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 ABSTRACT The article is devoted to the development of an approach based on hybrid systems of 
computational intelligence to solve Data Stream Mining tasks for complex technical objects. Such tasks arise 
during the identification, control and diagnostics of highly dynamic technical objects, for example, fiber-optic 
communication systems with rapidly growing traffic volumes. Often deep neural networks are used to solve such 
problems that require large amounts of training samples, a lot of time for their tuning and leads to the impossibility 
of effectively solving tasks in online mode with inverse modeling tasks being particularly complex. A new 
architecture of a stacking neuro-neo-fuzzy system is proposed that solves inverse modeling tasks, operates in 
online mode, has improved approximation capabilities, high speed and is characterized by simple computational 
implementation. The proposed stacking neuro-neo-fuzzy system is designed to solve the problem of inverse 
modeling of fiber optic communication systems in real time mode under conditions of limited training samples. 
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I. INTRODUCTION AND STATEMENT OF THE PROBLEM 
owadays, artificial neural networks (ANN) have become 
widely used to solve a large class of information 

processing problems of a diverse nature and, above all, 
intelligent data analysis (Data Mining), including pattern 
recognition – classification, clustering, association, 
approximation, filtering, smoothing, prediction-extrapolation, 
optimization, processing and generation of natural language 
texts and videos, etc. 

Currently, deep neural networks (DNN) are considered the 
most effective for solving these problems which really show 
impressive results, but require large amounts of training 
samples (which are not always available in real problems) and 
a lot of time for their setup and which takes place in multiepoch 
learning mode. Therefore, to solve the problems of Data Stream 
Mining, DNNs require the use of powerful computing 
equipment which is not always available for specific 
applications. 

A separate important direction in the use of ANN is the 
identification, control and diagnostics of technical plants, 
which must be solved online in real time during the operation 
of the controlled object, information from which comes in the 

form of a data stream which in turn can be contaminated by 
disturbances of various nature. Here, the tasks of inverse 
modeling, which is used in some adaptive control systems of 
technical objects [1, 2] are particularly difficult. These tasks 
consist in the fact that for the object of control 

 
𝑦 = 𝑓(𝑥),                                        (1) 

 
where y - (m×1) – vector of the object's output signals,   

x – (n×1) – vector of input signals,  
f(·) – some a priori unknown nonlinear operator that is 

subject to recovery in the identification process. 
It is necessary to construct an inverse transformation 

 
𝑥̂ = 𝑓ିଵ(𝑦),                                     (2) 

 
however, since usually in real situations m<n, from a 
mathematical point of view this problem is incorrect. 

Figure 1 shows the inverse modeling scheme. 
Here the inverse modeling error 𝑒(𝑘) = 𝑥(𝑘) − 𝑥̂(𝑘) is 

used to tune the inverse model which is most often realised by 

N
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some artificial neural networks due to their approximating 
properties. 

 
 

 

Figure 1. Inverse modeling scheme.

A striking example of effective inverse modeling is the fast 
neural network inverse model to maximize throughput in ultra 
wide-band wavelength-division multiplexed systems [3] where 
a four-layer neural network of the multilayer perceptron type 
with sigmoidal activation functions, containing several 
hundred thousand synaptic weights and trained on the basis of 
error backpropagation. This model has demonstrated high 
accuracy, but required 1300 epochs in multiepoch learning 
mode for its tuning. Thus, if really high speed is required to 
solve inverse modeling problems, multilayer neural networks 
(especially deep ones) are not always effective. 

In our opinion, hybrid systems of computational 
intelligence (HSCI) especially neuro-fuzzy systems [4-11], 
may be the most suitable for such problems. 

II.  MATERIAL AND METHODS 
A.  ARCHITECTURE OF STACKING NEURO-NEO-FUZZY 
SYSTEM FOR INVERSE MODELING 
Currently, HSCI have become widely used to solve a large 
class of problems processing data arrays of various nature, 
given both in the form of object-property tables and in the form 
of multidimensional time series. 

Among those systems, neuro-fuzzy systems (NFS) 
[5, 6, 8, 11-13] have become the most widespread, due to their 
high approximating properties, simplicity of numerical 
implementation, and the possibility of online real-time 
learning. The tasks that are currently successfully solved using 
NFS include, first of all, prediction-forecasting, filtering, 
emulation-identification, and adaptive control of non-
stationary, essentially nonlinear stochastic and chaotic objects. 
In terms of approximating properties, these systems are inferior 
to deep neural networks, but in the conditions of the need to 
process information in online mode and short training samples, 
NFS undoubtedly have advantages. 

Therefore, in our opinion, it is advisable to use NFS in 
inverse modeling tasks, while to improve their approximating 
properties which is especially important in modeling tasks, to 
develop a hybrid system that would combine the advantages of 
both neuro-fuzzy approaches [14, 15] which is characterized by 
a high learning rate and effective approximating properties 
based on the F-transform [16] in its online version [17]. The 
hybridization of these two approaches has proven its 
effectiveness for solving pattern recognition problems [18]. 

Fig.2 shows the architecture of stacking neuro-neo-fuzzy 
system for solving inverse modeling tasks. 

The first layer of the system is the fuzzification one formed 
by hm nonlinear membership functions (h membership 
functions for each input  𝑦௝(𝑘), here k = 1,2,... – the observation 
number in the training sample or the current discrete time) 
which are usually used as Gaussians in the form 

 

𝜑௟௝൫𝑦௝ , 𝑐௟௝𝜎௟௝൯ = exp ൭−
൫𝑦௝ − 𝑐௟௝൯

ଶ

2𝜎௟௝
ଶ ൱ 

∀𝑙 = 1,2, … , ℎ;  𝑗 = 1,2, … , 𝑚,                     (3) 
 
where 𝑐௟௝  – the parameter of the center of the membership 
function,   

𝜎௟௝ – the parameter of its width. 
In most NFSs known for today, the centers  𝑐௟௝  are located 

evenly along the abscissa axes, while all input signals are 
previously encoded into some constraint interval 𝑦௠௜௡  ≤
 𝑦௝(𝑘) ≤  𝑦௠௔௫ . The parameters that define the width of the 
membership function 𝜎௟௝, are also given a priori and are 
assumed to be the same for all membership functions 𝜎௟௝ = 𝜎, 
although in principle both the centers and the width parameters 
can be adjusted during the training process of the system [5]. 

The second hidden layer of the system is an aggregation 
layer formed by  h elementary multiplication blocks and forms 
multidimensional Gaussians in the form 

 

𝜑௟  (𝑦, 𝑐௟ , 𝜎௟) = ෑ 𝜑௟௝൫𝑦௝ , 𝑐௟௝ , 𝜎௟௝൯ =

௠

௝ୀଵ

= ෑ exp ൭−
൫𝑦௝ − 𝑐௟௝൯

ଶ

2𝜎௟௝
ଶ  ൱ =

௠

௝ୀଵ

= exp ቆ−
∥ (𝑦 − 𝑐௟ ∥ଶ

2𝜎௟
ଶ ቇ  

,

                        (4) 

 

where 𝑦 = ൫𝑦ଵ, … 𝑦௝ , … , 𝑦௠൯
்
,  𝑐௟ = ൫𝑐௟ଵ, … 𝑐௟௝ , … , 𝑐௟௠൯

்
 

In fact, the fuzzification-aggregation layers of almost all 
NFSs form a set of multidimensional Gaussians which 
completely coincides with the first layer of popular radial basis 
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function neural networks (RBFNs) with kernel activation 
functions and, like multilayer perceptrons, are universal 
approximators.  

 

Figure 2. Stacking Neuro-Neo-Fuzzy System for inverse modeling. 

At the same time, if classical RBFNs suffer from the 
undesirable effect of the “curse of dimensionality”, NFSs are 
protected from this phenomenon due to a special partitioning 
of the input space.  

Thus, as a result of fuzzification-aggregation operations, a 
set of signals is formed at the outputs of the second layer 
 

𝓊௟(𝑘) = exp ቀ−
∥௬(௞)ି௖೗∥మ

ଶఙమ ቁ , 𝑙 = 1,2, … , ℎ,         (5) 

 
which is fed to the third hidden layer where the system training 
and tuning actually takes place. 

Thus, in the popular Wang-Mendel NFS, the third layer is 
formed by nh tunable synaptic weights which solve the piece-
wise approximation problem. 

It is clear that to achieve the required accuracy, the number 
of tuning parameters must be sufficiently large. 

In the widely used Takagi-Sugeno-Kang NFS, the third 
layer is essentially a generator of polynomial functions, the 
order of which is chosen quite arbitrarily, i.e. it implements 
polynomial approximation, and the number of tuning 
parameters is determined by the chosen order of the 
polynomial. 

To improve the approximating properties of the proposed 
neuro-neo-fuzzy system (NNFS), nonlinear synapses (NS) are 
used, which are universal approximators of one-dimensional 
functions of arbitrary type [16] and constituent elements of 
neo-fuzzy neurons (NFN) [14, 15]. 

The architecture of the nonlinear synapse 𝑁𝑆௜௟  of the 
proposed NNFS is shown in Fig. 3. 

μil1
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+ vil(k)
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Figure 3. Nonlinear Synapse of the third layer of NNFS. 

Each nonlinear synapse of the proposed NNFS, the total 
number of which is defined as nh, implements a nonlinear 
transformation 

 
𝓋௜௟  (𝑘) = ∑ 𝜇௜௟௣൫𝓊௟(𝑘)൯𝓌௜௟௣(𝑘 − 1)௤

௣ୀଵ ,          (6) 
 

where 𝜇௜௟௣൫𝓊௟(𝑘)൯ – nonlinear membership functions, usually 
triangular, satisfying the Ruspini unity partitioning conditions, 
𝓌௜௟௣(𝑘 − 1) – tuning synaptic weights obtained as a result of 
processing of previous  k-1 observations  x(k-1), y(k-1)  from 
the controlled object. 

The advantage of these functions is that at each time  k  of 
the system tuning, only two neighboring membership functions 
are fired, i.e., comparatively to the Wang-Mendel system, only 
two from many synaptic weights are tuned at each time which 
is a small “payment” for the universal approximating 
properties. To improve the approximating properties of 
nonlinear synapses, we propose to use parabolic Epanechnikov 
kernel functions instead of traditional triangular membership 
functions [19]: 
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𝜇௜௟௣(𝓊௟) = ൥1 −
൫𝑐௜௟௣ − 𝓊௟൯

ଶ

𝑟ଶ
൩

ା

,               (7) 

 
here [ · ]ା = 𝑚𝑎𝑥{0,·}, the form of which is shown in fig.4. 

It is clear that with this arrangement of membership 
functions, the number of tuning parameters at each training 
cycle is 2nh. 

Each of the NNFS outputs  𝑥̂௜ , 𝑖 = 1,2, … , 𝑛, is associated 
with h nonlinear synapses 𝑁𝑆௜௟ , the outputs of which are 
summed, thus forming  n neo-fuzzy neurons 𝑁𝐹𝑁௜ which have 
proven their high efficiency for solving many real-world 
problems of prediction, filtering, and approximation [14]. 

And, finally, the fourth – the output layer of the proposed 
NNFS which is formed by a single adder and n division blocks, 
implements the defuzzification operation standard for all 
neuro-fuzzy systems. 

 

 𝑥ො௜(𝑘) =  
෌  𝓋೔೗ (௞)

೓
೗సభ

∑  𝓊೗(௞)೓
೗సభ

=
௢೔(௞)

∑  𝓊೗(௞)೓
೗సభ

=
௢೔(௞)

𝓊(௞)
,            (8) 

 
which results in the formation of an estimate  𝑥̂௜(𝑘) of the input 
signal of the real object 𝑥௜(𝑘). 

Thus, the proposed system is a stacking system, since its 
first layers are formed by neuro-fuzzy elements, and the 
subsequent layers are neo-fuzzy systems which provide this 
system with high approximating properties and real-time 
online learning capabilities. 

B. ONLINE LEARNING OF STACKING NEURO-NEO-FUZZY 
SYSTEM IN INVERSE MODELING TASK 
The training of the proposed NNFS for solving the inverse 
modeling problem is implemented by online optimization of 
the quadratic criterion traditional in the theory of identification 
 

𝐸(𝑘) = ∑ 𝐸௜(𝑘)௡
௜ୀଵ = ∑ 𝑒௜

ଶ(𝑘)௡
௜ୀଵ = ∑ ൫𝑥௜(𝑘) −௡

௜ୀଵ

− 𝑥̂௟(𝑘)൯
ଶ
,                                     (9) 

 
while this problem for each of the outputs of the system  𝑥̂௜(𝑘) 
can be solved separately, taking into account the fact that 
 

 𝑥̂௜(𝑘) =
௢೔(௞)

𝓊(௞)
=  

∑  𝓋೔೗ (௞)೓
೗సభ

∑  𝓊೗(௞)೓
೗సభ

,                 (10) 

 
Introducing the vector of membership function values at the 

на k-th learning cycle 
 

𝜇௜(𝑘) = (𝜇௜ଵଵ(𝓊ଵ(𝑘)), 𝜇௜ଵଶ(𝓊ଵ(𝑘)), … ,
, … , 𝜇௜ଵ௤(𝓊ଵ(𝑘)), 𝜇௜ଶଵ(𝓊ଶ(𝑘)), …,  

… , 𝜇௜௟௣൫𝓊௟(𝑘)൯, … , 𝜇௜௛௤൫𝓊௛(𝑘)൯)்,            (11) 
 
and a vector of the same dimensionality of tuning synaptic 
weights calculated at the previous tuning cycle 
 

𝓌௜(𝑘 − 1) = (𝓌௜ଵଵ(𝑘 − 1), 𝓌௜ଵଶ(𝑘 − 1), … ,
, … , 𝓌௜ଵ௤(𝑘 − 1), 𝓌௜ଶଵ(𝑘 − 1), …, 

… , 𝓌௜ଶ௤(𝑘 − 1), 𝓌௜௟௣(𝑘 − 1), … , 𝓌௜௛௤(𝑘 − 1))்,    (12) 
 

we can write the equation of the tuning model in the form: 
 

𝑜௜(𝑘) = 𝓌௜
்(𝑘 − 1)µ௜(𝑘),                (13) 

 

 𝑥̂௜(𝑘) = 𝓌௜
்(𝑘 − 1)

ఓ೔(௞)

𝓊(௞)
= 𝓌௜

்(𝑘 − 1) µ෤ ௜(𝑘), (14) 

 
and the training error 

 
𝑒௜(𝑘) = 𝑥௜(𝑘) − 𝓌௜

்(𝑘 − 1) µ෤ ௜(𝑘).         (15) 
 
To tune the parameters vector of this model in online 

mode, it is advisable to use an adaptive learning algorithm for 
a neuro-fuzzy system [20] 

 

ቊ
𝓌௜(𝑘) = 𝓌௜(𝑘 − 1) + 𝑟ିଵ(𝑘)൫𝑥௜(𝑘) − 𝓌௜

்(𝑘 − 1) µ෤௜(𝑘)൯ µ෤௜(𝑘),

𝑟(𝑘) = 𝛼𝑟(𝑘 − 1) + ||µ෤௜(𝑘)||ଶ
,      (16) 

 
 
where 0 ≤ 𝛼 ≤ 1 – smoothing parameter, which provides 
filtering properties of the learning process if the source data are 
contaminated with disturbances that are always present in real 
control objects. 

It is easy to see that when 𝛼 = 0 we arrive at the Kaczmarz 
adaptive algorithm, popular in identification theory [21] 

 

𝓌௜(𝑘) = 𝓌௜(𝑘 − 1) +  
𝑥௜(𝑘) − 𝓌௜

்(𝑘 − 1) µ෤ ௜(𝑘)

||µ෤ ௜(𝑘)||ଶ
 µ෤ ௜(𝑘) = 

= 𝓌௜(𝑘 − 1) + (𝑥௜(𝑘) −  
= 𝓌௜

்(𝑘 − 1) µ෤ ௜(𝑘) µ෥ ௜
ା்(𝑘),                 (17) 

 
here (⋅)ା – symbol of the pseudoinversion operation) which is 
optimal in terms of rate of convergence in the class of gradient 
adaptive identification algorithms. 

III.  RESULTS 
The computational experiment was performed using the Python 
programming language and aims to evaluate the performance 
of the proposed fast stacking neuro-neo-fuzzy system in 
solving inverse modeling tasks. The objectives include: 

 assessing the approximation accuracy; 
 evaluating the learning speed in online mode; 
 comparing the NNFS with traditional inverse 

modeling approaches, such as deep neural networks and 
classical neuro-fuzzy systems. 

The experiment used synthetic and real-world datasets 
HardFailure and SoftFailure that represent the inverse 
modeling problem in technical systems [22-24]. The datasets 
include: 

 a synthetic nonlinear function with known inverse 
properties for validation; 

 a dataset from fiber-optic communication systems 
where inverse modeling is required to optimize signal 
transmission. 

The hardware required to conduct the experiment includes: 
Intel Core i7, 16GB RAM, NVIDIA RTX 3060 GPU. The 
software required to conduct the experiment includes: Python 
with TensorFlow and SciPy libraries. 

Let’s look at the evaluation metrics: 
  Mean Squared Error (MSE)  to measure 

approximation accuracy. 
  Root Mean Squared Error (RMSE)  to compare the 

magnitude of errors. 
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  Convergence Speed, measured in the number of 
iterations required to reach a predefined accuracy threshold. 

Let’s move on to experiment implementation. It contains 
three procedures: 
 

 

1

μil

μil1 μil2 μil3 μil4 μIlq-1 μilq

cil1=ulmin cil2 cil3 cil4
ul

r r r r

cilq-1 cilq =ulmax  

Figure 4. Epanechnikov membership function. 

  training process; 

  comparison with other models; 

  results and analysis. 
The NNFS was trained in an online mode using the adaptive 

learning algorithm [25, 26]: 
1. Initialize parameters of membership functions and 

nonlinear synapses. 
2. For each incoming data point: 

 compute fuzzification and aggregation layer outputs; 

 update synaptic weights using the adaptive rule; 

 evaluate the inverse modeling error; 

 adjust parameters using the Kaczmarz adaptive 
algorithm. 

The NNFS is compared with [27-29]: 

  a deep neural network (DNN) trained using 
backpropagation; 

  a classical Takagi-Sugeno-Kang (TSK) neuro-fuzzy 
system. 

Each model was trained on the same dataset, and 
performance is measured across multiple trials. 

The results are presented in the tables: Table 1 
Approximation Accuracy, Table 2 Learning Speed. 

Table 1. Approximation Accuracy 

Model MSE (Synthetic) MSE (Real-World) 

NNFS 0.0021 0.0035 
DNN 0.0045 0.0068 
TSK 0.0052 0.0073 

Table 2. Learning Speed 

Model 
Training Time per 
Sample (ms) 

Convergence Iterations 

NNFS 0.32 1000 
DNN 1.45 1300 
TSK 0.58 2000 

 
Based on the conducted experiment  the following 

conclusions can be drawn:  

  the NNFS achieved the lowest MSE, indicating 
superior approximation capabilities. 

  the NNFS demonstrated the fastest training per 
sample, making it suitable for real-time applications. 

  the Kaczmarz-based adaptive learning significantly 
reduced the number of iterations needed for convergence. 
 
 

IV.  DISCUSSION 
A fast stacking adaptive neuro-fuzzy system is proposed to 
solve the problem of inverse modeling of various control and 
management objects in online real-time mode.  

This system has improved approximation properties 
compared to traditional neuro-fuzzy systems, is characterized 
by high learning speed and simplicity of numerical 
implementation. The results of numerical modeling confirm the 
correctness of the obtained theoretical results. 

The proposed fast NNFS outperforms traditional deep 
neural networks and classical neuro-fuzzy systems in inverse 
modeling tasks [30-32]. It offers: 

 high approximation accuracy; 

 fast online learning; 

 simple numerical implementation.  
These advantages make NNFS a promising solution for 

real-time inverse modeling in dynamic technical systems. 

V.  CONCLUSIONS 
The stacking neuro-neo-fuzzy system is proposed which is 
designed to solve the problem of inverse modeling of fiber 
optic communication systems in real time mode under 
conditions of limited training samples. The system combines 
the advantages of neuro-fuzzy systems and neo-fuzzy systems, 
which are the stacks that form it, and is characterized by high 
accuracy, speed, and simplicity of numerical implementation. 
It can be effectively used to solve problems of identification 
and adaptive control of technical objects for various purposes 
in real time mode. 
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