

734 VOLUME 24(4), 2025

Date of publication DEC-31, 2025, date of current version DEC-24, 2025.
www.computingonline.net / computing@computingonline.net

Print ISSN 1727-6209
Online ISSN 2312-5381
DOI 10.47839/ijc.24.4.4339

A Modular Framework for High-
Performance Graphical Interfaces on

STM32 Microcontrollers
OLEKSANDR STELMAKH, INNA V. STETSENKO, ANTON DYFUCHYN, ALEXANDER

ZARICHKOVYI, OLEKSANDRA DYFUCHYNA
1Igor Sikorsky Kyiv Polytechnic Institute, 37, Prospect Beresteiskyi, Solomyanskyi district,

Kyiv, 03056, Ukraine

Corresponding author: Oleksandr Stelmakh (e-mail: stelmahwork@gmail.com).

 ABSTRACT This paper presents a modular framework for STM32 microcontrollers designed for high-
performance graphical user interfaces. The proposed framework combines direct low-level hardware access with
a structured, template-based configuration approach in modern C++, aiming to reduce the overhead commonly
associated with universal abstraction layers while preserving architectural clarity and type safety. The framework
architecture is organized into two layers: a low-level hardware interaction layer based on standardized
microcontroller interfaces, and a higher-level declarative configuration layer that simplifies peripheral setup and
system integration. This design enables predictable behavior, improved resource efficiency, and adaptability across
different STM32 microcontroller families. The performance of the proposed solution was evaluated on a
representative STM32 development platform using a widely adopted embedded graphics library. Experimental
results demonstrate a substantial improvement in rendering efficiency and memory utilization compared to a
reference implementation, while maintaining stable graphical output under varying workloads. In addition, the
framework supports flexible rendering pipelines, predefined peripheral configurations, and integration with a real-
time operating system for multitasking graphical applications. The obtained results indicate that the proposed
approach provides an efficient and specialized alternative to general-purpose embedded frameworks for resource-
constrained graphical systems.

 KEYWORDS STM32; embedded systems; graphical user interface; light and versatile embedded graphics
library (LVGL); common microcontroller software interface standard (CMSIS); free real-time operating system
(FreeRTOS); configuration framework; performance optimization

I. INTRODUCTION
he development of software for microcontrollers
increasingly faces the challenge of simultaneously

achieving high performance, efficient utilization of limited
hardware resources, and support for scalable architectural
solutions [1]. These requirements are especially critical in
projects involving complex graphical user interfaces. In such
systems, not only rendering speed but also precise control over
peripheral components, such as display controllers, memory
interfaces, and touch sensors, plays a vital role.

Traditional approaches to embedded systems design are
typically based on either low-level programming with direct
register access or on high-level frameworks with automated
code generation. Direct register access ensures high control and
efficiency but requires significant architectural effort. In
contrast, high-level frameworks abstract hardware details,
often at the expense of flexibility and scalability. As a result,

developers are frequently forced to make trade-offs. These
trade-offs typically involve performance, transparency, code
readability, and component reusability.

This paper introduces a novel approach designed to
overcome these compromises through the development of a
specialized framework called STM Components (STMCMP)
specifically oriented toward embedded graphical applications.
The STMCMP architecture combines low-level efficiency with
modern C++ design principles. It relies on direct CMSIS-based
register manipulation and template-based modular
configuration. The framework aims to deliver high
performance and type safety. In addition, it supports
extensibility across various STM32 families.

Within this study, we present an experimental performance
comparison between the proposed solution and a reference
LVGL port for the STM32F746G-DISCO board. The
benchmark results allow for a quantitative assessment of the

T

Oleksandr Stelmakh et al. / International Journal of Computing, 24(4) 2025, 734-741

VOLUME 24(4), 2025 735

benefits that STMCMP offers in the context of embedded
graphical systems development.

This work addresses the problem of high resource
consumption and execution overhead in graphical user
interface implementations on STM32 microcontrollers. The
goal of this study is to evaluate how system-level architectural
decisions at the CMSIS layer influence graphical performance
and memory usage. To achieve this goal, a modular CMSIS-
based framework is designed and experimentally evaluated
using the LVGL graphics library on the STM32F746 platform,
demonstrating measurable improvements in frame rate and
resource utilization compared to a reference implementation.

II. LITERATURE REVIEW
In the field of software development for STM32
microcontrollers, various approaches and frameworks are used,
with the most common being HAL, Arduino, Mbed OS, and
libraries for graphical user interface development.

The Hardware Abstraction Layer (HAL) by
STMicroelectronics provides a high-level interface for
interacting with STM32 hardware resources, simplifying the
configuration of General-Purpose Input/Output (GPIO), timers,
Universal Asynchronous Receiver-Transmitter (UART), and
other modules. However, the general-purpose nature of HAL
introduces additional overhead, which may reduce
performance and increase firmware size. This is particularly
critical for resource-constrained systems.

In paper [2], a method for automated code generation and
validation based on HAL for the STM32F407 is proposed. The
approach relies on Abstract Syntax Trees (AST) and the
Retrieval-Augmented Generation (RAG) mechanism. The
approach involves building an AST to analyze code and
employing RAG to synthesize missing HAL functions based on
contextual information. The generated code is validated
through compilation, automated testing, and simulation in the
Renode environment. The authors demonstrate that their
method can effectively extend HAL interfaces without
developer intervention, thus automating critical development
stages.

The concept of hardware abstraction is also analyzed in
work [3], where the author provides a conceptual comparison
of direct peripheral access via specific APIs and the use of
vendor-provided HAL layers. The paper focuses on
performance, testability, and scalability, highlighting key
architectural trade-offs in embedded software design. Although
not an academic publication, this source is widely referenced
in engineering practice and applied research in the embedded
systems domain.

A detailed description of low-level peripheral programming
without the Hardware Abstraction Layer (HAL) is presented in
the monograph [4], which serves as a comprehensive textbook
on embedded system development for ARM Cortex-M based
microcontrollers. The author covers both assembly and C
programming for peripheral configuration, including GPIO,
timers, and UART modules. Special attention is paid to direct
register-level control without HAL. This resource is
particularly valuable for comparing manual hardware setup
with abstracted frameworks, demonstrating the practical
relevance of the low-level approach for systems with critical
timing constraints.

Recent research has revisited the design requirements for
hardware abstraction layers in embedded systems, emphasizing
the trade-offs between portability, interface stability, and
execution overhead. In particular, modern studies highlight that
poorly designed abstraction boundaries may compromise

deterministic behavior and runtime performance on resource-
constrained platforms [28]. These observations align with the
motivation for CMSIS-based approaches, which provide
standardized low-level interfaces while preserving explicit
control over microcontroller peripherals.

Performance optimization at the processor level has also
been actively studied for ARM Cortex-M microcontrollers.
Recent works demonstrate that memory hierarchy utilization,
pipeline behavior, and instruction-level optimizations
significantly affect execution efficiency and real-time
determinism on Cortex-M cores [29]. This further supports the
need for low-level control mechanisms that avoid unnecessary
abstraction overhead in performance-critical embedded
applications.

Arduino is a popular framework known for its simplicity
and large user community. However, on STM32 platforms,
Arduino faces limitations, as many of its libraries are designed
for AVR architecture and may not function reliably on other
hardware. The research [5] presents a thorough bibliometric
analysis of Arduino-based microcontroller used in scientific
research from 2008 to 2022 included in the Scopus database.
The authors examined 1,122 publications covering topics in
physics, chemistry, biology, STEM education, and automation.
Using the VOSviewer software, they constructed co-authorship
networks, keyword frequency maps, and citation analyses. The
study concludes that Arduino is effective for educational and
simple applications but limited in complex tasks requiring low-
level control or real-time capabilities.

The Mbed OS framework offers multitasking, networking,
and security features, but Arm announced the end of official
support for the platform starting in 2026 [6], making it less
suitable for long-term projects and encouraging the search for
alternative solutions.

For graphical interfaces in embedded systems, widely used
libraries include LVGL, uGFX, and TouchGFX. LVGL stands
out due to its open-source nature, optimization for limited
resources, and extensive customization capabilities.
Publication [7] provides a detailed overview of using LVGL in
conjunction with display controllers, highlighting its
advantages in developing efficient interfaces on resource-
constrained platforms. An alternative is uGFX, which offers a
modular structure and ease of integration across various
hardware platforms [8]. TouchGFX, a commercial solution by
STMicroelectronics, delivers high-quality GUIs but may be
more complex for beginners or small projects.

Recent applied studies demonstrate the use of graphical
user interfaces on STM32 microcontrollers primarily as
human–machine interfaces in industrial and robotic systems,
where GUIs serve monitoring and control purposes rather than
being the primary subject of performance optimization [26]. A
broader architectural perspective on embedded graphical and
multimedia processing is presented in [27], where the
organization of rendering pipelines, buffering strategies,
external memory usage, and hardware accelerators such as
LTDC and DMA2D is shown to play a decisive role in overall
system responsiveness. These findings motivate the focus of
the present work on architectural-level optimization and
predictable integration of graphical subsystems on STM32
platforms.

III. PROPOSED SOLUTION
The STMCMP framework implements a component-oriented
architecture, in which each STM32 peripheral interface is
represented as a separate, isolated module with clearly defined
responsibilities. The central architectural concept is the

 Oleksandr Stelmakh et al. / International Journal of Computing, 24(4) 2025, 734-741

736 VOLUME 24(4), 2025

combination of modularity and declarative configuration,
allowing to quickly configure peripherals using type-safe C++
builders without directly interacting with register-level details.
Unlike traditional general-purpose libraries (such as
STM32Cube HAL or the Arduino framework), STMCMP
deliberately avoids generalization by providing separate low-
level implementations for each STM32 microcontroller series
(F1, F4, F7, H7). This design makes it possible to capture all
hardware-specific features of each series without concealing
them behind abstraction layers. However, excessive abstraction
typically introduces overhead and may lead to trade-offs in
performance and flexibility.

In STMCMP, register-level configuration options are
represented using strongly typed abstractions that reflect valid
hardware configurations at compile time. This approach
enables direct control over peripheral registers while reducing
configuration errors and maintaining consistency with vendor
reference documentation. This approach reduces the likelihood
of errors by enforcing compile-time type checking [9], ensures
full consistency with the STM32 reference documentation, and
provides direct control over every bit of peripheral
configuration. All these aspects constitute essential
requirements for time-critical embedded applications.

A. FRAMEWORK ARCHITECTURE
The architecture of the STMCMP framework is designed with
a strict separation of responsibilities and a modular, layered
organization. The core design principle is to combine low-level
CMSIS-based register access with a declarative C++
configuration interface, thereby providing both fine-grained
hardware control and architectural clarity [10]. Unlike general-
purpose abstraction layers such as STM32Cube HAL or the
Arduino framework, STMCMP avoids unnecessary
generalization and instead provides dedicated implementations
for each STM32 microcontroller family (F1, F4, F7, H7). This
ensures that device-specific hardware characteristics are
preserved and exposed to the developer without additional
overhead.

At the lowest level, the framework directly reflects the
hardware registers as defined in the CMSIS [11] headers. This
approach provides direct correspondence between
configuration code and hardware behavior, while maintaining
type safety through compile-time validation. For example, the
MODER register for GPIO configuration is mapped to an enum
class which enforces valid bitfield values at compile time. This
prevents configuration errors, improves maintainability, and
ensures consistency with the STM32 reference manuals.

Above this level, the configuration layer exposes a
declarative API for peripheral setup. Instead of manually
writing register values, developers can use C++ builder patterns
to configure system clocks and SDRAM timing while still
mapping directly to the underlying hardware. The design
philosophy emphasizes clarity without sacrificing control.

The framework further extends this layered design with a
set of peripheral modules that encapsulate functionality
required for embedded graphical applications, forming a bridge
between hardware registers and application-level code.

STMCMP includes a set of peripheral modules that
encapsulate functionality required for graphical applications on
STM32 platforms. These modules address external memory
initialization, display controller configuration, and hardware-
accelerated graphics operations, forming the hardware
foundation for framebuffer-based rendering and GUI
integration. Communication with capacitive touch controllers
such as FT6X06 or FT5436 is handled by the I2C module,

while GPIO and USART modules provide basic input/output
and serial communication capabilities.

A dedicated LVGL port integrates the peripheral modules
with the LVGL graphics library, providing adaptive flush_cb
callbacks, configurable buffering strategies (single-buffer,
double-buffer, or mixed SRAM/SDRAM), and LVGL-
compatible input drivers. This design enables efficient GUI
rendering while preserving explicit control over the rendering
pipeline.

At the system level, STMCMP relies on two foundational
layers. CMSIS [11] provides standardized register structures,
interrupt definitions, and startup code that directly map to
STM32 hardware, ensuring consistency with vendor
documentation and ARM Cortex-M conventions. FreeRTOS
[12] integration enables optional multitasking support through
a lightweight Task wrapper, allowing tasks to be created using
modern C++ constructs while maintaining low-level control
over scheduling and memory usage.

Together, these layers form a predictable execution
environment for real-time graphical applications, ensuring
deterministic timing and compatibility with industry-standard
embedded software stacks.

To provide a comprehensive overview of the framework
structure, a layered architectural view is presented in Fig. 1,
illustrating the hierarchical organization of STMCMP.

Figure 1. Layered architectural view of the STMCMP
framework.

This diagram organizes the framework into four conceptual
layers, illustrating the hierarchical separation between
hardware, system services, peripheral modules with LVGL
integration, and the declarative configuration layer. The
layered view highlights how hardware-specific complexity is
progressively encapsulated and exposed through clean, type-
safe configuration interfaces.

In addition, Fig. 2 presents a data flow diagram of the
rendering pipeline, highlighting the sequence of operations
from LVGL scene generation through buffer flushing and
optional DMA2D acceleration to final output via LTDC. This
view complements the architectural diagrams by focusing on
runtime behavior rather than structural relationships.

Figure 2. Сlass diagram of the STMCMP framework

In addition to the layered view, a class diagram is presented
(Fig. 3) to capture the internal structure of the framework at the
level of software entities. It depicts the relationships between
builder classes, peripheral modules, and integration
components that connect STMCMP to the LVGL library, as
well as the lightweight FreeRTOS Task wrapper [14].

Oleksandr Stelmakh et al. / International Journal of Computing, 24(4) 2025, 734-741

VOLUME 24(4), 2025 737

Together, these diagrams provide complementary macroscopic
and microscopic perspectives on the STMCMP architecture,

illustrating both its high-level organization and the concrete
realization of its modular design.

Figure 3. Сlass diagram of the STMCMP framework (– class, – enum class).

 Oleksandr Stelmakh et al. / International Journal of Computing, 24(4) 2025, 734-741

738 VOLUME 24(4), 2025

B. SUPPORTED PERIPHERALS AND PREDEFINED
CONFIGURATIONS
The STMCMP framework for STM32 F7 series provides
comprehensive implementation for a wide range of peripheral
interfaces, with a focus on components that critically affect the
performance of graphical applications. All modules are
developed as independent units that interact directly with
CMSIS-level registers and have no external dependencies on
HAL or other abstraction libraries. The following key
peripherals are supported:

 GPIO providing basic input/output control,
 FMC (Flexible Memory Controller) providing external

SDRAM connection [15],
 LTDC (LCD-TFT Display Controller) accessing layer

configuration, buffering, resolution, and color formats
[16],

 DMA2D providing hardware acceleration for buffer
copying, ARGB blending, and region clearing [17],

 I2C [18] presenting communication with touch
controllers such as FT6X06 and FT5436,

 System Clock providing precise PLL/HSI/HSE
configuration [19] tailored for graphical rendering
frequency targets.

In addition to peripheral support, the framework includes
predefined configurations for commonly used components,
which can be used as is or serve as templates for further
adaptation. Among these components:

 Memory MT48LC4M32B2B5-6A – a 64-Mbit (4Mx32)
SDRAM chip with optimized timing and initialization
for the STM32F746. The configuration for this chip
includes for delays, bank count, CAS latency, SDRAM
frequency (TwoHCLK), auto-refresh mode, and refresh
timing.

 Touch controllers FT6X06 / FT5436 – I2C-compatible
multitouch screens. A driver, reading touch coordinates
and dispatches events to LVGL, is provided by
STMCMP.

 Display controller support – the display resolution of
480×272 and ARGB8888 (or RGB565) format can be
configured using the LtdcBuilder class of STMCMP,
which automatically selects appropriate PLL
frequencies and timing parameters. Both double
buffering and DMA2D-assisted modes are supported.

An example of SDRAM configuration on the STM32F746-
DISCO board is shown in Fig. 4.

C. INTEGRATION WITH LVGL AND FREERTOS
The STMCMP framework provides full support for both the
LVGL graphics library and the FreeRTOS operating system,
enabling the development of robust graphical applications with
multitasking capabilities [20], clear separation of
responsibilities, and high runtime stability.

The integration with LVGL is designed to support multiple
rendering and buffering strategies, allowing the evaluation of
different data flow organizations between the graphics library
and the underlying hardware. FreeRTOS is used to enable
concurrent execution of graphical rendering and application
logic, facilitating the analysis of GUI behavior under
multitasking conditions [21].

The framework also supports LVGL-compatible input
device drivers for touchscreens, including coordinate

transmission, multitouch handling, and gesture processing.

Figure 4. An example of SDRAM memory configuration.

FreeRTOS integration is achieved via a lightweight Task
wrapper, which abstracts task creation using
std::function<void()>, allowing modern C++ constructs
to be seamlessly embedded in traditional RTOS environments
without performance loss. An example of FreeRTOS task
creation is shown in Fig. 5.

Figure 5. An example of making FreeRTOS task.

Stack size (TaskStackSize) and priority
(TaskPriority) are specified via type-safe enum class
values, eliminating configuration errors. At the same time, it
provides a higher level of abstraction while preserving control
over task objects by means of std::shared_ptr<Task>.

Owing to this level of integration, STMCMP enables the
construction of architecturally clean applications in which the
GUI, event handling, data processing, and system-level tasks
can run concurrently, without interference, fully leveraging the
advantages of FreeRTOS in real-time [22] environments.

IV. COMPARATIVE ANALYSIS WITH THE REFERENCE
LVGL PORT FOR STM32F746-DISCO
This section presents an analysis of two LVGL-based graphical
interface implementations: the reference port for the
STM32F746G-DISCO board and a custom implementation
created using the STMCMP framework. The purpose of this

Oleksandr Stelmakh et al. / International Journal of Computing, 24(4) 2025, 734-741

VOLUME 24(4), 2025 739

comparison is not only to evaluate performance in terms of FPS
and frame rendering time, but also to identify architectural
advantages provided by declarative peripheral configuration,
flexible buffering strategies, and precise memory management.

The analysis further includes a comparison of resource
utilization such as firmware size and RAM consumption, and
examines specific scenarios where the architectural flexibility
of STMCMP offers clear benefits over the fixed design of the
reference port.

A. TESTING METHODOLOGY
The testing was conducted using the STM32F746G-DISCO
development board, which features an STM32F746NG
microcontroller running at 216 MHz, an integrated TFT display
with a resolution of 480×272 pixels, and a FT5436 capacitive
touch controller. Both implementations – the reference port and
the one based on STMCMP – used the same version of the
LVGL library and an identical lv_conf.h configuration file.
This ensured that all test results were unaffected by differences
in LVGL settings.

To eliminate the influence of multitasking, FreeRTOS was
excluded from both implementations. This decision was based
on the fact that the reference LVGL port for the STM32F746-
DISCO board, available in the lv_port_stm32f746_disco
repository, does not include an RTOS implementation. As a
result, both systems were tested under comparable conditions,
with all graphical updates executed in the main loop without
interruptions from external tasks.

The system clock configuration remained unchanged for all
test cases: the microcontroller operated at its full frequency of
216 MHz, with properly configured PLL and peripheral buses.
To evaluate the architectural impact of the rendering pipeline,
several buffering strategies were tested:

 Rendering into internal SRAM with subsequent copying
to SDRAM;

 Direct rendering into SDRAM using a single buffer;
 Double-buffering in SDRAM with buffer switching via

LTDC.
These modes were tested only within the STMCMP

implementation, as the reference port supports only a single
hardcoded buffering strategy designed for general-purpose
performance, with no option to switch or reconfigure the
rendering pipeline.

Performance evaluation was carried out using the standard
LVGL benchmark demo [23], which sequentially displays
graphical scenes of varying complexity – from simple
primitives to animated widgets and full-screen ARGB images.
LVGL’s built-in performance monitoring tools were used to
record the average frames per second (FPS) and average frame
render time for each test. All values were averaged after
interface stabilization to ensure accurate and consistent
measurements.

Both implementations are available as open-source
projects: the custom STMCMP-based implementation [24] and
the reference LVGL port for STM32F746G-DISCO [25].

B. PERFORMANCE COMPARISON: FPS AND FRAME
RENDER TIME
The comparison results of average frames per second (FPS) and
average frame render time between the STMCMP-based
implementation and the reference LVGL port are presented in
Table 1. The benchmark includes a range of graphical scenes,

from simple primitives to complex compositing scenarios, as
defined in the LVGL demo suite.

The results of the benchmark demo execution demonstrate
a significant performance improvement of the STMCMP-based
implementation across most test scenes.

Table 1. Comparison STMCMP and reference LVGL port

Scene
Ref LVGL port STMCMP
FPS render

time, ms
FPS Render

time, ms
Empty screen 43 10 62 5

Animated wallpaper 35 21 61 8
Single rectangle 51 1 61 0

Multiple rectangles 52 10 61 3
Multiple RGB images 53 4 61 0

Multiple ARGB images 49 10 61 3
Rotated ARGB images 9 94 24 39

Multiple labels 51 6 61 2
Full-screen text 8 111 17 55
Multiple arcs 52 3 61 1
Containers 51 12 61 4

Containers with overlay 21 38 59 16
Containers with opacity 45 19 61 5

Containers with
opa_layer

31 30 61 10

Containers with scrolling 20 41 50 18
Widgets demo 9 53 28 24

Average across all scenes 36 28 53 12

In simple and moderately loaded scenarios such as

rendering one or more rectangles, displaying labels, arcs, or
RGB images, the framework reaches FPS values close to the
limits imposed by the display refresh configuration.

In these cases, the frame render time approaches zero or
remains within a few milliseconds, indicating an efficient
graphics pipeline.

In more demanding scenes, involving rotated ARGB
images, full-screen text rendering, or complex containers with
overlays and transparency, the performance of the reference
port degrades significantly. The FPS in such cases often drops
to single-digit values, while frame rendering times exceed 50-
100 ms. STMCMP implementation shows a more gradual
performance degradation under load: although FPS also
decreases under load, the drop is much more gradual, and the
frame processing time remains several times lower,
maintaining acceptable interactivity under intensive
conditions.

This performance behavior is illustrated in Fig. 6, which
compares the achieved FPS and frame rendering time of the
STMCMP-based implementation and the reference port across
all benchmark scenes.

Figure 6. Comparison STMCMP and reference LVGL port

On average across all scenes, the STMCMP-based
implementation achieves an FPS increase of approximately
47% compared to the reference port (53 FPS vs. 36 FPS), while

 Oleksandr Stelmakh et al. / International Journal of Computing, 24(4) 2025, 734-741

740 VOLUME 24(4), 2025

the average frame render time is reduced by more than half
(from 28 ms to 12 ms). This performance dynamic is especially
important for resource-constrained systems, where every
millisecond is critical for maintaining interactivity. The results
confirm that STMCMP not only delivers higher performance
but also demonstrates more consistent timing characteristics
under load, which is crucial for real-time latency-sensitive user
interfaces.

C. RESOURCE USAGE ANALYSIS: RAM AND FLASH
A comparison of the compiled ELF files from both
implementations enables an assessment of memory usage
efficiency, particularly regarding Flash memory (for code and
constants) and RAM (for variables, stack, and buffers). For the
sake of objective comparison, only the memory sections that
directly contribute to actual firmware size and runtime memory
consumption were considered: .text, .rodata, .data,
.bss, and the user stack (_user_heap_stack).

In the STMCMP-based implementation, the combined size
of the .text and .rodata sections, which determine Flash
usage, is approximately 515 KB (225,612 + 290,212 bytes). In
contrast, the reference port consumes about 651 KB (380,392
+ 271,208 bytes), representing a reduction of nearly 21% in
flash size. This reduction is associated with the absence of the
HAL layer and a framework structure focused on direct
peripheral configuration.

In terms of RAM usage, the combined size of the .data, .bss,
and user stack sections in the STMCMP implementation is
about 135 KB (1,480 + 131,960 + 1,536 bytes), whereas the
reference port consumes over 271 KB (1,692 + 263,836 + 6,144
bytes). This reduction in RAM usage (over 50%) can be
leveraged either to lower overall power consumption or to
allocate more resources to other components such as larger
LVGL buffers or FreeRTOS task stacks.

Thus, the resource analysis confirms that the STMCMP-
based implementation offers substantial savings in both Flash
and RAM memory, making the framework particularly well-
suited for building graphical applications on resource-
constrained embedded systems without compromising
performance.

Thus, the resource analysis confirms that the STMCMP-
based implementation offers substantial savings in both Flash
and RAM memory, making the framework particularly well-
suited for building graphical applications on resource-
constrained embedded systems without compromising
performance.

The proposed framework is subject to several practical
limitations. Its performance characteristics depend on the
availability of hardware accelerators such as LTDC and
DMA2D, as well as on external memory resources used for
framebuffer storage. Display resolution, pixel format, and
memory bandwidth directly affect achievable rendering
performance. Consequently, the results presented in this work
are specific to the evaluated hardware configuration.

The experimental evaluation in this work is limited to the
STM32F746 microcontroller. While the architectural approach
of STMCMP can be adapted to other STM32 families, such as
STM32F4 or STM32H7, this adaptation requires dedicated
register mappings and peripheral-specific implementations for
each target device. Therefore, scalability in this study refers to
architectural applicability rather than demonstrated
performance portability across multiple STM32 series.

V. CONCLUSION
This work introduces and evaluates the STMCMP framework,
which simplifies and enforces type-safe configuration of
STM32 peripherals, with a specific focus on graphical
applications built using the LVGL library. The proposed
solution provides a modular architecture with a focus on type-
safe peripheral configuration, while achieving significant
advantages in both performance and resource efficiency.

The experimental comparison with the reference LVGL
port for STM32F746G-DISCO demonstrates that the
STMCMP-based implementation provides more consistent
rendering performance across evaluated scenarios, a higher
frame rate (FPS increase an average up to 47%), and a twofold
decrease in frame render time. In addition, the firmware size is
reduced by over 20%, and RAM usage is cut by more than half,
which is critical for resource-constrained embedded systems.

A key advantage of STMCMP framework lies in its
intentional avoidance of universality, a trait commonly
associated with HAL and similar frameworks. Instead,
STMCMP offers a highly specialized configuration model,
tightly integrated with the hardware characteristics of each
STM32 series. This approach results not only in high
performance but also in deterministic system behavior.

An additional benefit is the support of multiple rendering
strategies: rendering to internal SRAM followed by copying to
SDRAM, direct rendering to SDRAM, and double buffering
with LTDC buffer switching. This level of flexibility allows
developers to adapt the rendering pipeline to specific
requirements, for example, reducing RAM usage in widget-
intensive scenarios.

The research results confirm the viability of domain-
specific frameworks for embedded systems, particularly those
targeting performance and low-level control. The developed
framework STMCMP demonstrates clear potential for future
extension including support for additional microcontroller
families (e.g., STM32H7), display configurations, and sensor
technologies.

References

[1] H. Kopetz, Real-Time Systems: Design Principles for Distributed
Embedded Applications, 2nd ed. Springer, New York, 2011, 396 p.

[2] S. Haug, C. Böhm, and D. Mayer, “Automated code generation and
validation for software components of microcontrollers,” Proceedings of
the 20th ACM International Conference on Computing Frontiers
(CF’23), Bologna, Italy, May 9–11, 2023, pp. 202–208.

[3] J. Beningo, Embedded basics – API’s vs HAL’s, Beningo Embedded
Group, Apr. 2016, [Online]. Available at:
https://www.beningo.com/embedded-basics-apis-vs-hals/

[4] Y. Zhu, Embedded Systems with Arm Cortex-M Microcontrollers in
Assembly Language and C, 2nd ed., E-Man Press LLC, 2015.

[5] N. K. Prabowo and I. Irwanto, “The implementation of Arduino
microcontroller boards in science: A bibliometric analysis from 2008 to
2022,” Journal of Engineering Education Transformations, vol. 37, no.
2, pp. 107–120, 2023. https://doi.org/10.16920/jeet/2023/v37i2/23154.

[6] Arm Ltd., “Important update on Mbed end-of-life,” Mbed Community
Forum, July 2024, [Online]. Available at:
https://forums.mbed.com/t/important-update-on-mbed-end-of-life/23644

[7] I. V. Filippenko, V. R. Korniyenko, and H. K. Kulak, “Overview of
graphics libraries for embedded platforms,” Radioelectric and
Informatic, no. 1, pp. 47–53, 2020. (in Ukrainian)

[8] G. İşnas and N. Şenyer, “Comparison of TouchGFX and LVGL
embedded hardware performance for graphical user interfaces,” Gazi
University Journal of Science Part C: Design and Technology, vol. 9, no.
2, pp. 215–224, 2021. https://doi.org/10.29109/gujsc.915163.

[9] D. Vandevoorde, N. M. Josuttis, and D. Gregor, C++ Templates: The
Complete Guide, 2nd ed. Addison-Wesley, Boston, 2017, 822 p.

[10] B. P. Douglass, Real-Time UML Workshop for Embedded Systems.
Elsevier, Amsterdam, 2014, 378 p.

Oleksandr Stelmakh et al. / International Journal of Computing, 24(4) 2025, 734-741

VOLUME 24(4), 2025 741

[11] Arm Ltd, Common Microcontroller Software Interface Standard
(CMSIS), 2022, [Online]. Available at: https://arm-
software.github.io/CMSIS_5/

[12] R. Barry, Mastering the FreeRTOS Real Time Kernel, 2nd ed. Real Time
Engineers Ltd., 2020, 399 p.

[13] J. Aynsley, Modern C++ in embedded systems – myth and reality,
Embedded.com, 2015, [Online]. Available at:
https://www.embedded.com/modern-c-in-embedded-systems-myth-and-
reality/

[14] J. J. Labrosse, µC/OS-III: The Real-Time Kernel for the STM32, Micrium
Press, Weston, 2010, 888 p.

[15] STMicroelectronics, AN2784: Using the high-density STM32F10xxx
FSMC peripheral to drive external memories, Application Note, 2017,
[Online]. Available at:
https://www.st.com/resource/en/application_note/an2784-using-the-
highdensity-stm32f10xxx-fsmc-peripheral-to-drive-external-memories-
stmicroelectronics.pdf

[16] STMicroelectronics, AN4861: LCD-TFT Display Controller (LTDC) on
STM32 MCUs, Application Note, 2017, [Online]. Available at:
https://www.st.com/resource/en/application_note/an4861-introduction-
to-lcdtft-display-controller-ltdc-on-stm32-mcus-stmicroelectronics.pdf

[17] STMicroelectronics, AN4943: How to use Chrom-ART Accelerator
(DMA2D) to refresh an LCD-TFT display on STM32 MCUs, Application
Note, 2017. [Online]. Available at:
https://www.st.com/resource/en/application_note/an4943-how-to-use-
chromart-accelerator-to-refresh-an-lcdtft-display-on-stm32-mcus-
stmicroelectronics.pdf

[18] STMicroelectronics, AN4235: I²C timing configuration tool for
STM32F0/F3 microcontrollers, Application Note, 2013. [Online].
Available at: https://www.st.com/resource/en/application_note/an4235-
i2c-timing-configuration-tool-for-stm32f3xxxx-and-stm32f0xxxx-
microcontrollers-stmicroelectronics.pdf

[19] STMicroelectronics, UM1718: STM32CubeMX for STM32 configuration
and initialization C code generation, User Manual, 2014, [Online].
Available at: https://www.st.com/resource/en/user_manual/um1718-
stm32cubemx-for-stm32-configuration-and-initialization-c-code-
generation-stmicroelectronics.pdf

[20] A. Marongiu and L. Benini, “An OpenMP compiler for efficient use of
distributed scratchpad memory in MPSoCs,” IEEE Transactions on
Computers, vol. 61, no. 2, pp. 222–236, 2012.
https://doi.org/10.1109/TC.2010.199.

[21] STMicroelectronics, AN4943 How to use Chrom-ART Accelerator to
refresh an LCD-TFT display on STM32 MCUs Application Note, 2024,
[Online]. Available at:
https://www.st.com/resource/en/application_note/an4943-how-to-use-
chromart-accelerator-to-refresh-an-lcdtft-display-on-stm32-mcus-
stmicroelectronics.pdf

[22] J. Arm et al., “Measuring the Performance of FreeRTOS on ESP32 Multi-
core,” IFAC-PapersOnLine, vol. 55, issue 4, pp. 292-297, 2022.
https://doi.org/10.1016/j.ifacol.2022.06.048.

[23] LVGL Developers, lv_demo_benchmark: Performance benchmarking
demo for LVGL, 2024, [Online]. Available at:
https://github.com/lvgl/lvgl/tree/master/demos/benchmark

[24] O. Stelmakh, STMCMP: A modular CMSIS-based framework for STM32,
[Online]. Available at: https://github.com/StelmakhAleksandr/stmcmp

[25] LVGL Developers, STM32F746G-DISCO LVGL demo project, [Online].
Available at: https://github.com/lvgl/lv_port_stm32f746_disco

[26] K. B. A. Borowski and K. Wojtulewicz, “Implementation of robotic
kinematics algorithm for industrial robot model using microcontrollers,”
IFAC-PapersOnLine, vol. 55, no. 10, pp. 108–113, 2022.
https://doi.org/10.1016/j.ifacol.2022.09.063.

[27] Y. Krainyk, “Embedded systems multimedia framework for
microcontroller devices,” Advances in Cyber-Physical Systems, vol. 8,
no. 1, pp. 43–49, 2023. https://doi.org/10.23939/acps2023.01.043.

[28] A. Author et al., “Relevant HAL Interface Requirements for Embedded
Systems,” arXiv preprint arXiv:2512.14514, 2025.

[29] H. Yoon, J. Kim, and S. Ha, “Performance optimization techniques for
ARM Cortex-M processors in embedded systems,” IEEE Access, vol. 8,
pp. 207789–207801, 2020. DOI: 10.1109/ACCESS.2020.3038211.

OLEKSANDR STELMAKH PhD, Senior
lecturer in the Department of
Computer Science and Software
Engineering, Igor Sikorsky Kyiv
Polytechnic Institute. Research
interests include neural networks,
embedded systems, and performance
optimization.

INNA V. STETSENKO Doctor of
Science, Professor in the Department
of Computer Science and Software
Engineering, Igor Sikorsky Kyiv
Polytechnic Institute. Research
interests include parallel computing,
artificial intelligence, simulation, and
Petri nets.

ANTON DYFUCHYN PhD, Senior
lecturer in the Department of
Computer Science and Software
Engineering, Igor Sikorsky Kyiv
Polytechnic Institute. Research
interests include visual programming
languages, parallel computing, and
systems simulation.

ALEXANDER ZARICHKOVYI PhD,
Assistant if the Department of
Computer Science and Software
Engineering, Kaggle competition
master, Igor Sikorsky Kyiv
Polytechnic Institute. Specializing on
research in computer vision field,
video recognition, embedded
systems, and neural network
optimization.

OLEKSANDRA DYFUCHYNA PhD,
Senior lecturer in the Department of
Computer Science and Software
Engineering, Igor Sikorsky Kyiv
Polytechnic Institute. Research
interests include multithreaded
programming, systems simulation,
and performance optimization.

