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ABSTRACT The article is devoted to the development of an approach based on hybrid systems of
computational intelligence to solve Data Stream Mining tasks for complex technical objects. Such tasks arise
during the identification, control and diagnostics of highly dynamic technical objects, for example, fiber-optic
communication systems with rapidly growing traffic volumes. Often deep neural networks are used to solve such
problems that require large amounts of training samples, a lot of time for their tuning and leads to the impossibility
of effectively solving tasks in online mode with inverse modeling tasks being particularly complex. A new
architecture of a stacking neuro-neo-fuzzy system is proposed that solves inverse modeling tasks, operates in
online mode, has improved approximation capabilities, high speed and is characterized by simple computational
implementation. The proposed stacking neuro-neo-fuzzy system is designed to solve the problem of inverse

modeling of fiber optic communication systems in real time mode under conditions of limited training samples.

KEYWORDS artificial neural networks; artificial intelligence; computational intelligence; data visualization;
inverse modeling; neuro-neo-fuzzy system; stacking hybrid systems; online adaptive learning; online ensemble

learning; Python programming.

. INTRODUCTION AND STATEMENT OF THE PROBLEM
Nowadays, artificial neural networks (ANN) have become

widely used to solve a large class of information
processing problems of a diverse nature and, above all,
intelligent data analysis (Data Mining), including pattern
recognition —  classification, clustering, association,
approximation, filtering, smoothing, prediction-extrapolation,
optimization, processing and generation of natural language
texts and videos, etc.

Currently, deep neural networks (DNN) are considered the
most effective for solving these problems which really show
impressive results, but require large amounts of training
samples (which are not always available in real problems) and
a lot of time for their setup and which takes place in multiepoch
learning mode. Therefore, to solve the problems of Data Stream
Mining, DNNs require the use of powerful computing
equipment which is not always available for specific
applications.

A separate important direction in the use of ANN is the
identification, control and diagnostics of technical plants,
which must be solved online in real time during the operation
of the controlled object, information from which comes in the
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form of a data stream which in turn can be contaminated by
disturbances of various nature. Here, the tasks of inverse
modeling, which is used in some adaptive control systems of
technical objects [1, 2] are particularly difficult. These tasks
consist in the fact that for the object of control

y=fx), Q)

where y - (mx1) — vector of the object's output signals,

x — (nx1) — vector of input signals,

f(-) — some a priori unknown nonlinear operator that is
subject to recovery in the identification process.

It is necessary to construct an inverse transformation

x=f7, 2

however, since usually in real situations m<n, from a
mathematical point of view this problem is incorrect.

Figure 1 shows the inverse modeling scheme.

Here the inverse modeling error e(k) = x(k) — £(k) is
used to tune the inverse model which is most often realised by
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some artificial neural networks due to their approximating
properties.
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Figure 1. Inverse modeling scheme.

A striking example of effective inverse modeling is the fast
neural network inverse model to maximize throughput in ultra
wide-band wavelength-division multiplexed systems [3] where
a four-layer neural network of the multilayer perceptron type
with sigmoidal activation functions, containing several
hundred thousand synaptic weights and trained on the basis of
error backpropagation. This model has demonstrated high
accuracy, but required 1300 epochs in multiepoch learning
mode for its tuning. Thus, if really high speed is required to
solve inverse modeling problems, multilayer neural networks
(especially deep ones) are not always effective.

In our opinion, hybrid systems of computational
intelligence (HSCI) especially neuro-fuzzy systems [4-11],
may be the most suitable for such problems.

Il. MATERIAL AND METHODS

A. ARCHITECTURE OF STACKING NEURO-NEO-FUZZY
SYSTEM FOR INVERSE MODELING

Currently, HSCI have become widely used to solve a large
class of problems processing data arrays of various nature,
given both in the form of object-property tables and in the form
of multidimensional time series.

Among those systems, neuro-fuzzy systems (NFS)
[5, 6, 8, 11-13] have become the most widespread, due to their
high approximating properties, simplicity of numerical
implementation, and the possibility of online real-time
learning. The tasks that are currently successfully solved using
NFS include, first of all, prediction-forecasting, filtering,
emulation-identification, and adaptive control of non-
stationary, essentially nonlinear stochastic and chaotic objects.
In terms of approximating properties, these systems are inferior
to deep neural networks, but in the conditions of the need to
process information in online mode and short training samples,
NFS undoubtedly have advantages.

Therefore, in our opinion, it is advisable to use NFS in
inverse modeling tasks, while to improve their approximating
properties which is especially important in modeling tasks, to
develop a hybrid system that would combine the advantages of
both neuro-fuzzy approaches [14, 15] which is characterized by
a high learning rate and effective approximating properties
based on the F-transform [16] in its online version [17]. The
hybridization of these two approaches has proven its
effectiveness for solving pattern recognition problems [18].
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Fig.2 shows the architecture of stacking neuro-neo-fuzzy
system for solving inverse modeling tasks.

The first layer of the system is the fuzzification one formed
by hm nonlinear membership functions (% membership
functions for each input y;(k), here k = 1,2,... —the observation
number in the training sample or the current discrete time)
which are usually used as Gaussians in the form

_@;@X>

D1 (J’j,Czj(fzj) = exp( 2012]'
vi=12,..,h j=12,..,m, 3)

where ¢;; — the parameter of the center of the membership
function,

0, — the parameter of its width.

In most NFSs known for today, the centers c;; are located
evenly along the abscissa axes, while all input signals are
previously encoded into some constraint interval Y, <
Yj(k) < Ymax. The parameters that define the width of the
membership function oy, are also given a priori and are
assumed to be the same for all membership functions g;; = o,
although in principle both the centers and the width parameters
can be adjusted during the training process of the system [5].

The second hidden layer of the system is an aggregation
layer formed by h elementary multiplication blocks and forms
multidimensional Gaussians in the form

m
o (y,c,00) = H‘Plj(yj"clj'alj) =

j=1
m 2
| l v — )
= exp (- ]20_2.] > =
j=1 y
I (y—c II?
= - - 4
eXp( 202 €))

T T
where y = (yl, Y ...,ym) , € = (cll, e Cljs ---:sz)

In fact, the fuzzification-aggregation layers of almost all
NFSs form a set of multidimensional Gaussians which
completely coincides with the first layer of popular radial basis
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function neural networks (RBFNs) with kernel activation
functions and, like multilayer perceptrons, are universal
approximators.

Figure 2. Stacking Neuro-Neo-Fuzzy System for inverse modeling.

At the same time, if classical RBFNs suffer from the
undesirable effect of the “curse of dimensionality”, NFSs are
protected from this phenomenon due to a special partitioning
of the input space.

Thus, as a result of fuzzification-aggregation operations, a
set of signals is formed at the outputs of the second layer

ly (k) —cylI?
wu, (k) = exp (— Y(Z)T”)l =12,..,h, (5

which is fed to the third hidden layer where the system training
and tuning actually takes place.

Thus, in the popular Wang-Mendel NFS, the third layer is
formed by nh tunable synaptic weights which solve the piece-
wise approximation problem.

It is clear that to achieve the required accuracy, the number
of tuning parameters must be sufficiently large.

In the widely used Takagi-Sugeno-Kang NFS, the third
layer is essentially a generator of polynomial functions, the
order of which is chosen quite arbitrarily, i.e. it implements
polynomial approximation, and the number of tuning
parameters is determined by the chosen order of the
polynomial.

To improve the approximating properties of the proposed
neuro-neo-fuzzy system (NNFS), nonlinear synapses (NS) are
used, which are universal approximators of one-dimensional
functions of arbitrary type [16] and constituent elements of
neo-fuzzy neurons (NFN) [14, 15].

The architecture of the nonlinear synapse NS; of the
proposed NNFS is shown in Fig. 3.
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Figure 3. Nonlinear Synapse of the third layer of NNFS.

Each nonlinear synapse of the proposed NNFS, the total
number of which is defined as nk, implements a nonlinear
transformation

vy (k) =X0 tirp (1, () )wryp, (k — 1), (6)

where i, (ul (k)) — nonlinear membership functions, usually
triangular, satisfying the Ruspini unity partitioning conditions,
wyp(k — 1) — tuning synaptic weights obtained as a result of
processing of previous k-1 observations x(k-1), y(k-1) from
the controlled object.

The advantage of these functions is that at each time k of
the system tuning, only two neighboring membership functions
are fired, i.e., comparatively to the Wang-Mendel system, only
two from many synaptic weights are tuned at each time which
is a small “payment” for the universal approximating
properties. To improve the approximating properties of
nonlinear synapses, we propose to use parabolic Epanechnikov
kernel functions instead of traditional triangular membership
functions [19]:
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here [ - ], = max{0,-}, the form of which is shown in fig.4.

It is clear that with this arrangement of membership
functions, the number of tuning parameters at each training
cycle is 2nh.

Each of the NNFS outputs X;, i = 1,2, ..., n, is associated
with h nonlinear synapses NS;, the outputs of which are
summed, thus forming » neo-fuzzy neurons NFN; which have
proven their high efficiency for solving many real-world
problems of prediction, filtering, and approximation [14].

And, finally, the fourth — the output layer of the proposed
NNFS which is formed by a single adder and n division blocks,
implements the defuzzification operation standard for all
neuro-fuzzy systems.

27:1 v (k) oi(k) _ oi(k)

s () — _ _ oo
500 = SE 60 T I wm — w®

®)

which results in the formation of an estimate X;(k) of the input
signal of the real object x; (k).

Thus, the proposed system is a stacking system, since its
first layers are formed by neuro-fuzzy elements, and the
subsequent layers are neo-fuzzy systems which provide this
system with high approximating properties and real-time
online learning capabilities.

B. ONLINE LEARNING OF STACKING NEURO-NEO-FUZZY
SYSTEM IN INVERSE MODELING TASK

The training of the proposed NNFS for solving the inverse
modeling problem is implemented by online optimization of
the quadratic criterion traditional in the theory of identification

E(k) = XL, Ei(k) = XLy e (k) = i, (i (k) —

—£,(0), )

while this problem for each of the outputs of the system x;(k)
can be solved separately, taking into account the fact that

_ o) _ Xk va ()
wk) Xy k)’

(10)

Introducing the vector of membership function values at the
Ha k-th learning cycle

pi(k) = (in1 (uq (), pinz (4 (K)), ...,
s ooes Hing (U1 (K)), g1 (ue2 (K)), ..y
"'r:uilp(ul(k))l '"':uihq(/u’h(k)))Ta (11)

and a vector of the same dimensionality of tuning synaptic
weights calculated at the previous tuning cycle

wi(k — 1) = (w1 (k — D, wigp(k = 1), ...,
) aen ,w,:lq(k - 1), /w’i21(k - 1), ey
oo Wing(k = 1), wry, (k= 1), o, wipg(k — 1)), (12)

we can write the equation of the tuning model in the form:
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0;(k) = w;" (k — Dy, (k), (13)

£i(k) = w0y (k = 1) 88 = a0rT (ke = 1) (), (14)

and the training error
(k) = (k) —w" (k=D Lk). (15

To tune the parameters vector of this model in online
mode, it is advisable to use an adaptive learning algorithm for
a neuro-fuzzy system [20]

{wi(k) =w;(k—1)+ r’l(k)(xi(k) —w"(k—1) ﬁi(k)) i (), (16)
(k) = ar(k — 1) + |50 ’

where 0 < @ <1 — smoothing parameter, which provides
filtering properties of the learning process if the source data are
contaminated with disturbances that are always present in real
control objects.

It is easy to see that when @ = 0 we arrive at the Kaczmarz
adaptive algorithm, popular in identification theory [21]

x; (k) =" (ke — 1) fi; (k) _

wi(k) = wi(k—1) + TRGIE (k) =
=wi(k —1) + (x;(k) —
=w (k-1 i)W k), (17)

here (-)* — symbol of the pseudoinversion operation) which is
optimal in terms of rate of convergence in the class of gradient
adaptive identification algorithms.

. RESULTS

The computational experiment was performed using the Python
programming language and aims to evaluate the performance
of the proposed fast stacking neuro-neo-fuzzy system in
solving inverse modeling tasks. The objectives include:

—  assessing the approximation accuracy;

—  evaluating the learning speed in online mode;

—  comparing the NNFS with traditional inverse
modeling approaches, such as deep neural networks and
classical neuro-fuzzy systems.

The experiment used synthetic and real-world datasets
HardFailure and SoftFailure that represent the inverse
modeling problem in technical systems [22-24]. The datasets
include:

— a synthetic nonlinear function with known inverse
properties for validation;

— a dataset from fiber-optic communication systems
where inverse modeling is required to optimize signal
transmission.

The hardware required to conduct the experiment includes:
Intel Core i7, 16GB RAM, NVIDIA RTX 3060 GPU. The
software required to conduct the experiment includes: Python
with TensorFlow and SciPy libraries.

Let’s look at the evaluation metrics:

— Mean Squared Error (MSE) - to
approximation accuracy.

— Root Mean Squared Error (RMSE) — to compare the
magnitude of errors.

measure
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— Convergence Speed, measured in the number of
iterations required to reach a predefined accuracy threshold.
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Let’s move on to experiment implementation. It contains
three procedures:
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Figure 4. Epanechnikov membership function.

— training process;

— comparison with other models;

— results and analysis.

The NNFS was trained in an online mode using the adaptive
learning algorithm [25, 26]:

1. Initialize parameters of membership functions and
nonlinear synapses.

2. For each incoming data point:

— compute fuzzification and aggregation layer outputs;

— update synaptic weights using the adaptive rule;

— evaluate the inverse modeling error;

— adjust parameters using the Kaczmarz adaptive

algorithm.

The NNFS is compared with [27-29]:

— a deep neural network (DNN)
backpropagation;

trained using

— a classical Takagi-Sugeno-Kang (TSK) neuro-fuzzy
system.

Each model was trained on the same dataset, and
performance is measured across multiple trials.

The results are presented in the tables:
Approximation Accuracy, Table 2 Learning Speed.

Table 1

Table 1. Approximation Accuracy

Model MSE (Synthetic) MSE (Real-World)

NNEFS 0.0021 0.0035

DNN 0.0045 0.0068

TSK 0.0052 0.0073
Table 2. Learning Speed

Model Training Time per Convergence Iterations
Sample (ms)

NNEFS 0.32 1000

DNN 1.45 1300

TSK 0.58 2000

Based on the conducted experiment
conclusions can be drawn:

the following
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- the NNFS achieved the lowest MSE, indicating
superior approximation capabilities.

- the NNFS demonstrated the fastest training per
sample, making it suitable for real-time applications.

- the Kaczmarz-based adaptive learning significantly
reduced the number of iterations needed for convergence.

IV. DISCUSSION

A fast stacking adaptive neuro-fuzzy system is proposed to
solve the problem of inverse modeling of various control and
management objects in online real-time mode.

This system has improved approximation properties
compared to traditional neuro-fuzzy systems, is characterized
by high learning speed and simplicity of numerical
implementation. The results of numerical modeling confirm the
correctness of the obtained theoretical results.

The proposed fast NNFS outperforms traditional deep
neural networks and classical neuro-fuzzy systems in inverse
modeling tasks [30-32]. It offers:

—  high approximation accuracy;
—  fast online learning;
—  simple numerical implementation.

These advantages make NNFS a promising solution for
real-time inverse modeling in dynamic technical systems.

V. CONCLUSIONS

The stacking neuro-neo-fuzzy system is proposed which is
designed to solve the problem of inverse modeling of fiber
optic communication systems in real time mode under
conditions of limited training samples. The system combines
the advantages of neuro-fuzzy systems and neo-fuzzy systems,
which are the stacks that form it, and is characterized by high
accuracy, speed, and simplicity of numerical implementation.
It can be effectively used to solve problems of identification
and adaptive control of technical objects for various purposes
in real time mode.
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