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 ABSTRACT This paper presents a modular framework for STM32 microcontrollers designed for high-
performance graphical user interfaces. The proposed framework combines direct low-level hardware access with 
a structured, template-based configuration approach in modern C++, aiming to reduce the overhead commonly 
associated with universal abstraction layers while preserving architectural clarity and type safety. The framework 
architecture is organized into two layers: a low-level hardware interaction layer based on standardized 
microcontroller interfaces, and a higher-level declarative configuration layer that simplifies peripheral setup and 
system integration. This design enables predictable behavior, improved resource efficiency, and adaptability across 
different STM32 microcontroller families. The performance of the proposed solution was evaluated on a 
representative STM32 development platform using a widely adopted embedded graphics library. Experimental 
results demonstrate a substantial improvement in rendering efficiency and memory utilization compared to a 
reference implementation, while maintaining stable graphical output under varying workloads. In addition, the 
framework supports flexible rendering pipelines, predefined peripheral configurations, and integration with a real-
time operating system for multitasking graphical applications. The obtained results indicate that the proposed 
approach provides an efficient and specialized alternative to general-purpose embedded frameworks for resource-
constrained graphical systems. 
 

 KEYWORDS STM32; embedded systems; graphical user interface; light and versatile embedded graphics 
library (LVGL); common microcontroller software interface standard (CMSIS); free real-time operating system 
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I. INTRODUCTION 
he development of software for microcontrollers 
increasingly faces the challenge of simultaneously 

achieving high performance, efficient utilization of limited 
hardware resources, and support for scalable architectural 
solutions [1]. These requirements are especially critical in 
projects involving complex graphical user interfaces. In such 
systems, not only rendering speed but also precise control over 
peripheral components, such as display controllers, memory 
interfaces, and touch sensors, plays a vital role. 

Traditional approaches to embedded systems design are 
typically based on either low-level programming with direct 
register access or on high-level frameworks with automated 
code generation. Direct register access ensures high control and 
efficiency but requires significant architectural effort. In 
contrast, high-level frameworks abstract hardware details, 
often at the expense of flexibility and scalability. As a result, 

developers are frequently forced to make trade-offs. These 
trade-offs typically involve performance, transparency, code 
readability, and component reusability. 

This paper introduces a novel approach designed to 
overcome these compromises through the development of a 
specialized framework called STM Components (STMCMP) 
specifically oriented toward embedded graphical applications. 
The STMCMP architecture combines low-level efficiency with 
modern C++ design principles. It relies on direct CMSIS-based 
register manipulation and template-based modular 
configuration. The framework aims to deliver high 
performance and type safety. In addition, it supports 
extensibility across various STM32 families. 

Within this study, we present an experimental performance 
comparison between the proposed solution and a reference 
LVGL port for the STM32F746G-DISCO board. The 
benchmark results allow for a quantitative assessment of the 
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benefits that STMCMP offers in the context of embedded 
graphical systems development. 

This work addresses the problem of high resource 
consumption and execution overhead in graphical user 
interface implementations on STM32 microcontrollers. The 
goal of this study is to evaluate how system-level architectural 
decisions at the CMSIS layer influence graphical performance 
and memory usage. To achieve this goal, a modular CMSIS-
based framework is designed and experimentally evaluated 
using the LVGL graphics library on the STM32F746 platform, 
demonstrating measurable improvements in frame rate and 
resource utilization compared to a reference implementation. 

II. LITERATURE REVIEW 
In the field of software development for STM32 
microcontrollers, various approaches and frameworks are used, 
with the most common being HAL, Arduino, Mbed OS, and 
libraries for graphical user interface development. 

The Hardware Abstraction Layer (HAL) by 
STMicroelectronics provides a high-level interface for 
interacting with STM32 hardware resources, simplifying the 
configuration of General-Purpose Input/Output (GPIO), timers, 
Universal Asynchronous Receiver-Transmitter (UART), and 
other modules. However, the general-purpose nature of HAL 
introduces additional overhead, which may reduce 
performance and increase firmware size. This is particularly 
critical for resource-constrained systems. 

In paper [2], a method for automated code generation and 
validation based on HAL for the STM32F407 is proposed. The 
approach relies on Abstract Syntax Trees (AST) and the 
Retrieval-Augmented Generation (RAG) mechanism. The 
approach involves building an AST to analyze code and 
employing RAG to synthesize missing HAL functions based on 
contextual information. The generated code is validated 
through compilation, automated testing, and simulation in the 
Renode environment. The authors demonstrate that their 
method can effectively extend HAL interfaces without 
developer intervention, thus automating critical development 
stages. 

The concept of hardware abstraction is also analyzed in 
work [3], where the author provides a conceptual comparison 
of direct peripheral access via specific APIs and the use of 
vendor-provided HAL layers. The paper focuses on 
performance, testability, and scalability, highlighting key 
architectural trade-offs in embedded software design. Although 
not an academic publication, this source is widely referenced 
in engineering practice and applied research in the embedded 
systems domain. 

A detailed description of low-level peripheral programming 
without the Hardware Abstraction Layer (HAL) is presented in 
the monograph [4], which serves as a comprehensive textbook 
on embedded system development for ARM Cortex-M based 
microcontrollers. The author covers both assembly and C 
programming for peripheral configuration, including GPIO, 
timers, and UART modules. Special attention is paid to direct 
register-level control without HAL. This resource is 
particularly valuable for comparing manual hardware setup 
with abstracted frameworks, demonstrating the practical 
relevance of the low-level approach for systems with critical 
timing constraints. 

Recent research has revisited the design requirements for 
hardware abstraction layers in embedded systems, emphasizing 
the trade-offs between portability, interface stability, and 
execution overhead. In particular, modern studies highlight that 
poorly designed abstraction boundaries may compromise 

deterministic behavior and runtime performance on resource-
constrained platforms [28]. These observations align with the 
motivation for CMSIS-based approaches, which provide 
standardized low-level interfaces while preserving explicit 
control over microcontroller peripherals. 

Performance optimization at the processor level has also 
been actively studied for ARM Cortex-M microcontrollers. 
Recent works demonstrate that memory hierarchy utilization, 
pipeline behavior, and instruction-level optimizations 
significantly affect execution efficiency and real-time 
determinism on Cortex-M cores [29]. This further supports the 
need for low-level control mechanisms that avoid unnecessary 
abstraction overhead in performance-critical embedded 
applications. 

Arduino is a popular framework known for its simplicity 
and large user community. However, on STM32 platforms, 
Arduino faces limitations, as many of its libraries are designed 
for AVR architecture and may not function reliably on other 
hardware. The research [5] presents a thorough bibliometric 
analysis of Arduino-based microcontroller used in scientific 
research from 2008 to 2022 included in the Scopus database. 
The authors examined 1,122 publications covering topics in 
physics, chemistry, biology, STEM education, and automation. 
Using the VOSviewer software, they constructed co-authorship 
networks, keyword frequency maps, and citation analyses. The 
study concludes that Arduino is effective for educational and 
simple applications but limited in complex tasks requiring low-
level control or real-time capabilities. 

The Mbed OS framework offers multitasking, networking, 
and security features, but Arm announced the end of official 
support for the platform starting in 2026 [6], making it less 
suitable for long-term projects and encouraging the search for 
alternative solutions. 

For graphical interfaces in embedded systems, widely used 
libraries include LVGL, uGFX, and TouchGFX. LVGL stands 
out due to its open-source nature, optimization for limited 
resources, and extensive customization capabilities. 
Publication [7] provides a detailed overview of using LVGL in 
conjunction with display controllers, highlighting its 
advantages in developing efficient interfaces on resource-
constrained platforms. An alternative is uGFX, which offers a 
modular structure and ease of integration across various 
hardware platforms [8]. TouchGFX, a commercial solution by 
STMicroelectronics, delivers high-quality GUIs but may be 
more complex for beginners or small projects.  

Recent applied studies demonstrate the use of graphical 
user interfaces on STM32 microcontrollers primarily as 
human–machine interfaces in industrial and robotic systems, 
where GUIs serve monitoring and control purposes rather than 
being the primary subject of performance optimization [26]. A 
broader architectural perspective on embedded graphical and 
multimedia processing is presented in [27], where the 
organization of rendering pipelines, buffering strategies, 
external memory usage, and hardware accelerators such as 
LTDC and DMA2D is shown to play a decisive role in overall 
system responsiveness. These findings motivate the focus of 
the present work on architectural-level optimization and 
predictable integration of graphical subsystems on STM32 
platforms. 

III. PROPOSED SOLUTION 
The STMCMP framework implements a component-oriented 
architecture, in which each STM32 peripheral interface is 
represented as a separate, isolated module with clearly defined 
responsibilities. The central architectural concept is the 
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combination of modularity and declarative configuration, 
allowing to quickly configure peripherals using type-safe C++ 
builders without directly interacting with register-level details. 
Unlike traditional general-purpose libraries (such as 
STM32Cube HAL or the Arduino framework), STMCMP 
deliberately avoids generalization by providing separate low-
level implementations for each STM32 microcontroller series 
(F1, F4, F7, H7). This design makes it possible to capture all 
hardware-specific features of each series without concealing 
them behind abstraction layers. However, excessive abstraction 
typically introduces overhead and may lead to trade-offs in 
performance and flexibility. 

In STMCMP, register-level configuration options are 
represented using strongly typed abstractions that reflect valid 
hardware configurations at compile time. This approach 
enables direct control over peripheral registers while reducing 
configuration errors and maintaining consistency with vendor 
reference documentation. This approach reduces the likelihood 
of errors by enforcing compile-time type checking [9], ensures 
full consistency with the STM32 reference documentation, and 
provides direct control over every bit of peripheral 
configuration. All these aspects constitute essential 
requirements for time-critical embedded applications. 

A. FRAMEWORK ARCHITECTURE 
The architecture of the STMCMP framework is designed with 
a strict separation of responsibilities and a modular, layered 
organization. The core design principle is to combine low-level 
CMSIS-based register access with a declarative C++ 
configuration interface, thereby providing both fine-grained 
hardware control and architectural clarity [10]. Unlike general-
purpose abstraction layers such as STM32Cube HAL or the 
Arduino framework, STMCMP avoids unnecessary 
generalization and instead provides dedicated implementations 
for each STM32 microcontroller family (F1, F4, F7, H7). This 
ensures that device-specific hardware characteristics are 
preserved and exposed to the developer without additional 
overhead.  

At the lowest level, the framework directly reflects the 
hardware registers as defined in the CMSIS [11] headers. This 
approach provides direct correspondence between 
configuration code and hardware behavior, while maintaining 
type safety through compile-time validation. For example, the 
MODER register for GPIO configuration is mapped to an enum 
class which enforces valid bitfield values at compile time. This 
prevents configuration errors, improves maintainability, and 
ensures consistency with the STM32 reference manuals.  

Above this level, the configuration layer exposes a 
declarative API for peripheral setup. Instead of manually 
writing register values, developers can use C++ builder patterns 
to configure system clocks and SDRAM timing while still 
mapping directly to the underlying hardware. The design 
philosophy emphasizes clarity without sacrificing control. 

The framework further extends this layered design with a 
set of peripheral modules that encapsulate functionality 
required for embedded graphical applications, forming a bridge 
between hardware registers and application-level code.  

STMCMP includes a set of peripheral modules that 
encapsulate functionality required for graphical applications on 
STM32 platforms. These modules address external memory 
initialization, display controller configuration, and hardware-
accelerated graphics operations, forming the hardware 
foundation for framebuffer-based rendering and GUI 
integration. Communication with capacitive touch controllers 
such as FT6X06 or FT5436 is handled by the I2C module, 

while GPIO and USART modules provide basic input/output 
and serial communication capabilities.  

A dedicated LVGL port integrates the peripheral modules 
with the LVGL graphics library, providing adaptive flush_cb 
callbacks, configurable buffering strategies (single-buffer, 
double-buffer, or mixed SRAM/SDRAM), and LVGL-
compatible input drivers. This design enables efficient GUI 
rendering while preserving explicit control over the rendering 
pipeline. 

At the system level, STMCMP relies on two foundational 
layers. CMSIS [11] provides standardized register structures, 
interrupt definitions, and startup code that directly map to 
STM32 hardware, ensuring consistency with vendor 
documentation and ARM Cortex-M conventions. FreeRTOS 
[12] integration enables optional multitasking support through 
a lightweight Task wrapper, allowing tasks to be created using 
modern C++ constructs while maintaining low-level control 
over scheduling and memory usage.  

Together, these layers form a predictable execution 
environment for real-time graphical applications, ensuring 
deterministic timing and compatibility with industry-standard 
embedded software stacks. 

To provide a comprehensive overview of the framework 
structure, a layered architectural view is presented in Fig. 1, 
illustrating the hierarchical organization of STMCMP. 

 

 

Figure 1. Layered architectural view of the STMCMP 
framework. 

This diagram organizes the framework into four conceptual 
layers, illustrating the hierarchical separation between 
hardware, system services, peripheral modules with LVGL 
integration, and the declarative configuration layer. The 
layered view highlights how hardware-specific complexity is 
progressively encapsulated and exposed through clean, type-
safe configuration interfaces. 

In addition, Fig. 2 presents a data flow diagram of the 
rendering pipeline, highlighting the sequence of operations 
from LVGL scene generation through buffer flushing and 
optional DMA2D acceleration to final output via LTDC. This 
view complements the architectural diagrams by focusing on 
runtime behavior rather than structural relationships. 

 

Figure 2. Сlass diagram of the STMCMP framework 

In addition to the layered view, a class diagram is presented 
(Fig. 3) to capture the internal structure of the framework at the 
level of software entities. It depicts the relationships between 
builder classes, peripheral modules, and integration 
components that connect STMCMP to the LVGL library, as 
well as the lightweight FreeRTOS Task wrapper [14]. 
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Together, these diagrams provide complementary macroscopic 
and microscopic perspectives on the STMCMP architecture, 

illustrating both its high-level organization and the concrete 
realization of its modular design. 

 

 
Figure 3. Сlass diagram of the STMCMP framework (  – class,  – enum class). 
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B. SUPPORTED PERIPHERALS AND PREDEFINED 
CONFIGURATIONS 
The STMCMP framework for STM32 F7 series provides 
comprehensive implementation for a wide range of peripheral 
interfaces, with a focus on components that critically affect the 
performance of graphical applications. All modules are 
developed as independent units that interact directly with 
CMSIS-level registers and have no external dependencies on 
HAL or other abstraction libraries. The following key 
peripherals are supported: 

 GPIO providing basic input/output control, 
 FMC (Flexible Memory Controller) providing external 

SDRAM connection [15], 
 LTDC (LCD-TFT Display Controller) accessing layer 

configuration, buffering, resolution, and color formats 
[16], 

 DMA2D providing hardware acceleration for buffer 
copying, ARGB blending, and region clearing [17], 

 I2C [18] presenting communication with touch 
controllers such as FT6X06 and FT5436, 

 System Clock providing precise PLL/HSI/HSE 
configuration [19] tailored for graphical rendering 
frequency targets. 

In addition to peripheral support, the framework includes 
predefined configurations for commonly used components, 
which can be used as is or serve as templates for further 
adaptation. Among these components: 

 Memory MT48LC4M32B2B5-6A – a 64-Mbit (4Mx32) 
SDRAM chip with optimized timing and initialization 
for the STM32F746. The configuration for this chip 
includes for delays, bank count, CAS latency, SDRAM 
frequency (TwoHCLK), auto-refresh mode, and refresh 
timing. 

 Touch controllers FT6X06 / FT5436 – I2C-compatible 
multitouch screens. A driver, reading touch coordinates 
and dispatches events to LVGL, is provided by 
STMCMP. 

 Display controller support – the display resolution of 
480×272 and ARGB8888 (or RGB565) format can be 
configured using the LtdcBuilder class of STMCMP, 
which automatically selects appropriate PLL 
frequencies and timing parameters. Both double 
buffering and DMA2D-assisted modes are supported. 

An example of SDRAM configuration on the STM32F746-
DISCO board is shown in Fig. 4. 

C. INTEGRATION WITH LVGL AND FREERTOS 
The STMCMP framework provides full support for both the 
LVGL graphics library and the FreeRTOS operating system, 
enabling the development of robust graphical applications with 
multitasking capabilities [20], clear separation of 
responsibilities, and high runtime stability. 

The integration with LVGL is designed to support multiple 
rendering and buffering strategies, allowing the evaluation of 
different data flow organizations between the graphics library 
and the underlying hardware. FreeRTOS is used to enable 
concurrent execution of graphical rendering and application 
logic, facilitating the analysis of GUI behavior under 
multitasking conditions [21]. 

The framework also supports LVGL-compatible input 
device drivers for touchscreens, including coordinate 

transmission, multitouch handling, and gesture processing. 
 

 

Figure 4. An example of SDRAM memory configuration. 

FreeRTOS integration is achieved via a lightweight Task 
wrapper, which abstracts task creation using 
std::function<void()>, allowing modern C++ constructs 
to be seamlessly embedded in traditional RTOS environments 
without performance loss. An example of FreeRTOS task 
creation is shown in Fig. 5. 

 

Figure 5. An example of making FreeRTOS task. 

Stack size (TaskStackSize) and priority 
(TaskPriority) are specified via type-safe enum class 
values, eliminating configuration errors. At the same time, it 
provides a higher level of abstraction while preserving control 
over task objects by means of std::shared_ptr<Task>. 

Owing to this level of integration, STMCMP enables the 
construction of architecturally clean applications in which the 
GUI, event handling, data processing, and system-level tasks 
can run concurrently, without interference, fully leveraging the 
advantages of FreeRTOS in real-time [22] environments. 

IV. COMPARATIVE ANALYSIS WITH THE REFERENCE 
LVGL PORT FOR STM32F746-DISCO 
This section presents an analysis of two LVGL-based graphical 
interface implementations: the reference port for the 
STM32F746G-DISCO board and a custom implementation 
created using the STMCMP framework. The purpose of this 
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comparison is not only to evaluate performance in terms of FPS 
and frame rendering time, but also to identify architectural 
advantages provided by declarative peripheral configuration, 
flexible buffering strategies, and precise memory management. 

The analysis further includes a comparison of resource 
utilization such as firmware size and RAM consumption, and 
examines specific scenarios where the architectural flexibility 
of STMCMP offers clear benefits over the fixed design of the 
reference port. 

A. TESTING METHODOLOGY 
The testing was conducted using the STM32F746G-DISCO 
development board, which features an STM32F746NG 
microcontroller running at 216 MHz, an integrated TFT display 
with a resolution of 480×272 pixels, and a FT5436 capacitive 
touch controller. Both implementations – the reference port and 
the one based on STMCMP – used the same version of the 
LVGL library and an identical lv_conf.h configuration file. 
This ensured that all test results were unaffected by differences 
in LVGL settings. 

To eliminate the influence of multitasking, FreeRTOS was 
excluded from both implementations. This decision was based 
on the fact that the reference LVGL port for the STM32F746-
DISCO board, available in the lv_port_stm32f746_disco 
repository, does not include an RTOS implementation. As a 
result, both systems were tested under comparable conditions, 
with all graphical updates executed in the main loop without 
interruptions from external tasks. 

The system clock configuration remained unchanged for all 
test cases: the microcontroller operated at its full frequency of 
216 MHz, with properly configured PLL and peripheral buses. 
To evaluate the architectural impact of the rendering pipeline, 
several buffering strategies were tested:  

 Rendering into internal SRAM with subsequent copying 
to SDRAM; 

 Direct rendering into SDRAM using a single buffer;  
 Double-buffering in SDRAM with buffer switching via 

LTDC. 
These modes were tested only within the STMCMP 

implementation, as the reference port supports only a single 
hardcoded buffering strategy designed for general-purpose 
performance, with no option to switch or reconfigure the 
rendering pipeline. 

Performance evaluation was carried out using the standard 
LVGL benchmark demo [23], which sequentially displays 
graphical scenes of varying complexity – from simple 
primitives to animated widgets and full-screen ARGB images. 
LVGL’s built-in performance monitoring tools were used to 
record the average frames per second (FPS) and average frame 
render time for each test. All values were averaged after 
interface stabilization to ensure accurate and consistent 
measurements. 

Both implementations are available as open-source 
projects: the custom STMCMP-based implementation [24] and 
the reference LVGL port for STM32F746G-DISCO [25]. 

B. PERFORMANCE COMPARISON: FPS AND FRAME 
RENDER TIME 
The comparison results of average frames per second (FPS) and 
average frame render time between the STMCMP-based 
implementation and the reference LVGL port are presented in 
Table 1. The benchmark includes a range of graphical scenes, 

from simple primitives to complex compositing scenarios, as 
defined in the LVGL demo suite. 

The results of the benchmark demo execution demonstrate 
a significant performance improvement of the STMCMP-based 
implementation across most test scenes. 

Table 1. Comparison STMCMP and reference LVGL port 

Scene 
Ref LVGL port STMCMP 
FPS render 

time, ms 
FPS Render 

time, ms 
Empty screen 43 10 62 5 

Animated wallpaper 35 21 61 8 
Single rectangle 51 1 61 0 

Multiple rectangles 52 10 61 3 
Multiple RGB images 53 4 61 0 

Multiple ARGB images 49 10 61 3 
Rotated ARGB images 9 94 24 39 

Multiple labels 51 6 61 2 
Full-screen text 8 111 17 55 
Multiple arcs 52 3 61 1 
Containers 51 12 61 4 

Containers with overlay 21 38 59 16 
Containers with opacity 45 19 61 5 

Containers with 
opa_layer 

31 30 61 10 

Containers with scrolling 20 41 50 18 
Widgets demo 9 53 28 24 

Average across all scenes 36 28 53 12 

 
In simple and moderately loaded scenarios such as 

rendering one or more rectangles, displaying labels, arcs, or 
RGB images, the framework reaches FPS values close to the 
limits imposed by the display refresh configuration. 

In these cases, the frame render time approaches zero or 
remains within a few milliseconds, indicating an efficient 
graphics pipeline. 

In more demanding scenes, involving rotated ARGB 
images, full-screen text rendering, or complex containers with 
overlays and transparency, the performance of the reference 
port degrades significantly. The FPS in such cases often drops 
to single-digit values, while frame rendering times exceed 50-
100 ms. STMCMP implementation shows a more gradual 
performance degradation under load: although FPS also 
decreases under load, the drop is much more gradual, and the 
frame processing time remains several times lower, 
maintaining acceptable interactivity under intensive 
conditions. 

This performance behavior is illustrated in Fig. 6, which 
compares the achieved FPS and frame rendering time of the 
STMCMP-based implementation and the reference port across 
all benchmark scenes. 

 

 

Figure 6. Comparison STMCMP and reference LVGL port 

On average across all scenes, the STMCMP-based 
implementation achieves an FPS increase of approximately 
47% compared to the reference port (53 FPS vs. 36 FPS), while 
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the average frame render time is reduced by more than half 
(from 28 ms to 12 ms). This performance dynamic is especially 
important for resource-constrained systems, where every 
millisecond is critical for maintaining interactivity. The results 
confirm that STMCMP not only delivers higher performance 
but also demonstrates more consistent timing characteristics 
under load, which is crucial for real-time latency-sensitive user 
interfaces. 

C.  RESOURCE USAGE ANALYSIS: RAM AND FLASH 
A comparison of the compiled ELF files from both 
implementations enables an assessment of memory usage 
efficiency, particularly regarding Flash memory (for code and 
constants) and RAM (for variables, stack, and buffers). For the 
sake of objective comparison, only the memory sections that 
directly contribute to actual firmware size and runtime memory 
consumption were considered: .text, .rodata, .data, 
.bss, and the user stack (_user_heap_stack). 

In the STMCMP-based implementation, the combined size 
of the .text and .rodata sections, which determine Flash 
usage, is approximately 515 KB (225,612 + 290,212 bytes). In 
contrast, the reference port consumes about 651 KB (380,392 
+ 271,208 bytes), representing a reduction of nearly 21% in 
flash size. This reduction is associated with the absence of the 
HAL layer and a framework structure focused on direct 
peripheral configuration. 

In terms of RAM usage, the combined size of the .data, .bss, 
and user stack sections in the STMCMP implementation is 
about 135 KB (1,480 + 131,960 + 1,536 bytes), whereas the 
reference port consumes over 271 KB (1,692 + 263,836 + 6,144 
bytes). This reduction in RAM usage (over 50%) can be 
leveraged either to lower overall power consumption or to 
allocate more resources to other components such as larger 
LVGL buffers or FreeRTOS task stacks. 

Thus, the resource analysis confirms that the STMCMP-
based implementation offers substantial savings in both Flash 
and RAM memory, making the framework particularly well-
suited for building graphical applications on resource-
constrained embedded systems without compromising 
performance. 

Thus, the resource analysis confirms that the STMCMP-
based implementation offers substantial savings in both Flash 
and RAM memory, making the framework particularly well-
suited for building graphical applications on resource-
constrained embedded systems without compromising 
performance. 

The proposed framework is subject to several practical 
limitations. Its performance characteristics depend on the 
availability of hardware accelerators such as LTDC and 
DMA2D, as well as on external memory resources used for 
framebuffer storage. Display resolution, pixel format, and 
memory bandwidth directly affect achievable rendering 
performance. Consequently, the results presented in this work 
are specific to the evaluated hardware configuration. 

The experimental evaluation in this work is limited to the 
STM32F746 microcontroller. While the architectural approach 
of STMCMP can be adapted to other STM32 families, such as 
STM32F4 or STM32H7, this adaptation requires dedicated 
register mappings and peripheral-specific implementations for 
each target device. Therefore, scalability in this study refers to 
architectural applicability rather than demonstrated 
performance portability across multiple STM32 series. 

V. CONCLUSION 
This work introduces and evaluates the STMCMP framework, 
which simplifies and enforces type-safe configuration of 
STM32 peripherals, with a specific focus on graphical 
applications built using the LVGL library. The proposed 
solution provides a modular architecture with a focus on type-
safe peripheral configuration, while achieving significant 
advantages in both performance and resource efficiency. 

The experimental comparison with the reference LVGL 
port for STM32F746G-DISCO demonstrates that the 
STMCMP-based implementation provides more consistent 
rendering performance across evaluated scenarios, a higher 
frame rate (FPS increase an average up to 47%), and a twofold 
decrease in frame render time. In addition, the firmware size is 
reduced by over 20%, and RAM usage is cut by more than half, 
which is critical for resource-constrained embedded systems. 

A key advantage of STMCMP framework lies in its 
intentional avoidance of universality, a trait commonly 
associated with HAL and similar frameworks. Instead, 
STMCMP offers a highly specialized configuration model, 
tightly integrated with the hardware characteristics of each 
STM32 series. This approach results not only in high 
performance but also in deterministic system behavior. 

An additional benefit is the support of multiple rendering 
strategies: rendering to internal SRAM followed by copying to 
SDRAM, direct rendering to SDRAM, and double buffering 
with LTDC buffer switching. This level of flexibility allows 
developers to adapt the rendering pipeline to specific 
requirements, for example, reducing RAM usage in widget-
intensive scenarios. 

The research results confirm the viability of domain-
specific frameworks for embedded systems, particularly those 
targeting performance and low-level control. The developed 
framework STMCMP demonstrates clear potential for future 
extension including support for additional microcontroller 
families (e.g., STM32H7), display configurations, and sensor 
technologies. 
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