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 ABSTRACT This research explores the integration of neural networks into software protection mechanisms, 
focusing on enhancing cryptographic robustness against unlicensed copying and unauthorized access. The primary 
purpose is to develop a robust method that combines obfuscation and encryption to protect software by binding its 
activation and operation to specific hardware and user data, thereby preventing unlicensed replication and 
disassembly. The approach involves generating a unique hash of hardware identifiers, training a neural network 
on a remote server to produce a bytecode sequence for a virtual machine, and using the network’s weights as an 
activation code. Key results show that optimal neural network configurations, particularly those with two dense 
layers and one LSTM layer, achieve 100% accuracy in mapping predefined inputs to specific bytecodes within an 
average training time of 11 seconds, while generating pseudorandom outputs for all other inputs. Statistical 
analysis of output distributions reveals high entropy, demonstrating resilience against statistical attacks. The 
proposed method offers a layered defense against common attack vectors and ensures persistent security 
throughout the software’s lifecycle. 
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I. INTRODUCTION 
he protection of software from unauthorized use involves 
countering actions by malicious actors, such as using the 

full functionality of the software without acquiring the 
appropriate license, sharing a legally purchased copy with other 
users, using more copies than allowed by the license, as well as 
unauthorized analysis of the software’s copyrighted data and 
algorithms. Typically, protection tasks can be implemented 
through hardware keys, software methods, or a combination of 
both. 

An external hardware key, typically connected via USB, 
can either perform user authentication (e.g., using a private key 
stored in the device and inaccessible externally) or execute part 
of the main software's functions, such as implementing 
algorithms that are the intellectual property of the software 
developer and must be protected from disassembly. 
Alternatively, the target executable code may be stored in the 
software file in encrypted form and decrypted by the hardware 
key during execution, then passed on to the main program for 
execution. A key advantage of using hardware keys is their 
increased resistance to hacking, as compromising hardware 
tools requires expensive specialized equipment that is 

inaccessible to most attackers. However, a hardware key 
reduces the number of available USB ports, may load the USB 
bus bandwidth, and its use may not always be convenient for 
users. 

Software methods involve verifying the authenticity of the 
software copy during installation and/or while the program is 
running, which can occur locally or on a remote server. 
Periodic sending of identification data of the installed copy to 
a remote server via the Internet during regular program 
operation allows for the timely detection of unauthorized 
software use, with all necessary checks being performed on the 
server. The server can also be used for remote execution of 
critical code fragments that should not be available for analysis. 
However, such a scheme requires a constant connection, which 
may be inconvenient or impossible. The advantage of server-
based protection is that compromising it requires breaching the 
server software itself, which is usually not an easy task. 

Moreover, any software method always involves certain 
actions on the local computer, including entering and initially 
processing the serial number, as well as performing various 
operations depending on the results of local or remote checks. 
To control the number of installed copies, software is often 
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linked to a specific hardware configuration of the computer 
(video adapter, HDD, BIOS, network card, etc.). In this case, 
identification data typically consists of a set of unique 
identification numbers of the corresponding hardware or the 
result of their transformation using a cryptographic function 
(e.g., encryption, hashing). The identification data are usually 
sent to the server during the installation process, and the 
server’s response may contain an activation code, which can be 
used both for completing the installation successfully and for 
subsequent software operation (either at program startup or 
periodically during its operation). 

The success of an attacker's efforts to bypass a protection 
algorithm, which is partially or fully executed locally, largely 
depends on the ability to disassemble the program. Protection 
against disassembly can be achieved by applying a 
cryptographic transform to the program code [1], where a 
critical section of the program is decrypted just before 
execution, then executed, and then either encrypted again or 
erased, thereby preventing static disassembly. However, this 
does not eliminate the possibility of dynamic analysis, where 
the attacker pauses the program and dumps the process memory 
immediately after decryption to obtain the decrypted code. The 
reliability of this method also significantly depends on the 
ability to hide the cryptographic key from the attacker, which 
can be difficult if they have full access to the system. To 
address this vulnerability, white-box cryptography has been 
proposed, where the key for the AES or DES algorithm is 
hidden in a modified execution scheme [2]. 

A method to mitigate the analysis of already disassembled 
code is obfuscation, which involves transforming the program 
code in a way that does not alter its functionality but makes it 
more difficult to analyze. For instance, unnecessary operations 
that do not perform any useful work can be added to the 
program to artificially increase its execution time, inflate its 
size, and divert the attacker’s attention, thereby making it 
harder to understand the disassembled program. Variants of 
obfuscation include various control flow transformations, data 
obfuscation (e.g., securely hiding cryptographic keys or 
message strings displayed to the user upon triggering 
protection), and preventive transformations that complicate 
automatic deobfuscation [1]. 

An additional obfuscation method is virtualization, where 
the protected code is converted into a sequence of bytecode for 
a virtual machine, which is then executed by a specialized 
interpreter [3, 4]. In this case, static code analysis is impossible 
if the attacker lacks knowledge of the virtual machine’s 
command system, and dynamic analysis becomes significantly 
more challenging because the attacker is forced to navigate 
through the cycle of parsing and dispatching the virtual 
machine instructions during step-by-step execution. The degree 
of obfuscation can be increased by applying multiple layers [5]. 

Thus, the combination of obfuscation and encryption allows 
for the creation of an optimal protection algorithm. In this 
study, the use of artificial neural networks is considered for this 
purpose, as they enable implementing arbitrarily complex 
mappings between input and output data, and the actual 
algorithm implemented by such a network is difficult to 
analyze, even if the network structure and its weights are 
known. 

The ideas of using neural networks in encryption and 
obfuscation tasks have been repeatedly proposed over the past 
few decades [6, 7]. Some of the earliest works in this area 
include [8] and [9], which proposed using a Hopfield neural 

network for a symmetric encryption scheme. In [8], a Hopfield 
neural network with a limited set of weights (each weight can 
only have values of 1, 0, or -1) was used as part of the 
encryption and decryption algorithm. The scheme employs two 
secret keys, which, after being processed by the neural network 
and subjected to a projection function, are transformed into a 
bitstream that encrypts or decrypts data using the XOR 
operation. Here, the neural network is effectively used to 
transform the secret key such that different encrypted messages 
are generated for the same plaintext depending on the chosen 
permutation matrix. In [9], the same property of the Hopfield 
network, that is, convergence to one of the stable states 
(attractor) within a finite number of steps, was utilized, but the 
transformations were performed not on the key, but on the 
message to be encrypted. The encryption result is a random 
sequence that causes the network state to converge to an 
attractor, equivalent to the transformed plaintext. The 
cryptographic strength of such a system is analyzed in [10]. 

The fact that a neural network can act as associative 
memory, producing specific sequences in response to partial, 
distorted, or even random input, has been utilized in several 
newer works on neural networks with different structures, 
particularly autoencoders [11, 12]. As it is shown in [13], 
training examples are stored as attractors in overparameterized 
autoencoders, while overparameterized sequence encoders 
store training examples as stable limit cycles and are more 
efficient in memorizing than autoencoders. Other architectures 
were also researched for associative memory tasks, such as 
spiking neural network [14] or transformers [15]. 

In [16], a scheme for generating a secret key through 
training identical neural networks (so-called tree parity 
machine) on both the sender’s and receiver’s sides is described. 
Synchronization is achieved by using identical random input 
data for training the neural network. The trained network's 
weights are used as the key for symmetric 
encryption/decryption via the XOR method or algorithms like 
AES or DES. A similar scheme is also investigated in [17], and 
generalized to vector tree-parity machine in [18]. Also, using 
Generative Adversarial Networks (GANs) for synchronizing 
neural networks on the sender’s and receiver’s sides was 
proposed. Specifically, in [19], a symmetric encryption scheme 
is studied where both parties know a secret key unknown to the 
adversary and train neural networks of identical structures (one 
fully connected layer and several convolutional layers) to 
minimize the receiver's message reconstruction error while 
simultaneously minimizing the mutual information between 
the plaintext and the adversary's reconstruction, which is also 
modeled by a neural network of similar structure. Application 
of neural networks to asymmetric cryptographic schemes was 
proposed recently as well [20, 21]. 

In [22], multilayer neural networks were used for 
encryption/decryption through character sequence substitution. 
The secret key consists of the network structure and its set of 
weights. Separate networks are trained for encryption and 
decryption, each transforming an input bit sequence into an 
output sequence, so the mapping table must be pre-agreed upon 
by the message sender and receiver. The article provides an 
example with 6-bit input and output sequences, and while the 
lengths can be arbitrary in general, the required computational 
resources for longer lengths are not evaluated. 

In [23] and [24], using a multilayer neural network for 
encrypting and decrypting data was proposed as follows: the 
hidden layer output is used as the encryption result, and the 
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output layer result is used for decryption. The neural network 
is trained on a dataset where the input and output data are 
identical. This allows the implementation of a substitution 
cipher for relatively short sequences (an example for 8-bit 
sequences is considered in [23]), since the size of the training 
set grows exponentially with increasing sequence length, and 
the probability of successful training likely decreases. 

In [25], a neural network is used only for decryption, while 
encryption is performed through a sequence of permutations 
and logical functions. The neural network is trained on a set of 
all possible pairs of plaintexts and encrypted messages. The 
total number of such pairs is limited by the characteristics of 
the secret key, which comprises a permutation table and a 
sequence of logical functions. Thus, the structure and weights 
of the neural network serve as a public key in an asymmetric 
encryption scheme. 

The use of a neural network solely for decryption is also 
considered in [26], where encryption of 8-bit input blocks is 
proposed using logical functions and bitwise shifts, followed 
by the addition of 4 random bits at random positions. A 3-layer 
neural network is used for decryption, although the method for 
forming the training dataset is not specified. 

In [27], the back-propagation neural network is used instead 
of traditional password/verification tables for user 
authentication, associating usernames with hashed passwords 
through trained network weights. Each input and each output 
represent a binary value, and both usernames and passwords 
are limited to 8 characters only. At the time of publication 
(2005), such a network required a relatively long training time. 
However, it can be assumed that this is due not only to the 
lower available computing power, but also to the need to 
memorize a significant amount of pseudo-random data with 
equally high accuracy. 

II. MATERIAL AND METHODS 
A. DESCRIPTION OF THE PROTECTION SYSTEM 
A typical sequence for installing software provided under a 
paid license, with control over the number of installed copies 
tied to the computer's hardware using a remote server, follows 
this process: 

1. The user launches the installer program and enters the 
purchased license serial number and user information (such as 
user name, organization name, email address, etc.). 

2. The installer collects information about the hardware 
characteristics and/or unique hardware identifiers, generates a 
hardware identifier based on this information, and sends it to 
the server along with the user data and serial number. 

3. The server verifies the submitted data and responds with 
either an activation code that allows the installation to continue 
or an error message (in case the allowed number of installed 
copies is exceeded). 

4. The received activation code is stored on the local 
computer. 

5. Each time the program is launched, the activation is 
verified by executing a specific algorithm on the activation 
code and the current hardware characteristics. These checks 
may also occur periodically or when using certain software 
functions during regular operation. 

This process is illustrated graphically in Fig. 1. From the 
security standpoint, the most vulnerable steps in this process 
are the operations performed on the activation code on the local 
computer, both during the installation of the software and 
during its operation. During installation, the time constraints on 

operations can be more lenient than during program startup. For 
instance, after sending a request to the server, the activation 
code can be sent to the client via email a few minutes after 
receiving the request, whereas at program startup, it is desirable 
that the execution time does not exceed a few seconds. 

 

Figure 1. Protected software installation flow 

Additionally, it is important to ensure that the activation 
code cannot be reused on another computer and that it cannot 
be forged by analyzing an arbitrary pair of "user data - 
activation code" and the corresponding program code that uses 
the activation code to unlock installer or program features. 

The following scheme, which combines obfuscation and 
encryption techniques, meets these requirements: 

1. On the local computer, an identifier string is generated, 
consisting of the user's name and unique hardware identifiers 
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(e.g., hard drive serial number and MAC address of the network 
adapter). 

2. A hash of the identifier string is calculated. 
3. On the remote computer, a neural network is trained, 

which, when provided with the hash from step 2 as input, 
generates a sequence of bytecodes for a virtual machine as 
output, and produces pseudorandom output data for any other 
input. 

4. The neural network's coefficients and its parameters 
(number of neurons, number of layers, type of activation 
function) form the activation code, which is sent to the client. 

5. After receiving the activation code, the installer 
program initializes the corresponding neural network, feeds the 
hash from step 2 into it, and processes the resulting bytecodes 
with the virtual machine's subroutine. The result of executing 
the code in the virtual machine is the successful completion of 
the installation process. 

6. To verify the activation of the program during each 
launch and/or during operation, steps 3-4 must be repeated 
when preparing the activation code for all program fragments 
subject to protection. Each protected fragment will be executed 
as described in step 5. 

The step of calculating the hash is necessary to normalize 
the length of the input data and to obscure which specific 
hardware parameters are used for identification: if raw data 
were transmitted, an attacker could extract them by analyzing 
the contents of the request sent to the server. To conceal the 
hash calculation step, instead of using standard hash functions, 
a single-layer neural network with random coefficients 
generated during installation and stored along with the 
activation code can be used. In this scenario, the procedure for 
obtaining the bytecode during activation verification is reduced 
to processing the identifier string with a neural network 
composed of the hash calculation layer and decryption layers 
(see Fig. 2). 

 

 

Figure 2. Activation flow 

The described method of using a neural network is 
somewhat similar to those previously discussed in the literature 
for encryption/decryption tasks [8-10, 27]. In fact, this scheme 
can be viewed as a specialized cryptographic system where the 
encryption process involves training the neural network, and 
decryption is the processing of the input sequence by the neural 
network. However, the significant difference here is that, for 
the purpose of protection, it is not necessary to implement the 
ability to encrypt arbitrary messages, but only the specific 
bytecode sequence subject to obfuscation needs to be 
encrypted, with a guarantee that no other input sequence will 
produce the same encryption result. Therefore, there is no need 
to develop a special algorithm for converting plaintext into 
ciphertext: the encrypted message can be any arbitrary byte 
sequence, and the neural network training process will ensure 
that this sequence will be decrypted into the specified plaintext. 
Thus, unlike classical cryptographic methods, where a secret 
key is typically generated using a random number generator 
and the ciphertext is formed by performing a sequence of 
actions (encryption algorithm) on the plaintext using the key, 
here the encryption algorithm is absent, and the decryption key 
is essentially the neural network's coefficients, which must be 
determined through a training procedure. The proposed scheme 
can also be interpreted as associative memory, with the 
specified byte sequence located in one of its regions. 

To enhance the degree of obfuscation, the optimal structure 
of the neural network would generate output data not as one 
large fragment of bytecode but sequentially, for example, byte 
by byte, after each subsequent byte is fed into the network. It is 
sufficient to accumulate bytes from the neural network’s output 
in memory only until a complete command code is obtained, 
which, after being executed by the virtual machine, will be 
step-by-step replaced by the next code. Alternatively, if all 
virtual machine command codes are of the same length, the 
output should produce data of the corresponding bit width. This 
way, there will never be more than one virtual machine 
command stored in memory at any given time, further 
complicating the analysis of such code. Recurrent neural 
networks, particularly those with LSTM architecture, which are 
well-suited for processing sequences [28], best fit this 
description. 

Block-wise processing can also be used, generating 
relatively short fragments of the output sequence (e.g., 16 bytes 
long) by either processing the same input sequence with several 
different neural networks or processing multiple parts of the 
input sequence with a single neural network trained to 
memorize several sequence pairs. 

B. TRAINING PROCEDURE 
The goal of the training process is to obtain a neural network 
that generates the predefined byte code only when the 
predefined hashed ID (obtained from user data and hardware 
identifiers) is presented on its input. For any other byte 
sequence, an arbitrary pseudo-random output should be 
generated. 

Thus, the loss function for network training is expected to 
satisfy the following conditions: 

- to be minimal for the case when input data is the correct 
hashed ID and output data precisely equals the predefined byte 
code; 

- to be relatively small for the case when both input and 
output data are not predefined values (since a garbage-in – 
garbage-out behavior is correct in this case); 
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- to be big for other cases. 
The proposed loss function is: 
 

𝐿(𝒚, 𝒚෕) = ቊ
‖(𝒚 − 𝒚෕)‖ଶ, 𝒚෕ = 𝒚௣

𝛼 ∙ ‖(𝒚 − 𝒚෕)‖ଶ, 𝒚෕ ≠ 𝒚௣
, (1) 

 
where yp is the predefined output and α is a small constant 

(value of 0.05 was used in experiments). This setup leverages 
the ability of a neural network to act like associative memory: 
the neural network memorizes the mapping between the 
predefined hashed ID and the specific byte code, acting like an 
addressable memory that outputs the byte code when presented 
with the correct "address" (hashed ID), while for other inputs, 
the network does not attempt to memorize the mappings 
precisely, and due to the weak loss applied to random inputs, it 
naturally generates diverse, pseudo-random outputs. The 
network may still loosely memorize these input-output pairs, 
but with less precision than the predefined pair. Since the loss 
is scaled down for these pairs, some degree of memorization 
occurs, but it is less accurate and likely contains more errors. 
These secondary associations are flexible and error-prone, 
giving the appearance of pseudo-random behavior rather than 
exact mappings. 

The first dense layer (see Fig. 2), used for hashing user data 
and hardware identifiers, has a sigmoid activation function. 
The last layer of the neural network being trained also uses a 
sigmoid activation function. Thus, the input and output of the 
network are modeled as sequences of floating-point numbers in 
the range [0, 1). To obtain the resulting bytecode, normalization 
is applied to outputs using multiplying by 256, followed by 
rounding to the nearest integer. 

The training set is formed from pairs of input and output 
sequences, where input sequence can be the predefined hashed 
ID (with predefined output sequence as output) or a random 
sequence (with a random sequence as output). As memorizing 
the predefined input-output pair is the main goal, it should 
appear frequently in the training set to reinforce its importance. 
The training set should be big enough to ensure the network 
learns to generate varied, flexible outputs for all non-
predefined cases, but not too big, so that the training time 
remains acceptable for practical implementation (possibly 
around a few dozen seconds). For our experiments, the training 
set consisted of 8 batches each containing 32 training samples, 
with 25% of predefined input-output pairs in each batch. 

Random inputs are mainly generated with a uniform 
random generator, and partly (up to 10% of training set) are 
obtained with a permutation of the predefined hashed ID. All 
random outputs are generated with a uniform random 
generator. 

Training is stopped once 100% accuracy is achieved for the 
pairs of predefined hashed ID and predefined byte code. This 
accuracy is calculated as the percentage of correctly reproduced 
symbols of the output sequence. 

Typical figures for custom loss and custom accuracy of 
training a network consisting of LSTM layer with 128 units and 
output dense layer with 16 neurons are shown in Fig. 3. 

Using this custom accuracy as a criterion for stopping 
neural network training leads to a satisfactory result in most 
cases, but sometimes training process may stop too early, when 
the predefined pair is perfectly memorized, but other attractors 
in output space have not been formed, so the network tends to 
output low variance data for any input except of predefined 

sequence. This is illustrated by Fig. 4, 5 and 6, where training 
results for a network with two dense and one LSTM layer are 
presented.  

 

 

Figure 3. Custom loss and custom accuracy for a typical 
training process (NLSTM = 128, α = 0.05) 

Fig. 4 shows a very rapid increase in accuracy to 100% after 
13 training epochs, while model loss and mean absolute error 
are still high enough. 

 

Figure 4. Example of too early training stop (ND1 = 256, ND2 = 
128, NLSTM = 64, α = 0.05) 
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Error distribution for output sequences after this training is 
shown in Fig. 5a. The error is calculated as the difference 
between the integer values in the output training samples and 
the floating-point values obtained by multiplying the network 
output by 256 before rounding to an integer. For the predefined 
sequence, error is in range (-0.5, +0.5) in both cases as 
expected, but for other sequences from training set, early stop 
led to wide error range of (-204.7, +194.54) with mean average 
value of 62.1 and almost uniform distribution (Fig. 5a). 
Analysis of model outputs shows that for both random input 
sequences and input sequences from the training set other than 
predefined sequence, the output data range is limited to 
128±20, while when the input sequence resembles the 
predefined input sequence, even with 20% noise, the output 
data exhibits greater variance and more closely resembles the 
predefined output sequence. This is a highly undesirable 
phenomenon from the perspective of the cryptographic security 
of the proposed method. These features of the output data 
distribution are shown in Fig. 6a. 

Fig. 5b shows a more successful training result, where, 
although the error range (- 113.1, +100.1) is rather large, the 
error distribution has a much more pronounced peak, and the 
mean absolute error is only 9.5. 

 

 
a) 

 
b) 

Figure 5. Error distribution: (a) – training stopped too early, 
(b) – training successful 

Fig. 6 shows the mean values (gray diamonds), standard 
deviations (thick lines), and ranges (thin lines) for each of the 
16 output symbols compared to the predefined output symbols 
(marked by x’s). These results are obtained from processing 
10,000 random input sequences with a uniform distribution by 
two neural networks with identical structure but different 
training result. 

As shown in Fig. 6a, simply testing the neural network 
whose training ended too early by feeding it random input 
sequences allows an attacker to approximately determine the 
output symbols of the predefined sequence. The correlation 
coefficient between the predefined sequence and the sequence 

of maximum outlier values at each position is 0.98, while the 
average absolute difference between symbols of these two 
sequences is only 11. In contrast, if the mean average error for 
all sequences from the training set is sufficiently low after 
training the neural network, the output symbols exhibit a 
broader distribution (Fig. 6b). The range and standard deviation 
are sufficiently wide and nearly identical for all output symbols 
in this case, preventing an attacker from determining the 
approximate values of the predefined output sequence through 
simple statistical analysis.  

A slight correlation is present even in this case between the 
predefined output sequence and the sequence of mean values. 
For the training result presented in Fig. 6b, the correlation 
coefficient is 0.11, but its absolute value varies from 0.01 to 
0.34 for different training results with average of 0.18. 
However, this does not allow for determining the exact or even 
approximate values, but only a very rough shape of the 
sequence graph, which, without knowledge of the scale, does 
not provide any significant advantage. In any case, it may be 
advisable to repeat the training procedure if the absolute value 
of this correlation coefficient is greater than 0.2. 

 

 
a) 

 
b) 

Figure 6. Output data distribution: (a) – training stopped too 
early, (b) – training successful 

To prevent early stopping of training, it is proposed to use 
an additional criterion for terminating the training process – 
reaching the threshold value of the mean absolute error. Let the 
proportion of predefined pairs in the training set be β, then to 
obtain the mean absolute error no more than E0 for predefined 
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output sequences and no more than E1 for other sequences, the 
threshold value should be 

 
𝐸் = 𝛽 ∙ 𝐸଴ + (1 − 𝛽) ∙ 𝐸ଵ (2) 

 
For instance, when 25% of predefined pairs are used in the 

training set, achieving a target mean absolute error of 10% of 
the data range (0, 255) requires a threshold value of ET = 0.075. 
An example of a training process where applying this threshold 
prevented too early termination is shown in Fig. 7 (for a 
network with the same structure of two dense and one LSTM 
layer as above). 

 

 

Figure 7. MAE threshold prevents too early training stop (ND1 
= 256, ND2 = 128, NLSTM = 64, α = 0.05) 

In this case, 100% accuracy was achieved after the 18th 
epoch, however, the training continued until both the MAE and 
accuracy targets were met. Fig. 5b and 6b relate to this very 
training result. 

Experiments showed that after reaching relatively high 
accuracy, a decrease in accuracy and an increase in loss 
occasionally occurred (see Fig. 3 near epochs 160 and 300). To 
mitigate this effect, the learning rate was adjusted as follows: 
at the end of each learning epoch, if the accuracy is higher than 
a given threshold (e.g. 75%) and current learning rate did not 
reach its lower threshold (e.g. 0.001), the learning rate is scaled 
by a factor of 0.75. 

 
 

III. RESULTS 
A. SELECTION OF THE OPTIMAL NEURAL NETWORK 
STRUCTURE 
Several neural network configurations were evaluated for the 
task of memorizing symbol sequences. Key metrics considered 
in the analysis included the number of epochs and time needed 
to reach the target accuracy of 100%, the total number of 
trainable parameters and mean absolute error values for 
predefined sequence as well as for other sequences. 

All configurations include dense output layer of 16 neurons 
with sigmoid activation function which is not specified in 
column “Configuration” (i.e. configuration “Dense (256)” 
means two dense layers, the first one with 256 and the second 
one with 16 neurons). All dense layers specified in the table use 
ReLU activation function, and all LSTM units use default 
activation configuration, namely hyperbolic tangent activation 
function for output and sigmoid activation function for the 
recurrent step. For model training, Adam optimizer was used 
with initial learning rate of 0.075 and learning rate adjustment 
with lower threshold of 0.001 as described in section II B. The 
mean absolute error threshold was set to 10% of the data range 
(ET =0.075). 

Each configuration was tested three times. The minimum 
and maximum numbers of epochs and average time to achieve 
the target accuracy are shown in Tables 1 and 2. MAE values 
are average of three tests and normalized to range (0, 255). 

Table 1. Results of Neural Network Training Experiments 
(1 or 2 hidden layers) 

Configuration Total 
trainable 

para-
meters 

Number of 
epochs to 

achieve the 
target 

accuracy 

Average 
training 

time, 
sec  

Reached MAE 

prede-
fined 

other 

Dense (512) 16912 4927..7829 284.36 0.10 1.61 
Dense (1024) 33808 2444..3549 126.93 0.10 1.42 
Dense (2048) 67600 2070..2691 105.10 0.08 1.17 
Dense (4096) 135184 1372..1798 72.68 0.08 1.32 
Dense (8192) 270352 1469..2096 93.29 0.09 1.14 
Dense (512) 

+Dense (256) 
144144 749..1115 46.32 0.09 1.57 

Dense (512) 
+Dense (512) 

279568 247..534 23.71 0.09 1.64 

Dense (1024) 
+Dense (512) 

550416 256..497 30.98 0.06 1.60 

Dense (1024) 
+Dense(1024) 

1083408 277..381 51.55 0.10 1.98 

Dense (2048) 
+Dense(1024) 

2149392 424..638 137.34 0.09 2.34 

LSTM (64) 17936 476..1369 85.41 0.10 12.69 
LSTM (80) 27536 578..1216 81.13 0.10 9.14 
LSTM (96) 39184 352..1062 70.21 0.09 6.13 
LSTM (128) 68624 281..1213 83.36 0.09 6.59 
LSTM (160) 106256 261..3044 135.17 0.11 6.23 
Dense (64) + 
LSTM (64) 

35152 334..696 28.96 0.11 3.53 

Dense (128) + 
LSTM (64) 

52624 259..386 17.44 0.09 3.82 

Dense (256) + 
LSTM (64) 

87568 185..395 16.75 0.11 5.67 

Dense (128) + 
LSTM (128) 

135824 220..326 14.69 0.08 2.02 

Dense (256) + 
LSTM (128) 

203536 117..207 12.91 0.07 3.46 

Dense (192) + 
LSTM (192) 

302032 200..299 17.79 0.08 1.63 

Dense (256) + 
LSTM (256) 

533776 169..249 21.54 0.10 1.44 
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Table 2. Results of Neural Network Training Experiments 
(3 or 4 hidden layers) 

Configuration Total 
trainable 

para-
meters 

Number of 
epochs to 

achieve the 
target 

accuracy 

Average 
training 

time, 
sec  

Reached MAE 

prede-
fined 

other 

Dense (64) + 
Dense(64) + 
LSTM (64) 

39312 152..310 12.60 0.09 8.74 

Dense (256) + 
Dense(128) + 
LSTM (64) 

87696 120..224 10.85 0.10 18.55 

Dense (128) + 
Dense(128) + 
LSTM (128) 

152336 135..207 10.50 0.10 4.31 

Dense (256) + 
Dense(256) + 
LSTM (128) 

269328 117..133 10.89 0.08 5.22 

Dense (128) + 
Dense(128) + 
LSTM (256) 

417040 120..145 14.89 0.08 3.22 

Dense (256) + 
Dense(256) + 
LSTM (256) 

599568 107..173 16.05 0.09 2.61 

Dense (64) + 
Dense(64) + 
LSTM (64) + 
LSTM (64) 

72336 135..734 17.61 0.08 13.25 

Dense (128) + 
Dense(128) + 
LSTM (128) 

+ LSTM(128) 

283920 90..631 14.01 0.10 9.15 

Dense (256) + 
Dense(256) + 
LSTM (128) 

+ LSTM(128) 

400912 113..348 19.09 0.08 16.05 

 
A total of 31 different configurations were analyzed. For 

neural networks with a homogeneous structure (one or two 
dense or one LSTM layer), the training time turned out to be 
significantly longer, especially for structures with only one 
dense layer. Increasing the number of neurons in such 
architectures allows reducing the training time only up to a 
certain limit; beyond this point, as the number of parameters 
increases, the training time starts to grow instead. This is 
illustrated in Fig. 8, which shows the dependence of training 
time on the total number of trainable network parameters. This 
pattern is also valid for mixed architectures, as shown in Fig. 9.  

The notation "N1-N2-N3" in Figs. 8 and 9 represents the 
network structure, where N1 is the number of neurons in the 
first dense layer, N2 is the number of neurons in the second 
dense layer, and N3 is the number of units in the LSTM layer 
(e.g., 512-0-0 denotes a structure with one dense layer 
containing 512 neurons, 1024-1024-0 represents a structure 
with two dense layers, each containing 1024 neurons, and 0-0-
160 represents a structure with a single LSTM layer with 160 
units). As in tables above, output dense layer of 16 neurons is 
the same for all structures and is not mentioned in labels. 

Most architectures with a single LSTM layer, even with a 
small number of units, provide significantly better performance 
than purely dense architectures with a comparable number of 
parameters. However, mixed architectures proved to be the 
most efficient overall (see Fig. 9). 

Using two dense layers before the LSTM layer leads to a 
slightly shorter training time than for one dense layer, but 
further increasing the number of layers does not lead to an 
improvement in training time, as shown in the last three rows 
of Table 2, which present results for architectures with two 

dense and two LSTM layers. 
 

 

Figure 8. Average training time for homogeneous layer 
structures 

 

Figure 9. Average training time for mixed layer structures 

The best-performing configurations were those with two 
dense layers and one LSTM layer, containing 128 or 256 
neurons in the dense layers and 128 units in the LSTM layer, 
achieving 100% accuracy very quickly (average training time 
was about 11 sec). These configurations demonstrated high 
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stability and are considered optimal for the problem under 
consideration. 

Experiments also showed that for the best configurations 
with 128 units in LSTM layer (labeled as “128-128-128” and 
“256-256-128” in Fig.9), the output layer size can be increased 
up to 36 neurons with only a slight increase in training time 
(Fig.10). 

 

 

Figure 10. Average training time vs output layer size 

This allows for memorizing longer bytecode sequences for 
each 16-byte input block and reduces the total size of activation 
data. For example, a bytecode sequence of length 108 can be 
produced using three neural network decoding blocks, each one 
with 16-byte input, two dense layers of 128 neurons, one LSTM 
layer of 128 units and output dense layer of 36 units, having 
156916 trainable parameters per network, or 470748 
parameters in total, or about 1.8 Mbytes of activation data. 

B. ANALYSIS OF OUTPUT DISTRIBUTION PATTERNS 
Analyzing the statistical behavior of output data generated from 
random input sequences with varying probability distributions 
provides insight into the method's security. If the attackers can 
decompile the code and reveal the network structure but does 
not have access to the valid activation code for the hardware 
data, their possible actions include neural network coefficients 
analysis and output distribution analysis. Ideally, network 
outputs should look like random noise for any input except of 
valid activation code, and neural network weights should not 
be correlated neither with the activation code nor the 
predefined output.  

Fig. 11 shows the output distribution for a network with two 
dense and one LSTM layer (marked as “128-128-128” in 
previous section) with 36 output neurons that was obtained by 
feeding 10000 random input sequences to the network inputs 
and averaging output values (normalized to range [0,256) and 
rounded to integer) for all outputs. The input values had 
uniform (Fig. 11, a), truncated normal with standard deviation 
of 64 (Fig. 11, b), and beta distributions (Fig 11, c, d). 

The output distribution is not uniform, but is unimodal, 
symmetrical in most cases and has sufficiently high entropy of 
7.84…7.94, which is quite close to the entropy of the 
corresponding uniform distribution (8). 

For asymmetrical beta input distribution, the output 
distribution is also slightly asymmetric, but skewness is very 
small: only 0.02 for a=2, b=5 and 0.04 for a=5, b=2. 

 
a) 

 
b) 

 
c) 

 
d) 

Figure 11. Output data distributions 

Experiments with various activation functions in the output 
layer (tanh, linear, ReLU, and sigmoid with custom scaling) 
showed that the choice of activation function had little impact 
on the shape of the output distribution. 

IV. COMPARISON WITH EXISTING PROTECTION 
METHODS 
To assess the effectiveness of the proposed neural network–
based protection method, it is compared with the main software 
protection techniques currently in use: classical white-box 
cryptography, virtualization-based obfuscation, and server-side 
license verification. Their key characteristics are summarized 
in Table 3. 
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Table 3. Comparison with existing approaches 

Method Resistance to 
Analysis 

Hard-
ware 

Binding  

Transpa-
rency of 

Key 
Represen-

tation 

Static Dyna-
mic 

AES / DES 
White-Box 
Implemen-

tations 

High Medi-
um 

Optional Explicit 
(key tables 
or encoded 
constants) 

Virtualization 
/ Obfuscation  

High High No Explicit in 
bytecode 

form 
Server-Side 

License 
Verification 

Medi-
um 

High Yes Hidden on 
server 

Proposed 
Neural-

Network-
Based 

Method 

Very 
High 

High Yes Implicitly 
distributed 
in network 

weights 

 
Classical white-box cryptographic systems rely on 

statically encoded key tables or algebraic transformations. 
Although efficient in execution, such structures may be 
vulnerable once the lookup data are reconstructed from 
memory, revealing partial or full key information. 

Virtualization-based obfuscation provides stronger defense 
against static analysis by converting protected code into virtual 
instructions executed by a custom interpreter. This makes 
reverse engineering considerably more difficult but still allows 
potential runtime tracing or emulation attacks that can 
gradually reconstruct program logic. 

Server-assisted license verification adds remote control of 
activation and ensures that core validation routines are hidden 
from the client side. However, its security depends on 
continuous network availability and the integrity of 
communication channels; spoofing or imitation of server 
responses can undermine its reliability. 

In contrast, the proposed neural network-based method 
eliminates explicit key representation altogether. The mapping 
between input identifiers and the generated bytecode is 
encoded implicitly within the network’s parameters, forming a 
distributed structure that cannot be directly extracted or 
reconstructed. This provides a very high level of static 
resistance and strong defense against dynamic and differential 
attacks. The approach also ensures individualization, since 
each model is trained using a unique combination of user and 
hardware identifiers. 

Modern protection frameworks such as Themida [29], 
Safengine [30], and Enigma Protector [31] rely primarily on 
deterministic code transformation, static bytecode 
virtualization, or anti-debugging mechanisms. While effective, 
these methods depend on predefined transformation rules that 
can, in principle, be analyzed and emulated. The proposed 
neural network-based system extends this paradigm by 
introducing non-deterministic, learned transformations that 
generate unique activation models for every user, thus making 
automated cracking, model replication, or parameter inference 
practically infeasible. 

What principally distinguishes the proposed approach from 
traditional virtualization-based protection is the encryption 
(obfuscation) phase itself. In our system, this stage corresponds 
to training the neural network, whereas in classical white-box 
and virtualization frameworks it is the deterministic code-
generation step. Therefore, the following analysis focuses 

specifically on this phase – the computational effort and 
memory footprint required to produce or transform the 
protected code. 

In early table-based white-box implementations such as [2], 
the authors already reported that their AES variant was 
“significantly larger and slower” than the standard algorithm. 
Later evaluations, including [32], measured this difference by 
evaluating several white-box AES variants in terms of 
execution time per 128-bit block and memory usage. Their 
results indicate that conventional AES is several orders of 
magnitude faster, while white-box realizations occupy 
hundreds of kilobytes to gigabytes and require tens of 
microseconds per block. For example, the optimized method in 
[32] reaches about 27.9 µs per block with roughly 0.6 MB of 
code, whereas larger parameter sets easily exceed hundreds of 
MB. Because AES is symmetric, encryption and decryption 
show nearly identical timings in those systems. 

On the other hand, the proposed neural-network approach 
exhibits a fundamentally different performance profile. The 
encryption phase (training) occurs once during model 
registration and is not repeated during runtime. The decryption 
phase (inference) is extremely lightweight, involving only a 
forward pass through the network without large lookup tables; 
its complexity scales with the number of parameters rather than 
with memory accesses. Typical model sizes remain within a 
few hundred kilobytes – comparable to or smaller than recent 
compact white-box schemes such as WAS [33], which reports 
about 128 KB memory usage at similar space-hardness levels. 

Overall, the proposed method provides protection within a 
memory footprint characteristic of compact white-box AES 
implementations while avoiding their extensive table lookups 
and deterministic structure. This results in predictable and 
memory-efficient runtime performance, comparable to 
compact white-box AES implementations, while maintaining 
higher structural diversity and resistance to code extraction. 

V. CONCLUSIONS 
Protecting software against unauthorized use and malicious 
activities requires a comprehensive approach involving both 
hardware and software mechanisms. The proposed scheme 
ensures robustness against attacks by leveraging obfuscation, 
encryption, and the intrinsic variability of neural network-
based bytecode generation. Each step in the activation and 
verification process introduces layers of complexity that 
significantly hinder unauthorized access or replication of the 
protected code. 

The method binds the activation process to the user-specific 
information and unique hardware identifiers of the target 
machine, ensuring that the activation code and resulting 
bytecode are inherently tied to the specific environment. This 
prevents the use of a valid activation code on a different 
machine. The random initialization of the network's parameters 
ensures that the activation code is unpredictable and difficult to 
replicate or reverse-engineer. Even if an attacker gains access 
to one valid activation code, the neural network's 
pseudorandom behavior and variability in output for other 
inputs prevent the attacker from generalizing the result to other 
environments or generating usable codes for unauthorized 
installations. The virtual machine's role in interpreting the 
bytecode adds an additional layer of abstraction and security, 
as the bytecode must be executed in a specific and controlled 
manner to achieve successful program operation. Finally, the 
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continuous re-verification of the activation code during the 
program's lifecycle ensures that even if an attacker temporarily 
bypasses protection, their access is limited to the immediate 
session. Each subsequent verification follows the same 
rigorous process, making persistent unauthorized access 
impractical. 

This layered security approach, combining hardware-
specific binding, neural network variability, and unique 
bytecode generation, ensures that the proposed method remains 
resilient against common attack vectors and significantly raises 
the barriers for potential adversaries. 
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