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 ABSTRACT The main result of this paper is building a new parallel algorithm based on Floyd-Warshall 
algorithm to find the Shortest Path for all-pair. The problem of finding All Pair Shortest Path (APSP). APSP is 
performed on many structures such as: MPI, OpenMP, Cuda and others. When the input data is large, we need to 
find ways to improve computing power to reduce calculation time for the APSP algorithm. We present a 
contribution for the APSP in the MapReduce architectures. The idea of this algorithm is to multi Workers to work 
in parallel  by Floyd-Warshall algorithm. There is one Master assigning Map and Reduce. The mapper 
simultaneously executes their work and sends their data to the reducer until the job is finished. The MapReduce 
algorithm has two functions: Map and Reduce. They receive key/value pairs based on an adjacency list. The 
algorithm performs in MapReduce and our results prove that the proposed approach improved Computing 
Performance for Algorithm Finding the Shortest Path for all-pair. Some fundamental results are systematized and 
proved.  
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I. INTRODUCTION 
In the field of graph theory, the problem of finding short paths 
receives a lot of attention and has many practical applications. 
There are many different algorithms to find the shortest path 
such as: Dijkstra algorithm; Bellman-Ford algorithm, the 
Bellman-Ford algorithm seems superior because it can handle 
graphs with negatively weighted edges; Floyd's algorithm is an 
algorithm that finds the shortest distance of all vertices; Floyd-
Warshall algorithm is an algorithm to find the shortest path of 
all vertices. 

With the Floyd-Warshall algorithm, the sequential 
algorithm has complexity equal to O(n3); n is the number of 
vertices in the graph (|V|=n), however, in the case of the 
Hadoop framework, to reduce the computational time of the 
algorithm when running in parallel on multiple machines, the 
algorithm has to be modified. 

There are many published articles underpinned by Floyd-
Warshall algorithm on different parallel environments such as: 
MPI, OpenMP, Cuda, [15, 16, 18]. With the advent of 
MapReduce architecture in cloud computing environments, 
researchers are often interested in this structure because 
MapReduce architecture is suitable for problems with massive 
data for the following reasons: 

- MapReduce is one of the innovative technologies of the 
big data revolution, a programming model and tool introduced 
by Google in 2004. 

- Mapreduce can be understood as an execution method to 
help applications quickly process large amounts of data in a 
distributed environment. 

- These computers execute parallel but independently of 
each other to reduce processing time. 

In papers [3], [4], authors construct parallel all-pairs 
shortest path algorithm with a MapReduce architecture. 
Parallel shortest path of an A* algorithm with a MapReduce 
architecture are implemented in [5], [6], [7], [8]. In paper [9], 
[10], [11], [12], authors perform parallel data-processing 
paradigm with Hadoop. In papers [15], [16], [18] authors 
construct parallel all-pairs shortest path algorithm with MPI, 
OpenMP, Cuda architecture. 

This paper  aims at presenting a parallel formulation of an 
All Pair Shortest Path Problem (APSPP) algorithm: the 
modified adjacency list based algorithm on MapReduce 
architecture. 
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II.  HADOOP AND MAPREDUCE 
MapReduce on cluster: A cluster has hundreds to thousands of 
common servers connected to each other via LAN. The 
hardware stored on these servers does not require high 
performance, just regular hard disks connected via the IDE 
standard. The unit of work in the MapReduce program is called 
a job package (job). Each job has many tasks that are 
transferred from a common distribution system to servers in the 
cluster. 

The Map task is performed and distributed across storage 
nodes. The distributed process is performed automatically 
through the input data being split. The Reduce task is also 
distributed through intermediate key/value pairs being grouped 
into pairs with similar keys (Figure 1) [9], [19], [20], [21], [22]. 

 

 

Figure 1. A general model of performed of Mapper and 
Reducer 

MapReduce cluster has a Master node and Worker nodes. 
The Master node is responsible for managing and regulating 
Workers ( See Figure 2) [20]. Compute nodes are workers that 
read data from an input file, usually from the block itself stored 
on a local drive. The Map task generates a set of intermediate 
key/value pairs stored in internal memory. At configured 
intervals, intermediate key/value pairs are written to the local 
hard drive, divided into R groups (R is the number of nodes 
running the Reduce task). The location of these pairs is notified 
to the Master server so that the Master is responsible for 
returning this address to the servers doing the Reduce task. 

 

 
 

Figure 2. The performance model of Master and Worker 

When Workers performing the Reduce task are notified of 
the location of intermediate key/value pairs, these Workers 
read the data. When the read is finished, the Worker sorts the 
intermediate key/value pairs by key. The Worker performs 
Reduce sequential calculations on the sorted data. The output 
of the Reduce task is written to the output file. When all Map 

and Reduce tasks are finished, the Master reports the results 
back to the user program [23], [24], [25] 

III.  ALL-PAIR SHORTEST PATH ALGORITHM (APSP) 

A.  ADJACENCY – LIST  
Let graph G=(V, E), ∀𝑖 ∈V, find edges (i,j) ∈E with weight 
w(i,j). It maintains an array of list  called the Adjacency – List 
Example 1: An undirected graph with 4 vertices and its 
adjacency list are shown. 

Table 1. Adjacency–List with nodeID (4 vertices) 

NodeID (i) j, W(i,j) k, W(i,k) 
1 2,7 3,5 
2 1,7  4,6 

3 1,5  4,11 

4 2,6  3,11 

B.  ALL-PAIR SHORTEST PATH PROBLEM ALGORITHM  
We use Floyd-Warshall algorithm to find the shortest path 
between every pair of vertices of a weighted graph G. The 
matrix D, all-pair shortest distance matrix, can be computed 
from W, the weighted adjacency matrix. The matrix P, the 
paths matrix is set with p[i][j]=j for each (i,j). If there is no edge 
from i to j then p[i][j]=null. 

Input: G=(V, E, w), V={1, 2,…,n}, w(i, j) for  edge (i, j) 
Output: Matrix D=[d(i,j)], In which d(i,j) is the shortest path 
from i to j  ∀ (i,j). Matrix P=[p(i,j)], used to determine the 
shortest path. 

The sequential all-pair shortest-path algorithm can be 
described as the following 

Algorithm 1 APSP(W[n][n],P[n][n]) 
------------------------------------------------------------------------- 

 1. {      
 2.       D[n][n]=W[n][n]; 
 3.        for(int k=0;k<=n;k++) 
 4.            { 
 5.      for(int i=0;i<=n;i++) 
 6.  for(int j=0;j<=n;j++) 
 7.  if(D[i][j]>D[i][k]+D[k][j]) 
 8.    { 
 9.      D[i][j]=D[i][k]+D[k][j]; 
 10.      P[i][j]=P[i][k]; 
 11.    } 
 12.  } 
               13.  } 
-------------------------------------------------------------------------- 
 

APSP algorithm is correct and the complexity of APSP 
algorithm is O(n3) 

Example 2: An undirected graph with 4 vertices in example 
1 has weighted matrix D and path matrix P show  

Table 2. Weighted matrix D and path matrix P 
             Weighted matrix D                       Path Matrix P 

 1 2 3 4    1 2 3 4 
1 inf 7 5 inf   1 null 2 3 null 
2 7 inf inf 6   2 1 null null 4 
3 5 inf inf 11   3 1 null null 4 

4 inf 6 11 inf   4 null 2 3 null 
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In which Dk and Pk  are  matrices obtained from  D and P 
after the kth  iteration for k=1,2,3,4. Matrix D4   determines the 
length of the shortest path between every pair of vertices while 
Matrix P4 identifies the shortest path between every pair of 
vertices. Matrix D4 and path matrix P4 are shown in Table 3. 

Table 3. Weighted matrix D4 and path matrix P4 
      Weighted Matrix D4                          Path Matrix P4 

 1 2 3 4   1 2 3 4 
1 10 7 5 13  1 3 2 3   2 
2 7 12 12 6  2 1 4 1 4 
3 5 12 10 11  3 1 1 1 4 
4 13 6 11 12  4 2 2 3 2 

IV. ALL-PAIR SHORTEST PATH ALGORITHM ON 
MAPREDUCE 
A.  IDEA OF MAPREDUCE OF APSP ALGORITHMS 
Map stage:  

The mapper class takes the entire file input and parses it line 
by line. Let the consider nodeId be "k". For a vertex "i" adjacent 
to "k" it emits a new node. For generating the new node, the 
algorithm iterates through the nodes adjacent to "k" and for 
each j adjacent to k it sums the distances D(i,k) and D(k,j) and 
sets D(i,j)= D(i,k) + D(k,j) 

"Mark" is a variable to mark the shortest path from "Key" 
to "j".  

Reduce stage: 
The output of the mapper will be the input to the reducer 

class. The reducer class takes the minimum of all the path 
weights and adds it to the adjacency list of the keyId node. 

B.  MAPREDUCE APSP ALGORITHMS 
 

Algorithm 2: APSP Mapper 
-------------------------------------------------------------------------- 
Input: Value={∀j| j adjacent NodeID , w(NodeID, j), 
[Mark]}. 

 Data representation: 
 (Key, Value): {NodeID, {∀j| j adjacent   NodeID , 
w(NodeID, j), Mark}. 
 NodeID is all nodes of the graph (Key, Value):  
Seperated  
 key-value pairs denote adjacent nodeId and edge 
weight connecting them. 
 "|" separated key-value pair 

Output: (Key, Value) 
//Emit (Key, Value) 

1. { 
2. For all k in Key (Key, Value) =(key, Value) 
3.  For all k in Key 
4.   For all j ∈J| J is set node adjacent k 
5.    Emit (key, Value) 
6.     Key: =j,  
7.    Value1: ={j1, w(k,j1), [mark]} 
8.    Valueh={jh, w(k, j1)+w(k, jh), 

[mark]} with h>1   
9. }.                                 

--------------------------------------------------------------------------- 

 

C. DESCRIPTION OF MAPPER ALGORITHM 
The input of the Mapper algorithm is the pairs (Key, Value) 
with the structure: {NodeID, {∀j| j adjacent NodeID , 
w(NodeID, j), Mark } with Key=NodeID ∈[1…n]|n=|V|. and 
Value={∀j| j adjacent NodeID, w(NodeID, j), Mark }, The 
Value includes all nodes j adjacent to NodeID along with the 
weight w(NodeID, j) of the edge (NodeID, j) and adds the 
variable Mark to mark the number of vertices that NodeID has 
passed through. Mark is used to find the path after the Reduce 
algorithm ends. 

- "Mark" is a variable to mark the processed vertices along 
the path from "Key" to "j"| ∀j| j adjacent Key. Mark=1,2,3…,n. 
With n being the number of vertices in the graph. If  (Key, 
Value) pairs are not marked  (Mark=null), the path from "Key" 
to "j" is via "j". 

- Also for each vertex it maintains a boolean variable 
"check" to indicate whether that vertex has been used to update 
distances to its adjacent vertices.  If Mark is updated for a 
particular vertex, the shortest distance from the source vertex 
to the processed vertex also changes. 

Algorithm 3: APSP Reducer 
------------------------------------------------------------------------- 

1. Input: The output of the mapper will be the input to 
the reducer class 

2. Output: (Key, Value) 
3. //Emit (Key, Value) 
4.   For j=1 to |V|  
5.         ∀𝑠௜ ∈ 𝑆 with set S= {Key} 
6.      If (si==j) then  
7.        { 
8.             Key=j; 
9.             Value={k\∀k adjacent j,   

            𝑀𝑖𝑛{𝑤(𝑗, 𝑘)}, [mark]}    
10.             Emit (Key, Value) 
11.         } 

/* The reducer class takes the minimum of  
all the path weights and adds it to the     
adjacency list of the keyId node. */ 

12. Sorts the data by keys. 
------------------------------------------------------------------------- 

D. DESCRIPTION OF REDUCER ALGORITHM 
Keys and Values pairs from the output of the Mapper algorithm 
become the Input data of the Reducer algorithm. These Keys 
and Values pairs have many identical Keys. Therefore, the S 
set contains all the values in the Keys. Note that duplicate Keys 
are still saved in the S set. The Reducer algorithm choose only 
a Key from all identical Keys and the Values is created by 
taking the Min of all the weights of the edges (j,k). and emit the 
new Key and Value pair. 

Then the Reducer algorithm sorts in ascending order based 
on Keys  

E. EXAMPLE   
An undirected graph with 4 vertices in example 1, then (Key, 
Value) is the adjacency list of the graph  

Table 4. (Key, Value) is adjacency list of graph 
Key Value1| Value2| 
1 2,7| 3,5| 
2 1,7|  4,6| 
3 1.5|  4,11| 
4 2,6|  3,11| 

Output emitted by mapper:  
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Table 5. Output: (Key, Value)  

Key Value1| Value2|   
1 2,7| 3,5|   
2 1,7|  4,6|   
3 1.5|  4,11|   
4 2,6|  3,11|   
2 1,7| 3,12,mark=1|   
3 1,5| 2,12,mark=1|   
1 2,7| 4,13,mark=2|   
4 2,6| 1,13,mark=2|   
1 3,5| 4,16,mark=3|   
4 3,11| 1,16,mark=3|   
2 4,6| 3,17,mark=3|   
3 4,11| 2,17,mark=3|   

 
"Mark": It is used to mark the shortest path from "Key" to "j" 

Table 6. Input to the reducer class 

Key Value1| Value2|   
1 2,7| 3,5|   
2 1,7|  4,6|   
3 1.5|  4,11|   
4 2,6|  3,11|   
2 1,7| 3,12,mark=1|   
3 1,5| 2,12,mark=1|   
1 2,7| 4,13,mark=2|   
4 2,6| 1,13,mark=2|   
1 3,5| 4,16,mark=3|   
4 3,11| 1,16,mark=3|   
2 4,6| 3,17,mark=3|   
3 4,11| 2,17,mark=3|   

Table 7. The output emitted by the reducer 

Key Value1| Value2| Value3| 
1 2,7| 3,5| 4,13,mark=2| 
2 1,7|  3,12,mark=1| 4,6| 
3 1.5|  2,12,mark=1| 4,11| 
4 1,13,mark=2| 2,6|  3,11| 

 
The output of the reducer iteration serves as the input for 

the mapper’s next iteration. 

Table 8. Output emitted by algorithm Mapper 

Key Value1| Value2| Value3| 
1 2,7| 3,5| 4,13,mark=2| 
2 1,7|  3,12,mark=1| 4,6| 
3 1,5|  2,12,mark=1| 4,11| 
4 1,13,mark=2| 2,6|  3,11| 
2 1,7| 3,12,mark=1| 4,18,mark=1,2| 
3 1,5| 2,12,mark=1| 4,18,mark=1,2| 
4 1,13,mark=2| 2,20,mark=2,1| 3,18,mark=2, 1| 
1 2,7| 3, 18,mark=2,1| 4,13,mark=2| 
3 2,12,mark=1| 1,19,mark=1,2| 4, 18,mark=1,2| 
4 2,6| 1,13,mark=2| 3, 18,mark=1| 
1 3,5| 2,17,mark=3,1| 4, 16,mark=3| 
2 3, 12,mark=1| 1,17,mark=1,3| 4, 23,mark=1,3| 
4 3,11| 1,16,mark=3,4| 2, 23,mark=3,1| 
1 4,13,mark=2| 2, 19,mark=2,4| 3, 24,mark=2,4| 
2 4,6| 1,19,mark=4,2| 3, 17,mark=4| 
3 4,11| 1,24,mark=2,4| 2,17,mark=4| 

Table 9. The final output after all the iterations have been 
completed 

Key Value1| Value2| Value3| 
1 2,7| 3,5| 4,13,mark=2| 
2 1,7|  3,12,mark=1| 4,6| 
3 1,5|  2,12,mark=1| 4,11| 
4 1,13,mark=2| 2,6|  3,11| 

The results of shortest paths between all pairs of vertices 
and paths show: 

(1,2): shortest distances 7, path 12 (mark=null) 
(1,3): shortest distances 5, path 15 
(1,4): shortest distances 13, path 1 2 (mark =2)4 
(2,1): shortest distances 7, path 21 
(2,3): shortest distances 12, path 213 
(2,4): shortest distances 6, path 24 
(3,1): shortest distances 5, path 31 
(3,2): shortest distances 12, path 312 
(3,4): shortest distances 11, path 34 
(4,1): shortest distances 13, path 421 
(4,2): shortest distances 6, path 42 
(4,3): shortest distances 11, path 43 
Property 2. Proposed MapReduce of APSP algorithms is 

correct. 
Proof: In Proposed MapReduce of APSP algorithms, we 

used 4 stage 
1. Input stage: Adjacency list of the initial graph 

2. Map stage: computation of intermediate (Key, Value) pairs 
3. Reduce stage: Takes the minimum of all the path weights 
and adds it to the adjacency list 
4. Output stage: storage of full shortest distance and path. 

In the input stage, all the vertices are connected to each 
vertex on a linked list that is associated with that vertex. Map 
stage, the sequential all pair shortest-path algorithm by Floyd-
Warshow, could be current in this stage at the work the 
algorithm iterates through the nodes adjacent to "k" and for 
each j adjacent to k it sums the distances D(i,k) and D(k,j) and 
sets D(i,j)= D(i,k) + D(k,j). In the Reduce stage, the output of 
the mapper will be the input to the reducer class, the reducer 
class takes the minimum (Emit (Key, Value) of all the path 
weights and adds it to the adjacency list of the keyId node. 
"Mark" is a variable to mark the shortest path from "Key" to 
"j". Mark=1,2,3…,n. With n being the number of vertices in the 
graph. If (Key, Value) pairs are not marked (Mark=0), the path 
from "Key" to "j" is via "j". Also for each vertex, it maintains 
a boolean variable "check" to indicate whether that vertex has 
been used to update distances to its adjacent vertices. If the path 
weights are not updated, the current distance may not be the 
shortest path. In the last stage (output stage), the final output 
after all the iterations have been completed, the master node 
uploads the full shortest distance and path into the HDFS. 

F. COMPLEXITY ANALYSIS AND ASSESSMENT 
Complexity of Floyd-Warshall algorithm is O(n3). The number 
of assignments D[i][j]=D[i][k]+D[k][j] in algorithm 1 is n3 
because it is in 3 loops. Therefore, the complexity is O(n3). 

The computation time of MapReduce is the total 
computation time of the Mapper and Reducer. 

TMRFW=TMFW+TRFW 
 

Depending on the divided numbers of blocks of the input 
graph data, the computation time of Mapper is TMFW and the 
computation time of Reducer is TRFW. The computation time 
of Mapper and Reducer varies. 

Let NB be the numbers of blocks, GS be the input data and 
Num be the size of each block. 

𝑵𝑩 = ቈ
𝑮𝑺

𝑵𝒖𝒎
቉ 

Let CM be the complexity of the Mapper algorithm, let m be 
the number of vertices adjacent to the processed vertex j. We 
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have CM=O(n.m2). Because in the Mapper algorithm there are 
3 nested loops to Emit (Key, Value) which are lines 3, 4 and 8. 
In which line 3, 4 and 8 has the number of operations n, m and 
h (h=m) respectively. 

Let CR be the complexity of the Reducer algorithm, we have 
CM=O(n2.m). Because in the Reducer algorithm there are 3 
nested loops to Emit (Key, Value) as lines 4, 5 and 9. In which 
loops 4, 5 have the same number of calculations n and line 9 
has the number of k (k=m). 

In the case of a typical graph, the value of m is much smaller 
than n but we have m=n when the graph is complete. 

We get, 𝑻𝑴𝑭𝑾 =
𝑪𝑴

𝑵𝑩 , 𝒂𝒏𝒅 𝑻𝑹𝑭𝑾 =
𝑪𝑹

𝑵𝑩 

Theoretically, the complexity on MapReduce is: 

𝑻𝑴𝑹𝑭𝑾 = 𝑴𝒂𝒙 ൜
𝑪𝑴

𝑵𝑩
,

𝑪𝑹

𝑵𝑩
ൠ = 𝑴𝒂𝒙{

𝑶(𝒏. 𝒎𝟐)

𝑵𝑩
,
𝑶(𝒏𝟐. 𝒎)

𝑵𝑩
} 

The actual running time in Mapreduce architecture is: 

𝑶(𝒏. 𝒎𝟐)

𝑵𝑩
+

𝑶(𝒏𝟐. 𝒎)

𝑵𝑩
 

F. DATASET 
Random graphs (Figure 3) are created as our database to test 
the algorithms.  

- Input: NumNode, Expansion coefficient.  
Example:  Input: NumNode=6, Expansion coefficient=3  
- Output: Node 1 adjacent Node 2 Node 3 and Node 4; Node 

2 adjacent Node 3, Node 4 and Node 5; Node 3 adjacent Node 
4, Node 4 and Node 6; Node 4 adjacent Node 5 and Node 6, 
Node 5 adjacent Node 6. With w(Node i, Node j) is random ( 
see Algorithm 4) 

Algorithm 4: A random graph creates an algorithm 

Input: NumNode, Expansion coefficient 
Output: Graph (Namefile.txt) 
BEGIN 
  ofstream f ("Namfile.txt"); 
 for(int i=1;i<= NumNode;i++)  
    Begin 
         f<<i<<" "; 
         for(int j=i+1;j<=i+Expansion coefficient;j++) 
  if(j<= NumNode) 
      Begin 
         srand(Munber);  

       int w = rand() 
       Number=Number+1; 
       f<<j<<","<<w<<"|"; 

                   End; 
          f<<endl; 
                   End; 
  f.close(); 
END. 

 

 

Figure 3. Graph with NumNode =100, EC=4 

Figure 3 is the randomly generated input file with 100 
vertices and expansion coefficient = 4. With the number of 
edges 100*4-(1+2+3+4)=390 edges.  

We experimentally random graphs nodes as follows: The 
graph corresponds to 12000 nodes, 71979 edges (Expansion 
coefficient=6); 17000 nodes, 101979 edges (Expansion 
coefficient=6) and 22000 nodes, 131979 edges (Expansion 
coefficient=6). The simulation result demonstrates that the 
runtime of parallel algorithms in the MapReduce architectures 
is better than a sequential algorithm. 

G.  EXPERIMENTAL RESULTS 
The performance tests were conducted on nodes Hadoop 
cluster. The tests have been achieved on Hadoop 3.3.0. All 
computations have been executed fifteen times and the 
presented values are the average values of the executions. The 
graph data covers all types of road networks, and contains 
weighted edges to estimate the travel distances. The 
experimental results show that the approach achieves a 
significant gain in computation time. 
 

 

Figure 4.  Output file in HDFS 

Figure 4 reveals  the results of running and saving on the 
HDFS system.  

The simulation result demonstrates that the runtime of 
parallel algorithms on large graphs is better than small graphs. 
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Table 10 Illustrates the execution time of graphs on Mapreduce 
structure.  

Table 10.  The execution time 

Graph 12000 nodes 17000 nodes 22000 nodes 

Time 246 mins 319 mins 407 mins 

 

 

Figure 5. Chart performs the run time of graphs 

Figure 5 outlines the result of comparing the execution time 
of the graphs 

V. COMPARISON WITH PREVIOUS STUDIES 
In the paper [15], a parallel algorithm was built to find the 
shortest path of every pair of vertices on the graph on 
Pipelining. The authors also pointed out that the complexity by 
the number of steps to send and receive the result is O(n2log k) 
and the computation time is O(n3/k). In our algorithm, it is 
𝑶൫𝒏.𝒎𝟐൯

𝑵𝑩 +
𝑶൫𝒏𝟐.𝒎൯

𝑵𝑩  with m being much smaller n, so the 

computation time that we have built is significantly reduced. 
In the paper [16], the authors built the algorithm on GPU 

with CUDA structure. This requires the computer to use a 
NVIDIA Graphic Cards, so it is not convenient and costly as 
compared to MapReduce. Moreover, in the paper [16], the 
authors did not compare the various parallel processing blocks 
with different computation time. In [16], the authors have not 
proved the complexity of the algorithm. 

The paper [18] outlines the designing algorithms on MPI 
and OpenMP structures but the authors have not run on random 
graphs to compare input graphs with arbitrary numbers of 
vertices and edges. While our parallel algorithm experiments 
on large data sets with randomly generated edges and vertices 
in the algorithm 4 above. 

VI. CONCLUSIONS 
This paper presents an innovative approach that exploits a 
MapReduce framework for APSP algorithm. It is proved that 
the parallel computing concept is suited to face with APSP 
algorithm (Property 2). MapReduce APSP algorithms are 
presented in detail with particular experimental examples. In 
addition, the basic results are throughly systematized and 
proved. 

This paper presents new parallel algorithms (algorithm 2, 3 
and 4) based on the actual requirements, proving soundness. In 
addition, thesis also does parallelization for existing 
algorithms, then indicates the advantages of the new ones over 
previous algorithms. 

As part of future work, We will focus on the following 
tasks: 

- Quantify the time complexity taken by MapReduce APSP 
algorithm for a given graph size. 

- Apply of MapReduce APSP algorithm approach on a real 
road network. 

- In the future, we will experiment on a dataset with input 
of traffic routes in Vietnam and taken from the link: 
https://download.geofabrik.de/asia/vietnam.html 
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