

VOLUME 24(3), 2025 559

Date of publication SEP-30, 2025, date of current version AUG-08, 2025.
www.computingonline.net / computing@computingonline.net

Print ISSN 1727-6209
Online ISSN 2312-5381
DOI 10.47839/ijc.24.3.4193

Neural Cryptography Based on Tree Parity
Machine to Generate OTP

VERA WATI1, NUR FITRIANINGSIH HASAN2, ACHMAD NUGRAHANTORO3,
NISRINA YULIA SETYAWATI4

1 Sistem Informasi Kota Cerdas, Politeknik Negeri Indramayu, Indramayu, Indonesian
1,4 Sistem Informasi Kota Cerdas, Universitas Tunas Pembangunan Surakarta, Surakarta, Indonesian

2 Ilmu Komputer, Universitas Muhammadiyah Papua, Jayapura, Indonesian

3 Bisnis Digital, Universitas Madani Yogyakarta, Yogyakarta, Indonesian
3 PT Egref Telematika Nusantara, Indonesian

Corresponding author: Vera Wati (e-mail: vera.w@polindra.ac.id).

 ABSTRACT: The rapid development of cloud computing increases cybersecurity risks, including hacktivism,
phishing, fraud, and OTP theft. In addition to user education, further security technologies are required, such as
one-time authentication at the main gateway or as an extra layer within the application system. OTP, generated
through cryptographic techniques, is an effective security method because it can only be used once and does not
require additional device installation. If implemented correctly, OTP provides a high level of confidentiality.
Artificial Neural Networks (ANNs) are an innovation in neural cryptography. TPM ANNs, which apply
synchronized learning to parity machines, can learn independently based on input, hidden, and output parameters.
This study proposes the implementation of OTP ANN with TPM to improve system security. The integration of
OTP with TPM on the login menu using a web server aims to generate more random keys with ideal parameters
K ≥ 4, N ≥ 5, and L ≥ 5. As a result, real-time OTPs can be sent via Telegram and Email, offering a more secure
and efficient encryption solution in real-world applications. Compared to deterministic OTP approaches that rely
on hashes of fixed time values and parameters, TPM-based stochastic approaches offer advantages in terms of
entropy and cryptographic uncertainty. Deterministic OTPs are time-efficient, but are vulnerable to prediction if
the seed is not accompanied by an additional secret. In contrast, TPM-based stochastic OTPs are more resistant to
predictive attacks due to their complex synchronization properties and independence from system time, making
them more suitable for high-risk authentication scenarios.

 KEYWORDS Cryptography, Neural Cryptography, One Time Pad, Neural Network, Tree Parity Machine.

I. INTRODUCTION
 he rapid advancement of cloud computing technology in
recent times has compelled companies to enhance their

capabilities in the field of information technology to be more
scalable and accessible [1]. In this regard, the cybersecurity
risks are increasing with unauthorized interventions, such as
the extraction of secrets and hacktivist actions that can
compromise a company's vital data [2]. Hacking techniques
like phishing, scamming, and other forms of attack can lead to
the occurrence of One-Time Password (OTP) theft. OTP theft
is an illegal act aimed at gaining unauthorized access to the
victim's accounts and information [3]. Manipulative actions by
OTP theft perpetrators often involve social engineering tactics
to trick victims into revealing information like OTP codes [4].
Therefore, these attacks can pose a serious threat to
cybersecurity in safeguarding user data privacy. In addition to

preventing social engineering through user education to
promote a strong information security culture, the security of
the technology itself should also be considered.

Efforts to thwart security breaches within cloud services
involve the use of cryptographic techniques [5]. OTP is known
as a password that is often used for one-time authentication.
Another characteristic of OTP is that it consists of several
unique digits or characters [6, 7]. OTP doesn't require the
installation of any software and is relatively easy to implement
anywhere and at any time, as this token model is typically
embedded in personal devices such as social media, digital
wallets, and similar applications. It is one of the most efficient
data security systems for safeguarding against hacktivism [8].
OTP is considered part of the symmetric cryptography
algorithms [9]. OTP provides an additional layer of
authentication to web servers, protecting against fraudulent

T

 Vera Wati et al. / International Journal of Computing, 24(3) 2025, 559-569

560 VOLUME 24(3), 2025

attempts and ensuring that information is secure between the
user and the recipient [10]. Research on neural network-based
artificial intelligence authentication is becoming an innovative
topic [11]. Modeling with neural cryptography and bit-based
mutual learning synchronization shows promising new
phenomena.

Neural cryptography is a branch of cryptography that
employs artificial neural network (ANN) algorithms for the
encryption process. The characteristics of ANN itself include
strong computing capabilities and the ability to explore
problems through self-learning as well as mutual
synchronization among neurons. Furthermore, the stochastic
behavior of ANN, characterized by random probability
distributions, encourages the generation of the required
solution possibilities [12]. The concept of synchronization in
ANN introduces new opportunities in the field of cryptography
for generating keys [13]. Typically, in many modern
cryptography methods, algebraic number theory is involved in
data security, identity authentication, and message encryption
to safeguard the content of information [14, 15].

With the advent of digital technology, the role of
cryptography has become a discipline that can transform plain
text into text that is difficult to decipher [13]. Therefore, the
presence of a key plays a crucial role in the transformation of
this text [16]. The concept of cryptography with ANN, known
as neural cryptography, utilizes a secret key for mutual
synchronization between two communicating parties through
tree parity machines to generate encryption [16-18]. The
exchange of secret keys using the Diffie-Hellman protocol has
become a practical method for implementation in the field of
cryptography, particularly in the synchronization of tree parity
machines. The keys generated can be further used as symmetric
cipher keys. Neural parity machines offer advantages such as
time complexity, low memory usage, and non-deterministic
characteristics, making them resistant to patterns that could be
exploited by cryptanalysis.

A Tree Parity Machine (TPM) is a specific type of
multilayer feedforward neural network [19]. This type of
network consists of one output neuron and input neurons that
are directly fed into the output through a weighting process [9].
Feedforward artificial neural networks (ANNs) are the simplest
type of neural networks and are relatively easy to design [19].
The performance adopted for the parity machine results in an
encryption key by processing the parameter values of neurons
that move in one direction. The TPM procedure begins with
two communicators who have the same network topology, with
bipolar data representation having two values: 1 and -1 [17].

The feasibility of utilizing neural cryptography with the
synchronization process using TPM has been explored by
several researchers. For example, a study conducted by
[20][21] demonstrated that the synchronization of two TPMs
can be achieved through a collaborative learning rule.
Specifically, it has been shown that TPM synchronization can
be used as a cryptographic key exchange protocol [22]. In terms
of efficiency and security, it has been demonstrated that the
synchronization time of TPM is in the same order as that of the
basic TPM model, and it can be more secure than traditional
generation methods with the same synaptic depth and
architecture [13]. The research results conducted by [23] The
research conducted by the author, who developed neural
cryptography with multiple hidden layers using TPM elements,
provides evidence that the number of weight mutations in the
neuron layers increases exponentially, resulting in almost no

identical keys. This was proven through a simulation involving
10,000 attacker machines attempting to mimic the key but
failing. In addition to its high-security level and complex
structure, this algorithm also boasts great efficiency, with
execution times of less than 1 second observed on an Intel®
Core processor in the experiments.

As the research findings by the author indicate, protecting
the OTP keys does not eliminate the risk if the channel or cloud
storage is compromised. Other research points to theoretical
limitations of OTP, such as the requirement for keys that are as
long as the message and the challenge of securely distributing
these keys. Technologies like Quantum Key Distribution
(QKD) offer promising solutions, but they remain expensive
and difficult to implement at scale. This highlights the need for
a new approach that can bridge the gap between theoretical
security and practical deployment [24].

Studies such as [25] and [26] demonstrated that while the
application of TOTP/HOTP algorithms within moving target
defense strategies in sensitive networks improved security, the
reliance on deterministic hash functions (e.g., HMAC-SHA)
and static keys makes these systems susceptible to compromise
if the key is exposed or if time synchronization fails. Similarly,
integrates TOTP with biometrics for electronic payments, yet
the OTP generation remains deterministic and dependent on a
shared seed [27]. If this seed is leaked, it opens the system to
brute-force or spoofing attacks.

To address these gaps, this research proposes an OTP-ANN
method that utilizes the Tree Parity Machine (TPM) algorithm
to generate random keys through synchronization without
explicit exchange. Rather than replacing modern RNGs, this
approach introduces an added layer of security through
stochastic key synchronization, which is inherently
unpredictable to third parties, even under full communication
observation. This represents a promising solution to the
unresolved limitations of conventional OTP approaches
identified in prior studies.

Therefore, in this research, the proposed method using
OTP-ANN and the TPM algorithm is implemented to generate
random keys for enhanced security. The implementation of
OTP-ANN will be applied to physical devices in a real-world
context, rather than just modeling, utilizing the login
authentication process on websites that are integrated with
notifications through Telegram and Email. The choice of OTP
functionality for login is an ideal option because, in the context
of a website, login is a common necessity as a security layer to
reduce the risk of hacking [28]. As a result, the implementation
of OTP-ANN with TPM can be applied in real-life situations.

II. MATERIAL AND METHODS
In the proposed method, as shown in Figure 1, the process starts
with initiating the login process by entering the username and
password on the website, using CAPTCHA for verification,
and processing for OTP integrated with Telegram and Email
for authentication.

Figure 1. Proposed System Stage

Vera Wati et al. / International Journal of Computing, 24(3) 2025, 559-569

VOLUME 24(3), 2025 561

The CAPTCHA process is not a secret because it is used
only for verifying actions performed by humans rather than
automated entities. Its generation involves processing the 26
letters of the alphabet to display 6 random letters on the login
page. After successful verification, the OTP authentication
process is initiated. It begins with the synchronization of TPM
between both neural machines to generate a secret key. Based
on this processing, the key is sent as a message through the
Telegram and Email interfaces to appear in the message
interface. This continues until successful notifications appear
on both interfaces.

A. LOGIN PAGE
Referring to Figure 2. In the verification process by logging in,
the user enters the username and password which must match
the data stored in the database. Public CAPTCHA must be
entered in the form provided, then click the Login option. If
verification is successful, then the OTP authentication process
with TPM is as shown in Figure 3. On the website page you
will be waiting for the process of entering the 6 OTP codes that
have been generated The authentication OTP code will send a
notification to Telegram with a display as shown in Figure 4
and the registered email looks like in Помилка! Джерело
посилання не знайдено..

Figure 2. CAPTCHA Verification Login Page

Figure 3. OTP TPM Authentication Email and Telegram
Integration

OTP authentication in Figure 4 and Figure 5. Has a period
of 30 seconds, and automatically sends a random code to Email
and Telegram addresses. The TPM mutual learning
synchronization process uses ideal parameters with a value of
K=4 as the hidden neuron, N=5 as the input neuron, and a
weight of 5 as L. These parameters are considered to be the
minimum parameters that are most suitable in terms of
functionality and can achieve the best results in a time short.

Figure 4. TPM OTP notification on Telegram

Figure 5. TPM OTP Notification in Email

B. TPM MUTUAL LEARNING SYNCHRONIZATION
TPM synchronization uses the principle of symmetric key
cryptography; however, in this case, the TPM generates keys
that are distributed along with the ciphertext. Mutual learning
on both machines, as depicted in Figure 6, consists of K as
hidden neurons, N input neurons, and one output neuron.
Consideration of 2 parties A and B agreeing on a key via a
secret channel, such that the basic performance of the ANN is
identical to performing mutual learning for synchronization.
The process of generating the secret key involves input neurons
 X୏,୒, Xଵ, Xଶ, Xଷ, … X୬, which enters the nerve cell layer by
collecting weight values W୏,୒ , Wଵ, Wଶ, Wଷ, … W୬, at each
node. The weight initialization is completely random with a
value range of -L to L so that the cryptanalyst does not
recognize patterns to reveal the contents of the ciphertext.
Mathematical function 𝑦(𝑥) (1) to ensure that the weight value
formed is always within the L value range.

𝑦(𝑥) = {ି௅ ௜௙ ௫ழି௅
௅ ௜௙ ௫ வ ௅ (1)

The weight value for the formation of a new node is

calculated based on the equation of the product of each weight
adjusting the activation function, with mathematical equation
(2)

∑ 𝑋௜𝑊௜ − 𝜃௡
௜ୀଵ (2)

The neuron’s input value is multiplied by 𝑋௜ with weight

value 𝑊௜ in creating new nodes with the process of generating
an internal Threshold (threshold value) of the activation
function Σ as the next process for the output value. The
Threshold function has provisions as in equation (3). The
Threshold function used is the bipolar Threshold function
which produces a value of 1 or – 1.

𝑓(𝑥) = {ିଵ ௜௙ ௫ ழ଴
ଵ ௜௙ ௫ ஹ଴ (3)

 Vera Wati et al. / International Journal of Computing, 24(3) 2025, 559-569

562 VOLUME 24(3), 2025

It is important to emphasize that although the
synchronization process in a Tree Parity Machine (TPM) neural
network involves repeated exchanges of output bits, it does not
expose internal weight values or the resulting shared secret key.
Unlike traditional key exchange protocols, which typically
transmit partial or transformed representations of key material,
TPM synchronization only exchanges the sign of aggregated
weighted inputs, which does not reveal any meaningful
information about the internal state of the system. Even if a
passive adversary is capable of capturing the entire
communication between two legitimate parties (e.g., neural
machines A and B), the communication remains stochastic due
to the TPM's weight update rules. When Hebbian or anti-
Hebbian learning mechanisms are applied, synchronization
becomes virtually unattainable for the attacker. Legitimate
parties benefit from mutual feedback, which enables
coordinated weight updates, whereas the attacker can only
observe unidirectional communication without the ability to
influence or respond to the synchronization process.

Figure 6. Mutual Learning Tree Parity Machine

Empirical studies have demonstrated that the average
synchronization time for an attacker increases exponentially
with the size of the TPM, while for legitimate participants, the
synchronization time increases linearly with network
parameters such as the number of hidden units (K), the number
of input neurons per hidden unit (N), and synaptic depth (L)
[29]. This asymmetry creates a computational gap that can be
exploited for secure key generation. Increasing the TPM’s
complexity by selecting larger values for K, N, and L not only
enhances the entropy of the generated key but also significantly
increases the difficulty of synchronization for any
eavesdropper. This asymmetry has been validated through
simulations, which show that for sufficiently large TPM, the
probability of successful synchronization by an attacker within
practical time frames becomes negligible [30].

Importantly, although the synchronization process involves
repeated public exchanges of output bits, these bits do not leak
internal weight values or the final secret key. Since the attacker
lacks feedback from either party and can only passively
observe the exchanges, their neural network is unable to

reliably align its weights. The attacker’s learning is
unidirectional, unlike the bidirectional feedback loop enjoyed
by the legitimate parties, making convergence virtually
impossible within a realistic timeframe, as confirmed by
previous studies [31]. Therefore, the TPM-based mutual
learning protocol offers a key advantage: the ability to establish
a shared secret key over a public channel without any direct key
exchange, while maintaining strong security even under full
passive interception.

The weight updating process will continue to repeat until it
reaches the same weight, starting with the first iteration by
comparing the two neural values of the same 𝜎௄

஺/஻
= 𝜏஺/஻,

where neural machine A is the first party, for example(𝜏஺ =
Π௞ୀଵ) = (𝜏஻ = Π௞ୀଵ). The length of time for the
synchronization process is certainly influenced by the input
values, weight values, and the network structure formed. So the
larger the TPM network, the longer the synchronization time.

C. GENERATE TPM KEY FOR OTP
As illustrated in Figure 7, TPM network topologies will use the
same structure. The key-generating process to produce the OTP
key value involves the following stages:
1) Neural machines A and B have the same input value

parameters, namely 2 input neurons (N=2), hidden
neurons have a value of 3 (K=3), and a weight limit of 4
(L=4).

2) Random weight update process 𝑤௫௬
஺/஻where its valuable ∈

{−𝐿, … 𝐿}, then it will form ∈ {-4,-3,-2,-1,0,1,2,3,4},
taking into account the value formed 𝑥, 𝑦, with
range (1 ≤ 𝑥 ≤ 𝐾) and (1 ≤ 𝑦 ≤ 𝑁) so that based on
the K, N, L values, each weight for both parties forms a
matrix 𝐾 ∗ 𝑁 or 3 ∗ 2 so that the equation is formed (4)

𝑊஺(𝑥) = ൥
3 2
1 1
2 2

൩ sync with 𝑊஻(𝑦) = ൥
2 1
1 1
2 2

൩ (4)

3) Update weight in neural is done if while 𝑤௫௬

஺ ≠ 𝑤௫௬
஻ , i++

starting with the first iteration, do
a) Generate input vector 𝑍௫௬ ∈ {−1,1}
b) Calculating hidden neuron units with mathematical

functions (5)

σ௫
஺/஻= 𝑠𝑔𝑛(∑ 𝑤௫௬

஺/஻
 𝑍௫௬

ே
௫ୀ௬ (5)

This function returns −1, 0 or 1

𝑠𝑔𝑛(𝑧) ቐ

−1 𝑖𝑓 𝑥 < 0,
0 𝑖𝑓 𝑥 = 0,
1 𝑖𝑓 𝑥 > 0.

ቑ (6)

If the hidden neuron value is 0 then it is mapped to -1 for

binary output consistency, this process is related to the process
of calculating the next stage. Suppose the resulting iteration is
as in matrix (7)

𝑍஺/஻ = ൥
−1 1
1 −1
1 1

൩ (7)

Vera Wati et al. / International Journal of Computing, 24(3) 2025, 559-569

VOLUME 24(3), 2025 563

c) Calculating output neurons based on hidden
neurons, equation (5) is used. to compare the values
of the two neural machines such as by calculating
each weight (8)

σଵ
஺= ∑ 𝑍஺𝑊஺ = (−1 ∗ 3) + (1 ∗ 2) = −1ଶ

ଷ
σଶ

஺= ∑ 𝑍஺𝑊஺ = (1 ∗ 1) + (−1 ∗ 1) = 0ଶ
ଵ

σଷ
஺= ∑ 𝑍஺𝑊஺ = (1 ∗ 2) + (1 ∗ 2) = 4ଶ

ଶ
…
…
σଵ

஻= ∑ 𝑍஺𝑊஺ = (−1 ∗ 2) + (1 ∗ 1) = −1ଶ
ଶ

Etc. (8)

The resulting weights will undergo continuous iteration by
paying attention to the return of the threshold function in
equation (9)

if 𝜏஺ ≠ 𝜏 ஻ then
goto (a) σଵ

஺ = −1, σଶ
஺ = 0, σଷ

஺ = 1, … , … σଵ
஻ = −1, …

else
if 𝜏஺ = 𝜏 ஻ then

𝜏஺ = ∏ σଵ
஺ = σଵ

஻𝟏
𝑲ୀ𝟏 (9)

As an iterative process to produce the same value, use the

synchronization learning rule with the Hebbian learning rule

𝑤௜௝
஺/஻,ାା

= 𝑔(𝑤௫௬
஺/஻

 + σ௫
஺/஻

 𝑥௫௬ 𝜃 (σ௫
஺/஻

, 𝜏஺/஻),

 (𝜏஺ , 𝜏஻))
 (10)
End

The iteration process will be carried out optimally until both
nerves are the same 𝑤௫௬

஺ୀ஻ and generate a key for the next OTP
process. The depiction in Figure 6 with predetermined K, N, L
values gives the probability (2𝐿 + 1)௄ே generates a possible
key of 3*26*** for alphabetically so that the resulting key has
a small chance of being attacked by computer power.

4) OTP key generation stage for neural cryptography.

a) Secret key value i ((𝑤௫௬
஺ = 𝑤௫௬

஻) + 4/1024. 𝐾𝑖𝑏)
if key length >= 6

exp date + 30 seconds
i++
End

b) The generated key will be sent a notification via
Telegram and Email, with several data considered
such as:

INSERT INTO (kode OTP, generate exp
date, iterasi max, nilai kunci i, key
length, key, nilai K, N, L, status)

Figure 7.TPM Network for OTP Key Generator

D. OTP NOTIFICATION ON TELEGRAM AND EMAIL
In the process of creating an OTP notification in an email, you
need to send a code and set the validity period for using the
OTP. The first setting requires specifying the sender address
and subject of the email. Variables used in email settings
include the SMTP protocol on the host, port and the importance
of initiating the sender's email and password. In the recipient's
email settings, the message that will be sent is the text and OTP
that has been successfully generated. The pseucode for using
OTP for email is as follows:

start
text_email_otp(text, otp, exp)

initialize variables:
protocol= ‘SMTP’,
smtp_host= ‘ssl://smtp.googlemail.com’,
smtp_port= 465,
smtp_user= sender@gmail.com,
smtp_password= sender_password,
receiver= ‘receiver@gmail.com’
subject= ‘OTP-ANN TPM Service’
text= text_email_otp,
mailtype= ‘html’,
charset = ‘iso-8859-1’
end.

Apart from utilizing email notifications, the research used
the Telegram application which is already installed on mobile
devices, even though it is still in the form of a bot. The main
requirement of course requires the Telegram application to be
installed on the device. Commands are required to create a new
bot by following the instructions from the official bot provided
by Telegram, namely BotFather to get the API. API as a bridge
for distributing information between OTPs generated from
neural cryptography and installed Telegram devices, both on
mobile phones and on the Telegram web. The message will
generate an OTP notification notification with a time limit by
working on the following pseudocode:

start
text_telegram_otp(text, otp, exp)

 Vera Wati et al. / International Journal of Computing, 24(3) 2025, 559-569

564 VOLUME 24(3), 2025

initialize variables:

telegram_token: ‘bot_token’;
chatID: ‘target_chatID’;

construct the API URL:
url= ‘https://api.telegram.org/bot’+
token +
‘/sendmessage_chat_id’+chatID;
message_text; text_telegram_otp

set cURL options:

curl_init();
CURLOPT_URL = url,
CURLOPT_RETURNTRANSFER = true

end.

III. RESULT AND DISCUSSION
A. NEURON VALUE PARAMETERS FOR GENERATING
OTP
To test the feasibility of ideal parameter values in determining
K, N, and L neurons, an interface needs to be created to make
it easier for the generator process to see the ability to
synchronize learning between the two neural machines. This is
important to test and be able to determine the minimum K, N,
and L value parameters that are suitable for use in OTP login
authentication. Test generating an OTP by filling in the values
in the blank form on the interface Figure 8.

Figure 8. Interface Design for Generating OTP

Figure 9. TPM OTP Synchronization Information

Figure 10. OTP TPM Login Database Modeling

Based on the neuron synchronization data in Figure 9, this
is the first step in the concept that will be implemented in OTP-
ANN with TPM for login authentication, so that a database
storage model is formed as in Figure 10. Database modeling is
implemented in OTP TPM by processing information such as
user_id, and producing generators. The key corresponds to the
K, N, and L neuron values. Testing of ideal parameter values
based on minimum input values can be seen in Помилка!
Джерело посилання не знайдено. with the lowest K, N, and
L neuron values from grades 2–6. The maximum average
iteration produced is 9562.16, provided that the value of K is≥4
if N is≥5 and L is≥5. Therefore, based on these conclusions, the
implementation of neural synchronization for OTP-ANN TPM
yields ideal parameters for use.

Table 1. Testing the Use of K, N, and L Neuron Parameters

Parameter Iteration
Max

Iteration
Data Modified

(Kib)
Code

Length
All OTP’s OTP Code Status

K N L
2 2 2 - - - - - - Failed
3 3 3 - - - - - - Failed
4 3 2 - - - - - - Failed
3 4 4 3072 73 1,140625 - - - Failed
4 4 4 4096 27 0,52734375 - - - Failed
3 4 3 972 2 0,03125 - - - Failed
3 4 5 7500 4 0,0625 - - - Failed
3 5 5 9375 852 15,80859375 - - - Failed
4 5 4 5120 11 0,2578125 - - - Failed
4 5 3 1620 1620 37,96875 - - - Failed
4 4 5 1000 1 0,01953125 - - - Failed
4 5 5 12500 11 0,2578125 7 LO8DNAG GN8OLA Success
5 5 5 15625 443 12,5458984375 8 ECFCI8MI IM8CEC Success
5 4 3 1620 377 8,8359375 - - - Failed

Vera Wati et al. / International Journal of Computing, 24(3) 2025, 559-569

VOLUME 24(3), 2025 565

Parameter Iteration
Max

Iteration
Data Modified

(Kib)
Code

Length
All OTP’s OTP Code Status

K N L
5 3 5 - - - - - - Failed
5 4 4 5120 5 0.1171875 - - - Failed
5 4 5 12500 770 18,046875 7 GIIH7DF FHIDGI Success
6 3 3 - - - - - - Failed
6 4 3 1944 742 20,2890625 - - - Failed
6 4 4 6144 7 0,19140625 6 NGHAGJ GNHGAJ Success
6 5 5 18750 1 0,033203125 10 QCDC9LFEIF IFDC9F Success
6 5 4 7680 2 0,06640625 8 CJHLMLI8 ILLC8H Success
6 5 6 38880 13171 437,318359375 15 8CN9EICD58BNL

G9
8NDC9B Success

6 6 6 46656 93 3,6328125 18 G6CC6BJ8AG8EH
B5B47

C8BJ46 Success

5 6 6 38880 7 0,232421875 15 L3M886A9DL6C3
DK

AD98C6 Success

B. GENERATE OTP SYNCHRONIZATION WEIGHT VALUE
UPDATE
The stochastic characteristic of TPM synchronization means
that the epoch process in iterative training has different weight
values for each training, even though the input K, N, L have the
same value. When the synchronization process is carried out,
the weight -atching process in the two parity neural machines
will continue to change in a mutually interesting manner
(attractive step) and weight indicate sthe steps of pushing each
other (repulsive step) [32] [29].

Figure 11. TPM Sync Weight Value Update Graph

As shown by the graph in Figure 11Помилка! Джерело
посилання не знайдено., shows a curve line that rises and falls
on synchronization using the values K=4, N=5, L=5.
Illustration Figure 11. meaning that if the two weight values in
the neural machine have a closer or smaller difference, it will
go to the same value or the graph will go down. The condition
of the two weights experiences an attractive step with a
probability value that occurs as in equation (11).

if 𝑃(𝐴) = (𝜏஺ = ∏ σଵ
஺ = σଵ

஻ ଵ
௄ୀଵ | | 𝜏஺ = 𝜏 ஻) (11)

The attractive step state occurs when one or more of the

weight values are hidden neurons 𝛔𝟏
𝑨 has a slight difference or

is equal to 𝛔𝟏
𝑩. On the other hand, if the two weights have a

difference in pushing each other or a repulsive step so that the
values get further apart then the probability of what will happen
is like equation (12).

if 𝑃(𝐴) = (𝜏஺ = ∏ σଵ
஺ ≠ σଵ

஻ ଵ
௄ୀଵ | | 𝜏஺ ≠ 𝜏 ஻) (12)

Equation (11) (12) will have an effect on the graph

Помилка! Джерело посилання не знайдено.., where
during the synchronization process the parameter values K, N,
L have an effect that causes an attractive step to occur with both
weight values being the same so the synchronization is faster
[13][33]. So, conversely, a repulsive step will occur and cause
the synchronization to take longer [34]. Simulation of weight
update values for synchronization to generate OTP as in Table
2. Referring to Table 2, the process of updating the weight
values in iterations 1, 2, and 3 is the process of the two neural
machines experiencing mutual pushing or repulsive steps,
causing the weight values of the two TPMs to move further
apart. Next, in the 2500th iteration, the process pulls each
other's attractive steps on both neural machines, thus finding
the same weight value.

C. GENERATE OTP SYNCHRONIZATION ITERATION
CYCLE
The concept of epoch in the research carried out refers to
training a model based on iteration cycles in generating
synchronization of the two neural machines to produce OTP.

Table 2. Simulation of Weight Update Values

Iteration 𝒁 𝛔𝟏
𝑨 𝛔𝟏

𝑩 𝒁𝑨/𝑩 𝑾𝑨 𝑾𝑩

1

൦

−1 1 1 −1 −1
1 −1 1 1 −1

−1 −1 1 1 −1
1 1 1 −1 1

൪ ൦

−1
1
1

−1

൪ ൦

1
1

−1
1

൪

1

൦

5 4 −3 −3 2
1 −1 0 2 3

−4 −3 −3 2 5
3 2 1 3 5

൪ ൦

5 4 −2 −2 0
1 −1 0 1 2

−3 −3 −3 2 4
2 3 1 3 4

൪

2

൦

1 1 1 1 −1
1 −1 1 −1 −1

−1 1 1 1 −1
1 −1 −1 −1 1

൪ ൦

−1
−1
1

−1

൪ ൦

−1
1

−1
1

൪

-1

൦

2 −3 2 1 −5
1 −2 −1 0 −5

−1 2 1 5 −5
0 0 3 4 −5

൪ ൦

2 −3 2 1 −5
1 4 −3 0 −5

−2 3 2 5 −4
0 1 3 4 −3

൪

 Vera Wati et al. / International Journal of Computing, 24(3) 2025, 559-569

566 VOLUME 24(3), 2025

Iteration 𝒁 𝛔𝟏
𝑨 𝛔𝟏

𝑩 𝒁𝑨/𝑩 𝑾𝑨 𝑾𝑩

3

൦

1 −1 −1 −1 −1
1 −1 1 1 −1

−1 −1 1 1 −1
−1 1 −1 −1 1

൪ ൦

−1
1

−1
1

൪ ൦

1
1

−1
1

൪

-1

൦

−4 5 −5 4 0
−5 −5 −5 5 4
5 −4 1 5 3
5 4 −5 −4 2

൪ ൦

5 −5 4 −4 0
−5 −5 −5 5 3
−4 4 −1 −4 5
5 4 −3 −1 2

൪

n
቎

… … … … …
… … … … …
… … … … …
… … … … …

቏ ቎

…
…
…
…

቏ ቎

…
…
…
…

቏
…

቎

… … … … …
… … … … …
… … … … …
… … … … …

቏ ቎

… … … … …
… … … … …
… … … … …
… … … … …

቏

2500

൦

−1 −1 −1 −1 −1
1 −1 1 1 −1

−1 −1 1 1 −1
1 1 −1 −1 1

൪ ൦

−1
1
1
1

൪ ൦

1
1

−1
1

൪

1

൦

−4 5 3 3 5
−5 4 −1 5 5
5 3 −5 5 5

−4 −4 5 4 4

൪ ൦

−4 5 3 3 5
−5 4 −1 5 5
5 3 −5 5 5

−4 −4 5 4 4

൪

As can be seen in Помилка! Джерело посилання не
знайдено., the parameter values in the network topology values
K, N, L influence the overall length of the code digits. This
proves that the characteristics of the TPM topology will update
the weight values when synchronization occurs to achieve the
same value on both parity neural machines [35].

Figure 12. Generate OTP Synchronization Iteration Cycle

Figure 12 illustrates the iteration cycles required to generate

a synchronized OTP under various configurations. These
findings serve as a basis for modeling the synchronization
process by varying K, N, and L within a range of 4 to 20. To
address concerns related to synchronization overhead, it is
important to emphasize that TPM synchronization does not
require all iterations to be completed. As shown in Table 1 and
Figure 12, synchronization can terminate early once the parity
machines reach identical weight vectors, regardless of any pre-
defined maximum iteration threshold. Moreover, only
lightweight output bits are exchanged during synchronization,
not full keys or weight states, thus maintaining communication
efficiency and minimizing overhead. The average time per
iteration is approximately 0.036 ms. For typical values of K, N,
and L, synchronization is completed within an acceptable
iteration range, ensuring that OTP generation remains practical
and responsive for login-scale authentication scenarios.

The training process illustrated in Figure 12, based on
1252 simulation runs, shows that synchronization may require
up to 30.000.000 times iterations in the worst case. However,
the OTP generation process does not need to reach this
maximum, as synchronization halts automatically upon
convergence. While some instances may show longer
synchronization times (as indicated by the red graph line), most
OTP generations complete far earlier (as shown in the blue
line), confirming that full iteration cycles are rarely needed.
Therefore, although larger K, N, and L values increase
synchronization time, they are not optimal for time-sensitive
OTP use cases. In this implementation, a 6-digit OTP is
randomly selected from the synchronized weight vectors and

delivered through email and Telegram as part of the login
authentication process.

The ability of TPM to dynamically conclude
synchronization well before reaching the maximum iteration
limit demonstrates its capacity to operate within efficient
security design principles, particularly for lightweight
authentication scenarios like web logins that demand both high
throughput and minimal latency.

D. EXPERIMENTAL COMPARISON BETWEEN
DETERMINISTIC OTP AND STOCHASTIC OTP TPM
MODELS
This experimental test compares two approaches to One-Time
Password (OTP) generation: a deterministic model
representing Time-based OTP (TOTP), and a stochastic model
based on a Tree Parity Machine (TPM). The deterministic OTP
is generated by performing SHA-256 hashing on a seed
consisting of a 30-second system time and the configuration
parameters K, N, and L, then converted into OTP digits via a
modulus operation. In contrast, the stochastic model generates
an OTP through the synchronization of two simple neural
networks (TPMs) that interactively update their weights until
they are identical, and then the final weights are used as the
source of the OTP. As illustrated in the following pseudocode:

Pseudocode for deterministic:
FUNCTION deterministic_otp(k, n, l):
 timestep ← current_time_in_seconds
// 30
 seed_string ← f"{k}-{n}-{l}-
{timestep}"
 hash_digest ← SHA-256(seed_string)
 digits ← convert each 2 hex chars →
int →
 mod 10
 RETURN first 6 digits as OTP

Pseudocode for stochastic TPM:
FUNCTION sync_tpm(k, n, l, max_iter):
 w_a, w_b ← random weights in range
[-l,l]
 for each k × n

 FOR step IN 1 TO max_iter:
 x ← random input matrix [-1, 1]
 of size k × n
 out_a, h_a ← TPM_output(w_a, x)
 out_b, h_b ← TPM_output(w_b, x)

 IF out_a == out_b:
 FOR i, j in k, n:
 IF h_a[i] == x[i][j] AND

Vera Wati et al. / International Journal of Computing, 24(3) 2025, 559-569

VOLUME 24(3), 2025 567

 h_b[i] == x[i][j]:
 update w_a[i][j] and
 w_b[i][j] by x[i][j]
 (clamped)

 IF w_a == w_b:
 BREAK

 otp ← flatten w_a, convert abs(bit)
mod 10
 RETURN step, first 6 digits as OTP

Experiments such as those in Figures 13-18, showing
experimental results at various iterations (50, 100, 150, 200,
500, 10.000) show a consistent pattern: the deterministic model
is far superior in terms of time efficiency, as seen from the very
small and stable distribution of execution times. However, from
a security perspective, the stochastic approach shows higher
entropy, especially at low iterations (50–150), which do not
produce duplicate OTPs, in contrast to the deterministic model,
which tends to produce duplications from the start. Although at
high iterations (≥200) the stochastic model begins to show
duplications, this is still within tolerable limits and depends on
the size of the key space.

Figure 13. Comparison of deterministic and stochastic OTP at

50 iterations

Figure 14. Comparison of deterministic and stochastic OTP at

100 iterations

Figure 15. Comparison of deterministic and stochastic OTP at

150 iterations

These findings indicate that deterministic OTP is suitable for
systems with time and resource constraints, but suffers from
predictability weaknesses if the seed is not truly secret. In
contrast, TPM-based OTP offers advantages in the context of
cryptographic security and uncertainty, making it a strong
alternative for high-risk authentication scenarios.

Figure 16. Comparison of deterministic and stochastic OTP at

200 iterations

Figure 17. Comparison of deterministic and stochastic OTP at

500 iterations

Figure 18. Comparison of deterministic and stochastic OTP at

10.000 iterasions

IV. CONCLUSION
The topology size in neural cryptography significantly
influences the synchronization process of OTP generation
using Tree Parity Machines (TPM). The effectiveness of ANN-
based OTP generation for login authentication relies heavily on
selecting optimal parameters. Experimental results indicate that
stable synchronization can be achieved when K ≥ 4, N ≥ 5, and
L ≥ 5, with a maximum iteration threshold of 12.500.
Importantly, the synchronization process often converges
before reaching this limit, as it terminates once both TPMs
reach identical weight configurations.

Each iteration takes approximately 0.036 ms, and during
synchronization, both networks perform alternating attractive
and repulsive weight adjustments. Despite using the same K,
N, and L values, the stochastic nature of TPM ensures that each
training session results in unique weight states, yielding highly
unpredictable OTPs. This randomness makes TPM-based OTP
generation particularly advantageous for high-security

 Vera Wati et al. / International Journal of Computing, 24(3) 2025, 559-569

568 VOLUME 24(3), 2025

authentication contexts, as the likelihood of generating
duplicate codes is extremely low.

Optimal implementation prioritizes configurations that
balance fast synchronization with security. Excessively large
topologies, while theoretically expanding the key space, tend
to increase computational cost without proportional gains in
performance, especially considering that the tested upper
iteration bound reaches up to 30,000,000 iterations. Therefore,
moderately sized TPMs are more practical.

Understanding the underlying mechanism of TPM and its
integration with ANN facilitates practical deployment in real-
world systems. With proper configuration, the OTP output can
be securely transmitted via web servers and integrated with
platforms such as Telegram and email services. Upon
successful generation, a 6-digit alphanumeric code is extracted
from the synchronized weights, producing a valid and secure
OTP for login authentication.

Acknowledgements

This research was funded by DAPTV Kementerian Pendidikan,
Kebudayaan, Riset, dan Teknologi based on Surat Keputusan
nomor 0793/D4/AL.04/2023 July 8, 2023, through a grant
scheme for Penelitian Dosen Pemula (PDP) fiscal year 2023.
The author would like to thank the Direktorat Jenderal
Pendidikan Vokasi, LLDIKTI wilayah VI and PT. Egref
Telematika Nusantara for the material and non-material
support provided so that all activities run smoothly and the
expected goals have been achieved.

References

[1] N. Sanchiga Nandhini and P. Arumugam, “Digital currency banking
using block chain technology,” World J. Adv. Eng. Technol. Sci., vol. 8,
no. 1, pp. 053–061, 2023, https://doi.org/10.30574/wjaets.2023.8.1.0011.

[2] M. Hammed and A.B. Adesi, “Authentication scheme using tree parity
artificial neural networks for fraud detection in an on-line banking
system,” Proceedings of the 4th National Development Conference of the
School of Pure and Applied Science, 2019, pp. 257–265.

[3] S. Matelski, “Universal key to authentication authority with human-
computable OTP generator,” Proceedings of the 2022 17th Conference
on Computer Science and Intelligence Systems (FedCSIS), 2022, pp.
663–671. https://doi.org/10.15439/2022F71.

[4] R. A. Grimes, One‐Time Password Attacks, Wiley, 2021.
[5] K. Brindhashree and S. J. Prakash, “Data security based on cryptography,

steganography combined with OTP algorithm and Huffman coding in the
cloud environment,” Int. Res. J. Mod. Eng. Technol. Sci., vol. 2, no. 10,
pp. 441–447, 2020.

[6] F. Ramadhani, U. Ramadhani, and L. Basit, “Combination of hybrid
cryptography in one time pad (OTP) algorithm and keyed-hash message
authentication code (HMAC) in securing the WhatsApp communication
application,” J. Comput. Sci. Inf. Technol. Telecommun. Eng., vol. 1, no.
1, pp. 31–36, 2020, https://doi.org/10.30596/jcositte.v1i1.4359.

[7] M. Ziaurrahman, E. Utami, and F. W. Wibowo, “Modifikasi Kriptografi
Klasik Vigenere Cipher Menggunakan One Time Pad Dengan Enkripsi
Berlanjut,” J. Inform. dan Teknol. Inf., vol. 4, no. 1, p. (halaman 2), 2019.
(in Indonesian).

[8] M. Ashiqul Islam, A. A. Kobita, M. Sagar Hossen, L. S. Rumi, R. Karim,
and T. Tabassum, “Data security system for a bank based on two different
asymmetric algorithms cryptography,” Lect. Notes Data Eng. Commun.
Technol., vol. 53, no. January, pp. 837–844, 2021,
https://doi.org/10.1007/978-981-15-5258-8_77.

[9] M. Volkmer and S. Wallner, “Tree parity machine rekeying
architectures,” IEEE Trans. Comput., vol. 54, no. 4, pp. 421–427, 2005.
https://doi.org/10.1109/TC.2005.70.

[10] A. P. Veera Manindra and B. Karthikeyan, “OTP camouflaging using
LSB steganography and public key cryptography,” Proceedings of the
2022 3rd International Conference on Electronics and Sustainable
Communication Systems (ICESC), 2022, pp. 109–115.
https://doi.org/10.1109/ICESC54411.2022.9885542.

[11] B. T. Hammad, A. M. Sagheer, I. T. Ahmed, and N. Jamil, “A
comparative review on symmetric and asymmetric DNA-based

cryptography,” Bull. Electr. Eng. Informatics, vol. 9, no. 6, pp. 2484–
2491, 2020, https://doi.org/10.11591/eei.v9i6.2470.

[12] N. G. N. Amma and F. R. Dhanaseelan, “Optimal privacy preserving
scheme based on modified ANN and PSO in cloud,” Res. Anthol. Priv.
Secur. Data, pp. 773–793, 2021, https://doi.org/10.4018/978-1-7998-
8954-0.ch035.

[13] S. Jeong, C. Park, D. Hong, C. Seo, and N. Jho, “Neural cryptography
based on generalized tree parity machine for real-life systems,” Secur.
Commun. Networks, vol. 2021, 2021,
https://doi.org/10.1155/2021/6680782.

[14] S. Y. Yan, Computational Number Theory and Modern Cryptography,
Google Books, [Online]. Available at:
https://books.google.co.id/books?hl=id&lr=&id=74oBi4ys0UUC&oi=fn
d&pg=PR9&dq=Typically,+in+many+modern+cryptography+methods,
+algebraic+number+theory+is+involved+&ots=fR44FTmYIO&sig=2D
azU2MVXoRT-
kb7vI6G65tFt_c&redir_esc=y#v=onepage&q=Typically%2C in many
modern cryptography methods%2C algebraic number theory is
involved&f=false.

[15] Z. Zheng, Modern Cryptography Volume 1, Springer, 2022, 359.
https://doi.org/10.1007/978-981-19-0920-7.

[16] S. Chourasia, C. H. Bharadwaj, Q. Das, K. Agarwal, and K. Lavanya,
“Vectorized neural key exchange using tree parity machine,” Compusoft,
vol. 8, no. 5, pp. 3140–3145, 2019.

[17] M. Dolecki and R. Kozera, “Distribution of the tree parity machine
synchronization time,” Adv. Sci. Technol. – Res. J., vol. 7, no. 18, pp. 20–
27, 2013, https://doi.org/10.5604/20804075.1049490.

[18] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone, Handbook of
Applied Cryptography (1st ed.). CRC Press, 2022.
https://doi.org/10.1201/9780429466335.

[19] C. Biswas, M. M. Haque, and U. Das Gupta, “A modified key sifting
scheme with artificial neural network based key reconciliation analysis in
quantum cryptography,” IEEE Access, vol. 10, no. July, pp. 72743–
72757, 2022, https://doi.org/10.1109/ACCESS.2022.3188798.

[20] Y. R. Mislovaty, I. Perchenok, W. Kanter, and Kinzel, “Secure key-
exchange protocol with an absence of injective functions,” Phys. Rev.,
vol. 66, no. 6, 2002. https://doi.org/10.1103/PhysRevE.66.066102.

[21] I. Kanter, W. Kinzel, and E. Kanter, “Secure exchange of information by
synchronization of neural networks,” Euro-physics Lett., vol. 57, no. 1,
p. 141, 2002. https://doi.org/10.1209/epl/i2002-00552-9.

[22] M. Rosen-Zvi, E. Klein, I. Kanter, and W. Kinzel, “Mutual learning in a
tree parity machine and its application to cryptography,” Phys. Rev. E,
vol. 66, no. 6, p. 66135, 2002,
https://doi.org/10.1103/PhysRevE.66.066135.

[23] E. Shishniashvili, L. Mamisashvili, and L. Mirtskhulava, “Enhancing IoT
security using multi-layer feedforward neural network with tree parity
machine elements,” Int. J. Simul. Syst. Sci. Technol., pp. 6–10, 2020,
https://doi.org/10.5013/IJSSST.a.21.02.37.

[24] E. M. M. Manucom, B. D. Gerardo, and R. P. Medina, “Analysis of key
randomness in improved one-time pad cryptography,” Proceedings of the
2019 IEEE 13th International Conference on Anti-Counterfeiting,
Security, and Identification (ASID), 2019, pp. 11–16.
https://doi.org/10.1109/ICASID.2019.8925173.

[25] R. Manjupargavi, M. V. Srinath, “Efficient OTP generation with
encryption and decryption for secure file access in cloud environment,”
J. Commun. Technol., vol. 13, no. 2, pp. 2683–2688, 2022,
https://doi.org/10.21917/ijct.2022.0397.

[26] L. C. B. C. Ferreira, P. R. Chaves, R. M. Assumpção, O. C. Branquinho,
F. Fruett, and P. Cardieri, “The three-phase methodology for IoT project
development,” Internet of Things, vol. 20, p. 100624, 2022,
https://doi.org/10.1016/j.iot.2022.100624.

[27] É. Salguero Dorokhin, W. Fuertes, and E. Lascano, “On the development
of an optimal structure of tree parity machine for the establishment of a
cryptographic key,” Secur. Commun. Networks, vol. 2019, 2019,
https://doi.org/10.1155/2019/8214681.

[28] S. Matelski, “Human-computable OTP generator as an alternative of the
two-factor authentication,” pp. 64–71, 2022,
https://doi.org/10.1145/3528580.3532842.

[29] X. Lei, X. Liao, F. Chen, and T. Huang, “Two-layer tree-connected feed-
forward neural network model for neural cryptography,” Phys. Rev. E -
Stat. Nonlinear, Soft Matter Phys., vol. 87, no. 3, p. 032811, 2013,
https://doi.org/10.1103/PhysRevE.87.032811.

[30] A. Ruttor, “Neural synchronization and cryptography,” 2007, [Online].
Available: http://arxiv.org/abs/0711.2411.

[31] A. Ruttor, W. Kinzel, and I. Kanter, “Dynamics of neural cryptography,”
Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys., vol. 75, no. 5, p.
056104, 2007, https://doi.org/10.1103/PhysRevE.75.056104.

[32] M. A. Budiman, Handrizal, and William, “A neural cryptography

Vera Wati et al. / International Journal of Computing, 24(3) 2025, 559-569

VOLUME 24(3), 2025 569

approach for digital image security using Vigenère cipher and tree parity
machine,” J. Phys. Conf. Ser., vol. 1898, no. 1, p. 012039, 2021,
https://doi.org/10.1088/1742-6596/1898/1/012039.

[33] I. Meraouche, S. Dutta, H. Tan, and K. Sakurai, “Learning asymmetric
encryption using adversarial neural networks,” Eng. Appl. Artif. Intell.,
vol. 123, p. 106220, 2023,
https://doi.org/10.1016/j.engappai.2023.106220.

VERA WATI – is an Assistant
Professor since 2020 in the field of
Smart City and Information
Technology, previously at Universitas
Tunas Pembangunan Surakarta and
now at Politeknik Negeri Indramayu.
Research interest include artificial
intelligence field, smart systems, and
cyber cryptography.

NUR FITRIANINGSIH HASAN – is an
Assistant Professor of Computer
Science at Universitas
Muhammadiyah Papua. Her research
interests include artificial intelligence,
neural networks, and machine
learning.

ACHMAD NUGRAHANTORO – is a
lecturer in Digital Business at
Universitas Madani Yogyakarta and a
full-stack developer practitioner at PT
Egref Telematika Nusantara. His
research interests include
cybersecurity, information security,
cryptography, and programming.

NISRINA YULIA SETYAWATI –
Received her Bachelor's degree in
Smart City Information Systems from
Universitas Tunas Pembangunan
Surakarta in 2024. Her interests
include system development,
enterprise solutions, and optimizing
business processes through
technology.

