
Date of publication MMM-dd, yyyy, date of current version MMM-dd, yyy
www.computingonline.net/ computing@computingonline.net

Print ISSN 1727-6209
Online ISSN 2312-5381
DOI 10.47839/ijc.19.3.XX

Evaluating the Quality of Class Diagrams
Generated by GPT-4 Model

KELETSO J. LETSHOLO
Faculty of Computer Information Science, Higher Colleges of Technology, Abu Dhabi, UAE

https://orcid.org/0000-0003-4355-7987, e-mail: kletsholo@hct.ac.ae

ABSTRACT
Automatically generating accurate and comprehensive class diagrams from natural language requirements
can minimize human errors, improve accuracy, and streamline requirements analysis. OpenAI’s GPT-
4 model has made significant strides in this domain. For GPT-4 to gain traction within requirements
engineering, the quality of its class diagrams is essential. This study evaluates GPT-4’s class diagrams by
comparing them to those created by experts and existing tools, using precision, recall, and F1 measures,
which reveal significant variability. GPT-4’s precision ranges from 0.61 to 0.88, reflecting a varied ability
to correctly identify instances. Recall spans from 0.63 to 1.00, indicating differences in capturing all
relevant instances. The F1 score, which balances precision and recall, ranges from 0.65 to 0.87, indicating a
variety of effectiveness in different contexts. In particular, GPT-4 outperforms existing tools in precision,
recall, and F1 score, showcasing its strong aptitude to generate accurate class diagrams from natural
language. This paper evaluates the GPT-4 diagrams against expert benchmarks, compares them with four
tools, and presents insights into GPT-4’s capacity in requirements engineering.

KEYWORDS Generative Pre-trained Transformer (GPT); Requirements Engineering (RE); Natural
Language Processing (NLP); Class Diagram.

I. INTRODUCTION

AClass diagram is important in the requirements en-
gineering phase, as it provides a blueprint of the

system structure by translating requirements into visual
representations. It serves as an analysis model by visually
representing the structure of system classes, their attributes,
operations, and relationships [1]. It is a form of the Unified
Modeling Language (UML) model. This paper focuses on
a class diagram for two reasons: it documents the most
important concepts in requirements analysis, which are
classes, attributes, and relationships, and it is a fundamen-
tal analysis technique used in most software development
methodologies [2], [3].

The automatic creation of class diagrams or analysis
models can greatly enhance productivity in the software
development lifecycle. By automating the production of
these diagrams, consistency is maintained, and errors are
minimized, facilitating the transition from informal require-
ments described in natural language to formal design com-
ponents. This process reduces the manual modeling effort,

allowing developers and analysts to focus more on high-
level design and problem solving tasks. Although automated
generation of class diagrams offers significant advantages,
it also encounters certain challenges. A key challenge is the
interpretation of natural language requirements, which are
often ambiguous. Such an ambiguity can lead to misinter-
pretations and subsequent design inaccuracies. Therefore,
the quality of the generated class diagrams is of utmost
importance; poor quality diagrams can lead to defective
models, which can worsen issues throughout the devel-
opment lifecycle. Furthermore, it is essential to evaluate
the accuracy and completeness of the diagrams produced
by these tools to mitigate the risk of error propagation
throughout the development process.

Advancements in deep learning have promoted the use
of large language models (LLMs) such as BERT (Bidi-
rectional Encoder Representations from Transformers) [4]
and GPT (Generative Pre-trained Transformer) [5] to trans-
form natural language requirements (NLRs) into various
software artifacts, including class diagrams. An LLM is

VOLUME 19(3), 2020 1

Keletso J. Letsholo / International Journal of Computing, 19(3) 2020, 1-2

a deep neural network model that has been trained on
large amounts of data, such as books, code, articles, and
websites, to learn the underlying patterns and relationships
in the language for which it was trained [6]. The GPT
model is a specific type of LLM, built using a transformer
architecture, and is pre-trained on a diverse dataset in an
unsupervised manner. After this pre-training, the GPT model
can be fine-tuned on smaller, specific datasets, reducing its
dependency on extensive labeled data. The model’s training
process enables it to generalize effectively across various
tasks, making it adaptable to different application scenarios
such as requirement engineering. Furthermore, the GPT
transformer architecture has the ability to capture context
more effectively than traditional models [5], enabling it to
automatically extract class diagram elements from implicit
requirements. However, the quality of the GPT generated
class diagrams is yet to be determined, as there is little to no
published research that systematically evaluates the quality
of these diagrams in terms of accuracy and completeness.
These diagrams are at the start of several subsequent phases
in software development; faults not detected at this stage can
be costly to fix at later stages. Evaluating the quality of the
class diagrams generated by GPT models is important to
determine the effectiveness of automated tools in practical
software development environments. Additionally, evaluat-
ing the performance of GPT models in generating class
diagrams can lead to improvements in AI-driven develop-
ment tools, ultimately enhancing productivity, reducing the
likelihood of human error, and speeding up the requirements
engineering process. This research evaluates the GPT-4
model, an advanced multimodal system that reaches human-
level performance on numerous rigorous professional and
academic benchmarks. It exceeds the capabilities of current
large language models in multiple natural language process-
ing tasks and surpasses the majority of cutting-edge systems,
which frequently depend on task-specific fine-tuning [7].

The purpose of this study is to evaluate the quality
of the class diagrams generated by the GPT-4 model by
comparing them with those created manually by human
experts, as well as with the diagrams produced by existing
Natural Language Processing for Requirements Engineering
(NLP4RE) tools. NLP4RE tools use natural language pro-
cessing (NLP) techniques to improve requirements engineer-
ing (RE) tasks. To measure the quality of GPT-4 generated
class diagrams, precision, recall, and F1 measures are used,
and the study findings show notable variability in these
scores. The precision ranges from a minimum of 0.61 to
a maximum of 0.88, indicating inconsistency in GPT-4’s
ability to accurately identify relevant instances compared to
the total instances it retrieved. Recall values range from 0.63
to a perfect 1.00, highlighting differences in the extent to
which GPT-4 retrieves all relevant instances. Meanwhile, the
F1 score, reflecting a balance between precision and recall,
varies between 0.65 and 0.87, highlighting the diversity in
the effectiveness of GPT-4 in different contexts of NLRs.
Furthermore, compared to existing NLP4RE tools, the GPT-

4 model significantly outperforms these tools in precision,
recall, and the F1 score, indicating a robust ability to
generate accurate and comprehensive class diagrams from
NLRs. The contributions of this paper are threefold. First,
it presents an evaluation of the quality of GPT-4 generated
class diagrams by comparing them to reference diagrams
created manually by human experts. Second, it provides an
evaluation of how the GPT-4 generated diagrams compare
to those produced by the four existing NLP4RE tools. Third,
it offers insight to the requirements engineering community
to understand how well the GPT-4 model can generate class
diagrams from NLRs.

The remainder of the paper is organized as follows.
Section II, reviews previous research focused on evaluating
the performance of GPT-based models in generating analysis
models. Section III, Methodology, discusses the processes,
tools, and comparative strategy used when evaluating the
quality of generated class diagrams. Section IV, Results
presents the findings of the comparative analysis. Section V,
Discussion, provides an in-depth analysis of the results,
highlighting the implications for software development prac-
tices. Section VI, identifies potential limitations in the
design, execution, or interpretation of this study. Finally,
Section VII, Conclusion, summarizes the key findings of the
study, reflecting on the research objectives and contributions.

II. RELATED WORK
De Bari et al. [8] conducted a systematic evaluation of
LLMs, including those based on GPT, in UML class di-
agram modeling exercises. Their research highlights how
LLM performance varies depending on prompt configura-
tion and evaluation scenarios. They achieved human-level
performance in certain tasks. In contrast, this study directly
compares the generated diagrams with expert benchmarks
using precision, recall, and F1 metrics. Unlike De Bari et
al. [8], who focus on educational settings and qualitative
analyzes, this paper uses expert-designed benchmarks and
traditional information retrieval metrics. This approach pro-
vides a unique perspective that is more aligned with industry
practices and automated tool evaluation.

Extended evaluations in other domains, such as those
involving ChatGPT, have assessed its capabilities and lim-
itations in software modeling [9]. Although LLMs have
shown significant progress in code generation, their effec-
tiveness in producing UML class diagrams and assisting
modeling tasks is limited by syntactic and semantic com-
plexities, inconsistent responses, and scalability challenges.
Researchers advocate for incorporating LLMs into model-
based systems engineering (MBSE) to potentially enhance
the societal impact of MBSE. Marques et al. [10] ana-
lyzed the role of LLMs, such as ChatGPT-3.5, in software
requirements engineering, using a comparative analysis.
Their study highlights ChatGPT’s efficiency in eliciting
requirements and its accuracy in capturing user needs,
improving communication among stakeholders. Research by
Speth et al. [11] investigates ChatGPT’s potential in creating

2 VOLUME 19(3), 2020

Keletso J. Letsholo / International Journal of Computing, 19(3) 2020, 1-2

software engineering modeling exercises using UML class
and sequence diagrams, showcasing promise in educational
settings. The study examines ChatGPT’s interpretation of
UML diagrams, both graphically and textually, to develop
customized exercises that improve conceptual understanding
in software engineering education. Although ChatGPT ex-
cels with textual UML diagrams, it struggles with graphical
UML accuracy, producing quality comparable to earlier
models like the GPT-3.5-turbo. Manual review remains
necessary for optimal exercise creation. Ronanki et al. [12]
explored the potential of ChatGPT to generate requirements
and compared its output with that of human RE experts from
academia and industry. The results suggest that ChatGPT
can support requirements-elicitation processes by trans-
forming raw requirements into high-quality specifications.
Further exploration of ChatGPT’s applications in various
RE activities is recommended to leverage LLM capabilities
and encourage broader adoption in RE tasks.

Other researchers have considered the applications of
LLM-based tools such as ChatGPT in automating various
software engineering tasks [13], including code generation
[14]–[16] and test generation [17]. However, it is necessary
to assess whether AI-based tools offer higher success rates
than standard and manual practices [18]. It is crucial to in-
vestigate whether AI tools can outperform human experts in
delivering valuable results to the requirements engineering
community.

A recent systematic review of the literature that examines
advances in automated support for RE underscores the
predominant use of controlled experiments for tool eval-
uation [19]. The study concludes that, while there has been
substantial academic progress, limited industrial application
and comparative evaluations pose challenges that need to
be addressed to enhance automation in RE and software
development practices. The mapping study conducted by
Zhao et al. [20] also highlighted a general lack of evaluation
in the results of the NLP4RE research. This mapping study
recommends that practitioners and experts in the field of
RE must participate in the evaluation of the results of
the NLP4RE tools. This recommendation aligns with what
Yue et al. [21] emphasized: the quality of an automatically
generated analysis model should be evaluated by comparing
it with one manually developed by human experts to deter-
mine how closely the automated analysis model matches
the expert solution. However, this is not always feasible
because experts often come at a higher cost and are not
always accessible [22].

None of the studies explicitly included RE experts in the
evaluation of the class diagrams produced by GPT models.
Furthermore, some studies did not assess correctness and
completeness using standard metrics such as precision, re-
call, and the F1 score. This indicates areas for improvement
in evaluating AI tools for requirements engineering tasks
and suggests an opportunity for future research to incorpo-
rate RE experts’ assessments and quantitative measures.

III. METHODOLOGY

The methodology used in this study follows a systematic
workflow to assess the quality of the class diagrams pro-
duced by the GPT-4 model based on the requirements of
natural language. As shown in Figure 1, the process starts
with selecting a diverse set of NLRs as input scenarios.
Benchmark class diagrams for each NLR are independently
crafted by human experts to establish accurate reference
points. The GPT-4 model is then tasked with generating
the corresponding class diagrams based on the same NLRs.
Subsequently, key components, such as classes, operations,
and relationships, are methodically extracted from both the
expert and GPT-4 diagrams. These components form the
foundation for a detailed comparison, where matches and
discrepancies are thoroughly evaluated using standardized
criteria. Metrics, including precision, recall, and the F1
score, are calculated to measure the accuracy and com-
pleteness of the automated method. The results from this
comparative process are then analyzed to derive insight-
ful conclusions on GPT-4’s effectiveness in class diagram
creation and its implications for requirements engineering
practice.

Figure 1: Workflow of the Methodology

VOLUME 19(3), 2020 3

Keletso J. Letsholo / International Journal of Computing, 19(3) 2020, 1-2

A. SELECTION OF NLRS DATASET
The data set used in this study includes five NLR speci-
fications obtained from peer-reviewed publications and is
widely recognized for its use in the evaluation of the
NLP4RE tools. The NLR specifications range from 78 to
285 words in length, with an average sentence length of 12
words, and an average of 16 sentences per specification.
The average lexical density is 43.23%. Lexical density
is a measure that estimates the linguistic complexity of
written or spoken communication by examining the ratio of
content words to functional words. Thus, the lower lexical
density implies that the specifications were relatively easy
to understand. The NLR specifications are presented in the
Appendix A and are briefly described as follows:

• NLRs-1: is from the library information systems do-
main and was presented and used in [23]. The speci-
fication has 219 words, 21 sentences, with an average
length of 10 words per sentence and a lexical density
of 46.58%.

• NLRs-2: gives a high-level description of the library
system. The specification was used as an example
in [24] and [25]. The specification has 78 words,
8 sentences, with an average length of 9 words per
sentence and a lexical density of 41.03%.

• NLRs-3: focuses on an online shoe company that sells
shoes to its customers through a website. The specifica-
tion was originally published in [26]. The specification
has 227 words, 15 sentences, with an average length of
15 words per sentence and a lexical density of 49.78%.

• NLRs-4: describes the interaction between a hypotheti-
cal salesperson and a sales order system. This specifica-
tion was published and used in [27]. The specification
has 169 words, 17 sentences, with an average length of
9 words per sentence and a lexical density of 46.15%.

• NLRs-5: is a hypothetical specification involving an
in-flight missile control system. The specification was
introduced and used in [28]. The specification has 285
words, 16 sentences, with an average length of 17
words per sentence and a lexical density of 32.63%.

B. SELECTION OF EXISTING NLP4RE TOOLS
Four existing NLP4RE tools were selected for this study.
The tools were selected mainly because they have previously
used one of the NLRs mentioned in Section III-A to generate
a class diagram, and their solutions have been published in
peer-reviewed conferences and journals. The four tools are
briefly described below.

CM-Builder [23] is an NL-based tool that aims to support
the requirements analysis process by identifying class, at-
tributes and relationships of objects used to model a problem
domain. CM-Builder takes software requirements text writ-
ten in English as input and constructs an initial UML Class
Model, either automatically or interactively with the analyst.
The CM-Builder approach involves four stages: (1) Collect
functional requirements or problem descriptions in natural
language. (2) Use an NL processing system to syntactically

and semantically analyze these requirements and create a
world model as a knowledge base. (3) Extract object classes,
attributes, and relationships based on predefined rules. (4)
Generate an initial static structure model of the system and
refine it using a graphical CASE tool.

CIRCE [28] is an environment to analyze and transform
NLR specifications into different UML models, including
a class diagram. It is based on the concept of successive
transformations applied to requirements to obtain concrete,
rendered views of models extracted from these requirements.
The transformation process in CIRCE is divided into five
steps. First, the natural language text of the requirements is
parsed into a forest of parse trees. In the second step, these
parse trees are encoded as tuples, providing extensional
knowledge about the requirements. Next, an embedded
expert system refines this knowledge by enriching the tu-
ples, resulting in intentional knowledge about the software
system’s structure and behavior. In the fourth step, specific
views of the requirements are modeled by extracting infor-
mation from the shared tuple space, producing an abstract
description. Finally, the abstract view is rendered into a
concrete view. CIRCE has been implemented as a web-
based system and uses a central server as a repository for
requirements documents, allowing users to edit and request
specific views through a standard web browser.

RACE (Requirements Analysis & Class Diagram Extrac-
tion) [24] is a method and tool designed to facilitate the
requirements analysis process and class diagram extraction
from textual requirements using natural language processing
and domain ontology techniques. The RACE tool uses the
OpenNLP1 parser to obtain lexical and syntactic parses of
textual requirements written in English. In addition, it uses
WordNet to validate the semantic accuracy of the sentences
generated during syntactic analysis. Concepts are identified
according to the requirements document, and a domain
ontology is used to enhance the performance of concept
identification. The RACE tool identifies concepts based on
analysis of nouns, noun phrases, and verbs. Heuristic rules
are then used to extract class diagrams from the identified
concepts. The RACE tool assists analysts by providing an
efficient and fast way to produce class diagrams from their
requirements. It supports good user interaction by offering
a human-centered user interface that involves the user in the
analysis process.

Shinde et al. System [25] uses natural language pro-
cessing techniques to lexically analyze software requirement
texts written in English and builds an integrated discourse
model of the processed text, represented in a Semantic
Network. This system automatically constructs UML dia-
grams (i.e., a class model representing the object classes
mentioned in the text and their relationships) from the
Semantic Network. It uses the WordNet dictionary to obtain
the semantic relations between classes and attributes. In
addition, the system includes an interactive user interface

1OpenNLP —http://opennlp.apache.org/

4 VOLUME 19(3), 2020

Keletso J. Letsholo / International Journal of Computing, 19(3) 2020, 1-2

that allows the user to add, delete, and rename classes and
relationships in the generated class diagram. Through this
interface, the domain expert can help improve the results
obtained by the system.

The four tools were developed before the launch of GPT-4
and utilized supervised learning techniques to generate class
diagrams from the NLR specification. Supervised learning
techniques require a comprehensive set of labeled data,
where each input is paired with the correct output or label.
These labeled data must accurately represent the problem
domain to ensure that the model can effectively adapt
to new unseen data. The quality of the labels is critical,
as inaccuracies can lead to poor model performance. In
addition, the data set should be evenly distributed across
different classes in classification tasks to prevent biases and
promote fair learning. Acquiring and correctly labeling these
data is time-consuming and expensive but is essential for the
effectiveness of supervised learning models.

C. CREATION OF EXPERT BENCHMARKS
In this study, a benchmark refers to a high-quality class
diagram created by human experts, which acts as a standard
or point of reference. The benchmarks provide a reliable
foundation for evaluating the quality of diagrams generated
by automated tools. Two requirements engineering experts
participated in the creation of benchmark class diagrams
for the five NLR specifications discussed in Section III-A.
Expert 1 has more than 25 years of experience in the field
of requirements engineering, teaching, and research, while
Expert 2 has more than 15 years of experience in the same
areas. The experts voluntarily participated in creating the
benchmark class diagrams without any financial compensa-
tion, and each dedicated about 1.5 to 2 hours to the task,
as detailed in Table 1. No strict time limit was imposed on
experts; they were asked to complete the task at their normal
professional pace to reflect realistic modeling conditions.
This approach ensures that the benchmark diagrams reflect
the best judgment of experts without restrictions that could
compromise quality. The actual time spent by each expert
provides transparency in terms of the effort required.

Employing human experts to create benchmark class
diagrams is important for several reasons. The experts
ensure that the diagrams are of the highest quality and
accurately represent the required classes, relationships, and
attributes. Their extensive knowledge in the field can es-
tablish a solid standard for evaluating the effectiveness of
automated tools. Human experts are competent in dealing
with the complexities and intricacies of real-world systems,
enabling them to make well-informed decisions that auto-
mated tools may struggle with. Their skill in interpreting
various requirements and constraints leads to solutions that
are more adaptable and context-specific. Using manually
created benchmarks can help identify the shortcomings of
automated tools, guiding efforts to improve the performance
of these tools. The two experts received the same dataset
with the following instructions:

1) For each NLR specification, create a class diagram
or identify relevant elements (e.g., classes, attributes,
operations, and relationships) needed for construct-
ing a class diagram.
A class element can be textually represented as
Class [Attribute] (Operation), and a relationship can
be represented as class -verb phrase- class.

2) Record the time taken to complete task 1.

The evaluation focused on the core elements of the UML
class diagrams, in particular:

• Classes - the core entities that form the foundation of
the system.

• Operations - specify the various functions or services
that are made available by each individual class.

• Relationships - describe the various types of connec-
tion, including associations, aggregations, and general-
izations that occur between classes.

According to the UML 2.0 specifications [1], these com-
ponents together comprise the fundamental structural and
dynamic elements of a system. Therefore, the functions
to measure the accuracy and completeness of class dia-
grams are based on the identified classes, operations, and
relationships. This study does not limit the types of UML
classes considered, including abstract classes, interfaces,
or stereotypes, which underscores the aim of evaluating
general-purpose automated modeling tools suitable for di-
verse requirements. Future work will involve refining the
scope to focus on specialized diagrams or domain-specific
classes.

Table 1 shows the total number of elements (that is,
classes, operations, and relationships) identified by experts
according to the NLR specification. This task was achieved
by counting individual classes, operations, and binary re-
lationships in the benchmark diagrams produced by the
experts. The experts identified a similar number of rela-
tionships, with minor differences. Operation counts differed
more, and Expert 2 typically identified more numbers.
Expert 1 took 96 minutes, and Expert 2 took 106 minutes
to manually construct benchmark class diagrams for the five
NLRs. The benchmarks are shown in the Appendix C for
the readers to independently verify the number of elements
counted.

D. GENERATION OF GPT-4 CLASS DIAGRAMS

ChatGPT utilizing the GPT-4 model was used to generate
class diagrams from the NLR specifications. ChatGPT offers
an interface that allows users to input their requirements
and receive automatically generated class diagrams based on
their specifications. In addition, it can provide further expla-
nations and context to help users understand the rationale
behind the generated diagrams. For each NLR specification,
a class diagram was generated using the following prompt:

VOLUME 19(3), 2020 5

Keletso J. Letsholo / International Journal of Computing, 19(3) 2020, 1-2

NLRs-1 NLRs-2 NLRs-3 NLRs-4 NLRs-5 Total Time

Classes 10 10 6 6 9
Expert 1 Operations 12 10 16 17 12 91 mins

Relationships 5 5 5 4 7
Total 27 25 27 27 28

Classes 8 8 7 7 8
Expert 2 Operations 11 12 16 18 15 106 mins

Relationships 5 6 6 6 7
Total 24 26 29 31 30

Table 1: Number of elements identified by experts per NLRs.

Given the following natural language requirements, create
a class diagram or identify the relevant elements (e.g.,
classes, attributes, operations, and relationships) needed
to construct a class diagram.
A class element can be textually represented as Class
[Attribute] (Operation), and a relationship can
be represented as class -verb phrase- class.
{NLR specification}

For the purpose of this study, only textual representations
of the ChatGPT-generated class diagrams were obtained.
However, it is worth mentioning that you can use UML di-
agramming tools to visually render these class diagrams by
copying and pasting the textual representations. When GPT-
4 generates textual representations of NLR class diagrams,
the output includes several key elements that mirror the
components of a traditional class diagram. The text output
is formatted to include the following key elements.
Class Definitions: Each class is clearly identified by its
name and is typically accompanied by a description that
captures its purpose and role within the system.
Attributes (Properties): For each class, the model lists the
attributes with their respective data types. The attributes
are typically enumerated in a structured manner, identifying
essential properties of the class.
Methods (Functions): the methods associated with each
class are specified, and this includes their names, return
types, and parameters.
Relationships: the relationships between classes, such as
associations, inheritances, and dependencies, are included in
the model. These relationships are crucial to understanding
how different classes interact within the system.

A summary of the number of elements of the class
diagram generated by the GPT-4 model for each NLR is
shown in Table 2. The time taken by GPT-4 to generate a
class diagram from an NLR specification was a matter of
seconds, well within a minute.

NLRs-1 NLRs-2 NLRs-3 NLRs-4 NLRs-5

Classes 7 11 7 6 9
Operations 13 17 13 28 22

Relations 5 6 6 10 8
Total 25 34 26 44 39

Table 2: Number of elements produced by GPT-4 model for
each NLR.

E. COMPARISON STRATEGY

The accuracy and completeness of class diagrams generated
by the GPT-4 model was evaluated by comparing them
with the benchmark class diagrams created manually by
experts. Each element in the class diagram produced by
GPT-4 on the same NLR specification is matched to a
corresponding element in the benchmark. For each match
found, the counter representing the relevance of the GPT-4
class diagram is incremented by one; thus, an element is
classified as relevant, if it correctly matches an element in
the benchmark. Due to limited resources, the comparison
was carried out by the author of the article and indepen-
dently verified by two post-graduate students. The author
asked post-graduate students and gave them instructions on
how to follow the comparison strategy as presented in the
Appendix B. The two post-graduate students who assisted
with the independent verification of the comparison process
participated on a voluntary basis and were not financially
compensated for their contribution.

Following the approach used in [23], the matching is done
in two stages. First, the names of the matching elements
must be plausibly close (for example, loan item can match
item but not loan). Second, the context in which the element
has been used is taken into consideration to find out if that
is what its name suggests. Classes are matched through
approximate matching of names, while their context is
determined by evaluating their attributes, operations, and
relationships. Attributes are not counted; however, they are
used to evaluate the context of a class element. In cases
where two response classes could be matched to one key
class or vice versa, the score will not be affected, regardless
of the choice. Operations matching is only limited to name
matching; thus, parameters, return types and data types were
not taken into consideration. An operation with a name
matching that of the benchmark should also appear in a
relevant class. Relationships are matched through context
matching, and only binary relationships were considered.
Thus, a relationship between class A and B is classified
as correct, if it exists between matching classes of the
benchmark. In this comparison, associations, aggregations,
compositions and generalizations are counted together as
relationships.

6 VOLUME 19(3), 2020

Keletso J. Letsholo / International Journal of Computing, 19(3) 2020, 1-2

F. EVALUATION METRICS
The quality of the generated class diagrams was assessed
using precision, recall, and the F1 score, following stan-
dard practice in both requirements engineering and model
transformation research [21], [22], [29]. These metrics have
been widely used to quantify the correctness and complete-
ness of software artifacts generated from natural language
specifications.

To assess the correctness of class diagrams generated by
the GPT-4 model compared to those created manually by
experts, the precision metric is used. This metric evaluates
the correctness and relevance of elements within a GPT-
constructed class diagram, highlighting how closely the
model aligns with the real world or domain. The precision
is calculated using the following formula:

Precision =
Number of correctly identified elements

Total number of elements retrieved
(1)

A high precision rate confirms that most of the components
included in the generated class diagram from the NLR spec-
ification are relevant and accurate. This reduces the chance
of adding unnecessary or incorrect elements, which can
cause confusion or inefficiencies in the later development
or maintenance stages. In addition, high precision increases
the credibility of the documentation and promotes clearer
communication between various stakeholders by ensuring
that the information provided is relevant and concise. High
precision in a generated class diagram signifies that the
diagram is more targeted and relevant, while low precision
suggests that many of the included components are extra-
neous or incorrect, resulting in a chaotic and potentially
misleading diagram.

The completeness criterion evaluates GPT-4’s ability to
identify all model elements that align with those created
by human experts. To assess the completeness of the class
diagrams generated by the GPT-4 model, the recall metric
is used. Recall measures the ratio of correctly identified
relevant elements to the total number of relevant elements
in the benchmark. Specifically, it focuses on how well the
generated model captures all relevant information defined in
the requirements. The recall measure is expressed as:

Recall =
Number of correctly identified elements

Total number of elements in the Benchmark
(2)

The high recall rate guarantees that the majority of key
components in the NLR specification are captured in the
produced class diagram. This reduces the likelihood of
overlooking vital elements, which could result in mistakes or
misinterpretations during later development or maintenance
phases. In addition, high recall contributes to the creation
of more precise documentation and facilitates better com-
munication between different stakeholders. A class diagram

generated that demonstrates high recall suggests that it is
more comprehensive. In contrast, low recall indicates that a
significant number of essential elements are absent, leading
to an incomplete diagram.

Precision and recall were initially created to assess in-
formation retrieval systems and have become widely used
to evaluate software tools that generate software artifacts
from NLR specifications [29], [30], [23]. In addition, the
F1 score, which combines precision and recall in a single
metric, is used for a more balanced evaluation. Provides a
harmonic mean of precision and recall, offering a compre-
hensive measure of the accuracy of a model. The F1 score is
particularly useful when assessments need to consider both
the accuracy of retrieved elements and the completeness of
the model generated from NLR specifications. This metric is
widely adopted in the evaluation of software tools to ensure
robust performance in the generation of software artifacts.

F1 Score = 2× Precision × Recall
Precision + Recall

(3)

IV. RESULTS
A. GPT-4 AGAINST EXPERT BENCHMARKS
To evaluate the consistency between two experts tasked with
creating benchmark class diagrams, an inter-rater agreement
analysis was performed using Cohen’s kappa statistic. For
each NLR, the presence or absence of every uniquely
identified class element, as aggregated from the responses of
both experts, was coded as 1 (present) or 0 (absent) for each
expert. The observed agreement, calculated as the proportion
of class elements for which both experts agreed on presence
or absence, was 65.4%. The expected agreement by chance,
based on the prevalence of identified classes per expert,
was 63.2%. The resulting Cohen kappa coefficient was 0.06,
typically indicating a slight agreement beyond chance [31].

The outcome highlights the inherent ambiguity and sub-
jectivity in the analysis of requirements and the modeling
of the UML class, where even experienced experts can
interpret and abstract the same requirements of natural
language differently. Despite experts receiving the same data
set and instructions, there are variations in the number of
identified elements. This variability demonstrates that there
is no single benchmark class diagram for any given NLRs.
Consequently, variations in class diagrams emerge, leading
to an understanding that diagrams are not simply correct
or incorrect, but judged as good or bad. Therefore, the
use of multiple expert benchmarks is warranted to reflect
the feasible solution space and provide a comprehensive
evaluation framework for automated methods.

The performance of the GPT-4 model is evaluated against
benchmark class diagrams from two experts, each pro-
viding a unique perspective on its effectiveness. Table 3
presents an assessment of the performance of GPT-4 using
benchmarks created by Experts 1 and 2. This evaluation
involves precision, recall, and F1 score metrics in five
benchmark diagrams, labeled NLRs-1 to NLRs-5. Against

VOLUME 19(3), 2020 7

Keletso J. Letsholo / International Journal of Computing, 19(3) 2020, 1-2

NLRs-1 NLRs-2 NLRs-3 NLRs-4 NLRs-5

Precision 0.68 0.65 0.88 0.61 0.69
Expert 1 Recall 0.63 0.88 0.85 1.00 0.96

F1 score 0.65 0.75 0.87 0.76 0.81

Precision 0.76 0.71 0.77 0.64 0.77
Expert 2 Recall 0.79 0.92 0.69 0.90 1.00

F1 score 0.78 0.80 0.73 0.75 0.87

Table 3: Results of GPT-4’s Performance Metrics on Expert Benchmark Diagrams

Expert 1 benchmarks, the GPT-4 model obtained precision
rates ranging from 0.61 to 0.88, with optimal precision
observed in NLRs-3, while recall scores range from 0.63
to a perfect 1.00, notably achieving full recall for NLRs-4.
Against Expert 2 benchmarks, the GPT-4 model obtained
precision rates between 0.64 and 0.77, and recall scores
range from 0.69 to 1.00, achieving full recall in NLR-5.
The F1 score, which synthesizes precision and recall, is
between 0.65 and 0.87 for Expert 1 and between 0.73 and
0.87 for Expert 2. With both experts responsible for bench-
mark constructions, the variability in observed performance
metrics underscores their differing perspectives or standards
of analysis, indicating how the perceived consistency and
reliability of GPT-4 may fluctuate with the complexity of
benchmarks and variances in expert-designed criteria.

B. GPT-4 MODEL VS EXISTING NLP4RE TOOLS
The comparison strategy discussed in Section III-E was fol-
lowed to objectively compare the class diagrams generated
by the GPT-4 models to those generated by the existing
NLP4RE tools. Thus, the published class diagrams produced
by these tools were compared with the benchmark class
diagrams created by experts to calculate their precision
and recall rates. CM-Builder has a published class diagram
for NLRs-1; when compared to Expert 1’s benchmark
for NLRs-1, 11 out of 27 elements were relevant, while
compared to Expert 2’s benchmark, 9 out of 24 elements
were relevant. RACE and the system by Shinde et al. both
have class diagrams published for NLRs-2. Compared to
Expert 1’s benchmark, RACE had 14 out of 25 relevant
elements, while compared to Expert 2’s benchmark, 12 out
of 26 elements were relevant. The system of Shinde et al.
had 17 out of 25 relevant elements when compared to Expert
1’s benchmark, and 18 out of 26 elements were relevant
when compared to Expert 2’s benchmark. CIRCE has a
class diagram published for NLRs-5 and when compared to
Expert 1’s benchmark, 22 out of 28 elements were relevant,
while compared to Expert 2’s benchmark, 21 out of 30
elements were relevant. Since we do not have access to
the tools to generate class diagrams for the other NLR
specifications, the comparison is limited to the published
class diagrams. The evaluation focused on how well these
tools aligned with class diagrams developed by experts on
NLR-1, NLR-2, and NLR-5 benchmark diagrams.

Table 4 shows the precision, recall and F1 metrics for
four NLP4RE tools: CM-Builder, RACE, Shinde et al., and

CIRCE. CIRCE consistently demonstrated superior perfor-
mance, achieving high precision and recall, leading to higher
F1 scores. In contrast, CM-Builder and RACE demonstrated
higher precision with lower recall, resulting in moderate F1
scores. Shinde et al. achieved a balance between precision
and recall. These variations in precision, recall, and F1
scores underscore the various levels of performance of the
tools when assessed against expert-generated diagrams.

The performance of GPT-4 was then compared with
the NLP4RE tools using graphs. This sequence of graphs
provides a comprehensive analysis of GPT-4’s precision,
recall, and F1 score compared to various NLP4RE tools,
including CM-Builder, RACE, Shinde et al., and CIRCE,
in the context of generating class diagrams from NLRs. As
depicted in Figure 2, GPT-4 demonstrates higher precision
compared to other tools on different benchmarks, especially
excelling in NLRs-2 and NLRs-5. According to Figure 3,
GPT-4 significantly outperforms other tools in terms of re-
call, especially excelling in NLRs-1, NLRs-2, and NLRs-5,
where it achieves high or nearly perfect scores. This signifies
the strong ability of GPT-4 to retrieve all relevant elements
from expert-created diagrams. Figure 4, which harmonizes
precision and recall, shows that GPT-4 consistently achieves
high F1 scores. It surpasses other tools, especially in NLRs-
2 and NLRs-5, demonstrating its effectiveness in handling
NLRs. In general, GPT-4 shows high recall and precision
on expert-created benchmarks, resulting in higher F1 scores
compared to other tools. The evaluations underscore GPT-
4’s dependability and proficiency in producing class dia-
grams from NLR specifications.

Table 5 provides a comparison of the capabilities of the
CM-Builder, CIRCE, Shinde et al., RACE, and GPT-4 tools
to capture key elements of class diagrams. The elements
assessed are Class, Operation, Attribute, Association, Ag-
gregation, Composition, Generalization, Dependency, and
Multiplicity. All tools evaluated can capture class, attribute
and association elements, indicating a basic capabilities
across the board. CM-Builder and RACE lack the ability
to capture operations, whereas CIRCE, Shinde et al., and
GPT-4 capture this element. Associations are well-supported
across all tools. However, only GPT-4 captures dependen-
cies, while all other tools fail to capture this element. This
highlights the advanced capability of GPT-4 in identifying
dependencies between classes, which is crucial to under-
standing interactions in complex systems. CM-Builder and
GPT-4 capture multiplicity, but CIRCE, Shinde et al., and

8 VOLUME 19(3), 2020

Keletso J. Letsholo / International Journal of Computing, 19(3) 2020, 1-2

CM-Builder RACE Shinde et al CIRCE
NLRs-1 NLRs-2 NLRs-2 NLRs-5

Precision 0.69 0.78 0.55 0.85
Expert 1 Recall 0.41 0.56 0.68 0.79

F1 score 0.51 0.65 0.61 0.81

Precision 0.56 0.67 0.58 0.81
Expert 2 Recall 0.38 0.46 0.69 0.70

F1 score 0.45 0.55 0.63 0.75

Table 4: Performance Evaluation of NLP4RE Tools on Benchmark Diagrams by Experts

Figure 2: Precision Rate Comparison: GPT-4 and NLP4RE
Tools with Expert Benchmarks

Figure 3: Recall Rate Comparison: GPT-4 and NLP4RE
Tools with Expert Benchmarks

RACE do not. This could limit the detail and accuracy of the
class diagrams produced. GPT-4 stands out as the tool with
the most comprehensive set of capabilities, capturing all the
class diagram elements listed. This shows that GPT-4 is
robust and versatile in understanding and creating complex
class diagrams.

V. DISCUSSION
This study evaluated the quality of the class diagrams
generated by the GPT-4 model in two different settings:
first, by comparing them to the benchmark diagrams created
by experts manually, and second, by comparing them with
the class diagrams produced by four existing NLP4RE

Figure 4: F1 Score Comparison: GPT-4 and NLP4RE Tools
with Expert Benchmarks

C
M

-B
ui

ld
er

C
IR

C
E

Sh
in

de
et

al
.

R
A

C
E

G
PT

-4

Class ✓ ✓ ✓ ✓ ✓
Operation × ✓ ✓ × ✓
Attribute ✓ ✓ ✓ ✓ ✓

Association ✓ ✓ ✓ ✓ ✓
Aggregation ✓ ✓ × ✓ ✓
Composition ✓ ✓ × ✓ ✓

Generalization × × ✓ ✓ ✓
Dependency × × × × ✓
Multiplicity ✓ × × × ✓

Table 5: Comparison of class diagram elements captured by
the tools.

tools. Manually constructed class diagrams contain implic-
itly added knowledge by the human modeler. Thus, they
incorporate an element of human intelligence and are often
aligned with the modeler’s opinion of the system rather than
with the actual requirements. The findings demonstrate that
the GPT-4 model achieved higher recall rates compared to
precision. This outcome implies that GPT-4 is capable of
producing class diagrams with considerable comprehensive-
ness, indicating its proficiency in managing implicit knowl-
edge. GPT-4 is capable of handling implicit knowledge
through its extensive training in large and diverse data sets
that include complex information [5]. It recognizes patterns
within the data, allowing it to infer unstated details based on

VOLUME 19(3), 2020 9

Keletso J. Letsholo / International Journal of Computing, 19(3) 2020, 1-2

contextual similarities. By maintaining and utilizing context
throughout text, GPT-4 can make associations between
pieces of information and fill in the gaps. Additionally, it
performs pragmatic inference by understanding meanings
that go beyond literal word interpretations, leveraging its
pre-trained exposure to common implications and unstated
norms [5]. Consequently, GPT-4 is capable of identifying
implicit classes, attributes, operations, and relationships
similar to those identified by human experts.

The existing NLP4RE tools lack the capability to identify
implicit knowledge of the given NLR specification, resulting
in lower recall rates compared to the GPT-4 model. Further-
more, RACE and CM-Builder did not identify operations in
their diagrams, resulting in lower recall rates. RACE and
the tool by Shinde et al. are semi-automatic and include
interactive user interfaces that allow users to add, remove,
and rename classes and relationships in the class diagram.
However, even with human intervention, the GPT-4 class
diagrams are still better. This implies that human expertise
is still needed in requirements modeling, even when aided
by tools, as it ensures proper understanding and complete
interpretation of complex requirements.

It should be noted that the diagrams generated by GPT-
4 contained additional elements and more detailed opera-
tions, including parameters compared to the benchmarks
created by experts. The inclusion of detailed operations
and parameters indicates that the GPT-4 model not only
identifies the core structural elements, but also attempts to
specify how each class will function. Additional elements
in a generated class diagram can have both advantages and
disadvantages. Capturing additional elements ensures that
all essential elements are considered. This is an advantage
in the early stages of the requirement analysis as it ensures
that all essential elements are captured. A disadvantage of
this is that not all additional elements are relevant, which
may introduce noise and distract from the core requirements,
potentially leading to inaccurate class diagrams.

Generating class diagrams from NLR specification using
GPT-4 is significantly faster compared to the time taken
by human experts. Although GPT-4 can produce a class
diagram in a matter of seconds, well under a minute,
human experts often need more time, as shown in Table 1.
For human experts, this process involves carefully reading
and interpreting the NLR specification, conceptualizing the
structure of the system, and manually creating the diagram,
which can take several hours depending on the complexity
of the NLR specification. The efficiency of GPT-4 not
only speeds up the generation of class diagrams but also
allows quick iterations and refinements [7], enabling a
more agile and responsive development process. However,
human expertise is crucial for validating the accuracy and
completeness of the generated diagrams.

GPT-based models have made significant improvements
in the area of natural language processing, but it is important
to exercise caution about their use [6]. In the context of
NLP4RE research, GPT-4 models may lack the domain

knowledge necessary to understand domain-specific require-
ments, resulting in incomplete or even inaccurate class
diagrams. Ensuring completeness in automatically gener-
ated class diagrams requires domain experts’ input. Other
issues that highlight the need for cautious and informed
implementation include bias, information hallucination, lack
of explainability, vulnerability to attacks, reasoning errors,
overreliance, and ethical considerations [6], [10]. These
issues call for an extensive evaluation of the class diagrams
or any analysis models generated by GPT-based models
before wider adoption of these models.

The results of this study are consistent with those of
De Bari et al. [8], who noted that LLM can match or
approximate human performance in class diagram modeling,
although with scenario-dependent variation. This highlights
the potential and difficulties of applying LLMs in model-
based requirements engineering. In contrast to De Bari et
al. [8], the use of dual expert benchmarks and quantitative
information retrieval style scores enables a finer assessment
and exposes expert variability, adding depth to the educa-
tional perspective.

The findings of this study could benefit software en-
gineers and practitioners by demonstrating how GPT-4-
generated class diagrams can ensure accuracy and consis-
tency in requirements analysis and speed up the process.
These insights can guide the development of more ad-
vanced NLP4RE tools, which could lead to more robust
and user-friendly software tools in the field. Theoretically,
the findings contribute to the existing body of knowledge
by providing new insights into the capabilities of the GPT-
4 model to automate RE tasks traditionally performed by
human experts. Furthermore, the results can help formulate
best practices for incorporating GPT-based solutions into the
requirements engineering process, leading to more efficient
and reliable software development methodologies.

VI. THREATS TO VALIDITY
Concerning internal validity, first, the method used to
compare GPT-4 generated class diagrams with benchmark
diagrams might introduce bias. This limitation was mitigated
by clearly defining the comparison strategy in Section III-E.
This strategy, previously used by other researchers in the
field, was applied consistently during this study. The com-
parison was carried out by the author of the paper and
independently verified by two postgraduate students. The
postgraduate students were requested by the author and
given instructions on how to follow the comparison strategy.

Second, human experts may introduce subjective bias
when manually creating benchmark diagrams. Thus, they
may include elements of human intelligence, often aligned
with the expert’s opinion of the system rather than with the
actual requirements. To mitigate this limitation, the human
experts who created the benchmark class diagrams used in
this study have years of experience and expertise in the
field of requirements engineering. The assumption is that
experts with more experience can produce higher-quality

10 VOLUME 19(3), 2020

Keletso J. Letsholo / International Journal of Computing, 19(3) 2020, 1-2

benchmark diagrams, influencing the comparative results
with GPT-4. Furthermore, the performance of the GPT-4
model was evaluated against two sets of benchmark class
diagrams from both experts.

A third issue is the inconsistency in the results when
GPT-4 generates class diagrams from the same NLRs, which
can lead to potential variability in performance assessments.
Although repeated iterations of diagram generation were
not performed, an approach that might have yielded more
constant results, the same set of instructions given to the
experts was used as prompts for GPT-4 to ensure uniformity.
The use of consistent instructions as prompts sought to
minimize this variability. However, in the absence of result
averaging or a controlled setting, this limitation significantly
hinders the consistent evaluation of GPT-4’s capabilities.
Future research should adopt these measures to improve the
reliability of the results.

In terms of external validity, the dataset used may not
represent the full range of complexity and variability found
in real-world software engineering projects, thus limiting the
generalizability of the findings. To mitigate this limitation,
the dataset used in this study included five NLR specifica-
tions from different problem domains, sourced from peer-
reviewed publications and widely recognized for its use in
evaluating NLP4RE tools. Another threat to external validity
is related to the scope of the class diagram evaluation. There
were no restrictions or distinctions imposed with respect to
specialized UML class types such as abstract, interface, or
stereotypes. Instead, the focus was on accurately identifying
the elements of the core diagram. This approach aimed
to ensure generalizability, but it might limit insight into
tool performance in more specialized or domain-specific
modeling tasks.

Construct validity issues can arise from the way accu-
racy and completeness are defined and interpreted when
evaluating class diagrams. Narrow or vague definitions
might not encompass all pertinent elements, potentially
leading to incomplete evaluations of the model’s quality.
Furthermore, variations in interpretation can result in in-
consistencies, compromising the validity of the findings.
Definitions must also be in line with real-world require-
ments to ensure that the evaluation reflects practical us-
age. Consistency in applying these definitions throughout
evaluations is essential to prevent misleading comparisons
and to accurately reflect the tool’s capabilities in the study.
The definitions used in this research are derived from the
literature and were initially formulated to evaluate infor-
mation retrieval systems, now widely used to evaluate the
performance of NLP4RE tools. The emphasis on accuracy
and completeness should not imply the neglect of other
critical elements, such as the usability and maintainability
of the created class diagrams, which are equally significant
and warrant further investigation.

VII. CONCLUSION

This study aimed to evaluate the quality of the class dia-
grams generated by the GPT-4 model. The GPT-4 generated
class diagrams were compared with the benchmark diagrams
created manually by two human experts. The performance of
GPT-4 in generating class diagrams on Expert 1 benchmarks
obtained a peak precision of 0.88 and Expert 2 a maximum
of 0.77. Recall values are high, with perfect scores from
the benchmarks of expert 1, NLRs-4, and expert 2 NLRs-
5, which shows proficiency in element identification. F1
scores, which balance precision and recall, also support
these claims, although they vary by expert benchmark.
The conclusion is that GPT-4 is effective in class diagram
generation, particularly in recall, but has room to improve
precision for better overall performance. In addition, the
performance results of GPT-4 were compared to those of
four existing NLP4RE tools using the expert 1 and expert 2
benchmark diagrams. The findings demonstrated that GPT-
4 generally outperforms these tools in precision, recall,
and the F1 score, indicating a robust capability to generate
accurate and comprehensive class diagrams from NLRs.

The contributions of this paper are threefold. First, it
presents an evaluation of the quality of GPT-4 generated
class diagrams by comparing them to benchmark diagrams
manually created by human experts. Second, it provides an
evaluation of how the GPT-4 generated diagrams compare
to those produced by the four existing NLP4RE tools. Third,
it offers insight to the requirements engineering community
to understand how well GPT-4 can generate class diagrams
from NLR specifications. The findings of this study suggest
that GPT-based models have the potential to generate com-
prehensive class diagrams that can lead to more accurate
and consistent analysis models during the requirements
engineering phase. Despite its strengths, GPT-4’s variability
in outputs poses a threat to internal validity, as different
executions can yield diverse diagrams. Although this study
did not employ multiple iterations with average scores to
mitigate this issue, the same instructions used by experts
were consistently applied as prompts to control variability
to some extent. This remains a limitation, emphasizing the
need for further research using repeated trials and controlled
conditions to achieve more stable assessments.

To further enhance the understanding of GPT-4’s abil-
ity to generate class diagrams, future research could dive
into specific task classes or focus on certain elements of
UML, such as abstract classes, interfaces, or domain-specific
stereotypes. Developing specialized evaluation functions for
these focused tasks offers a promising pathway to obtain
deeper insights and improve the quality of class diagram
generation. Exploring these specific UML elements may
lead to more accurate and domain-relevant class diagrams.
This, in turn, could refine requirement engineering practices
by providing tailored solutions to complex modeling tasks.

VOLUME 19(3), 2020 11

Keletso J. Letsholo / International Journal of Computing, 19(3) 2020, 1-2

References
[1] B. Bruegge and A. H. Dutoit, Object-Oriented Software Engineering

Using UML, Patterns and Java, 2nd ed. USA: Prentice Hall, 2004.
[2] C. Larman, Applying UML and patterns: an introduction to object-oriented

analysis and design and iterative development, 3rd ed. USA: Prentice Hall
PTR, 2005.

[3] M. Fowler, UML Distilled: a brief guide to the standard object modeling
language, 3rd ed. USA: Addison-Wesley Professional, 2004.

[4] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” in North
American Chapter of the Association for Computational Linguistics.
Minneapolis, Minnesota: Association for Computational Linguistics,
2019, pp. 4171–4186. [Online]. Available: https://doi.org/10.18653/v1/
N19-1423

[5] A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever, “Improving
language understanding by generative pre-training,” OpenAI, San
Francisco, CA, USA, Tech. Rep., 2018. [Online]. Available: https:
//www.mikecaptain.com/resources/pdf/GPT-1.pdf

[6] I. Ozkaya, “Application of large language models to software engineering
tasks: Opportunities, risks, and implications,” IEEE Software, vol. 40,
no. 3, pp. 4–8, 2023. [Online]. Available: https://doi.org/10.1109/MS.
2023.3248401

[7] OpenAI, “Gpt-4 technical report,” arXiv.org, San Francisco, CA, USA,
Tech. Rep., 2023. [Online]. Available: https://doi.org/10.48550/arXiv.
2303.08774

[8] D. De Bari, G. Garaccione, R. Coppola, M. Torchiano, and L. Ardito,
“Evaluating large language models in exercises of uml class diagram
modeling,” ser. ESEM ’24. New York, NY, USA: Association
for Computing Machinery, 2024, p. 393–399. [Online]. Available:
https://doi.org/10.1145/3674805.3690741

[9] J. Cámara, J. Troya, L. Burgueño, and A. Vallecillo, “On the assessment
of generative ai in modeling tasks: an experience report with chatgpt and
uml,” Software and Systems Modeling, vol. 22, no. 3, pp. 781–793, 2023.
[Online]. Available: https://doi.org/10.1007/s10270-023-01105-5

[10] N. Marques, R. R. Silva, and J. Bernardino, “Using chatgpt in
software requirements engineering: A comprehensive review,” Future
Internet, vol. 16, no. 6, p. 180, 2024. [Online]. Available: https:
//doi.org/10.3390/fi16060180

[11] S. Speth, N. Meißner, and S. Becker, “Chatgpt’s aptitude in utilizing
uml diagrams for software engineering exercise generation,” in 2024 36th
International Conference on Software Engineering Education and Training
(CSEE&T). Wurzburg, Germany: IEEE, 2024, pp. 1–5. [Online].
Available: https://doi.org/10.1109/CSEET62301.2024.10663027

[12] K. Ronanki, C. Berger, and J. Horkoff, “Investigating chatgpt’s
potential to assist in requirements elicitation processes,” in 2023
49th Euromicro Conference on Software Engineering and Advanced
Applications (SEAA). Durres, Albania: IEEE, 2023, pp. 354–361.
[Online]. Available: https://doi.org/10.1109/SEAA60479.2023.00061

[13] R. Khojah, M. Mohamad, P. Leitner, and F. G. de Oliveira Neto, “Beyond
code generation: An observational study of chatgpt usage in software
engineering practice,” Proc. ACM Softw. Eng., vol. 1, no. FSE, jul 2024.
[Online]. Available: https://doi.org/10.1145/3660788

[14] A. Mastropaolo, L. Pascarella, E. Guglielmi, M. Ciniselli, S. Scalabrino,
R. Oliveto, and G. Bavota, “On the robustness of code generation
techniques: An empirical study on github copilot,” in 2023 IEEE/ACM
45th International Conference on Software Engineering (ICSE).
Melbourne, Australia: IEEE, 2023, pp. 2149–2160. [Online]. Available:
https://doi.org/10.1109/ICSE48619.2023.00181

[15] S. Barke, M. B. James, and N. Polikarpova, “Grounded copilot:
How programmers interact with code-generating models,” Proc. ACM
Program. Lang., vol. 7, no. OOPSLA1, apr 2023. [Online]. Available:
https://doi.org/10.1145/3586030

[16] N. Nguyen and S. Nadi, “An empirical evaluation of github copilot’s
code suggestions,” in Proceedings of the 19th International Conference
on Mining Software Repositories, ser. MSR ’22. New York, NY, USA:
Association for Computing Machinery, 2022, p. 1–5. [Online]. Available:
https://doi.org/10.1145/3524842.3528470

[17] C. Lemieux, J. P. Inala, S. K. Lahiri, and S. Sen, “Codamosa: Escaping
coverage plateaus in test generation with pre-trained large language
models,” in 2023 IEEE/ACM 45th International Conference on Software
Engineering (ICSE). Melbourne, Australia: IEEE, 2023, pp. 919–931.
[Online]. Available: https://doi.org/10.1109/ICSE48619.2023.00085

[18] N. Nascimento, P. Alencar, and D. Cowan, “Artificial intelligence vs.
software engineers: An empirical study on performance and efficiency

using chatgpt,” in Proceedings of the 33rd Annual International
Conference on Computer Science and Software Engineering, ser.
CASCON ’23. USA: IBM Corp., 2023, p. 24–33. [Online]. Available:
https://doi.org/10.5555/3615924.3615927

[19] M. A. Umar and K. Lano, “Advances in automated support for
requirements engineering: a systematic literature review,” Requirements
Engineering, vol. 29, no. 2, pp. 177––207, 2024. [Online]. Available:
https://doi.org/10.1007/s00766-023-00411-0

[20] L. Zhao, W. Alhoshan, A. Ferrari, K. J. Letsholo, M. A. Ajagbe, E.-V.
Chioasca, and R. T. Batista-Navarro, “Natural language processing for
requirements engineering: A systematic mapping study,” ACM Computing
Surveys (CSUR), vol. 54, no. 3, pp. 1–41, 2021. [Online]. Available:
https://doi.org/10.1145/3444689

[21] T. Yue, L. Briand, and Y. Labiche, “A systematic review of
transformation approaches between user requirements and analysis
models,” Requirements Engineering, vol. 16, no. 2, pp. 75–99, 2011.
[Online]. Available: https://doi.org/10.1007/s00766-010-0111-y

[22] D. Falessi, N. Juristo, C. Wohlin, B. Turhan, J. Münch, A. Jedlitschka,
and M. Oivo, “Empirical software engineering experts on the use
of students and professionals in experiments,” Empirical Software
Engineering, vol. 23, pp. 452–489, 2018. [Online]. Available: https:
//doi.org/10.1007/s10664-017-9523-3

[23] H. Harmain and R. Gaizauskas, “Cm-builder: A natural language-
based case tool for object-oriented analysis,” Automated Software
Engineering, vol. 10, no. 2, pp. 157–181, 2003. [Online]. Available:
https://doi.org/10.1023/A:1022916028950

[24] M. Ibrahim and R. Ahmad, “Class diagram extraction from textual
requirements using natural language processing (nlp) techniques,”
in Computer Research and Development, 2010 Second International
Conference on. Kuala Lumpur, Malaysia: IEEE, 2010, pp. 200–204.
[Online]. Available: https://doi.org/10.1109/ICCRD.2010.71

[25] S. K. Shinde, V. Bhojane, and P. Mahajan, “Nlp based object oriented
analysis and design from requirement specification,” International Journal
of Computer Applications, vol. 47, no. 21, pp. 30–34, June 2012. [Online].
Available: https://doi.org/10.5120/7475-0574

[26] K. Lunn, Software Development with UML, 1st ed. London, United
Kingdom: Palgrave Macmillan, 2002.

[27] P. Harmon and M. Watson, Understanding UML: The Developer’s Guide:
with a Web-based Application in Java. Massachusetts, United States:
Morgan Kaufmann Publishers Inc., 1997.

[28] V. Ambriola and V. Gervasi, “On the systematic analysis of natural
language requirements with circe,” Automated Software Engineering,
vol. 13, no. 1, pp. 107–167, 2006. [Online]. Available: https:
//doi.org/10.1007/s10515-006-5468-2

[29] V. B. R. Vidya Sagar and S. Abirami, “Conceptual modeling of
natural language functional requirements,” Journal of Systems and
Software, vol. 88, pp. 25–41, 2014. [Online]. Available: https:
//doi.org/10.1016/j.jss.2013.08.036

[30] M. Elbendak, P. Vickers, and N. Rossiter, “Parsed use case descriptions
as a basis for object-oriented class model generation,” Journal of Systems
and Software, vol. 84, no. 7, pp. 1209–1223, 2011. [Online]. Available:
https://doi.org/10.1016/j.jss.2011.02.025

[31] J. R. Landis and G. G. Koch, “The measurement of observer agreement
for categorical data,” Biometrics, vol. 33, no. 1, pp. 159–174, 1977.
[Online]. Available: https://doi.org/10.2307/2529310

KELETSO J. LETSHOLO holds a PhD in Com-
puter Science from the University of Manchester,
United Kingdom, specializing in Software Engi-
neering. In addition, he holds an MSc in Com-
puter Science from the University of Wollongong,
Australia. He is currently serving as an Assistant
Professor at the Higher Colleges of Technology
(HCT) in the United Arab Emirates. His research
focuses on the convergence of Requirements En-
gineering and Natural Language Processing, with

a significant emphasis on Machine Learning. He seeks to refine NLP
algorithms to more accurately handle complex requirements and exploit
deep learning to enhance automation tools.

12 VOLUME 19(3), 2020

https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://www.mikecaptain.com/resources/pdf/GPT-1.pdf
https://www.mikecaptain.com/resources/pdf/GPT-1.pdf
https://doi.org/10.1109/MS.2023.3248401
https://doi.org/10.1109/MS.2023.3248401
https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.1145/3674805.3690741
https://doi.org/10.1007/s10270-023-01105-5
https://doi.org/10.3390/fi16060180
https://doi.org/10.3390/fi16060180
https://doi.org/10.1109/CSEET62301.2024.10663027
https://doi.org/10.1109/SEAA60479.2023.00061
https://doi.org/10.1145/3660788
https://doi.org/10.1109/ICSE48619.2023.00181
https://doi.org/10.1145/3586030
https://doi.org/10.1145/3524842.3528470
https://doi.org/10.1109/ICSE48619.2023.00085
https://doi.org/10.5555/3615924.3615927
https://doi.org/10.1007/s00766-023-00411-0
https://doi.org/10.1145/3444689
https://doi.org/10.1007/s00766-010-0111-y
https://doi.org/10.1007/s10664-017-9523-3
https://doi.org/10.1007/s10664-017-9523-3
https://doi.org/10.1023/A:1022916028950
https://doi.org/10.1109/ICCRD.2010.71
https://doi.org/10.5120/7475-0574
https://doi.org/10.1007/s10515-006-5468-2
https://doi.org/10.1007/s10515-006-5468-2
https://doi.org/10.1016/j.jss.2013.08.036
https://doi.org/10.1016/j.jss.2013.08.036
https://doi.org/10.1016/j.jss.2011.02.025
https://doi.org/10.2307/2529310

Keletso J. Letsholo / International Journal of Computing, 19(3) 2020, 1-2

.

APPENDIX A NLRS DATASET
A. NLRS-1: LIBRARY INFORMATION SYSTEMS I
“A library issues loan items to customers. Each customer is
known as a member and is issued a membership card that
shows a unique member number. Along with the membership
number, other details on a customer must be kept such as
a name, address, and date of birth. The library is made up
of a number of subject sections. Each section is denoted
by a classification mark. A loan item is uniquely identified
by a bar code. There are two types of loan items, language
tapes, and books. A language tape has a title language (e.g.
French), and level (e.g. beginner). A book has a title, and
author(s). A customer may borrow up to a maximum of 8
items. An item can be borrowed, reserved or renewed to
extend a current loan. When an item is issued the customer’s
membership number is scanned via a bar code reader or
entered manually. If the membership is still valid and the
number of items on loan less than 8, the book bar code is
read, either via the bar code reader or entered manually. If
the item can be issued (e.g. not reserved) the item is stamped
and then issued. The library must support the facility for an
item to be searched and for a daily update of records” [23].

B. NLRS-2: LIBRARY INFORMATION SYSTEMS II
“The library System is used by the Informatics students and
Faculty. The Library contains Books and Journals. Books
can be issued to both the Students and Faculty. Journals
can only be issued to the Faculty. Books and Journals can
only be issued by the Librarian. The deputy-Librarian is in-
charge of receiving the returned Books and Journals. The
Accountant is responsible for receiving the fine for over
due books. Fine is charged only to students and not to the
Faculty” [24], [25].

C. NLRS-3: ONLINE SHOE COMPANY
“Customers will need to register with the Odd Shoe Com-
pany to make orders. On registration, they need to provide
name and address, payment details (credit card, etc), shoe
sizes, gender, and any special details. To order, customers
will select from the shoe range. The system will tell them if
the shoes are in stock, or need to be ordered from a supplier.
If the shoes are in stock, then the system will tell them how
quickly the shoes can be delivered. Customers will want
to track their orders online. An order can either be waiting
for delivery to the Odd Shoe Company, waiting for dispatch,
waiting for credit clearance, or dispatched. Before dispatch,
the customer should have an option for cancelling the
order. John would like a weekly report, detailing numbers
of customers, statistics on shoe sizes by left and right foot,
orders, stocks, and cancelled orders. Every month customers
will be sent a statement by email, together with a list of
special offers. Offers will only be for shoe pairs that are
available in suitable sizes for that customer. John wants to
keep pictures, prices, stock levels, and sizes of all his shoes

in a database. When supplies arrive the database will need
updating. When goods are ordered, the stock levels should
be deducted. If an order is cancelled, the stock levels should
be updated accordingly” [26, p. 377].

D. NLRS-4: SALES REPORT APPLICATION
“Salesperson turns on laptop, brings up the SaleWeb pro-
gram, and chooses Report Sales Order from menu. Sales-
person enters name, employee number, and ID. Sales Order
checks to see if name, number and ID are valid. Salesperson
enters customer name and address on sales order form.
Salesperson checks customer information to find customer
status. CustInfo checks Accounting to determine customer
status. Accounting approves customer information and sup-
plies customer credit limit. CustInfo accepts customer entry
on Sales Order. Salesperson enters first item being ordered
on sales order form. Salesperson enters second item being
ordered, etc. When all items have been entered Items or-
dered are checked to determine availability and to check
pricing. Items ordered checks with Inventory to determine
availability and to check pricing. Inventory supplies all
availability dates (when it can ship), approves prices, adds
shipping and taxes, and totals order. Complete order ap-
pears on salesperson?s screen. Salesperson can print order,
check with customer, etc. Salesperson submits the approved
Sales Order. Sales Order is submitted to Accounting and
Inventory” [27, p. 121].

E. NLRS-5: MISSILE CONTROL SYSTEM
“A launch control center manages a number of missiles.
Each missile is controlled by an on-board FMCS unit. The
FMCS is initially idle. When the FMCS receives a launch
command from its base, if it is idle, the FMCS enters
confirmation waiting mode. If the FMCS is in confirmation
waiting mode, it receives a launch confirmation command
from its base, and the token of the launch confirmation
command is equal to the token of the launch command, then
the FMCS enters operation mode. When the FMCS receives
a launch cancellation command from its base, if it is in
confirmation waiting mode, it becomes idle. When the FMCS
enters operation mode, it turns on the main engine. A main
engine is part of a missile. While the FMCS is in operation
mode: every 100 milliseconds, it reads the height from the
altimeter, and if the height is greater than 30 meters, it
enters cruise mode. If the FMCS is still in operation mode
5 seconds after it entered that mode the FMCS turns off
the main engine, and it enters idle mode. During flight,
every 20 milliseconds: the FMCS reads the height from the
altimeter, it reads the heading from the gyroscope, and it
computes appropriate navigation commands, based on the
target position. During flight, if the navigation commands
are significant, the FMCS sends these commands to the
navigation engines. During flight, the FMCS logs position,
height, and heading every 2 seconds. The Launch Control
Center sets the target position for the FMCS of its missiles.
During flight, the FMCS reads the current position from its

VOLUME 19(3), 2020 13

Keletso J. Letsholo / International Journal of Computing, 19(3) 2020, 1-2

GPS device every 5 seconds. A missile has as components:
a main engine, a set of navigation engines, a gyroscope, an
altimeter, and a GPS device” [28].

APPENDIX B COMPARISON TASK INSTRUCTIONS FOR
STUDENT VERIFIERS
The postgraduate students who assisted in this study were
provided with the following instructions to ensure consis-
tency and reliability in the comparison process between the
GPT-4-generated and expert benchmark class diagrams.

1) For each Natural Language Requirement (NLR) and
its corresponding class diagrams (GPT-4 and expert
benchmark), systematically compare all classes, oper-
ations, and relationships.

2) For each unique element appearing in the GPT-4 or
expert benchmark diagrams, indicate the presence (1)
or absence (0) in each diagram.

3) Count an element as a correct match if its name
closely matches in both diagrams (e.g., “LoanItem”
and “Item” may count as a match if justified by a
similar context).

• Consider the context, such as associated at-
tributes, operations, or relationships, to support
your judgment of element matches, particularly
in ambiguous cases.

• Operations - Only the operation’s name and its
presence within the correct class are considered;
ignore parameters, data types, or return types.

4) Relationships - Limit the matching to binary rela-
tionships (between two classes). Relationships are
considered matched if both endpoint classes corre-
spond, regardless of relationship type (association,
generalization, etc.).

5) Attributes should not be scored individually, but may
be considered to clarify the context of class elements.

6) Use the provided spreadsheet/template to record the
results for each element.

APPENDIX C BENCHMARK CLASS DIAGRAMS
CREATED BY EXPERTS

14 VOLUME 19(3), 2020

Keletso J. Letsholo / International Journal of Computing, 19(3) 2020, 1-2

NLRs 1: Library Information Systems I

Class [Attribute](Operation):

Library [] (issuesItem(), issuesCard())
Item [barCode, name] (reserveItem(), renewItem(),
returnItem())
Customer [name, address, dateOfBirth] (login(),
borrowItem(),returnItem())
MembershipCard [memberNo] ()
Subject_Section [classificationMark] ()
Book [title, author]()
Language_Tape [title, level] ()
BarCode_Reader [title, author] (scanBarCode(),
enterBarCode())
Current_Loan [] (extendLoan())
Record [] (updateRecords())

Relationships:
Library -issues- Loan Items
Customer -issued- Membership Card
Library -made of- Subject Sections
Customer -borrow- Items
Membership card -scanned by- BarCode_Reader

Time spent: 16 mins

NLRs 2: Library Information Systems II

Class[Attribute](Operation):

Library_System [] (searchItem())
Student [] (borrowItem(), returnItem())
Faculty [] (borrowItem(), returnItem())
Item [status] (getStatus())
Book [isbn, title, author, year, publisher] ()
Journal [title, author] ()
Librarian [] (issueItem())
Deputy_Librarian [] (receiveItem())
Accountant [] (calculateFine())
Fine [] (checkoverdueItems())

Relationships:
Students -can borrow- Books
Faculty -can borrow- Books & Journals
Librarian -issues- Items
Deputy Librarian ---receives- Items
Accountant -charges- Fines

Time spent: 10 mins

NLRs 3: Online Shoe Company

Class [Attribute] (Operation):

Customer [name, address, payment_details, shoe_size,
gender] (register(), login(), makeOrder(),
trackOrder(), cancelOrder()),
OddShoeCompany [] (checkStock(), deliverOrder(),
dispatchOrder(), sendStatement()),
Order [customer, status, shoe, date]
(getOrderStatus())
Shoe [picture, price, stock_level] (findShoe(),
getShoeList(), updateStockLevel())
Weekly_Report [Customers, ShoeSizes, Orders,
StockLevels, cancelledOrders]
(generateWeeklyReport())
Statement [] (getOffers(), sendEmail())

Relationships:
Customer -makes- Order
Customer -registers with- OddShoeCompany
OddShoeCompany -creates- Weekly_Report
OddShoeCompany -sends- Statement
Order -contains- Shoes

Time spent: 17 mins

NLRs 4: Sales Report Application

Class [Attribute] (Operation):

Salesperson [name,employee_number,ID] (login(),
submitCustInfo(), checkCustInfo(), printOrder(),
checkOrder(), submitOrder())
Order [availability, price, shipping, tax]
(checkSalesPerson(), checkAvailability(),
checkPricing())
Customer [name, address, status]
(checkCreditLimit())
Item [name, price] (addItem())
Inventory [date, price, shipping,
tax](approvePrice(), addShipping(), addTaxes(),
totalOrder())
Accounting [] (approveCustInfo(),
supplyCustomerCreditLimit()),

Relationships:
Salesperson ---submits--- Order
Order ---includes--- Items
Inventory ---checks--- Order
Accounting ---approves--- Order

Time spent: 23 mins

NLRs 5: Missile Control System
Class [Attribute] (Operation):

Missile [mode] ()
FMCS [command, height, position] (enterMode(),
 setMainEngineMode(), readHeight(), readHeading(),
 readPosition(), sendNavigationCommand(),
 computeCommand())
Main_Engine [mode: on, off] ()
Navigation_Engine [command] ()
Gyroscope [] (getHeading())
Altimeter [] (getHeight())
GPS [](getPosition())
Command [token] (getCommand())
Launch_Control_Center [] (setTarget())

Relationships:
Launch_Control_Center -manages- Missiles
FMCS_Unit -controls- Missile
Missile -has- Main_Engine
Missile -has- Navigation_Engine
Missile -has- Gyroscope
Missile -has- GPS
Missile -has- Altimeter

Time spent: 25 mins

Figure 5: Expert 1 benchmark class diagram elements for the five NLRs.

VOLUME 19(3), 2020 15

Keletso J. Letsholo / International Journal of Computing, 19(3) 2020, 1-2

NLRs 1: Library Information Systems I

Class [Attribute](Operation):
Customer [name, address, dateOfBirth] (login(),
borrowItem(),returnItem())
Library [] (searchItem(), updateRecords())
Section [classificationMark]()
LoanItem [barCode, name] (issueItem(),
reserveItem(), renewItem(), extendLoan())
types of LoanItem: Book [title, author]();
LanguageTape[title, level]()
MembershipCard [memberNo] ()
BarCodeReader [title, author] (scanBarCode();
enterBarCode())

Relationships:
Customer -issued- MembershipCard
Library -made up- Section
Customer -borrows- LoanItem
BarCodeReader -scans- MembershipCard
Section -contain- LoanItem

Time spent: 18 mins

NLRs 2: Library Information Systems II

Class [Attribute](Operation):
Book [isbn, title, author, year] (updateStatus())
Journal [title, author, year](updateStatus())
Student [id, name, major] (borrowBook(),
returnBook())
Faculty [id, name, position] (borrowBook(),
borrowJournal())
Librarian [id, name] (issueBook(), issueJournal())
DeputyLibrarian[id, name](receiveReturns())
Accountant [id, name] (receivePayment())
Fine [amount, date] (payAmount(), calculateAmount())

Relationships:
Books -issued to- Students.
Books -issued to- Faculty.
Journals -issued to- Faculty.
Librarian -issues- Books.
Librarian -issues- Journals.
Accountant -receives- Fines

Time spent: 14 mins

NLRs 3: Online Shoe Company

Class [Attribute] (Operation):
Customer [cust_number, name, address,
payment_details, shoe_sizes, gender, age]
(register(), placeOrder(), trackOrder(),
cancelOrder())
Order [order_id, status] (getStatus(),
updateStatus())
Stock/Shoe [shoe_id, size, price, quantity, picture,
status] (checkStatus(), updateQuantity())
Report [cust_number, order_id, shoe-id]
(generateReport(), sendReport())
Supplier [name, address] (fulfilOrder())
ShoeCompanySys [] (createPurchaseOrder(),
receiveGoods(), cancelPurchaseOrder())
SpecialOffer [shoe_id, price, shoe_size]
(getOffers(), sendOffers())

Relationships:
Customer -makes- Order
Order -contains- Stock/Shoes
Supplier -supplies- Stock/Shoes
ShoeCompanySys -order from- Supplier
ShoeCompanySys -generates- Report
Stock/Shoe -have- SpecialOffer

Time spent: 25 mins

NLRs 4: Sales Report Application

Class [Attribute] (Operation):
Salesperson [emp_number, name, ID] (login(),
createOrder(), printOrder(), submitOrder())
SaleWebProgram [] (checkLoginDetails(),
checkCustInfo())
Customer [name, address, status](checkCustStatus ())
Accounting [] (approveCustInfo(), approveOrder())
SalesOrder [id, date, totalPrice] (addItem(),
checkItemAvailabity (), calculateTotalPrice())
Inventory [] (checkItemAvailabity(),
checkItemPricing(), checkDeliveryDate(),
calculateShipping(), updateInventory())
Item [item_id, name, price] (searchItem())

Relationships:
Saleperson -uses- SaleWebProgram
SaleWebProgram -creates- SalesOrder
SalesOrder -includes- Items
Inventory -contains- Items
SalesWebProgram -checks- Customer
Accounting -approves- SalesOrder

Time spent: 28 mins

NLRs 5: Missile Control System

Class [Attribute] (Operation):
LaunchControlCenter [] (setTarget())
Missile [status] ()
FMCS_Unit [height, heading, tartgetPosition]
(receiveCommand(), updateStatus(), turnOnEngine(),
readAltimeter(), readGyroscope(), turnOffEngine(),
readGPS()), computeNavCommand())
MainEngine [mode] (receiveCommand(), updateMode())
NavigationEngine [currentPosition, targetPosition]
(receiveNavCommand())
Gyroscope [] (getHeading())
GPS_Device [] (getCurrentPosition())
Altimeter [] (getHeight())

Relationships:
LaunchControlCenter -manages- Missiles
FMCS_Unit -controls- Missile
Missile -has- MainEngine
Missile -has- NavigationEngine
Missile -has- Gyroscope
Missile -has- GPS_Device
Missile -has- Altimeter

Time spent: 21 mins

Figure 6: Expert 2 benchmark class diagram elements for the five NLRs.

16 VOLUME 19(3), 2020

	Introduction
	RELATED WORK
	METHODOLOGY
	Selection of NLRs Dataset
	Selection of Existing NLP4RE Tools
	Creation of Expert Benchmarks
	Generation of GPT-4 Class Diagrams
	Comparison Strategy
	Evaluation Metrics

	RESULTS
	GPT-4 against Expert Benchmarks
	GPT-4 model vs existing NLP4RE tools

	DISCUSSION
	Threats to Validity
	CONCLUSION
	References
	Keletso J. Letsholo

	NLRs DATASET
	NLRs-1: Library Information Systems I
	NLRs-2: Library Information Systems II
	NLRs-3: Online Shoe Company
	NLRs-4: Sales Report Application
	NLRs-5: Missile Control System

	Comparison Task Instructions for Student Verifiers
	Benchmark Class Diagrams Created by Experts

