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 ABSTRACT The rapid evolution of stealthy signals has introduced significant challenges in signal 
classification, necessitating advanced methodologies for accurate identification and characterization. This study 
investigates the classification of chaotic signals transformed into Analytic Chaotic Sequences. We utilized a 
ResNet34 architecture, adapted for one-dimensional signal data, to assess how varying network depths influence 
classification performance. The dataset comprised sequences with frequency- dependent variations, and the 
model’s robustness was evaluated under varying noise levels. Results indicate that while the full ResNet34 model 
maintains high accuracy at elevated signal-to-noise ratios, its performance deteriorates with increased noise. In 
contrast, models with reduced depths (1, 2, and 3 layers) exhibit improved adaptability and noise resilience. 
Notably, the 2-layer and 3-layer ResNet34 variants show greater robustness in noisy conditions, suggesting 
practical benefits for real-world applications. This research highlights the importance of network depth and 
frequency adaptation in chaotic signal classification, emphasizing that simplified models can provide efficient 
performance and competitive accuracy, particularly in environments with fluctuating noise levels. Future work 
will optimize the ResNet34 architecture and expand the dataset to enhance generalization and robustness. 
 

 KEYWORDS analytic chaotic sequences; Chebyshev polynomials; ResNet34; signal classification; deep 
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I. INTRODUCTION 
he rapid evolution of signals with high levels of stealth has 
precipitated significant challenges in signal classification, 

driven by escalating requirements for enhanced security and 
reliability in communication networks. Recent advancements 
have yielded highly stealthy signals capable of evading 
conventional classification methodologies, thereby com- 
plicating accurate identification and characterization efforts 
[1]. Integrating sophisticated algorithms and state-of-the- art 
technologies has substantially augmented these signals’ stealth 
characteristics, initiating an ongoing technological arms race 
between developers of highly stealthy signals and classification 
experts. 

Within this context, chaotic signals have emerged as a 
powerful tool for ensuring high stealth levels in various 
practical applications. These signals possess inherent 
properties that make them difficult to detect and intercept, 
providing a natural advantage in scenarios where concealment 
is crucial. In radar systems, chaotic waveforms enhance target 

detection and tracking capabilities, particularly in complex and 
noisy signal environments or against sophisticated jamming 
techniques, while maintaining a low probability of 
intercept [2].  

The application of chaotic signals extends beyond 
traditional radar systems [3]. In wireless communication 
networks, these signals increase channel capacity and spectral 
efficiency, addressing the growing demand for higher data rates 
and more efficient spectrum utilization. This is particularly 
crucial for information transfer through radio channels, where 
the transmitted data volume continues growing exponentially 
[4, 5]. The stealth properties of chaotic signals make them 
especially valuable in this context, allowing for secure and 
covert communications. This progression necessitates 
continuous adaptation and innovation in classification 
techniques, as the primary challenge now encompasses not 
only the detection of these elusive signals but also their precise 
characterization within an increasingly complex and congested 
electromagnetic spectrum. Enhanced classification techniques 
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enable better detection, identification, and utilization of these 
stealthy signals across various fields, ultimately improving 
system performance and security while mitigating potential 
misuse or interference. As the complexity of these signals 
continues to grow, so does the need for advanced classification 
methods to ensure their practical use and management across 
diverse technological domains [6, 7]. 

Beyond theoretical contributions, the proposed framework 
has potential applications in secure military communications, 
radar systems, and IoT networks operating in challenging 
environments. Its ability to classify chaotic signals under noisy 
conditions makes it particularly relevant for real-time systems 
where stealth and reliability are critical. To position our 
contribution, we first review related studies on stealth 
properties and signal classification approaches. 

II. RELATED WORKS 
Several intrinsic properties of signals can influence their stealth 
characteristics to varying degrees [8, 9]. For example, in [10], 
the concept of IID-stealth was introduced. This concept refers 
to Independent and Identically Distributed stealth signals, 
which statistically resemble white noise and are characterized 
by their ability to remain masked within the noise. As 
demonstrated in [11], the numerical assessment of IID-stealth 
is based on calculating nonparametric BDS-statistics, which 
measure the closeness of the signal’s "shape" in pseudo-phase 
space (a reconstructed state space derived from time series 
using delay embedding) to that of "white" noise. For 
independent and identically distributed random variables 
("white" noise), the BDS statistics values lie within the range 
of (-1.96, 1.96). On the other hand, structural stealth depends 
on the complexity and variability of the signal’s structure, 
making it harder for enemy to detect and decode the signal. By 
optimizing the parameters of the communication system, 
structural stealth can be maximized, thereby significantly 
increasing the enemy’s time and effort required for successful 
interception [12, 13].  

It has recently been posited that effectively ensuring the 
stealth of transmitted data requires achieving high levels of 
both structural and IID-stealth in signals [14]. To this end, the 
authors in [15] propose utilizing dynamic (deterministic) chaos 
in forming the information sequence. The inherent 
unpredictability and complex dynamics of chaotic signals make 
them ideal for applications requiring high levels of security and 
low detectability [16, 17]. Here are some key reasons why 
chaotic signals are advantageous for stealth [16, 17]:  

- the random-like nature of chaotic signals makes them 
difficult to predict and intercept. This unpredictability ensures 
that conventional methods do not easily detect the signals;  

- chaotic signals typically exhibit wideband characteristics, 
spreading their energy over a broad frequency range. This 
reduces the chance of detection and interception by narrowband 
receivers;  

- despite their complex nature, chaotic signals can be 
synchronized, allowing for coherent detection and secure 
communication between transmitter and receiver. 

However, classifying chaotic signals presents significant 

challenges due to their inherent characteristics:  
- traditional classification methods often rely on energy- 

based criteria, which may not adequately capture the unique 
"shape" or dynamics of chaotic signals in pseudo-phase space;  

- chaotic signals are susceptible to initial conditions, 
leading to unpredictable long-term behavior that is difficult to 
model accurately;  

- chaotic signals often exhibit irregular patterns that can 
resemble noise, posing challenges in distinguishing accurate 
chaotic signals from random noise;  

- in practical scenarios, chaotic signals may be obscured by 
background noise, making their detection and classification 
more challenging;  

- the non-stationary nature of chaotic signals means their 
statistical properties change over time, requiring adaptive 
classification methods for consistent detection;  

- achieving accurate classification and analysis of chaotic 
signals often necessitates computationally intensive 
algorithms, which can pose challenges for real-time 
applications.  

Researchers have proposed various methods to address 
these challenges to classify chaotic signals. In [18], the authors 
present a classification method for chaotic codes using higher-
order statistics features extracted via wavelet transforms and 
several clustering techniques. They tested four clustering 
methods: k-means, hierarchical clustering, fuzzy c-means, and 
subtractive clustering. The study found that features extracted 
from non-decimated wavelet transforms generally 
outperformed other methods, except when using subtractive 
clustering, where stationary wavelet transforms performed 
better. However, the reliance on higher-order statistics and 
wavelet transforms suggests a need for more robust and 
generalized feature extraction methods that can adapt to various 
types of chaotic signals. Also, in [19], the authors explore 
further the classification of chaotic signals generated by low-
dimensional deterministic models. They introduce statistical 
concepts such as the "best predictor" of a signal and apply them 
through the ergodic theory lens. This theoretical framework 
allows them to develop a "bootstrapping" estimator to assess 
the statistical properties of these signals. Their approach is 
validated through comprehensive numerical simulations, 
demonstrating its efficacy in handling deterministic chaotic 
signals. 

Despite the effectiveness of these statistical methods [18], 
[19], the inherent complexities and uncertainties present in 
real-world chaotic signals often necessitate more advanced 
approaches. Therefore, leveraging novel classification 
algorithms based on neural networks is increasingly advocated. 
Neural networks offer adaptive learning capabilities that 
significantly enhance classification accuracy and robustness 
across diverse and challenging chaotic signal datasets. 
Integrating these advanced algorithms with statistical insights 
could pave the way for more comprehensive and effective 
chaotic signal classification and analysis solutions. 

Building on this idea, the article [20] focuses on employing 
standard deep neural networks to classify univariate time series 
from dynamical systems like the logistic map and the Lorenz 
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system. The study underscores the effectiveness of a 
convolutional neural network (CNN) architecture without 
batch normalization layers in distinguishing chaotic from non-
chaotic behaviour. However, a significant limitation identified 
in this work is its narrow exploration of the neural network’s 
performance in real-world, high-dimensional chaotic systems. 
The study also acknowledges the impact of training dataset size 
on model performance, highlighting the need for broader 
validation across more complex and diverse chaotic datasets to 
enhance generalizability and applicability in practical settings. 
In contrast, the article [21] introduces the Triad State Space 
Construction (TSSC) as a novel image encoding method for 
chaotic time series. By transforming time series data into TSSC 
images, the authors utilize Convolutional Neural Networks 
(ConvNet) for classification. The TSSC approach enhances 
classification accuracy and robustness by capturing higher-
order temporal patterns and new forbidden regions beyond 
traditional methods like permutation entropy. However, the 
paper needs to address the computational complexity and 
potential limitations of TSSC when applied to large datasets or 
its generalization capability across different types of chaotic 
systems. This approach highlights ongoing efforts to innovate 
deep learning techniques for chaotic signal analysis, aiming to 
overcome existing methodological limitations and expand 
applications in diverse and challenging real-world scenarios.  

The work [22] also focuses on classifying chaotic signals 
using recurrence plots and CNNs, validated through the 
Lyapunov exponent. The method effectively differentiates 
between smooth and nonsmooth chaotic systems. However, the 
paper could further investigate the scalability of this approach 
and its application to more complex chaotic systems with 
varying parameters. Moreover, [23] proposes a method for 
classifying chaotic time series data by embedding at- tractor 
images with time information and using residual networks 
(ResNet). Their results demonstrate that incorporating time 
information into the attractors improves classification 
accuracy, particularly with Lorenz data. The study achieves 
high test accuracy and effectively distinguishes between 
different chaotic states, showcasing advancements in 
leveraging deep learning for chaotic signal classification.  

Recently, new works have emerged focusing on con- 
structing novel chaotic signals. The subject of the re- search 
involves the processes of formation and processing of 
analytical chaotic signals to ensure the stealthiness of data 
transmission [14]. The research synthesizes a method for 
increasing the stealthiness of information transmission systems 
based on signals formed by chaotic mapping using Chebyshev 
polynomials. This method aims to ensure reliable information 
protection in radio transmission systems, achieving a high level 
of the signals’ structural and IID (independent and identically 
distributed) stealthiness. The tasks include investigating the 
effectiveness of the developed method by numerical 
assessment of the level of structural and IID-stealthiness and 
the quality of recovery of the masked information on the 
receiving side. Also, in [24], authors propose an innovative 
approach to enhancing the robustness of chaotic signal 
construction by utilizing Mandelbrot kernel values. These 

values serve as weight coefficients during the transformation of 
white Gaussian noise into fractal (colored) noise, thereby 
dynamically altering the distribution density of the generated 
chaotic sequence. The study demonstrates how this 
transformation complicates the attractors within the sequence, 
leading to a detailed analysis of its dynamic and static 
characteristics. Furthermore, a comprehensive numerical 
security assessment is conducted to evaluate the influence of 
transformation kernel parameters on the sequence’s resilience 
and reliability in practical applications.  

As advancements in chaotic signal construction continue to 
evolve, there is a critical need for corresponding advancements 
in signal classification methodologies. The complex and 
unpredictable nature of chaotic signals necessitates innovative 
approaches to discern and analyze their unique characteristics 
effectively. By harnessing the adaptive learning capabilities 
and deep learning architectures of neural networks, researchers 
aim to achieve superior classification accuracy and robustness 
across a wide range of chaotic signal types and scenarios. This 
research aims to develop new algorithms based on neural 
networks tailored explicitly for classifying these emerging 
chaotic signals. 

In recent years, hybrid architectures combining 
transformer/attention modules with other techniques have 
begun to show promising results in signal and time-series tasks. 
For example, in [28] authors present a CNN-Transformer 
hybrid for automatic modulation classification in radio 
frequency signals, comparing multi-head, causal, and sparse 
attention mechanisms and demonstrating significant reductions 
in inference time while maintaining classification performance. 
Moreover, in [29] has been proposed a hybrid transformer + 
XGBoost ensemble model optimized via wavelet 
decomposition and chaotic billiards optimization for 
forecasting chaotic systems, achieving robust performance 
across frequency bands. Another recent work develops a 
dynamic adaptive graph convolutional transformer for time-
series modeling, combining graph convolution and attention-
based modules to capture temporal dependencies and relational 
structure in the data [30]. These recent studies highlight the 
growing role of hybrid and attention-based architectures in 
time-series and chaotic signal analysis, but further research is 
required to address the challenges of efficiency and adaptability 
in real-time applications. 

III. MATERIAL AND METHODS 
A. DATASET FORMATION 
In this work, we plan to classify chaotic signals proposed in 
[14]. Thus, to create the dataset, we use the Chebyshev 
polynomial of the first kind, third order: 
 

3
1 4 3  n n nx x x , (1) 

 

where 0 1 n N  is the number of samples in the 
sequence and x0 is the initial value of the sequence.  
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We will use an analytic signal to "destroy" the structured 
image in the pseudophase space, as proposed in [14]. The 
analytic signal corresponding to expression (1) is defined as: 
 

 n n nx x jy , (2) 

 

where  0 1 1, , ,  n Ny y y y  is the imaginary part of the 

analytic signal given by the Hilbert transform of the input 

sequence  0 1 1, , ,  n Nx x x x : 
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This representation provides direct access to the instantaneous 

envelope An and phase ψn, calculated as:  
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After transferring the complex amplitude to the harmonic 

modulation frequency ω, we obtain the Analytic Chaotic 
Sequence (ACS) in the form: 

 

   Re cos  j n
n n n ns A e A n   ,    (6) 

 
Fig. 1 shows the transformation of the Chebyshev polynomial 

of the first kind, third order, to the ACS with ω = 1.0. 

 

Figure 1. Transformation of the Chebyshev Polynomial to 
ACS. 

The analysis of Fig. 1 demonstrates the effectiveness of the 
ACS transformation in disrupting the structured shape of the 
original Chebyshev polynomial sequence. The resulting 
sequences exhibit a more random behavior, potentially 
displaying a high level of stealth. We should create a dataset that 
accurately captures these frequency-dependent variations to 
distinguish sequences transformed with different frequencies in 
ACS.  

Each class in the dataset represents a unique frequency 
setting, enabling the model to discern and classify sequences 

based on their frequency-transformed characteristics. This 
approach enhances our understanding of the chaotic behaviors 
introduced by ACS and prepares the dataset for sophisticated 
pattern recognition tasks, essential for applications requiring 
robust signal analysis and classification. The dataset consists of 
10 classes, with nine classes showcasing sequences transformed 
using ACS at varying frequencies (ω) from 0.5 to 5 with step 0.5, 
alongside one class featuring original Chebyshev polynomial of 
the first kind, third order (cp31). Each class contains 10,000 
sequences, each 1024 units in length, with initial values for the 
Chebyshev polynomial sequences spanning from 0.28 to 0.98. 
To ensure sequence diversity, the initial values of the Chebyshev 
polynomials were systematically varied across a predefined 
range. This approach generated a wide spectrum of chaotic 
sequences with distinct frequency-dependent characteristics. The 
range was chosen to include both stable and unstable regions of 
the polynomial dynamics, thereby preventing repetitive or 
degenerate sequences. While this construction ensures high 
variability, potential biases may still arise from focusing only on 
Chebyshev-based chaotic sequences. 

B.  NEURAL NETWORK ARCHITECTURE AND 
TRAININGMETHODOLOGY 
For this classification problem, we choose a ResNet34 
architecture (Fig. 2) due to its proven efficacy in handling 
complex image and signal classification tasks [25].  
 

 

Figure 2. The architecture of ResNet 34 [25]. 

ResNet34, a deep residual network, leverages skip 
connections to mitigate the vanishing gradient problem, allowing 
for practical training of intense networks. This architecture is 
particularly suitable for capturing the intricate patterns in our 
frequency-transformed sequences. ResNet34 is typically used 
for image classification, where the input consists of RGB images 
with three channels. However, we adapt the network for signal 
classification to accept input sequences with a single channel, as 
our data represents one-dimensional signals rather than three-
dimensional image data. This adaptation involves modifying the 
first convolutional layer to accommodate an input shape with one 
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channel instead of three. By doing so, the network can effectively 
process and learn from the one-dimensional signal data while 
retaining the powerful feature extraction capabilities of the 
ResNet34 architecture.  
To train the model, we use the cross-entropy loss function and 
the Adam optimizer. The cross-entropy loss function is defined 
as [26]: 
 

 
1

ˆlog


 
N

i i
i

Loss y y ,           (7) 

 

where yi is the true label and ˆiy  is the predicted probability 

for class i, N – number of classes.  
The Adam optimizer updates the model parameters using the 

following steps [26]:  
1. Update biased first moment estimate: 
 

 1 1 11  t t tm m g  , (8) 

 
where mt is the exponentially moving average of the gradients, 

β1 is the decay rate for the first moment, and gt is the gradient at 
time step t.  

2. Update biased second raw moment estimate: 
 

  2
2 1 21  t t tv v g  , (9) 

 
where vt is the exponentially moving average of the squared 

gradients, and β2 is the decay rate for the second moment.  
3. Compute bias-corrected first moment estimate: 
 

1
1

ˆ
1 


t
t t

m
m


, (10) 

 

where ˆ tm  is the bias-corrected first moment estimate.  

4. Compute bias-corrected second raw moment estimate: 
 

1
2

ˆ
1 


t
t t

v
v


, (11) 

 

where ˆtv  is the bias-corrected second moment estimate.  

5. Update parameters: 
 

1

ˆ
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t t

t

m

v

   , (12) 

 
where θt is the parameter being updated, α is the learning rate, 

and ε is a small constant to prevent division by zero.  
The Adam optimizer combines the advantages of AdaGrad 

and RMSProp, making it well-suited for training deep learning 
models. It adapts the learning rate for each parameter 

individually by considering both the first and second moments 
of the gradient, and it corrects for bias in these moment estimates.  

We plan to explore how the number of layers in ResNet34 
influences model performance. Specifically, we aim to 
investigate whether deeper layers improve the model’s ability to 
classify sequences with subtle frequency-dependent variations or 
if a shallower network suffices.  

The dataset is divided into training, validation, and test sets to 
evaluate the model effectively. First, the data is split into two 
parts: 70% for training and 30% for testing. The 30% test data is 
then further divided equally to form validation and test sets. This 
ensures that the model is trained on 70% of the data, validated on 
15%, and tested on the remaining 15%, allowing for a 
comprehensive evaluation of its performance. 

This approach allows us to monitor the model’s performance 
on unseen data during training, tuning hyper- parameters based 
on validation set performance, and ultimately assessing the final 
model accuracy on the test set. This structured division ensures 
that our model generalizes well to new, unseen sequences and 
effectively captures the frequency-dependent variations 
introduced by the ACS transformation. 

IV. RESULTS 
The initial step in analyzing the performance of our ResNet34 
model on the signal classification task is to visualize the 
activation functions for each layer in the network. The 
activations demonstrate how the ResNet34 model processes and 
transforms the input signals through its deep network 
architecture. By examining these activations, we can gain 
insights into how the model extracts features at different levels 
of abstraction and how it distinguishes between different classes 
of frequency-transformed sequences.  

To correctly visualize feature maps from ResNet34 layers, we 
use Uniform Manifold Approximation and Projection (UMAP) 
[27]. UMAP is a dimensionality reduction technique that helps 
in visualizing high-dimensional data in lower dimensions, 
making it easier to interpret the complex feature maps produced 
by the deep layers of the network.  

The UMAP algorithm involves the following mathematical 
steps:  

Step 1 – Constructing a fuzzy topological representation: 
 

 ,


i j

i

d x x

ijP e  , (13) 

 
where d(xi,xj) is the distance between data points xi and xj, and 

σi is a local connectivity parameter hat adjusts the scale of 
distances for each data point.  

Step 2 – Constructing a symmetrized graph representation: 
 

  ij ij ji ij jiA P P P P , (14) 

 
where Aij represents the symmetrized weight between data 

points xi and xj, combining the influence of both Pij and Pji.  
Step 3 – Optimizing the Low-dimensional Representation: 
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where yi and yj are the low-dimensional representations of the 

high-dimensional data points xi and xj.  
Fig. 3 below displays these activation functions, illustrating 

how each layer responds to the input signal data.  

 
 

 

Figure 3. Activation Functions for Each Layer in ResNet34. 

Upon examining the activations in Fig. 3, we found that layer 

1 shows a relatively scattered distribution of activations, 

indicating that the first layer captures a broad range of features. 

In layer 2, the activations begin to cluster, reflecting the layer’s 

focus on more specific features. By layer 3, the activations 

become more complex and overlap significantly, making it 

difficult to visually distinguish between different classes. 
Finally, in layer 4, although activations continue to show 

overlapping patterns, this indicates that the network is capturing 

more abstract, high-level features. While these deeper layers may 

not visually separate classes as clearly, they are likely integrating 

multiple complex features that contribute to the final decision-

making in classification tasks. This observation implies that the 

intermediate layers might not effectively capture distinctive 

features for each class, underscoring the role of deeper layers in 

the ResNet34 architecture for differentiating between frequency-

transformed sequences. To better understand the impact of 

network depth, we examine how varying the number of layers in 

the ResNet34 architecture affects classification performance, 

aiming to find the optimal balance between model complexity 

and accuracy. Each variant of the ResNet34 model was trained 
using a dataset of ACS. After evaluating each model on the test 

data, we observed that the confusion matrix for each ResNet34 

variant showed 100% accuracy. Following this achievement, our 

next objective was to assess the robustness of these models in the 

presence of noise. To simulate this scenario, we generated 21 

instances of white noise with varying standard deviations, 

altering the signal-to-noise ratio (SNR). 
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Fig. 4 presents four plots, each showing model accuracy as a 

function of SNR (in dB). This evaluation provides insights into 

how the classification performance of the models degrades as 

input signals become noisier. By analyzing these results, we 

assess the robustness of each ResNet34 variant to noise and 

identify which depth configuration maintains the highest 

accuracy across varying levels of noise interference. 

 

 

Figure 4. Performance comparison of ResNet34 variants under varying noise conditions. 

The analysis of Fig. 4 reveals interesting patterns in how 
ResNet34 variants with different numbers of layers perform 
across varying SNR. The full ResNet34 model maintains almost 
perfect accuracy at high SNR values, above 10 dB, but its 
performance drops sharply as noise increases below this 
threshold. This behavior is consistent across different classes of 
ACS.  

In contrast, the ResNet34 with 3 layers shows more varied 
performance depending on the class. Some configurations 
demonstrate impressive robustness to noise, maintaining high 
accuracy even at very low SNR levels. Others behave more like 
the full ResNet34, with sharp accuracy drops in noisy conditions. 
The 2-layer version of ResNet34 exhibits the most diverse 
behavior across classes. Certain classes maintain moderate 
accuracy even in very noisy conditions, while others show sharp 
transitions similar to the full model. This diversity suggests that 
the 2-layer model offers flexibility in tuning for specific noise 
environments.  

Interestingly, the ResNet34 with just 1 layer behaves similarly 
to the full model, showing sharp transitions around 10 dB SNR 
for most classes. It maintains high accuracy in low-noise 
conditions but struggles in noisier environments.  

These observations highlight how reducing the network depth 
allows for more diverse behavior and potentially better 
performance in noisy conditions for some ACS. The 3- layer and 
2-layer models appear to offer a good balance between model 
complexity and noise robustness, making them potentially 
suitable for real-world applications with varying noise levels.  

The impact of ACS becomes more pronounced in models with 
fewer layers, suggesting that careful tuning could optimize 
performance for specific noise conditions. While the full 
ResNet34 performs well in low-noise scenarios, the reduced-

depth versions with appropriate ACS might be more suitable for 
applications where robustness to noise is crucial.  

This analysis underscores the importance of considering both 
network depth and frequency in ACS when designing models for 
signal classification tasks, especially in environments with 
varying noise levels. It demonstrates that simpler models can 
sometimes offer advantages in terms of adaptability and 
robustness to noise, challenging the notion that deeper networks 
are always better.  

To comprehensively assess the performance of each model, an 
examination of their accuracy across varying SNR is essential. 
Fig. 5 provides a comparative analysis of four ResNet34 variants 
under different SNR conditions. The graph illustrates a 
consistent trend across all models, depicting an S-shaped curve 
where accuracy increases as SNR improves.  

At higher SNR levels, particularly above 10 dB, all models 
achieve near-perfect accuracy, converging closely to 1.0. 
Conversely, at lower SNR levels below -10 dB, performance 
notably declines, with accuracy hovering around 0.1, indicative 
of a challenge akin to random guessing in a 10-class 
classification scenario.  

Distinctive differences between the models manifest within 
the 0-10 dB SNR range. The ResNet34 model with 1 layer 
demonstrates a slight advantage in performance, particularly 
noticeable between 5-10 dB. The 3-layer variant exhibits a 
marginal lag in the 5-10 dB range but shows comparable 
performance at higher SNR levels. Interestingly, the full 
ResNet34 and its 2-layer counterpart display remarkably similar 
accuracy profiles across all SNR levels. 
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Figure 5. Accuracy vs. SNR for Different Models. 

This consistency across models suggests comparable 
resilience to noise, with minimal variability observed in critical 
transition ranges. Notably, the performance parity between the 
2-layers model and the full ResNet34 implies that, for this 
specific task, a simplified model could offer computational 
efficiency without substantial compromise in accuracy.  

In summary, Fig. 5 underscores that while subtle performance 
distinctions exist among ResNet34 variants, their overall 
response across SNR levels remains largely analogous. The 
selection between these models may hinge on considerations 
such as computational resources and specific performance 
requirements, particularly within the 0-10 dB SNR range where 
nuanced differences are most pronounced. Regarding 
computational efficiency, the model was trained on an NVIDIA 
GeForce RTX 3050 GPU (4 GB) in approximately 30 minutes 
for the full dataset. Inference requires less than 1 ms per 
sequence, which demonstrates the suitability of the approach for 
near real-time applications. 

VI. CONCLUSIONS 
The development of signals with high stealthiness has 
significantly impacted the field of signal classification, driven 
by the increasing need for secure communication. This study 
applied ResNet34 to chaotic signals transformed by Analytic 
Chaotic Sequences from Chebyshev polynomials and 
evaluated robustness under varying SNR conditions. 

Results show that while the full ResNet34 model achieves 
near-perfect accuracy at high SNR levels, its performance 
drops significantly with increased noise. In contrast, ResNet34 
models with fewer layers (1, 2, and 3 layers) exhibit varying 
degrees of robustness to noise. The 2-layer and 3-layer models 
demonstrate better adaptability in noisy environments, 
indicating that reduced-depth architectures may offer practical 
advantages for real-world applications. In addition, the ACS 
transformation contributes to the stealthiness of chaotic signals 
by making them statistically resemble white noise, further 
strengthening their suitability for secure communication 
scenarios. This study underscores the importance of network 
depth and frequency adaptation in signal classification, with 
simplified models providing efficient performance and 
competitive accuracy, especially in noisy conditions.  

Future research will focus on optimizing ResNet34 through 
alternative configurations, advanced regularization, and hybrid 
architectures to improve generalization. Extensions will also 
include scaling to other families of chaotic signals and testing 
in real-time scenarios such as military communications, radar-
based detection, and low-power IoT. Limitations of the present 
study include reliance on Chebyshev-based sequences, 

evaluation restricted to white noise, and scalability to larger 
datasets, which we aim to address by expanding the dataset 
with diverse signal types and real-world noise. 
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