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 ABSTRACT The Industrial Internet of Things (IIoT) has revolutionized industrial operations but has also 
brought forth significant cybersecurity challenges, demanding the development of advanced Intrusion Detection 
Systems (IDS). This study presents a feature-driven approach to enhance IDS performance in IIoT environments. 
By utilizing Recursive Feature Elimination (RFE) combined with Mutual Information (MI) for feature selection, 
we identified the most relevant attributes from the UNSW-NB15 dataset, improving detection accuracy while 
reducing computational complexity. Several deep learning models, including Convolutional Neural Networks 
(CNN), Residual Neural Networks (ResNet), Long Short-Term Memory (LSTM), and Bidirectional LSTM 
(BiLSTM), were evaluated. Among them, BiLSTM delivered the best performance, achieving a recall of 96.96%, 
an F1-score of 97.06%, and a Matthews Correlation Coefficient (MCC) of 0.93, outperforming other models in 
detecting complex attack patterns. However, its high computational cost, with training time exceeding 3500 
seconds, underscores the need for optimization for real-time deployment. The results highlight the potential of 
combining feature selection techniques with deep learning models to enhance IDS for IIoT. Future work will focus 
on optimizing BiLSTM for faster deployment, integrating hybrid models, and testing across diverse datasets to 
further improve real-time security solutions for IIoT environments. 
 

 KEYWORDS IIoT Security; Intrusion Detection Systems; Deep Learning; Feature Selection; BiLSTM; 
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I.  INTRODUCTION 
he IIoT represents a transformative shift in industrial 
processes, enabling unprecedented levels of automation, 

efficiency, and real-time data analytics. By interconnecting 
devices, sensors, and systems, IIoT facilitates innovations like 
predictive maintenance, process optimization, and intelligent 
decision-making. These advancements promise significant 
economic benefits across industries such as manufacturing, 
energy, healthcare, and transportation. However, the 
proliferation of IIoT devices introduces considerable 
cybersecurity challenges, given their distributed and 
interconnected nature. Attackers can exploit vulnerabilities in 
IIoT networks to compromise critical infrastructure, leading to 
devastating financial, operational, and even human 
consequences. Addressing these security challenges is critical 
to unlocking the full potential of IIoT systems [1], [2]. 

IDS are essential components of any cybersecurity strategy, 
designed to monitor network traffic and identify anomalous or 
malicious activities. Traditional IDS methods, based on 
signature-based detection, offer limited efficacy against novel 

or unknown attacks. With the rising complexity and volume of 
IIoT data, traditional techniques often fall short in terms of 
scalability and accuracy. As a result, machine learning (ML) 
and deep learning (DL) approaches have gained traction for 
their ability to learn intricate patterns in high-dimensional data 
and detect sophisticated attack vectors. Recent studies 
highlight the superior performance of deep learning models, 
such as CNNs, LSTM networks, and BiLSTM architectures, in 
securing IIoT environments [3], [4], [5]. 

A.  FEATURE SELECTION AND DATA PREPROCESSING 
Feature selection is a critical step in building robust IDS, 
particularly when working with high-dimensional datasets such 
as UNSW-NB15 or NSL-KDD. These datasets contain diverse 
features, some of which may be redundant or irrelevant, leading 
to increased computational costs and reduced detection 
accuracy. RFE with MI has emerged as a powerful technique 
for identifying the most relevant features, enabling models to 
focus on the most impactful attributes. Studies show that 
effective feature selection not only enhances model 
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performance but also reduces the training time, making the 
approach suitable for resource-constrained IIoT environments 
[6], [7]. 

Data preprocessing is equally crucial in ensuring the quality 
and reliability of an IDS. This involves handling missing 
values, scaling numerical features, and transforming skewed 
distributions. Techniques like outlier detection and log 
transformation can mitigate the impact of extreme values, 
improving model robustness. Properly processed data serves as 
a strong foundation for training machine learning and deep 
learning models [8], [9]. 

B.  DEEP LEARNING MODELS FOR IIOT SECURITY 
Deep learning architectures has shown remarkable success in 
improving IDS performance due to their ability to capture 
complex patterns and adapt to evolving threats. Commonly 
used models in IDS include: 

CNN: Effective for detecting spatial patterns in data, CNNs 
are widely used for intrusion detection tasks involving packet-
level analysis [6]. 

LSTM and BiLSTM: Capable of learning temporal 
dependencies, these models excel in identifying sequential 
patterns in network traffic. BiLSTM, in particular, enhances 
detection by processing data in both forward and backward 
directions, improving accuracy [7]. 

ResNet: By employing skip connections, ResNet mitigates 
the vanishing gradient problem, enabling the training of deeper 
networks for intrusion detection [9]. 

Hybrid models, combining the strengths of multiple 
architectures, are gaining popularity for IIoT IDS. For instance, 
CNN-LSTM models leverage CNN’s spatial pattern 
recognition capabilities and LSTM’s sequential analysis 
strengths, achieving superior performance [6]. 

Evaluation Metrics and Experimental Validation 
Evaluating IDS performance requires a comprehensive 

approach, encompassing multiple metrics such as accuracy, 
recall, precision, F1-score, ROC-AUC, and computational 
efficiency. While accuracy provides an overall assessment, 
recall is critical for identifying attacks, and F1-score balances 
precision and recall. Computational costs, such as training and 
inference times, are equally important for real-time 
applications in IIoT environments [10], [11], [12]. 

Stratified K-Fold cross-validation is widely employed to 
ensure robust model evaluation. This technique maintains the 
class distribution across training and validation sets, preventing 
bias in performance estimation. Experiments conducted on 
benchmark datasets like UNSW-NB15 demonstrate the 
efficacy of deep learning models when coupled with robust 
feature selection and preprocessing pipelines [6], [13], [14]. 

C.  REAL-WORLD APPLICABILITY AND CHALLENGES 
Despite promising results, deploying IDS in real-world IIoT 
environments presents challenges. These include the 
heterogeneity of devices, dynamic network topologies, and the 
need for lightweight solutions that operate within the 
constraints of IIoT systems. Addressing these challenges 
requires continuous advancements in feature selection 
methods, model optimization techniques, and adaptive learning 
mechanisms to handle evolving threats [15], [16]. 

In this study, we propose a feature-driven approach that 
combines RFE with MI for optimal feature selection and 
employs state-of-the-art deep learning models, including 

BiLSTM, CNN, and ResNet, for intrusion detection in IIoT 
networks. Using the UNSW-NB15 dataset, we conduct a 
comprehensive evaluation of model performance across 
multiple metrics, demonstrating the viability of our approach in 
enhancing IIoT security. 

D.  CONTRIBUTIONS 
In this work, we make several important contributions to 
improving security in Industrial IoT systems. First, we propose 
a smart way to select the most useful features from the data by 
combining two techniques Recursive Feature Elimination and 
Mutual Information to better handle IIoT network traffic. Then, 
we compare different deep learning models like CNN, ResNet, 
LSTM, and BiLSTM using the same dataset and testing setup 
to ensure a fair comparison. Our results show that BiLSTM 
performs the best, reaching an impressive F1-score of 0.9706, 
which makes it a strong choice for detecting threats in complex 
IIoT environments. Finally, we also look at how long each 
model takes to train and make predictions, which helps in 
choosing the right model for real-time applications. 

II. RELATED WORK 
The IIoT has revolutionized industrial operations by enabling 
seamless communication and automation across devices. 
However, this connectivity comes with significant 
cybersecurity risks, requiring robust IDS. This section explores 
prior research on IDS methods for IIoT, the role of feature 
selection in enhancing detection accuracy, and advancements 
in deep learning techniques for cybersecurity. 

A.  OVERVIEW OF IDS METHODS FOR IIOT 
Traditional IDS techniques, including signature-based and 
anomaly-based approaches, have been foundational in 
detecting threats. However, the heterogeneous and real-time 
nature of IIoT environments often limits their effectiveness in 
detecting novel attacks [17]. Hybrid IDS frameworks that 
integrate anomaly-based and signature-based techniques have 
been proposed to enhance detection capabilities and reduce 
false positives [15], [18]. 

Machine learning-based IDS further improved adaptability 
by analyzing complex traffic patterns. Classical methods like 
Random Forests (RF), Support Vector Machines (SVM), and 
Naïve Bayes classifiers have been widely explored [19], but 
they often depend on handcrafted features, limiting their ability 
to generalize across different datasets and attack scenarios [20]. 

B.  EXISTING STUDIES ON FEATURE SELECTION 
TECHNIQUES AND THEIR IMPACT 
Feature selection is essential in handling the high 
dimensionality of IIoT datasets, improving computational 
efficiency and model performance. RFE combined with MI has 
emerged as a prominent approach, allowing models to focus on 
the most relevant features while maintaining interpretability 
[21], [22], [23]. Studies have shown that RFE with MI 
enhances both deep learning and traditional models by reducing 
noise and dimensionality [21]. 

Other techniques, such as Chi-square tests and Principal 
Component Analysis (PCA), are also used to simplify datasets. 
However, PCA sacrifices interpretability by transforming data 
into a new feature space, whereas RFE with MI maintains 
transparency in the feature selection process [23]. The 
integration of feature selection with deep learning has proven 
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effective, with methods like CNN and LSTM networks 
benefitting significantly from optimized input features [24]. 

C.  ADVANCEMENTS IN DEEP LEARNING FOR 
CYBERSECURITY APPLICATIONS 
Deep learning models have shown great promise in addressing 
IIoT security challenges due to their capability to learn 
complex patterns from data. Convolutional Neural Networks 
(CNNs) have been employed for their efficiency in identifying 
spatial relationships in network traffic [25], while Recurrent 
Neural Networks (RNNs) and LSTMmodels have been used to 
capture temporal dependencies, making them suitable for 
IIoT's dynamic environments [26], [27]. 

Bi-directional LSTM (BiLSTM) networks stand out due to 
their ability to analyze both forward and backward temporal 
information, improving detection accuracy for sophisticated, 
multi-stage attacks [28]. ResNet and hybrid architectures like 
CNN-LSTM have further advanced IDS performance by 
addressing training challenges such as vanishing gradients and 
overfitting [29], [30]. 

Other promising approaches include transfer learning, 
which leverages pre-trained models for rapid adaptation to new 
IIoT domains, and ensemble learning, such as bagging and 
boosting, which combine the strengths of multiple models to 
improve overall detection robustness [31], [32]. 

D.  SUMMARY OF KEY CONTRIBUTIONS FROM RELATED 
WORK 
The reviewed literature highlights significant progress in IDS 
for IIoT, particularly with advanced feature selection and deep 
learning techniques. However, challenges remain, including 
the need to address data imbalance, optimize computational 
efficiency, and ensure adaptability to evolving attack vectors. 
This study builds on these advancements by employing RFE 
with MI for feature selection, evaluating various deep learning 
models, and ensuring comprehensive performance assessment 
through diverse metrics. 

Table 1. Classification of Recent Research on Intrusion 
Detection Systems for IIoT 

Year Authors Technique Models/Methods Results 

2021 
M. A. 
Alsoufi et 
al. 

Anomaly-
Based Deep 
Learning 

Deep Learning 
Models (not 
specified) 

Systematic 
Literature Review 

2023 
S. D. A. 
Rihan, et 
al. 

Ensemble 
Feature 
Selection + 
Deep 
Learning 

Ensemble 
Learning + Deep 
Learning Models 

Improved 
Detection 
Performance 

2024 
J. Li, H. 
Chen, et 
al. 

Feature 
Reduction (FS 
& FE) 

Decision Tree, 
Random Forest, 
Naive Bayes, k-
NN, MLP 

Comparison of FS 
& FE techniques, 
FE outperforms 
FS 

2021 
J. B. 
Awotunde, 
C. et al. 

Deep 
Learning + 
Rule-Based 
FS 

Deep Learning 
Model (not 
specified) 

Improved 
Intrusion 
Detection 

2022 
B. I. 
Hairab, et 
al. 

Anomaly 
Detection 
(CNN) + 
Regularization 

CNN with 
Regularization 
Techniques 

Detection of 
Zero-Day Attacks 

2022 
A. 
Chatterjee 
et al. 

Anomaly 
Detection 

Survey of 
Anomaly 
Detection 
Methods 

Review of IoT 
Anomaly 
Detection 
Methods 

2022 
I. Ullah et 
al. 

RNN 
Anomaly 
Detection 

RNN-based 
Model 

Anomaly 
Detection in IoT 
Networks 

2022 
Y. Zhang, 
et al. 

BiLSTM 
DDoS 
Detection 

BiLSTM 
DDoS Attack 
Detection in Edge 
Computing 

2023 
H. C. 
Altunay et 
al. 

Hybrid 
CNN+LSTM 

Hybrid 
CNN+LSTM 

Intrusion 
Detection in 
Industrial IoT 
Networks 

2023 

L. 
Xiaoyan 
and R. C. 
Raga 

BiLSTM with 
Attention 
Mechanism 

BiLSTM with 
Attention 

Sentiment 
Classification 
(Not IIoT 
specific) 

2023 

H. 
Kheddar, 
Y. 
Himeur, 
and A. I. 
Awad 

Deep Transfer 
Learning 

Deep Transfer 
Learning Models 

Intrusion 
Detection in 
Industrial Control 
Networks 

2023 
M. Mohy-
Eddine, et 
al. 

Ensemble 
Learning 

Ensemble 
Learning Model 

Intrusion 
Detection for 
Industrial IoT 
Security 

III.  METHODOLOGY 
A.  UNSW-NB15 DATASET 
The UNSW-NB15 dataset was used as the benchmark for 
evaluating IDS in IIoT environments. This dataset was created 
by the Australian Centre for Cyber Security (ACCS) using the 
IXIA PerfectStorm tool, generating synthetic network traffic 
that reflects real-world scenarios, including both normal and 
attack behaviors. It contains 49 features derived from packet-
level data and flow statistics, covering diverse attack categories 
such as Fuzzers, Reconnaissance, Exploits, and DoS [13]. 
1) Preprocessing Steps 

To ensure the dataset's suitability for machine learning 
models, several preprocessing techniques were applied: 

a) Handling Missing Values and Irrelevant Features:  

Features irrelevant to classification, such as id and 
attack_cat, were removed. Missing values were imputed where 
necessary to maintain data consistency [33]. 

Outlier Detection: Outliers were detected using Isolation 
Forest, an efficient algorithm for identifying anomalies in high-
dimensional data. Extreme values were clamped to the 95th 
percentile threshold, ensuring the data remained within a 
reasonable range. 

Feature Transformation: Continuous features with skewed 
distributions were normalized using logarithmic 
transformation. This transformation helped reduce variability 
and improve model performance, particularly for deep learning 
algorithms that are sensitive to scale [34]. 

b) Feature Selection 

Effective feature selection is critical to improving the 
efficiency and performance of IDS. 
2) RFE with MI 

Importance of Feature Selection in IDS: The high 
dimensionality of the UNSW-NB15 dataset can introduce noise 
and increase computational complexity. By selecting the most 
relevant features, the system's detection accuracy and 
efficiency can be significantly enhanced [23], [35]. 

Steps and Criteria: 

1. Feature Ranking: Features were ranked using MI, 
which measures the dependency between each feature 
and the target variable, highlighting their predictive 
importance [36]. 
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2. Recursive Elimination: Features were iteratively 
removed starting with the least significant. After each 
iteration, models were retrained on the remaining 
feature set, and performance was evaluated [37]. 

3. Final Selection: The subset of features that 
maximized performance while minimizing 
redundancy was selected. This process reduced the 
feature space to a manageable size without 
compromising accuracy. 

B.  DATA SPLITTING AND CROSS-VALIDATION 
Robust evaluation requires an unbiased splitting of data and 
reliable validation techniques. 
1) Stratified K-Fold Cross-Validation 

The UNSW-NB15 dataset exhibits significant class 
imbalance, with normal traffic vastly outnumbering attack 
instances. Stratified K-Fold Cross-Validation was employed to 
ensure that each fold maintained the same class distribution as 
the original dataset, providing a balanced training and 
validation split [38]. 
2) Procedure: 

1. The dataset was divided into K folds (10 folds), with 
each fold containing proportional representations of 
attack and normal classes. 

2. The model was trained and validated iteratively on each 
fold, ensuring that every instance in the dataset was used 
for both training and validation exactly once. 

3. Performance metrics were averaged across folds to 
provide a robust evaluation of the model’s 
effectiveness. 

C.  DEEP LEARNING MODELS 
IDS benefit significantly from advanced deep learning 
architectures capable of capturing complex patterns and 
temporal dependencies in network traffic. This study evaluates 
several deep learning models for their applicability to IDS in 
IIoT environments. 
3) Description of Architectures 

a) Convolutional Neural Network (CNN): 

CNNs are employed for their strength in feature extraction, 
particularly in detecting spatial hierarchies within the input 
features. In this study, a 1D-CNN was used to analyze 
structured network traffic data effectively. CNNs excel in 
reducing dimensionality while retaining critical information 
[39], [40]. 

b) Recurrent Neural Network (RNN): 

RNNs are designed to process sequential data by leveraging 
temporal dependencies. However, they are prone to vanishing 
gradient issues when handling long-term dependencies, which 
can limit their effectiveness for extended sequences[41]. 

c) Long Short-Term Memory (LSTM): 

LSTM overcomes the limitations of RNN with its memory 
cell architecture, enabling the capture of long-range 
dependencies in sequential data. It has become a standard for 
tasks involving sequential patterns, including intrusion 
detection  [42]. 

d) BiLSTM: 

BiLSTM extends LSTM by processing input sequences in 
both forward and backward directions, providing richer 
contextual information. This bidirectional capability is 
particularly useful for identifying complex attack patterns in 
network traffic  [30], [43]. 

e) Residual Neural Network (ResNet): 

ResNet employs skip connections to mitigate the vanishing 
gradient problem, enabling the training of very deep networks. 
Its robustness makes it an excellent choice for feature-rich 
datasets like UNSW-NB15 [44]. 
1) Key Hyperparameters and Model Configurations 

Each model was optimized with the following 
configurations to ensure robust performance: 

 Learning Rate: Optimized between 10−4 and 10−3 
using the Adam optimizer. 

 Batch Size: Values of 32, 64, and 128 were tested to 
identify the optimal trade-off between convergence and 
computational efficiency. 

 Dropout Rate: Applied at rates between 0.2 and 0.5 to 
mitigate overfitting. 

 Activation Functions: ReLU for intermediate layers 
and softmax/sigmoid for output layers. 

 Epochs: Models were trained for up to 50 epochs, with 
early stopping based on validation loss. 

2) Justification for Choosing Specific Architectures 
 CNN: Ideal for extracting spatial features, particularly 

effective for large-scale datasets. 
 RNN, and LSTM: Tailored for sequential data, 

aligning well with the temporal nature of network 
traffic. 

 BiLSTM: Its bidirectional analysis enhances the 
detection of complex attack patterns. 

 ResNet: Demonstrates resilience in training deeper 
networks, improving feature representation. 

D.  COMPREHENSIVE WORKFLOW FOR ENHANCING IIOT 
INTRUSION DETECTION USING DEEP LEARNING 
MODELS 
The flowchart represents a structured approach to developing a 
robust Intrusion Detection System (IDS) tailored for securing 
IIoT environments. The methodology begins with the careful 
preparation of the UNSW-NB15 dataset, including essential 
preprocessing steps like outlier handling and log 
transformations to ensure data quality. Feature selection is 
conducted using RFE with MI to identify the most relevant 
attributes, enhancing model efficiency. The data is then split 
using Stratified K-Fold Cross-Validation to ensure balanced 
and fair evaluation. Multiple deep learning models, such as 
CNN, ResNet, ANN, and BiLSTM, are trained and evaluated 
using comprehensive metrics, including Recall, Precision, F1-
Score, and AUC. Finally, results are analyzed to identify the 
optimal model, with BiLSTM emerging as the standout 
performer, providing valuable insights for securing IIoT 
systems. 
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Figure Помилка! У документі відсутній текст указаного 
стилю.1. Comprehensive Workflow for Enhancing IIoT 

Intrusion Detection Using Deep Learning Models 

IV.  EXPERIMENTAL RESULTS 
A.. EVALUATION METRICS 
To assess the performance of the models, we used a range of 
metrics, each offering insights into a specific aspect of model 
behavior [10], [10], [12]: 

 Accuracy: This measures how often the model 
correctly classified data overall. 

 Recall (Sensitivity): This metric shows how well the 
model identified actual attacks. Higher recall means 
fewer missed detections. 

 Precision: Precision focuses on how many of the 
detections were correct, helping to minimize false 
alarms. 

 F1-Score: This is a balanced metric that combines 
Precision and Recall, providing a single value to 
measure overall performance. 

 ROC-AUC: The area under the Receiver Operating 
Characteristic curve shows the model's ability to 
differentiate between attack and normal traffic. 

 MCC (Matthews Correlation Coefficient): A 
balanced measure that considers all outcomes, useful 
for datasets with class imbalance. 

 Training Time (s): The time taken to train the model, 
important for evaluating how quickly a model can be 
prepared for use. 

 Prediction Time (ms): The time it takes for a model to 
make a prediction, crucial for real-time applications. 

B.  RESULTS ANALYSIS 
1) Performance Across Models 
From the evaluation, it was evident that the BiLSTM achieved 
the best results in most metrics. Its F1-Score of 0.9706 and 
Recall of 0.9696 demonstrate its ability to identify attacks 
accurately while maintaining a low false negative rate. 
BiLSTM also achieved the highest MCC, reflecting its robust 
performance across all evaluation criteria. 

Other models, such as CNN and ResNet, performed well 
with F1-Scores of 0.9674 and 0.9612, respectively. These 
models were particularly effective in feature extraction, 
making them suitable for handling the complex patterns in 
network traffic. 

LSTM and RNN also delivered competitive results, with F1-
Scores of 0.9605 and 0.9595, respectively. However, their 
simpler architectures resulted in slightly lower scores 
compared to BiLSTM. 
2) Computational Costs 

While BiLSTM provided the best detection performance, it 
required a significantly longer training time (3505 seconds) and 
had the highest prediction latency (13 seconds). In comparison, 
RNN had the lowest computational costs, with a training time 
of 105 seconds and prediction latency under 1 second, making 
it more practical for real-time applications where 
computational resources are limited. Models like CNN and 
ResNet offered a good balance, achieving strong performance 
metrics while keeping training and prediction times reasonable. 

C.  VISUAL REPRESENTATIONS 
To illustrate the findings, we used the following visualizations: 

1) Performance Metrics Table 
Table 2 presents a summary of key performance metrics for 

each model, comparing CNN, ResNet, LSTM, RNN, and 
BiLSTM based on various performance metrics: 
 Accuracy: This measures the overall correctness of the 

model, calculated as the proportion of correct predictions 
out of total predictions. BiLSTM has the highest accuracy 
(0.967754), meaning it makes the fewest errors in 
classification compared to the other models. 

 Recall: This metric shows how well the model correctly 
identifies positive cases (true positives). CNN and 
BiLSTM have the highest recall, indicating they are very 
good at identifying positive instances (0.969389 and 
0.96961, respectively). 

 Precision: Precision measures the accuracy of positive 
predictions, i.e., how many of the predicted positive cases 
are actually correct. ResNet has the highest precision 
(0.972514), meaning it is the best at minimizing false 
positives. 

 F1-Score: The F1-score is the harmonic mean of precision 
and recall, balancing the two. BiLSTM has the highest F1-
score (0.970629), reflecting its well-rounded performance 
in both precision and recall. 

 ROC-AUC: This is a metric used to evaluate the ability of 
a model to distinguish between positive and negative 
classes. BiLSTM leads with the highest ROC-AUC 
(0.96755), showing its strong ability to separate classes 
correctly. 

 MCC: The Matthews Correlation Coefficient (MCC) is 
another measure of classification quality that accounts for 
true and false positives and negatives. BiLSTM performs 
the best with an MCC score of 0.934886, indicating the 
most balanced and accurate classification across all 
classes. 

 Training Time (s): This shows how long it takes for the 
model to train on the dataset. BiLSTM takes the longest 
training time (2505.54s), much more than models like 
ResNet (191.03s) and LSTM (164.86s), reflecting the 
higher complexity of BiLSTM. 

 Prediction Time (s): This represents the time it takes for 
the model to make predictions after training. Again, 
BiLSTM has the longest prediction time (13.01s), while 
models like RNN and LSTM are faster (0.73s and 0.81s, 
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respectively), which impacts real-time usage and 
deployment. 

Table 2. Performance Metrics of Evaluated Models 

Model 
Accur
acy 

Rec
all 

Precisi
on 

F1-
Scor
e 

RO
C-
AU
C 

MC
C 

Traini
ng 
Time 
(s) 

Predict
ion 
Time 
(s) 

CNN 0.9640 
0.96
94 

0.9653 
0.96
74 

0.96
35 

0.92
74 

414.08 1.52 

ResNe
t 

0.9579 
0.95
02 

0.9725 
0.96
12 

0.95
87 

0.91
54 

191.03 0.89 

LSTM 0.9570 
0.95
21 

0.9691 
0.96
05 

0.95
75 

0.91
35 

164.86 0.81 

RNN 0.9557 
0.95
57 

0.9634 
0.95
95 

0.95
57 

0.91
06 

105.90 0.73 

BiLST
M 

0.9678 
0.96
96 

0.9717 
0.97
06 

0.96
76 

0.93
49 

3505.5
4 

13.01 

 
In summary, BiLSTM outperforms the other models in 

accuracy, recall, precision, F1-score, ROC-AUC, and MCC, 
but comes with trade-offs in terms of longer training and 
prediction times. The choice between models depends on the 
specific needs, where computational efficiency might be 
prioritized over accuracy or vice versa. 
2) Performance metrics Bar Chart  

As shown in Figure 2, the bar chart compares Accuracy, 
Recall, Precision, and F1-Score across the models, with 
BiLSTM emerging as the top performer achieving the highest 
accuracy (96.78%), recall (96.96%), and F1-Score (97.06%), 
indicating the best overall balance of precision and recall. 

 

 

Figure Помилка! У документі відсутній текст указаного 
стилю. Comparison of Accuracy, Recall, Precision, and F1-

Score Across Models 

The histogram clearly highlights BiLSTM as the top-
performing model across most metrics, reflecting its superior 
ability to balance precision and recall, which is critical in 
intrusion detection systems. CNN also performed well, 
indicating its robustness in IIoT security applications. The 
other models ResNet, LSTM, and RNN demonstrated 
competitive performance but were slightly less effective in 
some metrics. 

These results underscore the trade-offs between models, 
where BiLSTM excels in predictive power but may require 

higher computational resources, as discussed in the 
computational cost analysis. 
3) Training and prediction times  

The computational costs of the models, measured in training 
and prediction times, show clear differences in their resource 
needs. The CNN took 414.08 seconds to train and 1.52 seconds 
to make predictions, reflecting a moderate demand. The ResNet 
model was faster, requiring 191.03 seconds for training and 
0.89 seconds for predictions. LSTM also performed efficiently, 
with training taking 164.86 seconds and predictions requiring 
0.81 seconds. The RNN model was the quickest, with just 0.91 
seconds for training and 0.73 seconds for predictions. 
However, the BiLSTM, while achieving the best predictive 
performance, required the most time 2505.54 seconds for 
training and 13.01 seconds for predictions. These differences 
highlight the trade-offs between computational time and model 
complexity, which are important when choosing models for 
real-time IIoT intrusion detection. 
4) Confusion Matrix Heatmaps:  

Confusion matrices for each model are visualized using 
heatmaps to showcase true positives, true negatives, and 
misclassifications, Figure 3:  

 

 
a. Confusion Matrix CNN 

 
b. Confusion Matrix ResNet 
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c. Confusion Matrix LSTM 

 
d. Confusion Matrix RNN 

 
e. Confusion Matrix BiLSTM 

Figure 3. Confusion matrices for each model are visualized 
using heatmaps to showcase true positives, true negatives, and 
misclassifications: a) CNN, (b) ResNet, (c) LSTM, (d) RNN, 

and (e) BiLSTM. 

5) ROC-AUC and MCC Across Models 
Figure 4‑2 presents a comparison of ROC-AUC and MCC 

across the models, showing that all models exhibit strong class-
separation capabilities, with BiLSTM achieving the highest 
ROC-AUC score (0.96755), followed closely by CNN, ResNet, 
LSTM, and RNN. 

 

Figure Помилка! У документі відсутній текст указаного 
стилю. Comparison of ROC-AUC and MCC Across Models 

For MCC, the BiLSTM model also leads with a score of 
0.934886, suggesting it excels in balancing both precision and 
recall. The CNN (0.927363) and ResNet (0.915386) models 
perform very well too, but BiLSTM consistently shows the 
highest classification accuracy. Overall, BiLSTM outperforms 
the other models in both ROC-AUC and MCC. 

The performance comparison across different models shows 
that BiLSTM consistently outperforms the other models in key 
metrics such as accuracy (0.967754), ROC-AUC (0.96755), 
and MCC (0.934886), making it the most effective model. 
While BiLSTM achieves superior classification performance, 
it comes at a cost, with significantly higher training time 
(2505.54s) and prediction time (13.01s) compared to models 
like CNN, ResNet, LSTM, and RNN, which have faster 
processing times. This highlights the trade-off between 
achieving higher accuracy and the computational efficiency of 
the models. 

V.  DISCUSSION 
A.  EFFECTIVENESS OF FEATURE SELECTION WITH MI 
The use of RFE combined with MI proved to be a crucial step 
in enhancing the performance of the evaluated models. By 
selecting the most relevant features, the models focused on 
attributes that directly influenced the detection of attacks, 
thereby improving overall accuracy and reducing noise in the 
dataset. For example, the BiLSTM model achieved an F1-Score 
of 0.9706, demonstrating how optimized features contribute to 
better detection rates. 

Additionally, feature selection significantly reduced the 
computational complexity of training. Models trained on the 
reduced feature set exhibited faster convergence, which is 
particularly beneficial for real-time applications. This approach 
also ensures scalability, allowing the system to adapt efficiently 
as the IIoT environment grows. 

B.  OBSERVATIONS ON DEEP LEARNING MODEL 
PERFORMANCE 
The evaluation highlighted that advanced deep learning models 
outperform simpler architectures in identifying complex attack 
patterns. BiLSTM emerged as the most effective model, 
excelling in both precision (0.9717) and recall (0.9696). Its 
ability to process sequences in both forward and backward 
directions allowed it to capture temporal dependencies more 
effectively than other models. 

Models like CNN and ResNet demonstrated strong 
performance in feature extraction, making them suitable for 
detecting spatial relationships in network traffic data. While 
RNN and LSTM also performed well, their simpler 
architectures limited their capability to match BiLSTM’s 
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effectiveness, particularly in scenarios with overlapping or 
complex attack patterns. 

However, it is worth noting that the superior performance of 
BiLSTM came at a higher computational cost, with training 
times exceeding 3500 seconds. In contrast, RNN and CNN 
offered a good balance between performance and efficiency, 
making them viable options for scenarios where computational 
resources are limited. 

C.  BALANCING SECURITY AND COMPUTATIONAL 
OVERHEAD 
One of the primary challenges in deploying intrusion detection 
systems in IIoT environments is balancing security 
requirements with computational constraints. While BiLSTM 
provided the highest detection accuracy, its long training and 
prediction times suggest that it may not be practical for 
resource-constrained or time-sensitive applications without 
further optimization. 

On the other hand, models like CNN and RNN achieved 
reasonable detection rates with significantly lower 
computational costs. These models could be deployed on edge 
devices or in distributed systems, ensuring real-time processing 
without compromising system performance. This trade-off 
between accuracy and efficiency underscores the importance of 
tailoring model selection to the specific needs of the 
deployment environment. 

D.  APPLICABILITY TO REAL-WORLD IIOT SCENARIOS 
The proposed approach demonstrates strong potential for real-
world applications in IIoT environments. The use of the 
UNSW-NB15 dataset ensured that the models were trained and 
tested on realistic network traffic, including a wide variety of 
attack types. This makes the findings highly relevant to 
scenarios such as smart factories, energy grids, and industrial 
automation systems. 

For real-time intrusion detection, lightweight models like 
CNN and RNN could be deployed at the network edge, while 
BiLSTM could serve as a secondary layer for in-depth analysis 
in centralized systems. This layered approach would combine 
the strengths of different models, balancing detection accuracy 
with real-time processing requirements. 

Future research should explore the integration of these 
models with adaptive learning techniques, enabling them to 
handle evolving attack patterns dynamically. Additionally, 
optimizing BiLSTM’s architecture to reduce computational 
costs would enhance its practicality for real-world applications. 

This discussion highlights the effectiveness of feature 
selection, the strengths and limitations of different models, and 
the practical considerations for deploying intrusion detection 
systems in IIoT environments. It provides a solid foundation 
for future work aimed at advancing security in industrial 
systems. 

VI.  CONCLUSION AND FUTURE WORK 
This study highlights the effectiveness of feature-driven 
approaches in enhancing IDS for IIoT environments. By using 
Recursive Feature Elimination (RFE) combined with MI for 
feature selection, we identified key features from the UNSW-
NB15 dataset, improving detection performance while 
reducing computational overhead. Among the deep learning 
models evaluated, Bidirectional Long Short-Term Memory 
(BiLSTM) achieved the best results, with a recall of 96.96%, 
an F1-score of 97.06%, and a Matthews Correlation Coefficient 

(MCC) of 0.93, demonstrating its ability to capture complex 
temporal patterns and detect a wide variety of attacks. 

However, despite BiLSTM's strong performance, its 
significant computational costs—especially the lengthy 
training time exceeding 3500 seconds—pose challenges for 
real-time deployment in IIoT environments. In comparison, 
models like Convolutional Neural Networks (CNN) and 
Recurrent Neural Networks (RNN) exhibited slightly lower 
detection accuracy but offered faster training and prediction 
times, making them more practical for resource-constrained 
IIoT systems. This underscores the need to balance detection 
accuracy with computational efficiency when developing IDS 
solutions for IIoT applications. 

Future research should focus on optimizing BiLSTM and 
other deep learning models for real-time deployment. 
Techniques like model pruning, quantization, and distributed 
training could help reduce computational demands without 
sacrificing performance. Hybrid models, combining the 
strengths of different architectures such as CNN-BiLSTM or 
ResNet-GRU, could further improve detection capabilities. 
Additionally, testing these methods on diverse datasets, 
including real-world IIoT traffic, is essential to ensure their 
generalizability. Lastly, incorporating adaptive learning 
mechanisms to respond to evolving cyber threats will be crucial 
for advancing IIoT security. This work lays the foundation for 
developing efficient and scalable IDS to safeguard IIoT 
networks against emerging cyber threats. 
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