Sl

Date of publication SEP-30, 2025, date of current version JUN-05, 2025.
www.computingonline.net / computing@computingonline.net

Print ISSN 1727-6209
Online ISSN 2312-5381
DOI 10.47839/ijc.24.3.4195

Improved Computing Performance for
Floyd-Warshall Algorithm in the
MapReduce architectures

NGUYEN DINH LAU', LE THANH TUAN?

"University of Education and Science, The University of Da Nang, Danang City, Vietnam
2 Master student of Information Systems, University of Education and Science, The University of Da Nang, Danang City, Vietnam

Corresponding author: Nguyen Dinh Lau (e-mail: ndlau@ued.udn).

ABSTRACT The main result of this paper is building a new parallel algorithm based on Floyd-Warshall
algorithm to find the Shortest Path for all-pair. The problem of finding All Pair Shortest Path (APSP). APSP is
performed on many structures such as: MPI, OpenMP, Cuda and others. When the input data is large, we need to
find ways to improve computing power to reduce calculation time for the APSP algorithm. We present a
contribution for the APSP in the MapReduce architectures. The idea of this algorithm is to multi Workers to work

in parallel

by Floyd-Warshall algorithm. There is one Master assigning Map and Reduce. The mapper

simultaneously executes their work and sends their data to the reducer until the job is finished. The MapReduce
algorithm has two functions: Map and Reduce. They receive key/value pairs based on an adjacency list. The
algorithm performs in MapReduce and our results prove that the proposed approach improved Computing
Performance for Algorithm Finding the Shortest Path for all-pair. Some fundamental results are systematized and

proved.

KEYWORDS shortest path; graph; algorithm; hadoop; mapreduce

I. INTRODUCTION

In the field of graph theory, the problem of finding short paths
receives a lot of attention and has many practical applications.
There are many different algorithms to find the shortest path
such as: Dijkstra algorithm; Bellman-Ford algorithm, the
Bellman-Ford algorithm seems superior because it can handle
graphs with negatively weighted edges; Floyd's algorithm is an
algorithm that finds the shortest distance of all vertices; Floyd-
Warshall algorithm is an algorithm to find the shortest path of
all vertices.

With the Floyd-Warshall algorithm, the sequential
algorithm has complexity equal to O(n®); n is the number of
vertices in the graph (|V|=n), however, in the case of the
Hadoop framework, to reduce the computational time of the
algorithm when running in parallel on multiple machines, the
algorithm has to be modified.

There are many published articles underpinned by Floyd-
Warshall algorithm on different parallel environments such as:
MPI, OpenMP, Cuda, [15, 16, 18]. With the advent of
MapReduce architecture in cloud computing environments,
researchers are often interested in this structure because
MapReduce architecture is suitable for problems with massive
data for the following reasons:

- MapReduce is one of the innovative technologies of the
big data revolution, a programming model and tool introduced
by Google in 2004.

- Mapreduce can be understood as an execution method to
help applications quickly process large amounts of data in a
distributed environment.

- These computers execute parallel but independently of
each other to reduce processing time.

In papers [3], [4], authors construct parallel all-pairs
shortest path algorithm with a MapReduce architecture.
Parallel shortest path of an A* algorithm with a MapReduce
architecture are implemented in [5], [6], [7], [8]. In paper [9],
[10], [11], [12], authors perform parallel data-processing
paradigm with Hadoop. In papers [15], [16], [18] authors
construct parallel all-pairs shortest path algorithm with MPI,
OpenMP, Cuda architecture.

This paper aims at presenting a parallel formulation of an
All Pair Shortest Path Problem (APSPP) algorithm: the
modified adjacency list based algorithm on MapReduce
architecture.

VOLUME 24(3), 2025

Nguyen Dinh Lau et al. / International Journal of Computing, 24(3) 2025, 578-584

. HADOOP AND MAPREDUCE

MapReduce on cluster: A cluster has hundreds to thousands of
common servers connected to each other via LAN. The
hardware stored on these servers does not require high
performance, just regular hard disks connected via the IDE
standard. The unit of work in the MapReduce program is called
a job package (job). Each job has many tasks that are
transferred from a common distribution system to servers in the
cluster.

The Map task is performed and distributed across storage
nodes. The distributed process is performed automatically
through the input data being split. The Reduce task is also
distributed through intermediate key/value pairs being grouped
into pairs with similar keys (Figure 1) [9], [19], [20], [21], [22].

[Mal_:)per] [Mapper]

[<k'|,'v1>] [<k2, v2>] [<kl1, v3>]

Figure 1. A general model of performed of Mapper and
Reducer

MapReduce cluster has a Master node and Worker nodes.
The Master node is responsible for managing and regulating
Workers (See Figure 2) [20]. Compute nodes are workers that
read data from an input file, usually from the block itself stored
on a local drive. The Map task generates a set of intermediate
key/value pairs stored in internal memory. At configured
intervals, intermediate key/value pairs are written to the local
hard drive, divided into R groups (R is the number of nodes
running the Reduce task). The location of these pairs is notified
to the Master server so that the Master is responsible for
returning this address to the servers doing the Reduce task.

split 0

wite [utput
file 0

output
file 1

split 1

split2 | G re:

split 3

split 4

worker

[

Intermediate files
(on local disks)

Input
files

Map
phase

Reduce

Otupu(
phase

files

Figure 2. The performance model of Master and Worker

When Workers performing the Reduce task are notified of
the location of intermediate key/value pairs, these Workers
read the data. When the read is finished, the Worker sorts the
intermediate key/value pairs by key. The Worker performs
Reduce sequential calculations on the sorted data. The output
of the Reduce task is written to the output file. When all Map

VOLUME 24(3), 2025

and Reduce tasks are finished, the Master reports the results
back to the user program [23], [24], [25]

. ALL-PAIR SHORTEST PATH ALGORITHM (APSP)

A. ADJACENCY - LIST

Let graph G=(V, E), Vi €V, find edges (i,j) €E with weight
w(i,j). It maintains an array of list called the Adjacency — List

Example 1: An undirected graph with 4 vertices and its
adjacency list are shown.

Table 1. Adjacency—List with nodeID (4 vertices)

NodelD (i) W) | k Wik
1 27 35

2 1,7 4.6

3 1,5 411

4 2,6 3,11

B. ALL-PAIR SHORTEST PATH PROBLEM ALGORITHM
We use Floyd-Warshall algorithm to find the shortest path
between every pair of vertices of a weighted graph G. The
matrix D, all-pair shortest distance matrix, can be computed
from W, the weighted adjacency matrix. The matrix P, the
paths matrix is set with p[i][j]=j for each (i,j). If there is no edge
from i to j then p[i][j]=null.

Input: G=(V, E, w), V={1, 2,....,n}, w(i, j) for edge (i, j)
Output: Matrix D=[d(i,j)], In which d(i,j) is the shortest path
fromitoj V (ij). Matrix P=[p(i,j)], used to determine the
shortest path.

The sequential all-pair shortest-path algorithm can be
described as the following

Algorithm 1 APSP(W[n][n],P[n][n])

1. ¢

2. Dn][n]=W[n][n];

3. for(int k=0;k<=n;k++)

4. {

5. for(int i=0;i<=n;i++)

6. for(int j=0;j<=n;j++)

;- ing[i][j]>D[i][k]+D[k][i])
9. D[i][j1=D[i](k]+D[k][j];
10. Pi][j1=P[i](k];
11. }

12. }

13. }

APSP algorithm is correct and the complexity of APSP
algorithm is O(n?)

Example 2: An undirected graph with 4 vertices in example
1 has weighted matrix D and path matrix P show

Table 2. Weighted matrix D and path matrix P

Weighted matrix D Path Matrix P
1 2 3 4 1 2 3 4

1 | inf 7 5 inf 1 null 2 3 null
2 7 inf | inf 6 2 1 null null 4
3 5 inf [inf [11 3 1 null null 4

4 | inf 6 11 inf 4 | null 2 3 null

579

)

Nguyen Dinh Lau et al. / International Journal of Computing, 24(3) 2025, 578-584

In which Dy and Px are matrices obtained from D and P
after the k' iteration for k=1,2,3,4. Matrix D; determines the
length of the shortest path between every pair of vertices while
Matrix P4 identifies the shortest path between every pair of
vertices. Matrix D4 and path matrix P4 are shown in Table 3.

Table 3. Weighted matrix D4 and path matrix P4

Weighted Matrix D4 Path Matrix P4

1 2 3 4 1 2 3 4

1 10 7 5 13 1 3 2 3 2
2 7 12 12 6 2 1 4 1 4
3 5 12 10 11 3 1 1 1 4
4 13 6 11 12 4 2 2 3 2

IV. ALL-PAIR SHORTEST PATH ALGORITHM ON
MAPREDUCE

A. IDEA OF MAPREDUCE OF APSP ALGORITHMS
Map stage:

The mapper class takes the entire file input and parses it line
by line. Let the consider nodeld be "k". For a vertex "i" adjacent
to "k" it emits a new node. For generating the new node, the
algorithm iterates through the nodes adjacent to "k" and for
each j adjacent to k it sums the distances D(i,k) and D(k,j) and
sets D(i,j)= D(i,k) + D(k.j)

"Mark" is a variable to mark the shortest path from "Key"
tO Vljll'

Reduce stage:

The output of the mapper will be the input to the reducer
class. The reducer class takes the minimum of all the path
weights and adds it to the adjacency list of the keyld node.

B. MAPREDUCE APSP ALGORITHMS

Algorithm 2: APSP Mapper

Input: Value={V]| j adjacent NodeID , w(NodelD, j),
[Mark]}.
Data representation:
(Key, Value): {NodelD, {Vj|j adjacent NodelD ,
w(NodelD, j), Mark}.
NodelD is all nodes of the graph (Key, Value):
Seperated
key-value pairs denote adjacent nodeld and edge
weight connecting them.
"|" separated key-value pair

Output: (Key, Value)
//Emit (Key, Value)

1. ¢

2. Forall k in Key (Key, Value) =(key, Value)

3. Forall kin Key

4. For all j €J| J is set node adjacent k

5. Emit (key, Value)

6. Key: =,

7. Valuei: ={ji, w(k,j1), [mark]}

8. Valuer={jn, w(k, ji)+tw(k, jn),
[mark]} with h>1

9. L

580

C. DESCRIPTION OF MAPPER ALGORITHM

The input of the Mapper algorithm is the pairs (Key, Value)
with the structure: {NodelD, {Vj| j adjacent NodelD ,
w(NodelD, j), Mark } with Key=NodeID €[1...n]jn=|V|. and
Value={Vj| j adjacent NodelD, w(NodelD, j), Mark }, The
Value includes all nodes j adjacent to NodeID along with the
weight w(NodelD, j) of the edge (NodelD, j) and adds the
variable Mark to mark the number of vertices that NodeID has
passed through. Mark is used to find the path after the Reduce
algorithm ends.

- "Mark" is a variable to mark the processed vertices along
the path from "Key" to "j"| Vj| j adjacent Key. Mark=1,2,3... n.
With n being the number of vertices in the graph. If (Key,
Value) pairs are not marked (Mark=null), the path from "Key"
to "j" is via "j".

- Also for each vertex it maintains a boolean variable
"check" to indicate whether that vertex has been used to update
distances to its adjacent vertices. If Mark is updated for a
particular vertex, the shortest distance from the source vertex
to the processed vertex also changes.

Algorithm 3: APSP Reducer

1. Input: The output of the mapper will be the input to
the reducer class

2. Output: (Key, Value)

3. //Emit (Key, Value)

4. For j=1 to |V|

5. Vs; € S with set S= {Key}

6. If (s;==j) then

7. {

8. Key=j;

9. Value={k\vk adjacent j,

Min{w(j, k)}, [mark]}
10. Emit (Key, Value)
11. }

/* The reducer class takes the minimum of
all the path weights and adds it to the
adjacency list of the keyld node. */

12. Sorts the data by keys.

D. DESCRIPTION OF REDUCER ALGORITHM
Keys and Values pairs from the output of the Mapper algorithm
become the Input data of the Reducer algorithm. These Keys
and Values pairs have many identical Keys. Therefore, the S
set contains all the values in the Keys. Note that duplicate Keys
are still saved in the S set. The Reducer algorithm choose only
a Key from all identical Keys and the Values is created by
taking the Min of all the weights of the edges (j,k). and emit the
new Key and Value pair.

Then the Reducer algorithm sorts in ascending order based
on Keys

E. EXAMPLE
An undirected graph with 4 vertices in example 1, then (Key,
Value) is the adjacency list of the graph

Table 4. (Key, Value) is adjacency list of graph
Key Value,| Value,|
1 2.7 3.5
2 17| 4,6|
3 1.5 4,11
4 2,6 3,11
Output emitted by mapper:

VOLUME 24(3), 2025

Nguyen Dinh Lau et al. / International Journal of Computing, 24(3) 2025, 578-584

)

Table 5. Output: (Key, Value)

Key Value;| | Value,|

1 2,7| 3,9

2 1,7| 4,6

3 1.5 4,11]

4 2,6| 3,11

2 1,7 3,12, mark=1|
3 1,5 2,12, mark=1|
1 2,7| 4,13, mark=2|
4 2,6| 1,13, mark=2|
1 3,5 4,16,mark=3|
4 3,11] 1,16,mark=3|
2 4,6 3,17, mark=3|
3 4,11] 2,17, mark=3|

"Mark": It is used to mark the shortest path from "Key" to "j"

Table 6. Input to the reducer class
Key Value;| | Value,|
1 2,7 3.5]
2 1,7] 4,6
3 1.5] 4,11
4 2,6] 3,11
2 1,7| 3,12, mark=1|
3 1,5] 2,12,mark=1]|
1 2,7| 4,13, mark=2|
4 2,6] 1,13,mark=2]
1 3,5 4,16,mark=3|
4 3,11 1,16,mark=3|
2 4,6 3,17, mark=3|
3 4,11 2,17,mark=3|

Table 7. The output emitted by the reducer

Key Value,| Value,| Value;|
1 27| 3.5] 4,13, mark=2|
2 1,7] 3,12, mark=1| 46|
3 1.5] 2,12, mark=1| 4,11
4 1,13,mark=2]| 2,6] 3,11]

The output of the reducer iteration serves as the input for
the mapper’s next iteration.

Table 8. Output emitted by algorithm Mapper

Key Value,| Value,| Value;|
1 2,7| 3,5| 4,13, mark=2|
2 1,7| 3,12,mark=1| 4,6
3 15| 2,12, mark=1| 4,11]
4 1,13, mark=2| 2,6 3,11]
2 1,7| 3,12, mark=1| 4,18,mark=12|
3 1,5 2,12, mark=1| 4,18,mark=1,2|
4 1,13, mark=2| 2,20,mark=2,1| 3,18,mark=2, 1|
1 2,7| 3, 18,mark=2,1| 4,13, mark=2|
3 2,12,mark=1| 1,19,mark=1,2| 4, 18,mark=1,2|
4 2,6/ 1,13, mark=2| 3, 18, mark=1|
1 3,5 2,17, mark=3,1| 4, 16,mark=3|
2 3, 12,mark=1| 1,17,mark=1,3| 4,23,mark=1,3|
4 3,11 1,16,mark=3 4| 2,23,mark=3,1|
1 4,13, mark=2| 2, 19,mark=2 4| 3, 24, mark=2 4|
2 4,6| 1,19,mark=42| 3, 17, mark=4|
3 4,11] 1,24, mark=2 4| 2,17, mark=4|
Table 9. The final output after all the iterations have been
completed

Key Value,| Value,| Value;|

1 2,7| 3,9 4,13, mark=2|

2 1,7] 3,12,mark=1| 4,6|

3 1,5 2,12, mark=1| 4,11]

4 1,13, mark=2| 2,6| 3,11

VOLUME 24(3), 2025

The results of shortest paths between all pairs of vertices
and paths show:

(1,2): shortest distances 7, path 1 >2 (mark=null)

(1,3): shortest distances 5, path 125

(1,4): shortest distances 13, path 1> 2 (mark =2)>4

(2,1): shortest distances 7, path 2> 1

(2,3): shortest distances 12, path 2>1->3

(2,4): shortest distances 6, path 2>4

(3,1): shortest distances 5, path 3->1

(3,2): shortest distances 12, path 3>1->2

(3,4): shortest distances 11, path 3>4

(4,1): shortest distances 13, path 4>2->1

(4,2): shortest distances 6, path 4>2

(4,3): shortest distances 11, path 433

Property 2. Proposed MapReduce of APSP algorithms is
correct.

Proof: In Proposed MapReduce of APSP algorithms, we
used 4 stage

1. Input stage: Adjacency list of the initial graph
2. Map stage: computation of intermediate (Key, Value) pairs
3. Reduce stage: Takes the minimum of all the path weights
and adds it to the adjacency list
4. Output stage: storage of full shortest distance and path.

In the input stage, all the vertices are connected to each
vertex on a linked list that is associated with that vertex. Map
stage, the sequential all pair shortest-path algorithm by Floyd-
Warshow, could be current in this stage at the work the
algorithm iterates through the nodes adjacent to "k" and for
each j adjacent to k it sums the distances D(i,k) and D(k,j) and
sets D(i,j)= D(i,k) + D(k,j). In the Reduce stage, the output of
the mapper will be the input to the reducer class, the reducer
class takes the minimum (Emit (Key, Value) of all the path
weights and adds it to the adjacency list of the keyld node.
"Mark" is a variable to mark the shortest path from "Key" to
"i". Mark=1,2,3...,n. With n being the number of vertices in the
graph. If (Key, Value) pairs are not marked (Mark=0), the path
from "Key" to "j" is via "j". Also for each vertex, it maintains
a boolean variable "check" to indicate whether that vertex has
been used to update distances to its adjacent vertices. If the path
weights are not updated, the current distance may not be the
shortest path. In the last stage (output stage), the final output
after all the iterations have been completed, the master node
uploads the full shortest distance and path into the HDFS.

F. COMPLEXITY ANALYSIS AND ASSESSMENT
Complexity of Floyd-Warshall algorithm is O(n®). The number
of assignments D[i][j]=D[i][k]+D[k][j] in algorithm 1 is n?
because it is in 3 loops. Therefore, the complexity is O(n?).
The computation time of MapReduce is the total
computation time of the Mapper and Reducer.
TMRrw=TMpw+TRrw

Depending on the divided numbers of blocks of the input
graph data, the computation time of Mapper is TMgw and the
computation time of Reducer is TRgw. The computation time
of Mapper and Reducer varies.

Let NB be the numbers of blocks, G® be the input data and
Num be the size of each block.

No = [e
Num

Let Cym be the complexity of the Mapper algorithm, let m be

the number of vertices adjacent to the processed vertex j. We

581

)

Nguyen Dinh Lau et al. / International Journal of Computing, 24(3) 2025, 578-584

have Cy=0(n.m?). Because in the Mapper algorithm there are
3 nested loops to Emit (Key, Value) which are lines 3, 4 and 8.
In which line 3, 4 and 8 has the number of operations n, m and
h (h=m) respectively.

Let Cr be the complexity of the Reducer algorithm, we have
Cwm=O(n%.m). Because in the Reducer algorithm there are 3
nested loops to Emit (Key, Value) as lines 4, 5 and 9. In which
loops 4, 5 have the same number of calculations n and line 9
has the number of k (k=m).

In the case of a typical graph, the value of m is much smaller
than n but we have m=n when the graph is complete.

We get, TMpy = o, and TRpy = o
Theoretically, the complexity on MapReduce is:

2 2
_ Max{oo;\};n),0(';,1;’")}

Cu Cr
TMRFW = Max {F,F}
The actual running time in Mapreduce architecture is:

0(n.m?) 0m?%m)
NB + NB

F. DATASET
Random graphs (Figure 3) are created as our database to test
the algorithms.

- Input: NumNode, Expansion coefficient.

Example: Input: NumNode=6, Expansion coefficient=3

- Output: Node 1 adjacent Node 2 Node 3 and Node 4; Node
2 adjacent Node 3, Node 4 and Node 5; Node 3 adjacent Node
4, Node 4 and Node 6; Node 4 adjacent Node 5 and Node 6,
Node 5 adjacent Node 6. With w(Node i, Node j) is random (
see Algorithm 4)

Algorithm 4: A random graph creates an algorithm

Input. NumNode, Expansion coefficient
Output: Graph (Namefile.txt)
BEGIN
ofstream f ("Namfile.txt");
for(int i=1;i<= NumNode;i++)
Begin
f<<i<<" "
for(int j=i+1;j<=i+Expansion coefficient;j++)
if(j<= NumNode)
Begin
srand(Munber);
int w = rand()
Number=Number+1;
<<, <<w<<"|"s

End;
f<<endl;
End;
f.close();

END.

582

= M100O.txt e
File Edit Wieww

. I e T LT BT
77 78,47|79,50|8e,53|81,57
78 7o,6e|8e,63|81,66|82,7e
7o 8e,73|81,76|82,80|83,12
se 81,15|82,18|82,22|84,25
81 82,28|83,31|84,35| 85,38
82 83,41 |84,44|85,48|86,51
83 84,54 |85,57| 86,61 | 87,64
84 8s,67|86,71|87,.74|88,77
85 86,80 |87,123|88,16| 89,19
86 87,22|88,26|89,29|90,22
87 88,235|89,39|9@,42|91,45
ss 89,49|9@,52|91,55|92,58
89 ge,62|91,65|92,68|93,71
(=1-} 91,75 |92,78|292,1e|94,132
o1 92,17|932,20|94,23|95,27
o2 93,320 |94,22|95,36| 96,49
o3 94,42 |95,46|96,49|97,52
o4 95,56 |96,59|97,62|98,66
o5 o96,69|97,72|98,76| 99,79
(=1-1 o7,11|9g8,14|99,18|1e0,21|
o7 og,24|99,27|1ee,31 |

os 99,24 |1e0, 27|

o9 120,40 |

Figure 3. Graph with NumNode =100, EC=4

Figure 3 is the randomly generated input file with 100
vertices and expansion coefficient = 4. With the number of
edges 100*4-(1+2+3+4)=390 edges.

We experimentally random graphs nodes as follows: The
graph corresponds to 12000 nodes, 71979 edges (Expansion
coefficient=6); 17000 nodes, 101979 edges (Expansion
coefficient=6) and 22000 nodes, 131979 edges (Expansion
coefficient=6). The simulation result demonstrates that the
runtime of parallel algorithms in the MapReduce architectures
is better than a sequential algorithm.

G. EXPERIMENTAL RESULTS

The performance tests were conducted on nodes Hadoop
cluster. The tests have been achieved on Hadoop 3.3.0. All
computations have been executed fifteen times and the
presented values are the average values of the executions. The
graph data covers all types of road networks, and contains
weighted edges to estimate the travel distances. The
experimental results show that the approach achieves a
significant gain in computation time.

Newsab X | [} Browsing HoFS X | [Bowsing HDFS x [&R
> 0 O 12700150070/explorer html#/

drwxr-xr-x Admin supergroup ;] 0 0B

drwxr-xr-x Admin supergroup 0B 0 0B

drwxr-xr-x Admin supergroup 08 0 0B

drwxr-Xr-x Admin supergroup 08 0 0B

drwxr-xr-x Admin supergroup 0B 0 0B

drwxr-xr-x Admin supergroup

5359908021800

drwxr-xr-x Admin supergroup 0B 0 0B
ArWXr-Xr-x Admin supergroup 0B 0 0B outputXYZ85361012187100
drwxr-xr-x Admin supergroup 08 0 0B outputXYZ95362137154000

drwxr-Xr-x Admin supergroup 0B 0 0B outputXYZ95363250701100

Figure 4. Output file in HDFS

Figure 4 reveals the results of running and saving on the
HDFS system.

The simulation result demonstrates that the runtime of
parallel algorithms on large graphs is better than small graphs.

VOLUME 24(3), 2025

Nguyen Dinh Lau et al. / International Journal of Computing, 24(3) 2025, 578-584

J

Table 10 Illustrates the execution time of graphs on Mapreduce
structure.

Table 10. The execution time

17000 nodes 22000 nodes

407 mins

Graph 12000 nodes

Time 246 mins 319 mins

450 407
400

350 319
300
250
200
150
100

246

1200 nodes 17000 nodes 22000 nodes

Figure 5. Chart performs the run time of graphs

Figure 5 outlines the result of comparing the execution time
of the graphs

V. COMPARISON WITH PREVIOUS STUDIES

In the paper [15], a parallel algorithm was built to find the
shortest path of every pair of vertices on the graph on
Pipelining. The authors also pointed out that the complexity by
the number of steps to send and receive the result is O(n’log k)
and the computation time is O(n*/k). In our algorithm, it is
o(nm?) | 0(n’m)

TNE T TNE
computation time that we have built is significantly reduced.

In the paper [16], the authors built the algorithm on GPU
with CUDA structure. This requires the computer to use a
NVIDIA Graphic Cards, so it is not convenient and costly as
compared to MapReduce. Moreover, in the paper [16], the
authors did not compare the various parallel processing blocks
with different computation time. In [16], the authors have not
proved the complexity of the algorithm.

The paper [18] outlines the designing algorithms on MPI
and OpenMP structures but the authors have not run on random
graphs to compare input graphs with arbitrary numbers of
vertices and edges. While our parallel algorithm experiments
on large data sets with randomly generated edges and vertices
in the algorithm 4 above.

with m being much smaller n, so the

VI. CONCLUSIONS

This paper presents an innovative approach that exploits a
MapReduce framework for APSP algorithm. It is proved that
the parallel computing concept is suited to face with APSP
algorithm (Property 2). MapReduce APSP algorithms are
presented in detail with particular experimental examples. In
addition, the basic results are throughly systematized and
proved.

This paper presents new parallel algorithms (algorithm 2, 3
and 4) based on the actual requirements, proving soundness. In
addition, thesis also does parallelization for existing
algorithms, then indicates the advantages of the new ones over
previous algorithms.

VOLUME 24(3), 2025

As part of future work, We will focus on the following
tasks:

- Quantify the time complexity taken by MapReduce APSP
algorithm for a given graph size.

- Apply of MapReduce APSP algorithm approach on a real
road network.

- In the future, we will experiment on a dataset with input
of traffic routes in Vietnam and taken from the link:
https://download.geofabrik.de/asia/vietnam.html

References

[1]1 S. H. Roosta, Paralell Processing and Parallel Algorithm Theory and
Computation, Springer, 2000, 347 p.

[2] N.D.Lau,T. Q. Chien, L. M. Thanh, “Improved computing performance
for algorithm finding the shortest path in extended graph,” Proceedings
of the International Conference on Foundations of Computer Science
(FCS’14), USA, 2014, pp. 14-20.

[3] V. Dragomir, “All-pair shortest path modified matrix multiplication
based algorithm for a one-chip MapReduce architecture,” U.P.B. Sci.
Bull., Series C, 78, 4, pp. 95-108, 2016.

[4] V. Dragomir, G. M. Stefan, “All-pair shortest path on a hybrid Map-
Reduce based architecture,” Proceedings of the Romanian Academy,
Series A, the publishing House of the Romanian Academy, vol.20, no. 4,
pp. 411-417,2019.

[51 S. Aridhi, V. Benjamin, P. Lacomme, L. Ren, “Shortest path
resolutionusing hadoop,” MOSIM 14, Nancy — France, 2014.

[6] W.Y.H. Adoni, T. Nahhal, B. Aghezzaf, A. Elbyed, “The
MapReduce-based approach to improve the shortest path computation in
large-scale road networks: the case of A* algorithm,” Journal of Big
Data, vol. 5, p. 16, 2018. https://doi.org/10.1186/s40537-018-0125-8.

[71 W.Y.H. Adoni, T. Nahhal, B. Aghezzaf, A. Elbyed, “MRA*: Parallel and
distributed path in large-scale graph using MapReduce-A* based
approach,” In: Sabir, E., Garcia Armada, A., Ghogho, M., Debbah, M.
(eds) Ubiquitous Networking. UNet 2017. Lecture Notes in Computer
Science, vol 10542, 2027. Springer, Cham. https://doi.org/10.1007/978-
3-319-68179-5_34.

[8] S. Aridhi, P. Lacomme, L. Ren, B. Vincent, “A MapReduce-based
approach for shortest path problem in large-scale networks,” Journal of
Engineering Applications of Artificial Intelligence, vol. 41, pp. 151-165,
2015. https://doi.org/10.1016/j.engappai.2015.02.008.

[91 Apache Hadoop, Welcome to Apache Hadoop. [Online]. Available at:
http://hadoop.apache.org/

[10] S. Ghemawat, H. Gobioff, S.T. Leung, “The Google file system,” ACM
SIGOPS Operating Systems Review, vol. 37. New York: ACM; 2003. p.
29-43,2003. https://doi.org/10.1145/1165389.945450.

[11] J. Dean, S. Ghemawat, “MapReduce: simplified data processing on large
clusters,” Commun ACM, vol. 51, issue 1, pp. 107-13, 2018.
https://doi.org/10.1145/1327452.1327492.

[12] V.K. Vavilapalli, Sto Seth, Bro Saha, C. Curino, O. O’Malley, S. Radia,
B. Reed, E. Baldeschwieler, A.C. Murthy, C. Douglas, S. Agarwal, M.
Konar, R. Evans, T. Graves, J. Lowe, H. Shah, “Apache Hadoop YARN:
yet another resource negotiator,” Proceedings of the 4th ACM Annual
Symposium on Cloud Computing, Santa Clara: 2013, pp. 1- 16.
https://doi.org/10.1145/2523616.2523633.

[13] M. Hena, N. Jeyanthi, A Three-Tier, “Authentication scheme for
kerberized Hadoop environment,” Cybernetics and Information
Technologies, ~ vol. 21, no. 4, pp. 119-136, 2021.
https://doi.org/10.2478/cait-2021-0046.

[14] D. Petrosyan, H. Astsatryan, “Serverless high-performance computing
over cloud,” Cybernetics and Information Technologies, vol. 22, no. 3,
pp. 82-92, 2022. https://doi.org/10.2478/cait-2022-0029.

[15] H. Wang, L. Tian, and C.-H. Jiang, “Practical parallel algorithm for all-
pair shortest path based on pipelining,” Journal of Electronic Science and
Technology of China, vol 6, no 3, 2008.

[16] D.Kulkarni, N. Sharma, P. Shinde, V. Varma, “Parallelization of shortest
path finder on GPU: Floyd-Warshall,” International Journal of Computer
Applications, vol. 118, no. 20, 2015. https://doi.org/10.5120/20858-3547.

[17] S.-C.Han, F. Franchetti, and M. Puschel, “Program generation for the all-
pairs shortest path problem,” Proceedings of the 15th International
Conference on Parallel Architectures and Compilation Techniques
(PACT), 2006, pp. 222-232. https://doi.org/10.1145/1152154.1152189.

[18] Z. Yan, Q. Song, “An implementation of parallel Floyd-Warshall
algorithm based on hybrid MPI and OpenMP,” Proceedings of the
International Conference on Electronics, Communications and Control,
2012, pp. 2461-2466.

583

J

Nguyen Dinh Lau et al. / International Journal of Computing, 24(3) 2025, 578-584

[19]

[20]

(21]

[22]

(23]

[24]

[25]

584

K. Kalia, N. Gupta, “Analysis of Hadoop MapReduce scheduling in
heterogeneous environment,” Ain Shams Engineering Journal, No 12, pp.
1101-1110, 2021. https://doi.org/10.1016/j.as€j.2020.06.009.

J. Dean, S. Ghemawat, “Mapreduce: Simplified data processing on large
clusters,” Communications of the ACM January, vol. 51, no. 11, pp. 107-
113, 2008. https://doi.org/10.1145/1327452.1327492.

X. Xiaobing, B. Chao, and C. Feng, “An insight into traffic safety
management system platform based on cloud computing,” Procedia -
Soc. Behav. Sci., vol. 96, pp. 2643-2646, 2013.
https://doi.org/10.1016/j.sbspro.2013.08.295.

S.N. Khezr, N.J. Navimipour, “MapReduce and its applications,
challenges, and architecture: A comprehensive review and directions for
future research,” Journal of Grid Computing, vol. 15, no. 3, pp. 295-321,
2017. https://doi.org/10.1007/s10723-017-9408-0.

N. S. Naik, A. Negi, and V. N. Sastry, ‘“A review of adaptive approaches
to MapReduce scheduling in heterogeneous environments,” Proceedings
of the 2014 International Conference on Advances in Computing,
Communications and Informatics (ICACCI), Delhi, India, 2014, pp. 677-
683, https://doi.org/10.1109/ICACCI.2014.6968497.

M. W. ur Rahman, N. S. Islam, X. Lu, D. Shankar, and D. K. Panda,
““MRAdvisor: A comprehensive tuning, profiling, and prediction tool for
MapReduce execution frameworks on HPC clusters,” Journal Parallel
Distributed ~ Computing, vol. 120, pp. 237-250, 2018.
hitps://doi.org/10.1016/j.jpdc.2017.11.004.

H. Singh, S. Bawa, “A MapReduce-based scalable discovery and
indexing of structured big data,” Future Generation Computer Systems,
vol. 73, pp. 3243, 2017. https://doi.org/10.1016/j.future.2017.03.028.

NGUYEN DINH LAU Born in 1978 in
Dien Ban, Quangnam, Vietnam. He
graduated from Maths_IT faculty of
Hue university of science in 2000. He
got master of science (IT) at Danang
university of technology and hold
Ph.D Degree in 2015 at Danang
university of technology. His main
major: Applicable mathematics in
transport, parallel and distributed
process, discrete mathemetics, graph

theory, grid Computing and
distributed programming.

LE THANH TUAN Born in 1978 in Hai
Chau, Danang, Vietnam. He graduated
of IT at Danang University of
| Technology. His main major: Parallel
| and distributed process, discrete
mathematics, graph theory, grid
Computing and distributed
programming.

VOLUME 24(3), 2025

