)

Date of publication DEC-31, 2025, date of current version MAY-29, 2025
www.computingonline.net/ computing@computingonline.net

Print ISSN 1727-6209
Online ISSN 2312-5381
DOI 10.47839/ijc.24.4.4340

Use of some variants of Graph Neural
Networks for the classification of
Electroencephalograms of
schizophrenia

PELAGIE FLORE TEMGOUA NANFACK'2, ELIE FUTE TAGNE'3
!'University of Buea, Faculty of Engineering and Technology , Buea, Cameroon
2Ministry of Scientific Research and Innovation, National Committee for Development of Technologies, Yaounde, Cameroon
3University of Dschang, Faculty of Science, Dschang, Cameroon

Corresponding author: Pelagie Flore Temgoua Nanfack (e-mail: pelagietemgoua@ gmail.com).

ABSTRACT Graph Neural Networks (GNN) are a form of neural network that have shown their added
value on non-Euclidean data such as electroencephalograms (EEG). The aim of this work was to evaluate
some GNN variants for the classification of schizophrenia EEGs; namely Graph Convolution Network
(GCN) and Graph of Attention (GAT). For this purpose, the Pycaret tool and a Convolutional Neural
Network (CNN) were used for the classification of the obtained graphs. This made it possible to compare
GCN and GAT associated with Pycaret on the one hand, and GCN and GCN coupled with a Convolutional
Neural Network (CNN) for classification on the other. It was found that GCN and GAT offer accuracy
of 85% and 80% respectively. GCN coupled with a CNN offers 80% accuracy. However, despite the fact
that GAT is resource intensive, its confusion matrix shows that it offers better sensitivity and specificity

than the other methods. In other words, the error rate is 5%.

KEYWORDS Graph Neural Network; Classification; Electroencephalogram; Schizophrenia.

l. INTRODUCTION

The electroencephalogram (or EEG) is a test that measures
the brain’s electrical activity through its different brain re-
gions. EEG and Magnetic Resonance Imaging (MRI) are the
two most commonly used techniques in cognitive science
[1]l. However, EEG is much more popular than MRI because
it is inexpensive, readily available, easy to perform and
monitor when follow-up is needed, and minimally invasive
for subjects suitable for study. The classification of EEGs
is a complex process due to, for example, the number of
channels that may differ from one collection source to
another and especially the non-linear placement of these
channels. It requires thorough analysis and accurate mod-
eling techniques. Neural networks can be used to classify
EEGs, but they are generally limited to relatively simple
data sets such as images and text. Reason why an EEG
is represented in a non-Euclidean space, whereas an image
and text are represented in a Euclidean space Figure [Tl A
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non-Euclidean space is a space in that cannot find a set
of coordinates which are mutually perpendicular, where the
coordinate lines are all parallel to each other and where
each grid square has the same area. More specifically, it is
the study of geometry on surfaces which are not flat
[3]]l. Graph Neural Networks (GNN) are powerful tools for
studying non-Euclidean domains [4] [5]].

GNNss are used to generalize the concept of convolution in
graphs [6]]. Figure 2] shows the structure of a GNN compared
to a Convolution Neural Network (CNN).

Graph Neural Networks are a new class of neural net-
works that can be used to process more complex data
sets, such as EEGs. Schizophrenia is a multidimensional
disorder with several subtypes, different neurobiological
underpinnings [7]. The use of GNN variants to classify
electroencephalogram (EEG) recordings of patients with
schizophrenia is a rapidly expanding field. GNNs are known
to improve accuracy and prediction time when the data is
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Figure 1. Representation of an image and text in contrast to
an EEG.

non-linear [[8]. GNN is a form of deep learning that can
be applied in a wide range of fields, including medicine
and bioinformatics [9]]. For classifying schizophrenia EEGs,
GNNs could provide a more accurate and faster method
than other classification methods [10]. GNNs can capture
complex patterns in the data, which means that they can be
used to identify patterns in underlying psychiatric disorders.
GNNs improve the diagnostic accuracy and learning speed
of existing approaches [11]. GNNs can be integrated with
computer systems to analyze patients’ EEG values in real
time and identify abnormalities and changes in their EEGs
and provide an early diagnosis [12]. The general design
pipeline for a GNN model contains three (03) calculation
steps which are: the propagation module, sampling module
et pooling module [9]. The propagation module that gen-
erates the graphs that will be considered as input for the
learning system to be set up is composed of several vari-
ants, including Graph Convolution Network (GCN), Graph
Attention Networks (GAT), Gated Graph Neural Networks
(GGNN) Figure 3] etc.

The work of Jie Zhou et al. [9] presents a literature
review of the different GNN variants and some of their
applications. However, the applications mentioned do not
concern schizophrenia or other brain or psychiatric diseases.
Nevertheless, the applications mentioned do not concern
schizophrenia or other brain or psychiatric diseases. In this
paper, we will explore the potential advantages of using
some variants of Graph Neural Networks (GNN) for EEG
classification, namely GAT, and GNN. We will compare
the performance of each of these variants on the one hand
and GNN coupled with a Convolutional Neural Network
on the other hand. We will discuss the advantages and
disadvantages of each variant and how they can be applied
to improve prediction accuracy. We will also compare the
performance of the different variants and determine the best
method for the classification of schizophrenia EEGs. Other
variants could be studied in future work.

Il. RELATED WORKS

Several other works have been done about the use of Artifi-
cial Intelligence for classification of EEG of schizophrenia.
Some use Machine Learning (ML) others use Deep learning
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(DL). We started our work by [13] and [14]. The present
work aims to have the best possible accuracy consider that
EEGs can be collected from different sources, hence the
different number of channels and the different frequencies
of values. Most of these works are more interested in the
use of Convolutional Neural Networks for the diagnosis
of schizophrenia. As Shu Lih et al. [15] which uses deep
convolutional neural network to set up a method for the
diagnosis of schizophrenia with accuracies of 98.07% and
81.26% for non-subject based testing and subject based
testing, respectively. With the same method except for a few
parameters, Ahmad Shalbaf et al. [16] achieved accuracy,
sensitivity and specificity of 98.60%, 99.65% and 96.92%
respectively. Several other works using CNN complete
classification accuracies of over 90% [17] [18] [[19] and
[20]. Rahul et al. [21]] provide a summary of the ML and
DL methods used to diagnose schizophrenia using EEGs,
presenting the pre-processing methods used, the databases
adopted and the accuracies obtained. On the other, the use
of GNNs for EEG classification has been also discussed
by several authors. GNNs have become popular in recent
years and are used in many fields including medicine and
are considered to be an effective alternative to traditional
methods such as Convolutional Neural Networks (CNNs)
[22]. GNNs have been applied to the classification of EEGs
in various ways, for example, to discern signals from noise
and identify abnormal activity [23]]. They support a medical
diagnosis by graphing medical data, such as brain electrical
activity, anatomical structures, and digital pathologies [4]
[5l. GNNs have proven to be a powerful tool for classifying
EEGs, as they can identify subtle changes in the EEG
signal [24]. In the same vein, Haifeng Li et al. have
shown that GNNs can outperform traditional methods in
EEG classification due to their ability to capture subtle
correlations in the data [23]] [25]]. GNNs have also been used
to select EEG channels for use in portable EEG headsets,
indicating their potential for use in EEG classification tasks
[23]]. According to Yimin Hou et al., GNNs can improve the
decoding performance of raw EEG signals during different
types of motor imaging tasks [26]. Neeraj Wagh et al. have
shown that GNNs can also be used to detect abnormalities
in the EEG signal and to predict the presence of certain
neurological diseases [27]]. Concerning the use of GNNs for
classifications of schizophrenia EEGs, very few authors have
looked into it. Lei Du et al [28]] in their work has shown that
GNNs including Graph Convolution Networks (GCN) offer
higher classification accuracy (85%) compared to simple
Support Vector Machine (SVN) (80%). In the same way,
Sanjay Ghosh et al. [29] found a higher F1 score with
GCN compared to conventional SVN. However, most of this
work does not give details on other parameters such as the
confusion matrix, and the Receiver Operating Characteristic
(ROC) curve. Indeed, in precision medicine, sensitivity and
specificity, i.e., the precision matrix, should be one of the
most important parameters, because an algorithm can have
a very good precision but show too many errors in the
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Figure 2. Comparison of CNN and graph Neural Network (GNN).
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Figure 3. Presentation of some variants of GNN.

confusion matrix. Some that take these parameters into
account omit the complexity of the EEG structure (graph).
Klepl et al. [30] propose a survey of wide range of methods
used to design GNN-based classifiers.

lll. MATERIALS AND METHOD
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A. MATERIALS

The dataset used here is and downloaded on Repository
for Open Data [32]. It includes 14 patients (7 men: 27.9
+ 3.3 years, 7 women: 28.3 £+ 4.1 years) with paranoid
schizophrenia, who were hospitalized at the Institute of Psy-
chiatry and Neurology in Warsaw, Poland, and 14 healthy
controls (7 men: 26.8 + 2.9,7 women: 28.7 £ 3.4 years).
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EEGs were recorded at a frequency of 250 Hz using the
standard 10-20 EEG montage with 19 EEG channels: Fpl,
Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, TS, P3, Pz,
P4, T6, O1, O2. The analysis of the EEGs was done using
the MNE library [33] of the python language. Anaconda’s
Jupiter Lab Integrated Development Environment (IDE) is
the programming platform used for this work. Pycaret [34])
is the tool that was used to train for the classification
of EEGs. Indeed, this tool supports supervised learning
tasks (classification and regression), clustering, anomaly
detection, and natural language processing. With pycaret,
you spend less time coding and more time on analysis.
The analysis includes Exploratory Data Analysis, Data
Preprocessing, Model Training, Model Explainability, and
Machine Learning Operations (MLOps). PyCaret is a low-
code machine-learning library in Python that aims to reduce
the time needed to experiment with different machine-
learning models [34] [35]. It helps Data Scientists perform
all end-to-end experiments quickly and more efficiently.
PyCaret being a low-code library, it allows to be more
productive. The computer on which the work was done has
the following characteristics:

e Processor: Intel(R) Core (TM) i7-4510U CPU @
2.00GHz (4CPUs), 2.6GHz

« RAM : 12 GB

o Graphic card : NVIDIA GEFORCE

B. METHOD

There are several variants of GNN. These include Graph
Convolution Network (GCN or GraphConv), Relational
Graph Convolution (RelGraphConv), Graph Attention Net-
work (GAT), Simplifying Graph Convolution (SGConv), etc
[136]. Figure@] gives an overview of these methods. However,
only GCN and GAT will be discussed in this paper. Indeed,
the most widely used GNNs in EEG classification are
convolutional [37]. These networks use convolutional layers
to learn hierarchical features from the raw EEG signal and
then make predictions about the subject’s condition. The
advantage of convolutional GNNs is that they can learn
complex spatial topologies from the EEG signal and can
be used to identify subtle changes in the EEG signal which
are indicative of changes in the patient’s condition [38]. Kipf
et al. [39] and Rishabh Anand [40] explain the functional
mode. For GAT, Andac Demir et al. [6] have shown that
it is effective for the classification of EEGs. GAT uses
attention mechanisms to identify important connections in
the EEG signal [41]] and can be used to classify different
types of brain activity [40] [42]. These last quotes present
the principle of this method in more detail. The classical
classification process using GNNs is shown in Figure

The methodology applied is shown in Figure [5 and
consists of three (03) modules: the collector, the analyzer,
and the classifier.
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1) The collector

This module is a preprocessing stage. Before anything, it
is important to mention that collected EEGs are performed
using thirty second segments without artefacts (i.e. eye
movements, cardiac activity, muscle contractions). Then,
the signals of each EEG channel were filtered using a
Butterworth filter of order 2 in the following physiological
frequency bands: 2-4Hz (delta), 4.5-7.5 Hz (theta), 8-12.5
Hz (alpha), 13-30 Hz (beta), 30-45 Hz (gamma). This
module is responsible for:

o Collect EEGs (.edf file)

+ Read EEG using "* mne.io.read_raw "‘ function of the
MNE python library

e Remove artifact

o The preprocessed result is forward to the "‘Analyzer"’
module

2) The analyzer
Once we get the result obtained from the "‘Collector"
module, this section consists on three (03) main operations:

e Use Skip-Gram algorithm, particularly Word2Vec
method [44] [45] to build a graph from the nodes of
EEG, take turns each node as the center node. The
graph is built based on some parameter that the most
important is window size. Consider an array of nodes
N, if N(i) is the input (center node), then N(i-2), N(i-1),
N(i+1), and N(i+2) are the context nodes if the sliding
window size is equal to 2. Basically, ie when window
size is equal to 1, the context C'(NN;) of a node N; is set
of nodes adjacent to i. The Skip-Gram model aims to
produce an output probability distribution vector given
a target node input. This probability distribution vector
(which sums to 1) reflects the probability for each
node to appear in the target node’s context window. As
one might expect, the probability to be high for nodes
who share the same context and low for nodes who
don’t. Figure[7]shows an example of the graph obtained
after the skip-gram operation. The obtained adjacency
matrix M is formally defined as: for N = Ny ... N,
where n is the number of nodes of nodes of initial
graph (EEG), M is the co-occurrence matrix of the
vocabulary N if

, Mi;]‘ = 1if N; € C(NJ), otherwise Mi;j =0
[46]]. Edge weights used here are fixed for GCN and
learnable for GAT, based on [39]], [42].

e GNN through its variants (GAT and GCN) is used
to reduce the obtained graph by a convolution series
follows the steps in a CNN except that the convolution
operation is actually an aggregation. The variant of
GNN (GAT or GCN) chosen allows a group of nodes
and how they interact with each other to be described.
Aggregation protects the integrity of a collection of
nodes by defining a single control point/node, called the
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Figure 5. Proposed Method.

aggregate or center node, in the graph. This operation
(aggregation) is performed at each hidden layer until
the final graph is obtained Figure[6] Learning operation
of GNN consists to use a loss function that encourages
similar nodes to be close together and dissimilar nodes
to be far apart. It means that the neural network is
trained to generate low-dimensional vector representa-
tions (embeddings) for each node in a graph. During
the GNN’s training, parameters (weights and biases)
are adjusted , the network aims to optimize its param-
eters to produce embeddings that capture meaningful
information about the nodes in the graph. Then, GNN’s
parameters (weights and biases) are adjusted.

3) The classifier

GNNs can be used with many learning methods, including
back-propagation, graph-based optimization methods, and
Deep Learning. The selection of the GNN classification
method depends on the task at hand. This module takes as
input the list obtained in the previous module to perform the
classification. In the context of this work, the classification
was done using Pycaret on the one hand and a classical
neural network on the other.
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Figure 6. Presentation of analyser’s module.

IV. RESULTS

The results obtained will be presented in three phases:
the results of the classification obtained with the GCN
method for the construction of the graph and pycaret for
the classification, those obtained following the use of GAT
and pycaret for the classification and finally the infor-
mation received following the use of GAT to obtain the
graph and a classical neural network for the classification.
Before presenting these results, it is important to define
some concepts such as: sensitivity, specificity, confusion
matrix. Sensitivity can be defined as the rate of positive
individuals correctly predicted by the model. To calculate
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Figure 7. Example of the graph obtained after Skip-Gram Operation.

True Class

Predicted Class

Figure 8. Explaining a confusion matrix.

it, the following formula is used: sensitivity=(True Positive
(TP))/(True Positive (TP)+False Negative). Specificity is
the rate of negative individuals correctly predicted by the
model. It is defined as follows: specificity=(True Negative
(TN))/(True Negative (TN)+False Positive). In the context
of a medical diagnosis, sensitivity specifies the percentage
of people declared ill by the model who are actually ill in
reality. On the other hand, specificity indicates the rate of
people predicted not to be ill who are actually not ill [47]]. In
view of the two definitions above, the best model is the one
with a high sensitivity and specificity. As for the confusion
matrix, it is the main metric in terms of classification, as
it allows all other metrics to be obtained Figure [§] It is
presented as follows:

The dataset used was presented above, which is twenty-
eight (28) EEGs. During the implementation work, the test
set considered was a third (1/3), or approximately nine (09)
EEGs. These values will help to understand the confusion
matrices that will be described below.

VOLUME 24(4), 2025

A. USE OF GCN

Figure [0] presents the values of the different metrics ob-
tained with different classifiers in a decreasing order. The
information presented in this figure shows that Decision
Tree Classifier, Gradient Boosting Classifier, Extra Trees
Classifier and Ada Boost Classifier are the four (04) best
classifiers with an accuracy and recall of about 80%. That
figure also shows that Light Gradient Boosting Machine and
Dummy Classifier have a very good recall of 90%.

The ROC curve for the best decision tree classifier is
shown in Figure [TI0] This curve shows a balance between
the two classes with AUCs equal to 0.57 for all classes. This
means that 57% of sick people are predicted as sick. Also,
57% of people who are not ill are reported as such when
this model is used.

The confusion matrix shown in Figure [T1] indicates that
there are four (04) poorly predicted values against six (06)
well-predicted values. Thus, according to this matrix, sen-
sitivity=3/(3+3)= 50% and specificity=2/(2+1)= 66%. This
means that for this model, although sensitivity is acceptable,
specificity is higher. This model is not reassuring enough in
that it is able to announce at 34% that an individual suffers
from schizophrenia although he is not. Similarly, it could at
50% conclude that a person is healthy, but is.

B. USE OF GAT

The results obtained with GAT and the Pycaret classifier
are presented in Figure [I2] The four (04) best classifiers
SVM - Radial Kernel, Linear Discriminant Analysis, Ada
Boost Classifier, and Extra Trees Classifier have an average
accuracy of about 64%; SVM - Radial Kernel being the best
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Maodel Accuracy AUC  Recall Prec. Fi Kappa MCC TT (Sec)

dt Decision Tree Classifier 0.3500 0.7500 085000 0.8000 08000 nan 0.6000 0.0550
gbc Gradient Boosting Classifier 0.8500 0.2000 0.2000 08000 02000 nan 0.6000 0.0420
et Extra Trees Classifier 0.3500 0.5000 02000 0.8500 08667 nan 0.6000 01220
ada Ada Boost Classifier 0.2500 0.8000 0.8000 0.8000 0.8000 nan 0.6000 0.0620
f Random Forest Classifier 0.7500 0.5000 0.7000 0.FO00 07000 06000 0.6000 01450
gpc Gaussian Process Classifier 0.7000 0.6000 Q5000 05000 05000 nan 0.3000  0.0240
knn K Meighbors Classifier 0.6500 0.5500 06000 05500 05667 nan 0.2000 | 0.0650
mip MLP Classifier 0.6500 0.7000 0.7000 06000 06333 nan 0.2000 | 0.1670
nb Maive Bayes 0.6000 0.7000 04000 03500 03667 nan 0.1000 | 0.0060
Ir Logistic Regression 0.6000 0.5000 06000 04500 05000 nan 0.1000 | 25850
Ida Linear Discriminant Analysis 0.3500 0.5000 0.7000 05000 05667 02000 0.2000 & 0.0140
ridge Ridge Classifier 0.5000 0.0000 05000 04000 04333 nan -0.1000 | 0.0760
qda Quadratic Discriminant Analysis ~ 0.3000 0.5000 04000 03000 03333 01000 01000 & 0.0230
swm SVM - Linear Kerne 0.4500 0.0000 03000 02500 02667 00000 0.0000 0.0160

lightgbm Light Gradient Boosting Machine  0.4500
dummy  Dummy Classifier 04500
rbfsvm SVM - Radial Kernel 0.4000

Figure 9. Classification results

ROC Curves for DecisionTreeClassifier

08

True Positive Rate
o
>

o
=

02 —— ROC of class 0, AUC = 0.57
ROC of class 1, AUC = 0.57
micro-average ROC curve, AUC = 0.56

macro-average ROC curve, AUC = 0.57

00 *
0o 02 04 06 08 10
False Posilive Rate

Figure 10. ROC of the best classification method Decision
Tree Classifier for GCN.

classifier with an accuracy of 75% and a recall of 90%. The
ROC curve in Figure [T3] shows that SVM - Radial Kernel
has a very high sensitivity and specificity of 95%. This
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0.4500 09000 04500 06000 0.0000 0.0000 & 0.0280
04500 09000 04500 0.6000 00000 0.0000 @ 0.0060

0.4500 0.8000 04000 05333 -01000 -0.1000 0.0120

using GCN coupled with Pycaret.

Dhsisinsn TroeCladaifer Confomas Matrix

T Class

[=] -
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Figure 11. Confusion matrix of the best classification
method Decision Tree Classifier for GCN.

means that when this model is used, 95% of sick people
are predicted to be sick. And 95% of people who are not
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sick are reported as sick. This figure shows a very large
area under the curve; this means that this classifier makes
the least possible errors; about 5%.

As shown in Figure [T4] the confusion matrix of the best
classification model for GAT highlights the fact that the
SVM - Radial Kernel Classifier model performs only two
(02) of the nine (09) tests performed.

Indeed, sensitivity=3/(3+1)= 75% and specificity=4/(4+1)=80%.

This makes GAT a very suitable model for predictions from
this dataset.

C. USE OF GCN COMBINED WITH A NEURAL
NETWORK

In this part, GCN is used to generate the graph and
then a classical neural network is built to implement the
classification. This neural network is a Convolution Neural
Network (CNN) with two (02) hidden layers. The result
obtained shows an accuracy of 80% after 120 epochs,
which is slightly lower than that obtained with GCN and
Pycaret. However, Figure [I5] shows a drop in error with
each iteration.

V. DISCUSSION

This part is devoted to the comparison of the three parts
presented in terms of results. The results with GCN, GAT,
and GCN coupled to CNN for classification. This compari-
son will be made between GCN and GAT on the one hand
and between GCN and GCN coupled with CNN on the
other hand. The parameters of comparison are the time and
resources used for the generation of the list of graphs, of
precision, of AUC on the one hand, and the learning time
and the time and resources for the classification, of precision
on the other hand. It is important to note that the dataset
size is the same for all these methods: twenty-eight (28)
EEGs; fourteen (14) from sick people and fourteen (14)
from healthy people.

A. COMPARISON OF GCN AND GAT
Some authors such as Lee et al. [37] consider GCN to be
the most widely used GNN method. In this section, we will
compare GCN and GAT from the results obtained on our
dataset. It is important to remember that the classification
time is the same for these two (02) methods. Table [I]
provides a summary of the values of these comparators.
This table shows that GCN has a very low graph gener-
ation time, and good accuracy but a rather high error rate
(43%). On the other hand, GAT has a fairly high graph
generation time, and good accuracy, but a very low error
rate (5%).

B. GCN COUPLED WITH CNN
In this part, GCN is used to generate the dataset that will be
the input of the classification module. The aim is to compare
the CNN and pycaret classifiers.

As show in Table [2] the results of some comparison
metrics. Through these values, it appears that GCN and
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Table 1. Comparison GCN vs GAT

GNN Graph Accuracy AUC of
Method generation of the the best
time best classifier
clas-
sifier
GCN 45 seconds 85% 57 %
with an Schizophre-
average of nia 57 %
1.62  sec- Healthy
onds/iteration
GAT 52 minutes 80% 95 %o
and 06 Schizophre-
seconds nia 95 %
with an Healthy
average of
111.65 sec-
onds/iteration

Table 2. Comparison GCN vs GCN coupled with CNN

Classifier Classification Accuracy
time of the
clas-
sifier
Pycaret 32 seconds 85%
CNN 45 minutes and 24 80%
seconds with an
average of 111.65
seconds/iteration

pycaret as a classifier use significantly fewer resources
than GCN coupled with CNN. Also, simple GCN gives
an accuracy close to GCN coupled with CNN. However,
according to the results presented above, the error rate
obtained when classifying with CNN is very decreasing
compared to the error rate obtained with GCN which is
quite high.

C. ABLATION STUDY FROM CNN TO GAT VIA GCN

This study will no longer take into account classification
time, accuracy or graph generation time, as these have
already been done in the sections above. It will take the
form of two tables. The first |§| compares basic CNN, GCN
and GAT in terms of architecture or modification, purpose,
expected outcome, training time, inference time and peak
VRAM. Some values in the table are "‘Not defined"
because CNN was just used for classification in the case
of this study.

The second [4] presents the comparisons of expected con-
clusions and obtained conclusion.

In sum, the elements presented above allow us to con-
clude that GAT, despite its very high resource consumption,
provides a better performance than GCN and GCN coupled
with CNN, as it produces a very low error rate. This is the
case with the dataset used which is twenty-eight (28) EEGs.
It remains to be seen whether GAT will maintain the same
performance with a larger dataset.

VI. CONCLUSION AND FUTURE WORKS
In this paper, the GNN was used through two of its methods,
GCN and GAT, to classify schizophrenia EEGs and to
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Madel Accuracy
rbfsvm SVM - Radial Kernel 0.2000
Ida Limear Discriminant Analysis 0.7500
ada Ada Boost Classifier 0.7500
et Extra Trees Classifier 0.7000
knn K MNeighbors Classifier 0.6500
nb Naive Bayes 0.6000
dt Decision Tree Classifier 0.6000
qda Quadratic Discriminant Analysis  0.6000
ghc Gradient Boosting Classifier 0.5500
rf Random Forest Classifier 0.5500
Ir Logistic Regression 0.5000
gpc Gaussian Process Classifier 0.5000
SV SVM - Linear Kerne 0.4500
lightgbm Light Gradient Boosting Machine 0.4500
dummy  Dummy Classifier 0.4500
mlp MLP Classifier 0.3000
ridge Ridge Classifier (0.3000

AUC  Recall Prec. F1 Kappa MCC TT (Sed)
0.6000 0.9000 0.7500 0.8000 nan 05000 | 0.0120
05000 07000 06500 06667 06000 06000 00830
0.8500 07000 0.6000 06333 nan 04000  0.0390
06000 06000 05500 05667 nan 03000 [0.1210
07000 0.6000 05500 05667 04000 04000 |[0.0270
04000 06000 04500 05000 nan 0.1000 [0.0090
0.5000 Q6000 05000 05333 nan 01000 (00120
0.5000 Q.7000 0.5000 05667 nan 01000 [0.0250
04000 06000 04500 05000 nan 0.0000 [0.0400
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Figure 12. Classification results using GAT and Pycaret.
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Figure 13. ROC of the best classification method SVM -
Radial Kernel Classifier for GAT.

compare these variants based on the results obtained to
choose the one that best suits the resolution of the project
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in which this work is involved. This project aims to develop
artificial intelligence for the early diagnosis of schizophrenia
by EEG. The results show that GAT offers better sensitivity
and specificity than GCN and GCN coupled with CNN, even
though it is very resource-intensive and has a slightly lower
accuracy than the others. The sensitivity reaches 75% and
the specificity is close to 80% which is very representative
of reality. This means that the results obtained with GAT
allow us to say that 75% of an individual is ill, even though
he or she is indeed ill, and 80% that an individual is not
suffering from schizophrenia, even though he or she is not
suffering. The next step is to increase the dataset so that
we can say that GAT is undoubtedly the right method for
the classification of schizophrenia EEGs. It is important
to note, however, that an increase in dataset size equates
to an increase in computational resources and perhaps a
better learning result with Pycaret, which performs much
better on a large dataset. Also, since GAT offers better
results in terms of accuracy, sensitivity and specificity, but is
very hardware intensive compared to GCN for example. A
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Figure 14. Confusion matrix of the best classification method SVM - Radial Kernel Classifier for GAT.
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Figure 15. Confusion matrix of the best classification method SVM - Radial Kernel Classifier for GAT.

possible improvement would be to use a neural network to
improve the Skip-Gram step during the construction of the
graph with GCN before carrying out the classification using
Pycaret among others. This would perhaps make it possible
to gain in resources. It would also be useful in future work
to take into account the actual clinical diagnostic steps in
the learning process so that these results can be used in
hospitals. That is to say, to first include data related to
Physical exams (weight gain, blood pressure, temperature,
age, etc.) and biological examinations (emoparasite, stool,
tertiary phase syphilis, etc.) before arriving at Neurological
exams such as EEG as discussed throughout this paper.
Future work could also explore improved GNN models such
as the Adaptive Feature and Topology Graph Convolutional
Neural Network (AAGCN) model proposed by [48]], which
incorporates an adaptive layer whose main advantage is
that it efficiently extracts hidden features and topological

VOLUME 24(4), 2025

information, thereby improving the expressive power and
classification performance of these networks. Another model
is three-dimensional adaptive graph convolutional neural
network (3D-AGCN) that provides a new auxiliary
diagnostic method for schizophrenia. Other [50] combine
CNN and GNN for early detection of schizophrenia using
EEG data. These latest discoveries are avenues to be ex-
plored in our future work.
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