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 ABSTRACT: The rapid development of cloud computing increases cybersecurity risks, including hacktivism, 
phishing, fraud, and OTP theft. In addition to user education, further security technologies are required, such as 
one-time authentication at the main gateway or as an extra layer within the application system. OTP, generated 
through cryptographic techniques, is an effective security method because it can only be used once and does not 
require additional device installation. If implemented correctly, OTP provides a high level of confidentiality. 
Artificial Neural Networks (ANNs) are an innovation in neural cryptography. TPM ANNs, which apply 
synchronized learning to parity machines, can learn independently based on input, hidden, and output parameters. 
This study proposes the implementation of OTP ANN with TPM to improve system security. The integration of 
OTP with TPM on the login menu using a web server aims to generate more random keys with ideal parameters 
K ≥ 4, N ≥ 5, and L ≥ 5. As a result, real-time OTPs can be sent via Telegram and Email, offering a more secure 
and efficient encryption solution in real-world applications. Compared to deterministic OTP approaches that rely 
on hashes of fixed time values and parameters, TPM-based stochastic approaches offer advantages in terms of 
entropy and cryptographic uncertainty. Deterministic OTPs are time-efficient, but are vulnerable to prediction if 
the seed is not accompanied by an additional secret. In contrast, TPM-based stochastic OTPs are more resistant to 
predictive attacks due to their complex synchronization properties and independence from system time, making 
them more suitable for high-risk authentication scenarios. 
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I. INTRODUCTION 
 he rapid advancement of cloud computing technology in 
recent times has compelled companies to enhance their 

capabilities in the field of information technology to be more 
scalable and accessible [1]. In this regard, the cybersecurity 
risks are increasing with unauthorized interventions, such as 
the extraction of secrets and hacktivist actions that can 
compromise a company's vital data [2]. Hacking techniques 
like phishing, scamming, and other forms of attack can lead to 
the occurrence of One-Time Password (OTP) theft. OTP theft 
is an illegal act aimed at gaining unauthorized access to the 
victim's accounts and information [3]. Manipulative actions by 
OTP theft perpetrators often involve social engineering tactics 
to trick victims into revealing information like OTP codes [4]. 
Therefore, these attacks can pose a serious threat to 
cybersecurity in safeguarding user data privacy. In addition to 

preventing social engineering through user education to 
promote a strong information security culture, the security of 
the technology itself should also be considered. 

Efforts to thwart security breaches within cloud services 
involve the use of cryptographic techniques [5]. OTP is known 
as a password that is often used for one-time authentication. 
Another characteristic of OTP is that it consists of several 
unique digits or characters [6, 7]. OTP doesn't require the 
installation of any software and is relatively easy to implement 
anywhere and at any time, as this token model is typically 
embedded in personal devices such as social media, digital 
wallets, and similar applications. It is one of the most efficient 
data security systems for safeguarding against hacktivism [8]. 
OTP is considered part of the symmetric cryptography 
algorithms [9]. OTP provides an additional layer of 
authentication to web servers, protecting against fraudulent 
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attempts and ensuring that information is secure between the 
user and the recipient [10]. Research on neural network-based 
artificial intelligence authentication is becoming an innovative 
topic [11]. Modeling with neural cryptography and bit-based 
mutual learning synchronization shows promising new 
phenomena. 

Neural cryptography is a branch of cryptography that 
employs artificial neural network (ANN) algorithms for the 
encryption process. The characteristics of ANN itself include 
strong computing capabilities and the ability to explore 
problems through self-learning as well as mutual 
synchronization among neurons. Furthermore, the stochastic 
behavior of ANN, characterized by random probability 
distributions, encourages the generation of the required 
solution possibilities [12]. The concept of synchronization in 
ANN introduces new opportunities in the field of cryptography 
for generating keys [13]. Typically, in many modern 
cryptography methods, algebraic number theory is involved in 
data security, identity authentication, and message encryption 
to safeguard the content of information [14, 15]. 

With the advent of digital technology, the role of 
cryptography has become a discipline that can transform plain 
text into text that is difficult to decipher [13]. Therefore, the 
presence of a key plays a crucial role in the transformation of 
this text [16]. The concept of cryptography with ANN, known 
as neural cryptography, utilizes a secret key for mutual 
synchronization between two communicating parties through 
tree parity machines to generate encryption [16-18]. The 
exchange of secret keys using the Diffie-Hellman protocol has 
become a practical method for implementation in the field of 
cryptography, particularly in the synchronization of tree parity 
machines. The keys generated can be further used as symmetric 
cipher keys. Neural parity machines offer advantages such as 
time complexity, low memory usage, and non-deterministic 
characteristics, making them resistant to patterns that could be 
exploited by cryptanalysis. 

A Tree Parity Machine (TPM) is a specific type of 
multilayer feedforward neural network [19]. This type of 
network consists of one output neuron and input neurons that 
are directly fed into the output through a weighting process [9]. 
Feedforward artificial neural networks (ANNs) are the simplest 
type of neural networks and are relatively easy to design [19]. 
The performance adopted for the parity machine results in an 
encryption key by processing the parameter values of neurons 
that move in one direction. The TPM procedure begins with 
two communicators who have the same network topology, with 
bipolar data representation having two values: 1 and -1 [17]. 

The feasibility of utilizing neural cryptography with the 
synchronization process using TPM has been explored by 
several researchers. For example, a study conducted by 
[20][21] demonstrated that the synchronization of two TPMs 
can be achieved through a collaborative learning rule. 
Specifically, it has been shown that TPM synchronization can 
be used as a cryptographic key exchange protocol [22]. In terms 
of efficiency and security, it has been demonstrated that the 
synchronization time of TPM is in the same order as that of the 
basic TPM model, and it can be more secure than traditional 
generation methods with the same synaptic depth and 
architecture [13]. The research results conducted by [23] The 
research conducted by the author, who developed neural 
cryptography with multiple hidden layers using TPM elements, 
provides evidence that the number of weight mutations in the 
neuron layers increases exponentially, resulting in almost no 

identical keys. This was proven through a simulation involving 
10,000 attacker machines attempting to mimic the key but 
failing. In addition to its high-security level and complex 
structure, this algorithm also boasts great efficiency, with 
execution times of less than 1 second observed on an Intel® 
Core processor in the experiments. 

As the research findings by the author indicate, protecting 
the OTP keys does not eliminate the risk if the channel or cloud 
storage is compromised. Other research points to theoretical 
limitations of OTP, such as the requirement for keys that are as 
long as the message and the challenge of securely distributing 
these keys. Technologies like Quantum Key Distribution 
(QKD) offer promising solutions, but they remain expensive 
and difficult to implement at scale. This highlights the need for 
a new approach that can bridge the gap between theoretical 
security and practical deployment [24]. 

Studies such as [25] and [26] demonstrated that while the 
application of TOTP/HOTP algorithms within moving target 
defense strategies in sensitive networks improved security, the 
reliance on deterministic hash functions (e.g., HMAC-SHA) 
and static keys makes these systems susceptible to compromise 
if the key is exposed or if time synchronization fails. Similarly, 
integrates TOTP with biometrics for electronic payments, yet 
the OTP generation remains deterministic and dependent on a 
shared seed [27]. If this seed is leaked, it opens the system to 
brute-force or spoofing attacks. 

To address these gaps, this research proposes an OTP-ANN 
method that utilizes the Tree Parity Machine (TPM) algorithm 
to generate random keys through synchronization without 
explicit exchange. Rather than replacing modern RNGs, this 
approach introduces an added layer of security through 
stochastic key synchronization, which is inherently 
unpredictable to third parties,  even under full communication 
observation. This represents a promising solution to the 
unresolved limitations of conventional OTP approaches 
identified in prior studies. 

Therefore, in this research, the proposed method using 
OTP-ANN and the TPM algorithm is implemented to generate 
random keys for enhanced security. The implementation of 
OTP-ANN will be applied to physical devices in a real-world 
context, rather than just modeling, utilizing the login 
authentication process on websites that are integrated with 
notifications through Telegram and Email. The choice of OTP 
functionality for login is an ideal option because, in the context 
of a website, login is a common necessity as a security layer to 
reduce the risk of hacking [28]. As a result, the implementation 
of OTP-ANN with TPM can be applied in real-life situations. 
 
II. MATERIAL AND METHODS 
In the proposed method, as shown in Figure 1, the process starts 
with initiating the login process by entering the username and 
password on the website, using CAPTCHA for verification, 
and processing for OTP integrated with Telegram and Email 
for authentication.  
 

 

Figure 1. Proposed System Stage 
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The CAPTCHA process is not a secret because it is used 
only for verifying actions performed by humans rather than 
automated entities. Its generation involves processing the 26 
letters of the alphabet to display 6 random letters on the login 
page. After successful verification, the OTP authentication 
process is initiated. It begins with the synchronization of TPM 
between both neural machines to generate a secret key. Based 
on this processing, the key is sent as a message through the 
Telegram and Email interfaces to appear in the message 
interface. This continues until successful notifications appear 
on both interfaces. 

A.  LOGIN PAGE 
Referring to Figure 2. In the verification process by logging in, 
the user enters the username and password which must match 
the data stored in the database. Public CAPTCHA must be 
entered in the form provided, then click the Login option. If 
verification is successful, then the OTP authentication process 
with TPM is as shown in Figure 3. On the website page you 
will be waiting for the process of entering the 6 OTP codes that 
have been generated The authentication OTP code will send a 
notification to Telegram with a display as shown in Figure 4 
and the registered email looks like in Помилка! Джерело 
посилання не знайдено.. 
 

 

Figure 2. CAPTCHA Verification Login Page 

 

Figure 3. OTP TPM Authentication Email and Telegram 
Integration 

OTP authentication in Figure 4 and Figure 5. Has a period 
of 30 seconds, and automatically sends a random code to Email 
and Telegram addresses. The TPM mutual learning 
synchronization process uses ideal parameters with a value of 
K=4 as the hidden neuron, N=5 as the input neuron, and a 
weight of 5 as L. These parameters are considered to be the 
minimum parameters that are most suitable in terms of 
functionality and can achieve the best results in a time short. 
 

 

Figure 4. TPM OTP notification on Telegram 

 

 

Figure 5. TPM OTP Notification in Email 

B.  TPM MUTUAL LEARNING SYNCHRONIZATION 
TPM synchronization uses the principle of symmetric key 
cryptography; however, in this case, the TPM generates keys 
that are distributed along with the ciphertext. Mutual learning 
on both machines, as depicted in Figure 6, consists of K as 
hidden neurons, N input neurons, and one output neuron. 
Consideration of 2 parties A and B agreeing on a key via a 
secret channel, such that the basic performance of the ANN is 
identical to performing mutual learning for synchronization. 
The process of generating the secret key involves input neurons 
 X୏,୒, Xଵ, Xଶ, Xଷ, … X୬, which enters the nerve cell layer by 
collecting weight values   W୏,୒ , Wଵ, Wଶ, Wଷ, … W୬, at each 
node. The weight initialization is completely random with a 
value range of -L to L so that the cryptanalyst does not 
recognize patterns to reveal the contents of the ciphertext. 
Mathematical function 𝑦(𝑥) (1) to ensure that the weight value 
formed is always within the L value range. 
 

𝑦(𝑥) = {ି௅ ௜௙ ௫ழି௅
௅ ௜௙ ௫ வ ௅   (1) 

 
The weight value for the formation of a new node is 

calculated based on the equation of the product of each weight 
adjusting the activation function, with mathematical equation 
(2) 
 

∑ 𝑋௜𝑊௜ − 𝜃௡
௜ୀଵ    (2) 

 
The neuron’s input value is multiplied by 𝑋௜ with weight 

value 𝑊௜ in creating new nodes with the process of generating 
an internal Threshold (threshold value) of the activation 
function Σ as the next process for the output value. The 
Threshold function has provisions as in equation (3). The 
Threshold function used is the bipolar Threshold function 
which produces a value of 1 or – 1.  
 

𝑓(𝑥) = {ିଵ ௜௙ ௫ ழ଴
ଵ ௜௙ ௫ ஹ଴   (3) 
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It is important to emphasize that although the 
synchronization process in a Tree Parity Machine (TPM) neural 
network involves repeated exchanges of output bits, it does not 
expose internal weight values or the resulting shared secret key. 
Unlike traditional key exchange protocols, which typically 
transmit partial or transformed representations of key material, 
TPM synchronization only exchanges the sign of aggregated 
weighted inputs, which does not reveal any meaningful 
information about the internal state of the system. Even if a 
passive adversary is capable of capturing the entire 
communication between two legitimate parties (e.g., neural 
machines A and B), the communication remains stochastic due 
to the TPM's weight update rules. When Hebbian or anti-
Hebbian learning mechanisms are applied, synchronization 
becomes virtually unattainable for the attacker. Legitimate 
parties benefit from mutual feedback, which enables 
coordinated weight updates, whereas the attacker can only 
observe unidirectional communication without the ability to 
influence or respond to the synchronization process. 
 

 

Figure 6. Mutual Learning Tree Parity Machine 

Empirical studies have demonstrated that the average 
synchronization time for an attacker increases exponentially 
with the size of the TPM, while for legitimate participants, the 
synchronization time increases linearly with network 
parameters such as the number of hidden units (K), the number 
of input neurons per hidden unit (N), and synaptic depth (L) 
[29]. This asymmetry creates a computational gap that can be 
exploited for secure key generation. Increasing the TPM’s 
complexity by selecting larger values for K, N, and L not only 
enhances the entropy of the generated key but also significantly 
increases the difficulty of synchronization for any 
eavesdropper. This asymmetry has been validated through 
simulations, which show that for sufficiently large TPM, the 
probability of successful synchronization by an attacker within 
practical time frames becomes negligible [30]. 

Importantly, although the synchronization process involves 
repeated public exchanges of output bits, these bits do not leak 
internal weight values or the final secret key. Since the attacker 
lacks feedback from either party and can only passively 
observe the exchanges, their neural network is unable to 

reliably align its weights. The attacker’s learning is 
unidirectional, unlike the bidirectional feedback loop enjoyed 
by the legitimate parties, making convergence virtually 
impossible within a realistic timeframe, as confirmed by 
previous studies [31]. Therefore, the TPM-based mutual 
learning protocol offers a key advantage: the ability to establish 
a shared secret key over a public channel without any direct key 
exchange, while maintaining strong security even under full 
passive interception. 

The weight updating process will continue to repeat until it 
reaches the same weight, starting with the first iteration by 
comparing the two neural values of the same 𝜎௄

஺/஻
= 𝜏஺/஻, 

where neural machine A is the first party, for example(𝜏஺ =
Π௞ୀଵ) =  (𝜏஻ = Π௞ୀଵ). The length of time for the 
synchronization process is certainly influenced by the input 
values, weight values, and the network structure formed. So the 
larger the TPM network, the longer the synchronization time. 
 
C.  GENERATE TPM KEY FOR OTP 
As illustrated in Figure 7, TPM network topologies will use the 
same structure. The key-generating process to produce the OTP 
key value involves the following stages: 
1) Neural machines A and B have the same input value 

parameters, namely 2 input neurons (N=2), hidden 
neurons have a value of 3 (K=3), and a weight limit of 4 
(L=4). 

2) Random weight update process 𝑤௫௬
஺/஻where its valuable ∈

{−𝐿, … 𝐿}, then it will form ∈ {-4,-3,-2,-1,0,1,2,3,4}, 
taking into account the value formed 𝑥, 𝑦,  with 
range (1 ≤ 𝑥 ≤ 𝐾) and (1 ≤ 𝑦 ≤ 𝑁) so that based on 
the K, N, L values, each weight for both parties forms a 
matrix 𝐾 ∗ 𝑁 or 3 ∗ 2 so that the equation is formed (4) 

 

𝑊஺(𝑥) =  ൥
3 2
1 1
2 2

൩   sync with 𝑊஻(𝑦) = ൥
2 1
1 1
2 2

൩  (4) 

 
3) Update weight in neural is done if while 𝑤௫௬

஺  ≠ 𝑤௫௬
஻ , i++ 

starting with the first iteration, do  
a) Generate input vector 𝑍௫௬ ∈ {−1,1} 
b) Calculating hidden neuron units with mathematical 

functions (5) 
 

σ௫
஺/஻= 𝑠𝑔𝑛(∑ 𝑤௫௬

஺/஻
 𝑍௫௬

ே
௫ୀ௬   (5) 

 
This function returns −1, 0 or 1 

 

𝑠𝑔𝑛(𝑧) ቐ

−1 𝑖𝑓 𝑥 < 0,
0 𝑖𝑓 𝑥 = 0,
1 𝑖𝑓 𝑥 > 0.

ቑ   (6) 

 
If the hidden neuron value is 0 then it is mapped to -1 for 

binary output consistency, this process is related to the process 
of calculating the next stage. Suppose the resulting iteration is 
as in matrix (7) 

 

𝑍஺/஻ = ൥
−1 1
1 −1
1 1

൩    (7) 
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c) Calculating output neurons based on hidden 
neurons, equation (5) is used. to compare the values 
of the two neural machines such as by calculating 
each weight (8) 

σଵ
஺= ∑ 𝑍஺𝑊஺ = (−1 ∗ 3) + (1 ∗ 2) = −1ଶ

ଷ  
σଶ

஺= ∑ 𝑍஺𝑊஺ = (1 ∗ 1) + (−1 ∗ 1) = 0ଶ
ଵ  

σଷ
஺= ∑ 𝑍஺𝑊஺ = (1 ∗ 2) + (1 ∗ 2) = 4ଶ

ଶ  
… 
… 
σଵ

஻= ∑ 𝑍஺𝑊஺ = (−1 ∗ 2) + (1 ∗ 1) = −1ଶ
ଶ  

Etc.     (8) 
 

The resulting weights will undergo continuous iteration by 
paying attention to the return of the threshold function in 
equation (9) 

 

if 𝜏஺ ≠ 𝜏  ஻ then 
goto (a) σଵ

஺ = −1, σଶ
஺ = 0, σଷ

஺ = 1, … , … σଵ
஻ = −1, … 

else 
if 𝜏஺ = 𝜏  ஻ then 

𝜏஺ = ∏ σଵ
஺ = σଵ

஻𝟏
𝑲ୀ𝟏    (9)

  
As an iterative process to produce the same value, use the 

synchronization learning rule with the Hebbian learning rule 

𝑤௜௝
஺/஻,ାା

= 𝑔(𝑤௫௬
஺/஻

 +  σ௫
஺/஻

 𝑥௫௬  𝜃  (σ௫
஺/஻

, 𝜏஺/஻  ), 

 ( 𝜏஺ , 𝜏஻ ))    
      (10) 
End 

The iteration process will be carried out optimally until both 
nerves are the same 𝑤௫௬

஺ୀ஻ and generate a key for the next OTP 
process. The depiction in Figure 6 with predetermined K, N, L 
values gives the probability (2𝐿 + 1)௄ே  generates a possible 
key of 3*26*** for alphabetically so that the resulting key has 
a small chance of being attacked by computer power. 

 
4) OTP key generation stage for neural cryptography. 

a) Secret key value i ((𝑤௫௬
஺  = 𝑤௫௬

஻ ) + 4/1024. 𝐾𝑖𝑏)  
if key length >= 6 

exp date + 30 seconds 
i++ 
End 

b) The generated key will be sent a notification via 
Telegram and Email, with several data considered 
such as: 
 
INSERT INTO (kode OTP, generate exp 
date, iterasi max, nilai kunci i, key 
length, key, nilai K, N, L, status) 
 

 

Figure 7.TPM Network for OTP Key Generator 

D.  OTP NOTIFICATION ON TELEGRAM AND EMAIL 
In the process of creating an OTP notification in an email, you 
need to send a code and set the validity period for using the 
OTP. The first setting requires specifying the sender address 
and subject of the email. Variables used in email settings 
include the SMTP protocol on the host, port and the importance 
of initiating the sender's email and password. In the recipient's 
email settings, the message that will be sent is the text and OTP 
that has been successfully generated. The pseucode for using 
OTP for email is as follows: 
 
start  
text_email_otp(text, otp, exp) 
 
initialize variables: 
protocol= ‘SMTP’, 
smtp_host= ‘ssl://smtp.googlemail.com’, 
smtp_port= 465, 
smtp_user= sender@gmail.com, 
smtp_password= sender_password, 
receiver= ‘receiver@gmail.com’ 
subject= ‘OTP-ANN TPM Service’ 
text= text_email_otp, 
mailtype= ‘html’, 
charset = ‘iso-8859-1’ 
end. 
 

Apart from utilizing email notifications, the research used 
the Telegram application which is already installed on mobile 
devices, even though it is still in the form of a bot. The main 
requirement of course requires the Telegram application to be 
installed on the device. Commands are required to create a new 
bot by following the instructions from the official bot provided 
by Telegram, namely BotFather to get the API. API as a bridge 
for distributing information between OTPs generated from 
neural cryptography and installed Telegram devices, both on 
mobile phones and on the Telegram web. The message will 
generate an OTP notification notification with a time limit by 
working on the following pseudocode: 
 
start 
text_telegram_otp(text, otp, exp) 
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initialize variables: 

telegram_token: ‘bot_token’; 
chatID: ‘target_chatID’; 
 

construct the API URL: 
url= ‘https://api.telegram.org/bot’+ 
token + 
‘/sendmessage_chat_id’+chatID; 
message_text; text_telegram_otp 

 
set cURL options: 

curl_init(); 
CURLOPT_URL = url, 
CURLOPT_RETURNTRANSFER = true 

end. 

III. RESULT AND DISCUSSION 
A.  NEURON VALUE PARAMETERS FOR GENERATING 
OTP 
To test the feasibility of ideal parameter values in determining 
K, N, and L neurons, an interface needs to be created to make 
it easier for the generator process to see the ability to 
synchronize learning between the two neural machines. This is 
important to test and be able to determine the minimum K, N, 
and L value parameters that are suitable for use in OTP login 
authentication. Test generating an OTP by filling in the values 
in the blank form on the interface Figure 8. 
 

 

Figure 8. Interface Design for Generating OTP 

 

 

Figure 9. TPM OTP Synchronization Information 

 

 

Figure 10. OTP TPM Login Database Modeling 

Based on the neuron synchronization data in Figure 9, this 
is the first step in the concept that will be implemented in OTP-
ANN with TPM for login authentication, so that a database 
storage model is formed as in Figure 10. Database modeling is 
implemented in OTP TPM by processing information such as 
user_id, and producing generators. The key corresponds to the 
K, N, and L neuron values. Testing of ideal parameter values 
based on minimum input values can be seen in Помилка! 
Джерело посилання не знайдено. with the lowest K, N, and 
L neuron values from grades 2–6. The maximum average 
iteration produced is 9562.16, provided that the value of K is≥4 
if N is≥5 and L is≥5. Therefore, based on these conclusions, the 
implementation of neural synchronization for OTP-ANN TPM 
yields ideal parameters for use. 

 
Table 1. Testing the Use of K, N, and L Neuron Parameters

Parameter Iteration 
Max 

Iteration 
Data Modified 

(Kib) 
Code 

Length 
All OTP’s OTP Code Status 

K N L 
2 2 2 - - - - - - Failed 
3 3 3 - - - - - - Failed 
4 3 2 - - - - - - Failed 
3 4 4 3072 73 1,140625 - - - Failed 
4 4 4 4096 27 0,52734375 - - - Failed 
3 4 3 972 2 0,03125 - - - Failed 
3 4 5 7500 4 0,0625 - - - Failed 
3 5 5 9375 852 15,80859375 - - - Failed 
4 5 4 5120 11 0,2578125 - - - Failed 
4 5 3 1620 1620 37,96875 - - - Failed 
4 4 5 1000 1 0,01953125 - - - Failed 
4 5 5 12500 11 0,2578125 7 LO8DNAG GN8OLA Success 
5 5 5 15625 443 12,5458984375 8 ECFCI8MI IM8CEC Success 
5 4 3 1620 377 8,8359375 - - - Failed 



Vera Wati et al. / International Journal of Computing, 24(3) 2025, 559-569  

VOLUME 24(3), 2025 565 

Parameter Iteration 
Max 

Iteration 
Data Modified 

(Kib) 
Code 

Length 
All OTP’s OTP Code Status 

K N L 
5 3 5 - - - - - - Failed 
5 4 4 5120 5 0.1171875 - - - Failed 
5 4 5 12500 770 18,046875 7 GIIH7DF FHIDGI Success 
6 3 3 - - - - - - Failed 
6 4 3 1944 742 20,2890625 - - - Failed 
6 4 4 6144 7 0,19140625 6 NGHAGJ GNHGAJ Success 
6 5 5 18750 1 0,033203125 10 QCDC9LFEIF IFDC9F Success 
6 5 4 7680 2 0,06640625 8 CJHLMLI8 ILLC8H Success 
6 5 6 38880 13171 437,318359375 15 8CN9EICD58BNL

G9 
8NDC9B Success 

6 6 6 46656 93 3,6328125 18 G6CC6BJ8AG8EH
B5B47 

C8BJ46 Success 

5 6 6 38880 7 0,232421875 15 L3M886A9DL6C3
DK 

AD98C6 Success 

B. GENERATE OTP SYNCHRONIZATION WEIGHT VALUE 
UPDATE 
The stochastic characteristic of TPM synchronization means 
that the epoch process in iterative training has different weight 
values for each training, even though the input K, N, L have the 
same value. When the synchronization process is carried out, 
the weight -atching process in the two parity neural machines 
will continue to change in a mutually interesting manner 
(attractive step) and weight indicate sthe steps of pushing each 
other (repulsive step) [32] [29]. 
 

 

Figure 11. TPM Sync Weight Value Update Graph 

As shown by the graph in Figure 11Помилка! Джерело 
посилання не знайдено., shows a curve line that rises and falls 
on synchronization using the values K=4, N=5, L=5. 
Illustration Figure 11. meaning that if the two weight values in 
the neural machine have a closer or smaller difference, it will 
go to the same value or the graph will go down. The condition 
of the two weights experiences an attractive step with a 
probability value that occurs as in equation (11). 

 

 
 

if 𝑃(𝐴) = (𝜏஺ = ∏ σଵ
஺ = σଵ 

஻ ଵ
௄ୀଵ | | 𝜏஺ = 𝜏  ஻) (11) 

 
The attractive step state occurs when one or more of the 

weight values are hidden neurons 𝛔𝟏
𝑨 has a slight difference or 

is equal to 𝛔𝟏
𝑩. On the other hand, if the two weights have a 

difference in pushing each other or a repulsive step so that the 
values get further apart then the probability of what will happen 
is like equation (12). 
 

if 𝑃(𝐴) = (𝜏஺ = ∏ σଵ
஺ ≠ σଵ 

஻ ଵ
௄ୀଵ | | 𝜏஺ ≠ 𝜏  ஻) (12) 

 
Equation (11) (12) will have an effect on the graph 

Помилка! Джерело посилання не знайдено.., where 
during the synchronization process the parameter values K, N, 
L have an effect that causes an attractive step to occur with both 
weight values being the same so the synchronization is faster 
[13][33]. So, conversely, a repulsive step will occur and cause 
the synchronization to take longer [34]. Simulation of weight 
update values for synchronization to generate OTP as in Table 
2. Referring to Table 2, the process of updating the weight 
values in iterations 1, 2, and 3 is the process of the two neural 
machines experiencing mutual pushing or repulsive steps, 
causing the weight values of the two TPMs to move further 
apart. Next, in the 2500th iteration, the process pulls each 
other's attractive steps on both neural machines, thus finding 
the same weight value. 
 
C.  GENERATE OTP SYNCHRONIZATION ITERATION 
CYCLE 
The concept of epoch in the research carried out refers to 
training a model based on iteration cycles in generating 
synchronization of the two neural machines to produce OTP. 
 

Table 2. Simulation of Weight Update Values 

Iteration 𝒁 𝛔𝟏
𝑨 𝛔𝟏

𝑩 𝒁𝑨/𝑩 𝑾𝑨 𝑾𝑩 

1 

൦

−1 1 1 −1  −1
1 −1 1 1   −1

−1 −1 1 1 −1
1 1 1 −1     1

൪ ൦

−1
1
1

−1

൪ ൦

1
1

−1
1

൪ 

1 

൦

5 4 −3 −3 2
1 −1 0 2 3

−4 −3 −3 2 5
3 2 1 3 5

൪ ൦

5 4 −2 −2 0
1 −1 0 1 2

−3 −3 −3 2 4
2 3 1 3 4

൪ 

2 

൦

1 1 1 1 −1
1 −1 1 −1 −1

−1 1 1 1 −1
1 −1 −1 −1 1

൪ ൦

−1
−1
1

−1

൪ ൦

−1
1

−1
1

൪ 

-1 

൦

2 −3 2 1 −5
1 −2 −1 0 −5

−1 2 1 5 −5
0 0 3 4 −5

൪ ൦

2 −3 2 1 −5
1 4 −3 0 −5

−2 3 2 5 −4
0 1 3 4 −3

൪ 
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Iteration 𝒁 𝛔𝟏
𝑨 𝛔𝟏

𝑩 𝒁𝑨/𝑩 𝑾𝑨 𝑾𝑩 

3 

൦

1 −1 −1 −1 −1
1 −1 1 1 −1

−1 −1 1 1 −1
−1 1 −1 −1 1

൪ ൦

−1
1

−1
1

൪ ൦

1
1

−1
1

൪ 

-1 

൦

−4 5 −5 4 0
−5 −5 −5 5 4
5 −4 1 5 3
5 4 −5 −4 2

൪ ൦

5 −5 4 −4 0
−5 −5 −5 5 3
−4 4 −1 −4 5
5 4 −3 −1 2

൪ 

n 
቎

…   …   …   …      …
…   …   …   …      …
…   …   …   …     …
…   …   …   …      …

቏ ቎

…  
…  
…  
…  

቏ ቎

…  
…  
…  
…  

቏ 
… 

቎

…   …   …   …    …
…   …   …   …    …
…   …   …   …   …
…   …   …   …    …

቏ ቎

…   …   …   …    …
…   …   …   …    …
…   …   …   …   …
…   …   …   …    …

቏ 

2500 

൦

−1 −1 −1 −1 −1
1 −1 1 1 −1

−1 −1 1 1 −1
1 1 −1 −1 1

൪ ൦

−1
1
1
1

൪ ൦

1
1

−1
1

൪ 

1 

൦

−4 5 3 3 5
−5 4 −1 5 5
5 3 −5 5 5

−4 −4 5 4 4

൪ ൦

−4 5 3 3 5
−5 4 −1 5 5
5 3 −5 5 5

−4 −4 5 4 4

൪ 

As can be seen in Помилка! Джерело посилання не 
знайдено., the parameter values in the network topology values 
K, N, L influence the overall length of the code digits. This 
proves that the characteristics of the TPM topology will update 
the weight values when synchronization occurs to achieve the 
same value on both parity neural machines [35]. 
 

 
Figure 12. Generate OTP Synchronization Iteration Cycle 

 
Figure 12 illustrates the iteration cycles required to generate 

a synchronized OTP under various configurations. These 
findings serve as a basis for modeling the synchronization 
process by varying K, N, and L within a range of 4 to 20. To 
address concerns related to synchronization overhead, it is 
important to emphasize that TPM synchronization does not 
require all iterations to be completed. As shown in Table 1 and 
Figure 12, synchronization can terminate early once the parity 
machines reach identical weight vectors, regardless of any pre-
defined maximum iteration threshold. Moreover, only 
lightweight output bits are exchanged during synchronization, 
not full keys or weight states, thus maintaining communication 
efficiency and minimizing overhead. The average time per 
iteration is approximately 0.036 ms. For typical values of K, N, 
and L, synchronization is completed within an acceptable 
iteration range, ensuring that OTP generation remains practical 
and responsive for login-scale authentication scenarios. 

The training process illustrated in Figure 12, based on 
1252 simulation runs, shows that synchronization may require 
up to 30.000.000 times iterations in the worst case. However, 
the OTP generation process does not need to reach this 
maximum, as synchronization halts automatically upon 
convergence. While some instances may show longer 
synchronization times (as indicated by the red graph line), most 
OTP generations complete far earlier (as shown in the blue 
line), confirming that full iteration cycles are rarely needed. 
Therefore, although larger K, N, and L values increase 
synchronization time, they are not optimal for time-sensitive 
OTP use cases. In this implementation, a 6-digit OTP is 
randomly selected from the synchronized weight vectors and 

delivered through email and Telegram as part of the login 
authentication process. 

The ability of TPM to dynamically conclude 
synchronization well before reaching the maximum iteration 
limit demonstrates its capacity to operate within efficient 
security design principles, particularly for lightweight 
authentication scenarios like web logins that demand both high 
throughput and minimal latency. 
 
D.  EXPERIMENTAL COMPARISON BETWEEN 
DETERMINISTIC OTP AND STOCHASTIC OTP TPM 
MODELS 
This experimental test compares two approaches to One-Time 
Password (OTP) generation: a deterministic model 
representing Time-based OTP (TOTP), and a stochastic model 
based on a Tree Parity Machine (TPM). The deterministic OTP 
is generated by performing SHA-256 hashing on a seed 
consisting of a 30-second system time and the configuration 
parameters K, N, and L, then converted into OTP digits via a 
modulus operation. In contrast, the stochastic model generates 
an OTP through the synchronization of two simple neural 
networks (TPMs) that interactively update their weights until 
they are identical, and then the final weights are used as the 
source of the OTP. As illustrated in the following pseudocode: 
 

Pseudocode for deterministic: 
FUNCTION deterministic_otp(k, n, l): 
    timestep ← current_time_in_seconds 
// 30 
    seed_string ← f"{k}-{n}-{l}-
{timestep}" 
    hash_digest ← SHA-256(seed_string) 
    digits ← convert each 2 hex chars → 
int →  
    mod 10 
    RETURN first 6 digits as OTP 

 
Pseudocode for stochastic TPM: 
FUNCTION sync_tpm(k, n, l, max_iter): 
    w_a, w_b ← random weights in range 
[-l,l] 
    for each k × n 
 
    FOR step IN 1 TO max_iter: 
        x ← random input matrix [-1, 1]  
        of size k × n 
        out_a, h_a ← TPM_output(w_a, x) 
        out_b, h_b ← TPM_output(w_b, x) 
 
        IF out_a == out_b: 
            FOR i, j in k, n: 
                IF h_a[i] == x[i][j] AND 
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                    h_b[i] == x[i][j]: 
                    update w_a[i][j] and 
                    w_b[i][j] by x[i][j] 
                    (clamped) 
 
        IF w_a == w_b: 
            BREAK 
 
    otp ← flatten w_a, convert abs(bit) 
mod 10 
    RETURN step, first 6 digits as OTP 

 
 

Experiments such as those in Figures 13-18, showing 
experimental results at various iterations (50, 100, 150, 200, 
500, 10.000) show a consistent pattern: the deterministic model 
is far superior in terms of time efficiency, as seen from the very 
small and stable distribution of execution times. However, from 
a security perspective, the stochastic approach shows higher 
entropy, especially at low iterations (50–150), which do not 
produce duplicate OTPs, in contrast to the deterministic model, 
which tends to produce duplications from the start. Although at 
high iterations (≥200) the stochastic model begins to show 
duplications, this is still within tolerable limits and depends on 
the size of the key space. 
 

 
Figure 13. Comparison of deterministic and stochastic OTP at 

50 iterations 
 

 
Figure 14. Comparison of deterministic and stochastic OTP at 

100 iterations 
 

 
Figure 15. Comparison of deterministic and stochastic OTP at 

150 iterations 
 

These findings indicate that deterministic OTP is suitable for 
systems with time and resource constraints, but suffers from 
predictability weaknesses if the seed is not truly secret. In 
contrast, TPM-based OTP offers advantages in the context of 
cryptographic security and uncertainty, making it a strong 
alternative for high-risk authentication scenarios. 
 

 
Figure 16. Comparison of deterministic and stochastic OTP at 

200 iterations 
 

 
Figure 17. Comparison of deterministic and stochastic OTP at 

500 iterations 
 

 
Figure 18. Comparison of deterministic and stochastic OTP at 

10.000 iterasions 

IV. CONCLUSION 
The topology size in neural cryptography significantly 
influences the synchronization process of OTP generation 
using Tree Parity Machines (TPM). The effectiveness of ANN-
based OTP generation for login authentication relies heavily on 
selecting optimal parameters. Experimental results indicate that 
stable synchronization can be achieved when K ≥ 4, N ≥ 5, and 
L ≥ 5, with a maximum iteration threshold of 12.500. 
Importantly, the synchronization process often converges 
before reaching this limit, as it terminates once both TPMs 
reach identical weight configurations. 

Each iteration takes approximately 0.036 ms, and during 
synchronization, both networks perform alternating attractive 
and repulsive weight adjustments. Despite using the same K, 
N, and L values, the stochastic nature of TPM ensures that each 
training session results in unique weight states, yielding highly 
unpredictable OTPs. This randomness makes TPM-based OTP 
generation particularly advantageous for high-security 
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authentication contexts, as the likelihood of generating 
duplicate codes is extremely low. 

Optimal implementation prioritizes configurations that 
balance fast synchronization with security. Excessively large 
topologies, while theoretically expanding the key space, tend 
to increase computational cost without proportional gains in 
performance, especially considering that the tested upper 
iteration bound reaches up to 30,000,000 iterations. Therefore, 
moderately sized TPMs are more practical. 

Understanding the underlying mechanism of TPM and its 
integration with ANN facilitates practical deployment in real-
world systems. With proper configuration, the OTP output can 
be securely transmitted via web servers and integrated with 
platforms such as Telegram and email services. Upon 
successful generation, a 6-digit alphanumeric code is extracted 
from the synchronized weights, producing a valid and secure 
OTP for login authentication. 
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