” Proceedings of the 2017 Internet Technologies and
Applications (ITA), Wrexham, UK, 2017, pp. 143-148,
https://doi.org/10.1109/ITECHA.2017.8101926.

[24] D. de Santana Nunes, J. L. V. de Brito and G. N. Doz, “A low-cost data
acquisition system for dynamic structural identification,” IEEE
Instrumentation & Measurement Magazine, vol. 22, no. 5, pp. 64-72,
2019. https://doi.org/10.1109/IMM.2019.8868280.

[25] S. Gunde, A. K. Chikaraddi and V. P. Baligar, “IoT based flow control
system using Raspberry Pi,” Proceedings of the 2017 International
Conference on Energy, Communication, Data Analytics and Soft
Computing (ICECDS), Chennai, India, 2017, pp. 1386-1390,
https://doi.org/10.1109/ICECDS.2017.8389671.

[26] A. Pajankar, “Introduction to single board computers and Raspberry Pi,”
In: Raspberry Pi Supercomputing and Scientific Programming. Apress,
Berkeley, CA, 2017, pp. 1-25, https://doi.org/10.1007/978-1-4842-2878-
4_1.

[27] O. Dunets, C. Wolff, A. Sachenko, G. Hladiy and I. Dobrotvor, "Multi-
agent system of IT project planning," Proceedings of the 9th IEEE
International Conference on Intelligent Data Acquisition and Advanced
Computing Systems: Technology and Applications (IDAACS),
Bucharest, Romania, 2017, pp. 548-552,
https://doi.org/10.1109/IDAACS.2017.8095141.

[28] P. Bykovyy, V. Kochan, A. Sachenko and G. Markowsky, “Genetic
algorithm implementation for perimeter security systems CAD,”

Victor Ababii et al. / International Journal of Computing, 24(3) 2025, 513-519

VOLUME 24(3), 2025 519

Proceedings of the 4th IEEE Workshop on Intelligent Data Acquisition
and Advanced Computing Systems: Technology and Applications,
Dortmund, Germany, 2007, pp. 634-638,
https://doi.org/10.1109/IDAACS.2007.4488498.

[29] P. Bykovyy, Y. Pigovsky, V. Kochan, A. Sachenko, G. Markowsky and
S. Aksoy, “Genetic algorithm implementation for distributed security
systems optimization,” Proceedings of the IEEE International
Conference on Computational Intelligence for Measurement Systems
and Applications, Istanbul, Turkey, 2008, pp. 120-124,
https://doi.org/10.1109/CIMSA.2008.4595845.

[30] N. Dziubanovska, “Modeling of war-induced Ukrainian migration’s
impact on Poland’s trade using machine learning,” Proceedings of the
4th International Workshop on Information Technologies: Theoretical
and Applied Problems, 2024, pp. 494-508. [Online]. Available at:
https://ceur-ws.org/Vol-3896/paper29.pdf.

[31] M. Mohammed Ibrahim, R. Venkatesan, Kavikumar Jacob,
“Investigating the feasibility of elementary cellular automata based
scrambling for image encryption,” International Journal of Computer
Network and Information Security (IJCNIS), vol. 17, no. 1, pp. 28-38,
2025. https://doi.org/10.5815/ijcnis.2025.01.03.

[32] A. Novikov, S. Yakovlev, I. Gushchin, “Exploring the possibilities of
MADDPG for UAV swarm control by simulating in Pac-Man
environment,” Radioelectronic and Computer Systems, vol. 2025, no. 1,
pp. 327-337, 2025. https://doi.org/10.32620/reks.2025.1.21.

VICTOR ABABII received the PhD
degree in computer engineering from
Technical University of Moldova,
Republic of Moldova, in 2000.
Currently, he is an Associate
Professor with the Department of
Computer Science and Systems
Engineering, Technical University of
Moldova. His research interests
include modeling and design of
reconfigurable real-time decision
making multi-agent systems.

VIORICA SUDACEVSCHI graduated
from Technical University of Moldova
in Computer Science in 1988. In 2010
she received her PhD degree in
Engineering, specialty “Computers,
computer systems and Networks”
from Technical University of Moldova.
Her research interests focus on
computer systems design, modelling
and analyzing based on Petri nets,
reconfigurable computer

architectures, cyber security and
cyber incident management.

SILVIA MUNTEANU graduated from
the Technical University of Moldova
in Computer Science in 2002. She is
currently a PhD student in
Engineering, specializing in “Control
Systems, Computers, and Networks”
at the Technical University of
Moldova. Her research interests
focus on the design, modeling, and
analysis of computer systems based
on nature-inspired models and
reconfigurable computing
architectures.

VIOREL CARBUNE graduated from
the Technical University of Moldova
in Computer Science in 2007. In 2020,
he received his PhD degree in
Engineering, specializing in 'Control
Systems, Computer and Networks'
from the Technical University of
Moldova. His research interests
include modeling and design of
reconfigurable and Artificial
Intelligence-based systems.

OLESEA BOROZAN graduated from
the Technical University of Moldova
in Computer Science in 2005. She is
currently a PhD student in
Engineering, specializing in “Control
systems, Computer and Networks” at
the Technical University of Moldova.
Her research interest focuses on the
design, modeling, and expertise of
decision-making computer systems
based on natural language
processing and speech recognition.

