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ABSTRACT The rapid evolution of stealthy signals has introduced significant challenges in signal
classification, necessitating advanced methodologies for accurate identification and characterization. This study
investigates the classification of chaotic signals transformed into Analytic Chaotic Sequences. We utilized a
ResNet34 architecture, adapted for one-dimensional signal data, to assess how varying network depths influence
classification performance. The dataset comprised sequences with frequency- dependent variations, and the
model’s robustness was evaluated under varying noise levels. Results indicate that while the full ResNet34 model
maintains high accuracy at elevated signal-to-noise ratios, its performance deteriorates with increased noise. In
contrast, models with reduced depths (1, 2, and 3 layers) exhibit improved adaptability and noise resilience.
Notably, the 2-layer and 3-layer ResNet34 variants show greater robustness in noisy conditions, suggesting
practical benefits for real-world applications. This research highlights the importance of network depth and
frequency adaptation in chaotic signal classification, emphasizing that simplified models can provide efficient
performance and competitive accuracy, particularly in environments with fluctuating noise levels. Future work

will optimize the ResNet34 architecture and expand the dataset to enhance generalization and robustness.

KEYWORDS analytic chaotic sequences; Chebyshev polynomials; ResNet34; signal classification; deep

learning.

I. INTRODUCTION
he rapid evolution of signals with high levels of stealth has

precipitated significant challenges in signal classification,
driven by escalating requirements for enhanced security and
reliability in communication networks. Recent advancements
have yielded highly stealthy signals capable of evading
conventional classification methodologies, thereby com-
plicating accurate identification and characterization efforts
[1]. Integrating sophisticated algorithms and state-of-the- art
technologies has substantially augmented these signals’ stealth
characteristics, initiating an ongoing technological arms race
between developers of highly stealthy signals and classification
experts.

Within this context, chaotic signals have emerged as a
powerful tool for ensuring high stealth levels in various
practical applications. These signals possess inherent
properties that make them difficult to detect and intercept,
providing a natural advantage in scenarios where concealment
is crucial. In radar systems, chaotic waveforms enhance target
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detection and tracking capabilities, particularly in complex and
noisy signal environments or against sophisticated jamming
techniques, while maintaining a low probability of
intercept [2].

The application of chaotic signals extends beyond
traditional radar systems [3]. In wireless communication
networks, these signals increase channel capacity and spectral
efficiency, addressing the growing demand for higher data rates
and more efficient spectrum utilization. This is particularly
crucial for information transfer through radio channels, where
the transmitted data volume continues growing exponentially
[4, 5]. The stealth properties of chaotic signals make them
especially valuable in this context, allowing for secure and
covert communications. This progression necessitates
continuous adaptation and innovation in classification
techniques, as the primary challenge now encompasses not
only the detection of these elusive signals but also their precise
characterization within an increasingly complex and congested
electromagnetic spectrum. Enhanced classification techniques
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enable better detection, identification, and utilization of these
stealthy signals across various fields, ultimately improving
system performance and security while mitigating potential
misuse or interference. As the complexity of these signals
continues to grow, so does the need for advanced classification
methods to ensure their practical use and management across
diverse technological domains [6, 7].

Beyond theoretical contributions, the proposed framework
has potential applications in secure military communications,
radar systems, and IoT networks operating in challenging
environments. Its ability to classify chaotic signals under noisy
conditions makes it particularly relevant for real-time systems
where stealth and reliability are critical. To position our
contribution, we first review related studies on stealth
properties and signal classification approaches.

Il. RELATED WORKS

Several intrinsic properties of signals can influence their stealth
characteristics to varying degrees [8, 9]. For example, in [10],
the concept of IID-stealth was introduced. This concept refers
to Independent and Identically Distributed stealth signals,
which statistically resemble white noise and are characterized
by their ability to remain masked within the noise. As
demonstrated in [11], the numerical assessment of IID-stealth
is based on calculating nonparametric BDS-statistics, which
measure the closeness of the signal’s "shape" in pseudo-phase
space (a reconstructed state space derived from time series
using delay embedding) to that of "white" noise. For
independent and identically distributed random variables
("white" noise), the BDS statistics values lie within the range
of (-1.96, 1.96). On the other hand, structural stealth depends
on the complexity and variability of the signal’s structure,
making it harder for enemy to detect and decode the signal. By
optimizing the parameters of the communication system,
structural stealth can be maximized, thereby significantly
increasing the enemy’s time and effort required for successful
interception [12, 13].

It has recently been posited that effectively ensuring the
stealth of transmitted data requires achieving high levels of
both structural and IID-stealth in signals [14]. To this end, the
authors in [15] propose utilizing dynamic (deterministic) chaos
in forming the information sequence. The inherent
unpredictability and complex dynamics of chaotic signals make
them ideal for applications requiring high levels of security and
low detectability [16, 17]. Here are some key reasons why
chaotic signals are advantageous for stealth [16, 17]:

- the random-like nature of chaotic signals makes them
difficult to predict and intercept. This unpredictability ensures
that conventional methods do not easily detect the signals;

- chaotic signals typically exhibit wideband characteristics,
spreading their energy over a broad frequency range. This
reduces the chance of detection and interception by narrowband
receivers;

- despite their complex nature, chaotic signals can be
synchronized, allowing for coherent detection and secure
communication between transmitter and receiver.

However, classifying chaotic signals presents significant
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challenges due to their inherent characteristics:

- traditional classification methods often rely on energy-
based criteria, which may not adequately capture the unique
"shape" or dynamics of chaotic signals in pseudo-phase space;

- chaotic signals are susceptible to initial conditions,
leading to unpredictable long-term behavior that is difficult to
model accurately;

- chaotic signals often exhibit irregular patterns that can
resemble noise, posing challenges in distinguishing accurate
chaotic signals from random noise;

- in practical scenarios, chaotic signals may be obscured by
background noise, making their detection and classification
more challenging;

- the non-stationary nature of chaotic signals means their
statistical properties change over time, requiring adaptive
classification methods for consistent detection;

- achieving accurate classification and analysis of chaotic

signals often necessitates computationally intensive
algorithms, which can pose challenges for real-time
applications.

Researchers have proposed various methods to address
these challenges to classify chaotic signals. In [18], the authors
present a classification method for chaotic codes using higher-
order statistics features extracted via wavelet transforms and
several clustering techniques. They tested four clustering
methods: k-means, hierarchical clustering, fuzzy c-means, and
subtractive clustering. The study found that features extracted
from non-decimated wavelet transforms  generally
outperformed other methods, except when using subtractive
clustering, where stationary wavelet transforms performed
better. However, the reliance on higher-order statistics and
wavelet transforms suggests a need for more robust and
generalized feature extraction methods that can adapt to various
types of chaotic signals. Also, in [19], the authors explore
further the classification of chaotic signals generated by low-
dimensional deterministic models. They introduce statistical
concepts such as the "best predictor” of a signal and apply them
through the ergodic theory lens. This theoretical framework
allows them to develop a "bootstrapping" estimator to assess
the statistical properties of these signals. Their approach is
validated through comprehensive numerical simulations,
demonstrating its efficacy in handling deterministic chaotic
signals.

Despite the effectiveness of these statistical methods [18],
[19], the inherent complexities and uncertainties present in
real-world chaotic signals often necessitate more advanced
approaches. Therefore, leveraging novel classification
algorithms based on neural networks is increasingly advocated.
Neural networks offer adaptive learning capabilities that
significantly enhance classification accuracy and robustness
across diverse and challenging chaotic signal datasets.
Integrating these advanced algorithms with statistical insights
could pave the way for more comprehensive and effective
chaotic signal classification and analysis solutions.

Building on this idea, the article [20] focuses on employing
standard deep neural networks to classify univariate time series
from dynamical systems like the logistic map and the Lorenz
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system. The study underscores the effectiveness of a
convolutional neural network (CNN) architecture without
batch normalization layers in distinguishing chaotic from non-
chaotic behaviour. However, a significant limitation identified
in this work is its narrow exploration of the neural network’s
performance in real-world, high-dimensional chaotic systems.
The study also acknowledges the impact of training dataset size
on model performance, highlighting the need for broader
validation across more complex and diverse chaotic datasets to
enhance generalizability and applicability in practical settings.
In contrast, the article [21] introduces the Triad State Space
Construction (TSSC) as a novel image encoding method for
chaotic time series. By transforming time series data into TSSC
images, the authors utilize Convolutional Neural Networks
(ConvNet) for classification. The TSSC approach enhances
classification accuracy and robustness by capturing higher-
order temporal patterns and new forbidden regions beyond
traditional methods like permutation entropy. However, the
paper needs to address the computational complexity and
potential limitations of TSSC when applied to large datasets or
its generalization capability across different types of chaotic
systems. This approach highlights ongoing efforts to innovate
deep learning techniques for chaotic signal analysis, aiming to
overcome existing methodological limitations and expand
applications in diverse and challenging real-world scenarios.
The work [22] also focuses on classifying chaotic signals
using recurrence plots and CNNs, validated through the
Lyapunov exponent. The method effectively differentiates
between smooth and nonsmooth chaotic systems. However, the
paper could further investigate the scalability of this approach
and its application to more complex chaotic systems with
varying parameters. Moreover, [23] proposes a method for
classifying chaotic time series data by embedding at- tractor
images with time information and using residual networks
(ResNet). Their results demonstrate that incorporating time
information into the attractors improves classification
accuracy, particularly with Lorenz data. The study achieves
high test accuracy and effectively distinguishes between
different chaotic states, showcasing advancements in
leveraging deep learning for chaotic signal classification.
Recently, new works have emerged focusing on con-
structing novel chaotic signals. The subject of the re- search
involves the processes of formation and processing of
analytical chaotic signals to ensure the stealthiness of data
transmission [14]. The research synthesizes a method for
increasing the stealthiness of information transmission systems
based on signals formed by chaotic mapping using Chebyshev
polynomials. This method aims to ensure reliable information
protection in radio transmission systems, achieving a high level
of the signals’ structural and IID (independent and identically
distributed) stealthiness. The tasks include investigating the
effectiveness of the developed method by numerical
assessment of the level of structural and IID-stealthiness and
the quality of recovery of the masked information on the
receiving side. Also, in [24], authors propose an innovative
approach to enhancing the robustness of chaotic signal
construction by utilizing Mandelbrot kernel values. These
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values serve as weight coefficients during the transformation of
white Gaussian noise into fractal (colored) noise, thereby
dynamically altering the distribution density of the generated
chaotic sequence. The study demonstrates how this
transformation complicates the attractors within the sequence,
leading to a detailed analysis of its dynamic and static
characteristics. Furthermore, a comprehensive numerical
security assessment is conducted to evaluate the influence of
transformation kernel parameters on the sequence’s resilience
and reliability in practical applications.

As advancements in chaotic signal construction continue to
evolve, there is a critical need for corresponding advancements
in signal classification methodologies. The complex and
unpredictable nature of chaotic signals necessitates innovative
approaches to discern and analyze their unique characteristics
effectively. By harnessing the adaptive learning capabilities
and deep learning architectures of neural networks, researchers
aim to achieve superior classification accuracy and robustness
across a wide range of chaotic signal types and scenarios. This
research aims to develop new algorithms based on neural
networks tailored explicitly for classifying these emerging
chaotic signals.

In recent years, hybrid architectures combining
transformer/attention modules with other techniques have
begun to show promising results in signal and time-series tasks.
For example, in [28] authors present a CNN-Transformer
hybrid for automatic modulation classification in radio
frequency signals, comparing multi-head, causal, and sparse
attention mechanisms and demonstrating significant reductions
in inference time while maintaining classification performance.
Moreover, in [29] has been proposed a hybrid transformer +
XGBoost ensemble model optimized via wavelet
decomposition and chaotic billiards optimization for
forecasting chaotic systems, achieving robust performance
across frequency bands. Another recent work develops a
dynamic adaptive graph convolutional transformer for time-
series modeling, combining graph convolution and attention-
based modules to capture temporal dependencies and relational
structure in the data [30]. These recent studies highlight the
growing role of hybrid and attention-based architectures in
time-series and chaotic signal analysis, but further research is
required to address the challenges of efficiency and adaptability
in real-time applications.

lll. MATERIAL AND METHODS

A. DATASET FORMATION

In this work, we plan to classify chaotic signals proposed in
[14]. Thus, to create the dataset, we use the Chebyshev
polynomial of the first kind, third order:

X, = 4x3 -3x,, (1)

where 7 =0---N —1 is the number of samples in the
sequence and xy is the initial value of the sequence.
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We will use an analytic signal to "destroy" the structured
image in the pseudophase space, as proposed in [14]. The
analytic signal corresponding to expression (1) is defined as:

‘).Cn:xn—i—jyn’ (2)

where y = {yo s Vst nyl} is the imaginary part of the
analytic signal given by the Hilbert transform of the input

sequence X, = {xo,xl,---,fol} :

=

y(n)= % ()

=~
Il

This representation provides direct access to the instantaneous
envelope 4, and phase v, calculated as:

Anz‘/'l‘:«/xf+yj , 4

and

v, = arctan [ alt j , ®)]
Y

After transferring the complex amplitude to the harmonic
modulation frequency @, we obtain the Analytic Chaotic
Sequence (ACS) in the form:

s, = Re(Anej“’”) = A4, cos(y, +on), (6)

Fig. 1 shows the transformation of the Chebyshev polynomial
of the first kind, third order, to the ACS with w = 1.0.
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Figure 1. Transformation of the Chebyshev Polynomial to
ACS.

The analysis of Fig. 1 demonstrates the effectiveness of the
ACS transformation in disrupting the structured shape of the
original Chebyshev polynomial sequence. The resulting
sequences exhibit a more random behavior, potentially
displaying a high level of stealth. We should create a dataset that
accurately captures these frequency-dependent variations to
distinguish sequences transformed with different frequencies in
ACS.

Each class in the dataset represents a unique frequency
setting, enabling the model to discern and classify sequences
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based on their frequency-transformed characteristics. This
approach enhances our understanding of the chaotic behaviors
introduced by ACS and prepares the dataset for sophisticated
pattern recognition tasks, essential for applications requiring
robust signal analysis and classification. The dataset consists of
10 classes, with nine classes showcasing sequences transformed
using ACS at varying frequencies (w) from 0.5 to 5 with step 0.5,
alongside one class featuring original Chebyshev polynomial of
the first kind, third order (cp31). Each class contains 10,000
sequences, each 1024 units in length, with initial values for the
Chebyshev polynomial sequences spanning from 0.28 to 0.98.
To ensure sequence diversity, the initial values of the Chebyshev
polynomials were systematically varied across a predefined
range. This approach generated a wide spectrum of chaotic
sequences with distinct frequency-dependent characteristics. The
range was chosen to include both stable and unstable regions of
the polynomial dynamics, thereby preventing repetitive or
degenerate sequences. While this construction ensures high
variability, potential biases may still arise from focusing only on
Chebyshev-based chaotic sequences.

B. NEURAL NETWORK ARCHITECTURE AND
TRAININGMETHODOLOGY

For this classification problem, we choose a ResNet34
architecture (Fig. 2) due to its proven efficacy in handling
complex image and signal classification tasks [25].

‘ Input signal (1, 1024) U

Convi
(64, 1, 1024)

Layer 1
(64,1, 512)

Layer 2
(128, 1, 256)

Layer 3
(256, 1, 128)

Layer 4
(512, 1, 64)

Flatten (1, 512)

Fully connected
(1,10)

Softmax

Figure 2. The architecture of ResNet 34 [25].

ResNet34, a deep residual network, leverages skip
connections to mitigate the vanishing gradient problem, allowing
for practical training of intense networks. This architecture is
particularly suitable for capturing the intricate patterns in our
frequency-transformed sequences. ResNet34 is typically used
for image classification, where the input consists of RGB images
with three channels. However, we adapt the network for signal
classification to accept input sequences with a single channel, as
our data represents one-dimensional signals rather than three-
dimensional image data. This adaptation involves modifying the
first convolutional layer to accommodate an input shape with one
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channel instead of three. By doing so, the network can effectively
process and learn from the one-dimensional signal data while
retaining the powerful feature extraction capabilities of the
ResNet34 architecture.

To train the model, we use the cross-entropy loss function and
the Adam optimizer. The cross-entropy loss function is defined
as [26]:

N

Loss = —Z v, log ( v, ) , @)

i=1

where y; is the true label and )A/l. is the predicted probability

for class i, N — number of classes.

The Adam optimizer updates the model parameters using the
following steps [26]:

1. Update biased first moment estimate:

m, = fm,_, +(1_ﬂ1)gn (8)

where m;, is the exponentially moving average of the gradients,
f is the decay rate for the first moment, and g; is the gradient at
time step t.
2. Update biased second raw moment estimate:

v, =BV +(1_182)gt2’ )

where v, is the exponentially moving average of the squared
gradients, and £, is the decay rate for the second moment.
3. Compute bias-corrected first moment estimate:

A m,
m, —W, (10)

where ”% is the bias-corrected first moment estimate.

4. Compute bias-corrected second raw moment estimate:

~ v
vt t+1 2 (11)

-4

where V, is the bias-corrected second moment estimate.

5. Update parameters:

am
0=0 ——+¢

t t-1 A 2
\Y Vf

where 6, is the parameter being updated, o is the learning rate,
and ¢ is a small constant to prevent division by zero.

The Adam optimizer combines the advantages of AdaGrad
and RMSProp, making it well-suited for training deep learning
models. It adapts the learning rate for each parameter

(12)
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individually by considering both the first and second moments
of the gradient, and it corrects for bias in these moment estimates.

We plan to explore how the number of layers in ResNet34
influences model performance. Specifically, we aim to
investigate whether deeper layers improve the model’s ability to
classify sequences with subtle frequency-dependent variations or
if a shallower network suffices.

The dataset is divided into training, validation, and test sets to
evaluate the model effectively. First, the data is split into two
parts: 70% for training and 30% for testing. The 30% test data is
then further divided equally to form validation and test sets. This
ensures that the model is trained on 70% of the data, validated on
15%, and tested on the remaining 15%, allowing for a
comprehensive evaluation of its performance.

This approach allows us to monitor the model’s performance
on unseen data during training, tuning hyper- parameters based
on validation set performance, and ultimately assessing the final
model accuracy on the test set. This structured division ensures
that our model generalizes well to new, unseen sequences and
effectively captures the frequency-dependent variations
introduced by the ACS transformation.

IV. RESULTS

The initial step in analyzing the performance of our ResNet34
model on the signal classification task is to visualize the
activation functions for each layer in the network. The
activations demonstrate how the ResNet34 model processes and
transforms the input signals through its deep network
architecture. By examining these activations, we can gain
insights into how the model extracts features at different levels
of abstraction and how it distinguishes between different classes
of frequency-transformed sequences.

To correctly visualize feature maps from ResNet34 layers, we
use Uniform Manifold Approximation and Projection (UMAP)
[27]. UMAP is a dimensionality reduction technique that helps
in visualizing high-dimensional data in lower dimensions,
making it easier to interpret the complex feature maps produced
by the deep layers of the network.

The UMAP algorithm involves the following mathematical
steps:

Step 1 — Constructing a fuzzy topological representation:

P=e % | (13)

where d(x;x;) is the distance between data points x; and x;, and
o; is a local connectivity parameter hat adjusts the scale of
distances for each data point.

Step 2 — Constructing a symmetrized graph representation:

A, =B +P,~EP, (14)

i i yo i
where Aj; represents the symmetrized weight between data

points x; and x;, combining the influence of both P;; and P;.
Step 3 — Optimizing the Low-dimensional Representation:
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where y; and y; are the low-dimensional representations of the

high-dimensional data points x; and x;.

Fig. 3 below displays these activation functions, illustrating

how each layer responds to the input signal data.

Layer 2

Figure 3. Activation Functions for Each Layer in ResNet34.

Upon examining the activations in Fig. 3, we found that layer
1 shows a relatively scattered distribution of activations,
indicating that the first layer captures a broad range of features.
In layer 2, the activations begin to cluster, reflecting the layer’s
focus on more specific features. By layer 3, the activations
become more complex and overlap significantly, making it
difficult to visually distinguish between different classes.
Finally, in layer 4, although activations continue to show
overlapping patterns, this indicates that the network is capturing
more abstract, high-level features. While these deeper layers may
not visually separate classes as clearly, they are likely integrating
multiple complex features that contribute to the final decision-
making in classification tasks. This observation implies that the
intermediate layers might not effectively capture distinctive
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features for each class, underscoring the role of deeper layers in
the ResNet34 architecture for differentiating between frequency-
transformed sequences. To better understand the impact of
network depth, we examine how varying the number of layers in
the ResNet34 architecture affects classification performance,
aiming to find the optimal balance between model complexity
and accuracy. Each variant of the ResNet34 model was trained
using a dataset of ACS. After evaluating each model on the test
data, we observed that the confusion matrix for each ResNet34
variant showed 100% accuracy. Following this achievement, our
next objective was to assess the robustness of these models in the
presence of noise. To simulate this scenario, we generated 21
instances of white noise with varying standard deviations,
altering the signal-to-noise ratio (SNR).

VOLUME 24(4), 2025
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Fig. 4 presents four plots, each showing model accuracy as a
function of SNR (in dB). This evaluation provides insights into
how the classification performance of the models degrades as
input signals become noisier. By analyzing these results, we
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assess the robustness of each ResNet34 variant to noise and
identify which depth configuration maintains the highest
accuracy across varying levels of noise interference.
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Figure 4. Performance comparison of ResNet34 variants under varying noise conditions.

The analysis of Fig. 4 reveals interesting patterns in how
ResNet34 variants with different numbers of layers perform
across varying SNR. The full ResNet34 model maintains almost
perfect accuracy at high SNR values, above 10 dB, but its
performance drops sharply as noise increases below this
threshold. This behavior is consistent across different classes of
ACS.

In contrast, the ResNet34 with 3 layers shows more varied
performance depending on the class. Some configurations
demonstrate impressive robustness to noise, maintaining high
accuracy even at very low SNR levels. Others behave more like
the full ResNet34, with sharp accuracy drops in noisy conditions.
The 2-layer version of ResNet34 exhibits the most diverse
behavior across classes. Certain classes maintain moderate
accuracy even in very noisy conditions, while others show sharp
transitions similar to the full model. This diversity suggests that
the 2-layer model offers flexibility in tuning for specific noise
environments.

Interestingly, the ResNet34 with just 1 layer behaves similarly
to the full model, showing sharp transitions around 10 dB SNR
for most classes. It maintains high accuracy in low-noise
conditions but struggles in noisier environments.

These observations highlight how reducing the network depth
allows for more diverse behavior and potentially better
performance in noisy conditions for some ACS. The 3- layer and
2-layer models appear to offer a good balance between model
complexity and noise robustness, making them potentially
suitable for real-world applications with varying noise levels.

The impact of ACS becomes more pronounced in models with
fewer layers, suggesting that careful tuning could optimize
performance for specific noise conditions. While the full
ResNet34 performs well in low-noise scenarios, the reduced-
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depth versions with appropriate ACS might be more suitable for
applications where robustness to noise is crucial.

This analysis underscores the importance of considering both
network depth and frequency in ACS when designing models for
signal classification tasks, especially in environments with
varying noise levels. It demonstrates that simpler models can
sometimes offer advantages in terms of adaptability and
robustness to noise, challenging the notion that deeper networks
are always better.

To comprehensively assess the performance of each model, an
examination of their accuracy across varying SNR is essential.
Fig. 5 provides a comparative analysis of four ResNet34 variants
under different SNR conditions. The graph illustrates a
consistent trend across all models, depicting an S-shaped curve
where accuracy increases as SNR improves.

At higher SNR levels, particularly above 10 dB, all models
achieve near-perfect accuracy, converging closely to 1.0.
Conversely, at lower SNR levels below -10 dB, performance
notably declines, with accuracy hovering around 0.1, indicative
of a challenge akin to random guessing in a 10-class
classification scenario.

Distinctive differences between the models manifest within
the 0-10 dB SNR range. The ResNet34 model with 1 layer
demonstrates a slight advantage in performance, particularly
noticeable between 5-10 dB. The 3-layer variant exhibits a
marginal lag in the 5-10 dB range but shows comparable
performance at higher SNR levels. Interestingly, the full
ResNet34 and its 2-layer counterpart display remarkably similar
accuracy profiles across all SNR levels.
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Accuracy vs. SNR for Different Models

1.0 4 —®— Full ResNet34
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Accuracy

Figure 5. Accuracy vs. SNR for Different Models.

This consistency across models suggests comparable
resilience to noise, with minimal variability observed in critical
transition ranges. Notably, the performance parity between the
2-layers model and the full ResNet34 implies that, for this
specific task, a simplified model could offer computational
efficiency without substantial compromise in accuracy.

In summary, Fig. 5 underscores that while subtle performance
distinctions exist among ResNet34 variants, their overall
response across SNR levels remains largely analogous. The
selection between these models may hinge on considerations
such as computational resources and specific performance
requirements, particularly within the 0-10 dB SNR range where
nuanced differences are most pronounced. Regarding
computational efficiency, the model was trained on an NVIDIA
GeForce RTX 3050 GPU (4 GB) in approximately 30 minutes
for the full dataset. Inference requires less than 1 ms per
sequence, which demonstrates the suitability of the approach for
near real-time applications.

VI. CONCLUSIONS

The development of signals with high stealthiness has
significantly impacted the field of signal classification, driven
by the increasing need for secure communication. This study
applied ResNet34 to chaotic signals transformed by Analytic
Chaotic Sequences from Chebyshev polynomials and
evaluated robustness under varying SNR conditions.

Results show that while the full ResNet34 model achieves
near-perfect accuracy at high SNR levels, its performance
drops significantly with increased noise. In contrast, ResNet34
models with fewer layers (1, 2, and 3 layers) exhibit varying
degrees of robustness to noise. The 2-layer and 3-layer models
demonstrate better adaptability in noisy environments,
indicating that reduced-depth architectures may offer practical
advantages for real-world applications. In addition, the ACS
transformation contributes to the stealthiness of chaotic signals
by making them statistically resemble white noise, further
strengthening their suitability for secure communication
scenarios. This study underscores the importance of network
depth and frequency adaptation in signal classification, with
simplified models providing efficient performance and
competitive accuracy, especially in noisy conditions.

Future research will focus on optimizing ResNet34 through
alternative configurations, advanced regularization, and hybrid
architectures to improve generalization. Extensions will also
include scaling to other families of chaotic signals and testing
in real-time scenarios such as military communications, radar-
based detection, and low-power IoT. Limitations of the present
study include reliance on Chebyshev-based sequences,
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evaluation restricted to white noise, and scalability to larger
datasets, which we aim to address by expanding the dataset
with diverse signal types and real-world noise.
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