

802 VOLUME 24(4), 2025

Date of publication DEC-31, 2025, date of current version OCT-29, 2025.
www.computingonline.net / computing@computingonline.net

Print ISSN 1727-6209
Online ISSN 2312-5381
DOI 10.47839/ijc.24.4.4347

Neural Networks for White Box
Cryptography in Software Protection

Systems
VIKTOR ROVINSKYI1, OLGA YEVCHUK2, YURI STRILECKYI3

1 Faculty of Mathematics and Computer Science, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, 76018 UA
2 Softjourn-Ukraine LLC, Ivano-Frankivsk, 76018 UA

3 Institute of Information Technologies, Ivano-Frankivsk National Technical University of Oil and Gas, Ivano-Frankivsk,76019 UA

Corresponding author: Viktor Rovinskyi (e-mail: victor.rovinsky@pnu.edu.ua).

 ABSTRACT This research explores the integration of neural networks into software protection mechanisms,
focusing on enhancing cryptographic robustness against unlicensed copying and unauthorized access. The primary
purpose is to develop a robust method that combines obfuscation and encryption to protect software by binding its
activation and operation to specific hardware and user data, thereby preventing unlicensed replication and
disassembly. The approach involves generating a unique hash of hardware identifiers, training a neural network
on a remote server to produce a bytecode sequence for a virtual machine, and using the network’s weights as an
activation code. Key results show that optimal neural network configurations, particularly those with two dense
layers and one LSTM layer, achieve 100% accuracy in mapping predefined inputs to specific bytecodes within an
average training time of 11 seconds, while generating pseudorandom outputs for all other inputs. Statistical
analysis of output distributions reveals high entropy, demonstrating resilience against statistical attacks. The
proposed method offers a layered defense against common attack vectors and ensures persistent security
throughout the software’s lifecycle.

 KEYWORDS software protection; neural network; cryptography; obfuscation; virtual machine.

I. INTRODUCTION
he protection of software from unauthorized use involves
countering actions by malicious actors, such as using the

full functionality of the software without acquiring the
appropriate license, sharing a legally purchased copy with other
users, using more copies than allowed by the license, as well as
unauthorized analysis of the software’s copyrighted data and
algorithms. Typically, protection tasks can be implemented
through hardware keys, software methods, or a combination of
both.

An external hardware key, typically connected via USB,
can either perform user authentication (e.g., using a private key
stored in the device and inaccessible externally) or execute part
of the main software's functions, such as implementing
algorithms that are the intellectual property of the software
developer and must be protected from disassembly.
Alternatively, the target executable code may be stored in the
software file in encrypted form and decrypted by the hardware
key during execution, then passed on to the main program for
execution. A key advantage of using hardware keys is their
increased resistance to hacking, as compromising hardware
tools requires expensive specialized equipment that is

inaccessible to most attackers. However, a hardware key
reduces the number of available USB ports, may load the USB
bus bandwidth, and its use may not always be convenient for
users.

Software methods involve verifying the authenticity of the
software copy during installation and/or while the program is
running, which can occur locally or on a remote server.
Periodic sending of identification data of the installed copy to
a remote server via the Internet during regular program
operation allows for the timely detection of unauthorized
software use, with all necessary checks being performed on the
server. The server can also be used for remote execution of
critical code fragments that should not be available for analysis.
However, such a scheme requires a constant connection, which
may be inconvenient or impossible. The advantage of server-
based protection is that compromising it requires breaching the
server software itself, which is usually not an easy task.

Moreover, any software method always involves certain
actions on the local computer, including entering and initially
processing the serial number, as well as performing various
operations depending on the results of local or remote checks.
To control the number of installed copies, software is often

T

Viktor Rovinskyi et al. / International Journal of Computing, 24(4) 2025, 802-813

VOLUME 24(4), 2025 803

linked to a specific hardware configuration of the computer
(video adapter, HDD, BIOS, network card, etc.). In this case,
identification data typically consists of a set of unique
identification numbers of the corresponding hardware or the
result of their transformation using a cryptographic function
(e.g., encryption, hashing). The identification data are usually
sent to the server during the installation process, and the
server’s response may contain an activation code, which can be
used both for completing the installation successfully and for
subsequent software operation (either at program startup or
periodically during its operation).

The success of an attacker's efforts to bypass a protection
algorithm, which is partially or fully executed locally, largely
depends on the ability to disassemble the program. Protection
against disassembly can be achieved by applying a
cryptographic transform to the program code [1], where a
critical section of the program is decrypted just before
execution, then executed, and then either encrypted again or
erased, thereby preventing static disassembly. However, this
does not eliminate the possibility of dynamic analysis, where
the attacker pauses the program and dumps the process memory
immediately after decryption to obtain the decrypted code. The
reliability of this method also significantly depends on the
ability to hide the cryptographic key from the attacker, which
can be difficult if they have full access to the system. To
address this vulnerability, white-box cryptography has been
proposed, where the key for the AES or DES algorithm is
hidden in a modified execution scheme [2].

A method to mitigate the analysis of already disassembled
code is obfuscation, which involves transforming the program
code in a way that does not alter its functionality but makes it
more difficult to analyze. For instance, unnecessary operations
that do not perform any useful work can be added to the
program to artificially increase its execution time, inflate its
size, and divert the attacker’s attention, thereby making it
harder to understand the disassembled program. Variants of
obfuscation include various control flow transformations, data
obfuscation (e.g., securely hiding cryptographic keys or
message strings displayed to the user upon triggering
protection), and preventive transformations that complicate
automatic deobfuscation [1].

An additional obfuscation method is virtualization, where
the protected code is converted into a sequence of bytecode for
a virtual machine, which is then executed by a specialized
interpreter [3, 4]. In this case, static code analysis is impossible
if the attacker lacks knowledge of the virtual machine’s
command system, and dynamic analysis becomes significantly
more challenging because the attacker is forced to navigate
through the cycle of parsing and dispatching the virtual
machine instructions during step-by-step execution. The degree
of obfuscation can be increased by applying multiple layers [5].

Thus, the combination of obfuscation and encryption allows
for the creation of an optimal protection algorithm. In this
study, the use of artificial neural networks is considered for this
purpose, as they enable implementing arbitrarily complex
mappings between input and output data, and the actual
algorithm implemented by such a network is difficult to
analyze, even if the network structure and its weights are
known.

The ideas of using neural networks in encryption and
obfuscation tasks have been repeatedly proposed over the past
few decades [6, 7]. Some of the earliest works in this area
include [8] and [9], which proposed using a Hopfield neural

network for a symmetric encryption scheme. In [8], a Hopfield
neural network with a limited set of weights (each weight can
only have values of 1, 0, or -1) was used as part of the
encryption and decryption algorithm. The scheme employs two
secret keys, which, after being processed by the neural network
and subjected to a projection function, are transformed into a
bitstream that encrypts or decrypts data using the XOR
operation. Here, the neural network is effectively used to
transform the secret key such that different encrypted messages
are generated for the same plaintext depending on the chosen
permutation matrix. In [9], the same property of the Hopfield
network, that is, convergence to one of the stable states
(attractor) within a finite number of steps, was utilized, but the
transformations were performed not on the key, but on the
message to be encrypted. The encryption result is a random
sequence that causes the network state to converge to an
attractor, equivalent to the transformed plaintext. The
cryptographic strength of such a system is analyzed in [10].

The fact that a neural network can act as associative
memory, producing specific sequences in response to partial,
distorted, or even random input, has been utilized in several
newer works on neural networks with different structures,
particularly autoencoders [11, 12]. As it is shown in [13],
training examples are stored as attractors in overparameterized
autoencoders, while overparameterized sequence encoders
store training examples as stable limit cycles and are more
efficient in memorizing than autoencoders. Other architectures
were also researched for associative memory tasks, such as
spiking neural network [14] or transformers [15].

In [16], a scheme for generating a secret key through
training identical neural networks (so-called tree parity
machine) on both the sender’s and receiver’s sides is described.
Synchronization is achieved by using identical random input
data for training the neural network. The trained network's
weights are used as the key for symmetric
encryption/decryption via the XOR method or algorithms like
AES or DES. A similar scheme is also investigated in [17], and
generalized to vector tree-parity machine in [18]. Also, using
Generative Adversarial Networks (GANs) for synchronizing
neural networks on the sender’s and receiver’s sides was
proposed. Specifically, in [19], a symmetric encryption scheme
is studied where both parties know a secret key unknown to the
adversary and train neural networks of identical structures (one
fully connected layer and several convolutional layers) to
minimize the receiver's message reconstruction error while
simultaneously minimizing the mutual information between
the plaintext and the adversary's reconstruction, which is also
modeled by a neural network of similar structure. Application
of neural networks to asymmetric cryptographic schemes was
proposed recently as well [20, 21].

In [22], multilayer neural networks were used for
encryption/decryption through character sequence substitution.
The secret key consists of the network structure and its set of
weights. Separate networks are trained for encryption and
decryption, each transforming an input bit sequence into an
output sequence, so the mapping table must be pre-agreed upon
by the message sender and receiver. The article provides an
example with 6-bit input and output sequences, and while the
lengths can be arbitrary in general, the required computational
resources for longer lengths are not evaluated.

In [23] and [24], using a multilayer neural network for
encrypting and decrypting data was proposed as follows: the
hidden layer output is used as the encryption result, and the

 Viktor Rovinskyi et al. / International Journal of Computing, 24(4) 2025, 802-813

804 VOLUME 24(4), 2025

output layer result is used for decryption. The neural network
is trained on a dataset where the input and output data are
identical. This allows the implementation of a substitution
cipher for relatively short sequences (an example for 8-bit
sequences is considered in [23]), since the size of the training
set grows exponentially with increasing sequence length, and
the probability of successful training likely decreases.

In [25], a neural network is used only for decryption, while
encryption is performed through a sequence of permutations
and logical functions. The neural network is trained on a set of
all possible pairs of plaintexts and encrypted messages. The
total number of such pairs is limited by the characteristics of
the secret key, which comprises a permutation table and a
sequence of logical functions. Thus, the structure and weights
of the neural network serve as a public key in an asymmetric
encryption scheme.

The use of a neural network solely for decryption is also
considered in [26], where encryption of 8-bit input blocks is
proposed using logical functions and bitwise shifts, followed
by the addition of 4 random bits at random positions. A 3-layer
neural network is used for decryption, although the method for
forming the training dataset is not specified.

In [27], the back-propagation neural network is used instead
of traditional password/verification tables for user
authentication, associating usernames with hashed passwords
through trained network weights. Each input and each output
represent a binary value, and both usernames and passwords
are limited to 8 characters only. At the time of publication
(2005), such a network required a relatively long training time.
However, it can be assumed that this is due not only to the
lower available computing power, but also to the need to
memorize a significant amount of pseudo-random data with
equally high accuracy.

II. MATERIAL AND METHODS
A. DESCRIPTION OF THE PROTECTION SYSTEM
A typical sequence for installing software provided under a
paid license, with control over the number of installed copies
tied to the computer's hardware using a remote server, follows
this process:

1. The user launches the installer program and enters the
purchased license serial number and user information (such as
user name, organization name, email address, etc.).

2. The installer collects information about the hardware
characteristics and/or unique hardware identifiers, generates a
hardware identifier based on this information, and sends it to
the server along with the user data and serial number.

3. The server verifies the submitted data and responds with
either an activation code that allows the installation to continue
or an error message (in case the allowed number of installed
copies is exceeded).

4. The received activation code is stored on the local
computer.

5. Each time the program is launched, the activation is
verified by executing a specific algorithm on the activation
code and the current hardware characteristics. These checks
may also occur periodically or when using certain software
functions during regular operation.

This process is illustrated graphically in Fig. 1. From the
security standpoint, the most vulnerable steps in this process
are the operations performed on the activation code on the local
computer, both during the installation of the software and
during its operation. During installation, the time constraints on

operations can be more lenient than during program startup. For
instance, after sending a request to the server, the activation
code can be sent to the client via email a few minutes after
receiving the request, whereas at program startup, it is desirable
that the execution time does not exceed a few seconds.

Figure 1. Protected software installation flow

Additionally, it is important to ensure that the activation
code cannot be reused on another computer and that it cannot
be forged by analyzing an arbitrary pair of "user data -
activation code" and the corresponding program code that uses
the activation code to unlock installer or program features.

The following scheme, which combines obfuscation and
encryption techniques, meets these requirements:

1. On the local computer, an identifier string is generated,
consisting of the user's name and unique hardware identifiers

Viktor Rovinskyi et al. / International Journal of Computing, 24(4) 2025, 802-813

VOLUME 24(4), 2025 805

(e.g., hard drive serial number and MAC address of the network
adapter).

2. A hash of the identifier string is calculated.
3. On the remote computer, a neural network is trained,

which, when provided with the hash from step 2 as input,
generates a sequence of bytecodes for a virtual machine as
output, and produces pseudorandom output data for any other
input.

4. The neural network's coefficients and its parameters
(number of neurons, number of layers, type of activation
function) form the activation code, which is sent to the client.

5. After receiving the activation code, the installer
program initializes the corresponding neural network, feeds the
hash from step 2 into it, and processes the resulting bytecodes
with the virtual machine's subroutine. The result of executing
the code in the virtual machine is the successful completion of
the installation process.

6. To verify the activation of the program during each
launch and/or during operation, steps 3-4 must be repeated
when preparing the activation code for all program fragments
subject to protection. Each protected fragment will be executed
as described in step 5.

The step of calculating the hash is necessary to normalize
the length of the input data and to obscure which specific
hardware parameters are used for identification: if raw data
were transmitted, an attacker could extract them by analyzing
the contents of the request sent to the server. To conceal the
hash calculation step, instead of using standard hash functions,
a single-layer neural network with random coefficients
generated during installation and stored along with the
activation code can be used. In this scenario, the procedure for
obtaining the bytecode during activation verification is reduced
to processing the identifier string with a neural network
composed of the hash calculation layer and decryption layers
(see Fig. 2).

Figure 2. Activation flow

The described method of using a neural network is
somewhat similar to those previously discussed in the literature
for encryption/decryption tasks [8-10, 27]. In fact, this scheme
can be viewed as a specialized cryptographic system where the
encryption process involves training the neural network, and
decryption is the processing of the input sequence by the neural
network. However, the significant difference here is that, for
the purpose of protection, it is not necessary to implement the
ability to encrypt arbitrary messages, but only the specific
bytecode sequence subject to obfuscation needs to be
encrypted, with a guarantee that no other input sequence will
produce the same encryption result. Therefore, there is no need
to develop a special algorithm for converting plaintext into
ciphertext: the encrypted message can be any arbitrary byte
sequence, and the neural network training process will ensure
that this sequence will be decrypted into the specified plaintext.
Thus, unlike classical cryptographic methods, where a secret
key is typically generated using a random number generator
and the ciphertext is formed by performing a sequence of
actions (encryption algorithm) on the plaintext using the key,
here the encryption algorithm is absent, and the decryption key
is essentially the neural network's coefficients, which must be
determined through a training procedure. The proposed scheme
can also be interpreted as associative memory, with the
specified byte sequence located in one of its regions.

To enhance the degree of obfuscation, the optimal structure
of the neural network would generate output data not as one
large fragment of bytecode but sequentially, for example, byte
by byte, after each subsequent byte is fed into the network. It is
sufficient to accumulate bytes from the neural network’s output
in memory only until a complete command code is obtained,
which, after being executed by the virtual machine, will be
step-by-step replaced by the next code. Alternatively, if all
virtual machine command codes are of the same length, the
output should produce data of the corresponding bit width. This
way, there will never be more than one virtual machine
command stored in memory at any given time, further
complicating the analysis of such code. Recurrent neural
networks, particularly those with LSTM architecture, which are
well-suited for processing sequences [28], best fit this
description.

Block-wise processing can also be used, generating
relatively short fragments of the output sequence (e.g., 16 bytes
long) by either processing the same input sequence with several
different neural networks or processing multiple parts of the
input sequence with a single neural network trained to
memorize several sequence pairs.

B. TRAINING PROCEDURE
The goal of the training process is to obtain a neural network
that generates the predefined byte code only when the
predefined hashed ID (obtained from user data and hardware
identifiers) is presented on its input. For any other byte
sequence, an arbitrary pseudo-random output should be
generated.

Thus, the loss function for network training is expected to
satisfy the following conditions:

- to be minimal for the case when input data is the correct
hashed ID and output data precisely equals the predefined byte
code;

- to be relatively small for the case when both input and
output data are not predefined values (since a garbage-in –
garbage-out behavior is correct in this case);

 Viktor Rovinskyi et al. / International Journal of Computing, 24(4) 2025, 802-813

806 VOLUME 24(4), 2025

- to be big for other cases.
The proposed loss function is:

𝐿(𝒚, 𝒚෕) = ቊ
‖(𝒚 − 𝒚෕)‖ଶ, 𝒚෕ = 𝒚௣

𝛼 ∙ ‖(𝒚 − 𝒚෕)‖ଶ, 𝒚෕ ≠ 𝒚௣
, (1)

where yp is the predefined output and α is a small constant

(value of 0.05 was used in experiments). This setup leverages
the ability of a neural network to act like associative memory:
the neural network memorizes the mapping between the
predefined hashed ID and the specific byte code, acting like an
addressable memory that outputs the byte code when presented
with the correct "address" (hashed ID), while for other inputs,
the network does not attempt to memorize the mappings
precisely, and due to the weak loss applied to random inputs, it
naturally generates diverse, pseudo-random outputs. The
network may still loosely memorize these input-output pairs,
but with less precision than the predefined pair. Since the loss
is scaled down for these pairs, some degree of memorization
occurs, but it is less accurate and likely contains more errors.
These secondary associations are flexible and error-prone,
giving the appearance of pseudo-random behavior rather than
exact mappings.

The first dense layer (see Fig. 2), used for hashing user data
and hardware identifiers, has a sigmoid activation function.
The last layer of the neural network being trained also uses a
sigmoid activation function. Thus, the input and output of the
network are modeled as sequences of floating-point numbers in
the range [0, 1). To obtain the resulting bytecode, normalization
is applied to outputs using multiplying by 256, followed by
rounding to the nearest integer.

The training set is formed from pairs of input and output
sequences, where input sequence can be the predefined hashed
ID (with predefined output sequence as output) or a random
sequence (with a random sequence as output). As memorizing
the predefined input-output pair is the main goal, it should
appear frequently in the training set to reinforce its importance.
The training set should be big enough to ensure the network
learns to generate varied, flexible outputs for all non-
predefined cases, but not too big, so that the training time
remains acceptable for practical implementation (possibly
around a few dozen seconds). For our experiments, the training
set consisted of 8 batches each containing 32 training samples,
with 25% of predefined input-output pairs in each batch.

Random inputs are mainly generated with a uniform
random generator, and partly (up to 10% of training set) are
obtained with a permutation of the predefined hashed ID. All
random outputs are generated with a uniform random
generator.

Training is stopped once 100% accuracy is achieved for the
pairs of predefined hashed ID and predefined byte code. This
accuracy is calculated as the percentage of correctly reproduced
symbols of the output sequence.

Typical figures for custom loss and custom accuracy of
training a network consisting of LSTM layer with 128 units and
output dense layer with 16 neurons are shown in Fig. 3.

Using this custom accuracy as a criterion for stopping
neural network training leads to a satisfactory result in most
cases, but sometimes training process may stop too early, when
the predefined pair is perfectly memorized, but other attractors
in output space have not been formed, so the network tends to
output low variance data for any input except of predefined

sequence. This is illustrated by Fig. 4, 5 and 6, where training
results for a network with two dense and one LSTM layer are
presented.

Figure 3. Custom loss and custom accuracy for a typical
training process (NLSTM = 128, α = 0.05)

Fig. 4 shows a very rapid increase in accuracy to 100% after
13 training epochs, while model loss and mean absolute error
are still high enough.

Figure 4. Example of too early training stop (ND1 = 256, ND2 =
128, NLSTM = 64, α = 0.05)

Viktor Rovinskyi et al. / International Journal of Computing, 24(4) 2025, 802-813

VOLUME 24(4), 2025 807

Error distribution for output sequences after this training is
shown in Fig. 5a. The error is calculated as the difference
between the integer values in the output training samples and
the floating-point values obtained by multiplying the network
output by 256 before rounding to an integer. For the predefined
sequence, error is in range (-0.5, +0.5) in both cases as
expected, but for other sequences from training set, early stop
led to wide error range of (-204.7, +194.54) with mean average
value of 62.1 and almost uniform distribution (Fig. 5a).
Analysis of model outputs shows that for both random input
sequences and input sequences from the training set other than
predefined sequence, the output data range is limited to
128±20, while when the input sequence resembles the
predefined input sequence, even with 20% noise, the output
data exhibits greater variance and more closely resembles the
predefined output sequence. This is a highly undesirable
phenomenon from the perspective of the cryptographic security
of the proposed method. These features of the output data
distribution are shown in Fig. 6a.

Fig. 5b shows a more successful training result, where,
although the error range (- 113.1, +100.1) is rather large, the
error distribution has a much more pronounced peak, and the
mean absolute error is only 9.5.

a)

b)

Figure 5. Error distribution: (a) – training stopped too early,
(b) – training successful

Fig. 6 shows the mean values (gray diamonds), standard
deviations (thick lines), and ranges (thin lines) for each of the
16 output symbols compared to the predefined output symbols
(marked by x’s). These results are obtained from processing
10,000 random input sequences with a uniform distribution by
two neural networks with identical structure but different
training result.

As shown in Fig. 6a, simply testing the neural network
whose training ended too early by feeding it random input
sequences allows an attacker to approximately determine the
output symbols of the predefined sequence. The correlation
coefficient between the predefined sequence and the sequence

of maximum outlier values at each position is 0.98, while the
average absolute difference between symbols of these two
sequences is only 11. In contrast, if the mean average error for
all sequences from the training set is sufficiently low after
training the neural network, the output symbols exhibit a
broader distribution (Fig. 6b). The range and standard deviation
are sufficiently wide and nearly identical for all output symbols
in this case, preventing an attacker from determining the
approximate values of the predefined output sequence through
simple statistical analysis.

A slight correlation is present even in this case between the
predefined output sequence and the sequence of mean values.
For the training result presented in Fig. 6b, the correlation
coefficient is 0.11, but its absolute value varies from 0.01 to
0.34 for different training results with average of 0.18.
However, this does not allow for determining the exact or even
approximate values, but only a very rough shape of the
sequence graph, which, without knowledge of the scale, does
not provide any significant advantage. In any case, it may be
advisable to repeat the training procedure if the absolute value
of this correlation coefficient is greater than 0.2.

a)

b)

Figure 6. Output data distribution: (a) – training stopped too
early, (b) – training successful

To prevent early stopping of training, it is proposed to use
an additional criterion for terminating the training process –
reaching the threshold value of the mean absolute error. Let the
proportion of predefined pairs in the training set be β, then to
obtain the mean absolute error no more than E0 for predefined

 Viktor Rovinskyi et al. / International Journal of Computing, 24(4) 2025, 802-813

808 VOLUME 24(4), 2025

output sequences and no more than E1 for other sequences, the
threshold value should be

𝐸் = 𝛽 ∙ 𝐸଴ + (1 − 𝛽) ∙ 𝐸ଵ (2)

For instance, when 25% of predefined pairs are used in the

training set, achieving a target mean absolute error of 10% of
the data range (0, 255) requires a threshold value of ET = 0.075.
An example of a training process where applying this threshold
prevented too early termination is shown in Fig. 7 (for a
network with the same structure of two dense and one LSTM
layer as above).

Figure 7. MAE threshold prevents too early training stop (ND1
= 256, ND2 = 128, NLSTM = 64, α = 0.05)

In this case, 100% accuracy was achieved after the 18th
epoch, however, the training continued until both the MAE and
accuracy targets were met. Fig. 5b and 6b relate to this very
training result.

Experiments showed that after reaching relatively high
accuracy, a decrease in accuracy and an increase in loss
occasionally occurred (see Fig. 3 near epochs 160 and 300). To
mitigate this effect, the learning rate was adjusted as follows:
at the end of each learning epoch, if the accuracy is higher than
a given threshold (e.g. 75%) and current learning rate did not
reach its lower threshold (e.g. 0.001), the learning rate is scaled
by a factor of 0.75.

III. RESULTS
A. SELECTION OF THE OPTIMAL NEURAL NETWORK
STRUCTURE
Several neural network configurations were evaluated for the
task of memorizing symbol sequences. Key metrics considered
in the analysis included the number of epochs and time needed
to reach the target accuracy of 100%, the total number of
trainable parameters and mean absolute error values for
predefined sequence as well as for other sequences.

All configurations include dense output layer of 16 neurons
with sigmoid activation function which is not specified in
column “Configuration” (i.e. configuration “Dense (256)”
means two dense layers, the first one with 256 and the second
one with 16 neurons). All dense layers specified in the table use
ReLU activation function, and all LSTM units use default
activation configuration, namely hyperbolic tangent activation
function for output and sigmoid activation function for the
recurrent step. For model training, Adam optimizer was used
with initial learning rate of 0.075 and learning rate adjustment
with lower threshold of 0.001 as described in section II B. The
mean absolute error threshold was set to 10% of the data range
(ET =0.075).

Each configuration was tested three times. The minimum
and maximum numbers of epochs and average time to achieve
the target accuracy are shown in Tables 1 and 2. MAE values
are average of three tests and normalized to range (0, 255).

Table 1. Results of Neural Network Training Experiments
(1 or 2 hidden layers)

Configuration Total
trainable

para-
meters

Number of
epochs to

achieve the
target

accuracy

Average
training

time,
sec

Reached MAE

prede-
fined

other

Dense (512) 16912 4927..7829 284.36 0.10 1.61
Dense (1024) 33808 2444..3549 126.93 0.10 1.42
Dense (2048) 67600 2070..2691 105.10 0.08 1.17
Dense (4096) 135184 1372..1798 72.68 0.08 1.32
Dense (8192) 270352 1469..2096 93.29 0.09 1.14
Dense (512)

+Dense (256)
144144 749..1115 46.32 0.09 1.57

Dense (512)
+Dense (512)

279568 247..534 23.71 0.09 1.64

Dense (1024)
+Dense (512)

550416 256..497 30.98 0.06 1.60

Dense (1024)
+Dense(1024)

1083408 277..381 51.55 0.10 1.98

Dense (2048)
+Dense(1024)

2149392 424..638 137.34 0.09 2.34

LSTM (64) 17936 476..1369 85.41 0.10 12.69
LSTM (80) 27536 578..1216 81.13 0.10 9.14
LSTM (96) 39184 352..1062 70.21 0.09 6.13
LSTM (128) 68624 281..1213 83.36 0.09 6.59
LSTM (160) 106256 261..3044 135.17 0.11 6.23
Dense (64) +
LSTM (64)

35152 334..696 28.96 0.11 3.53

Dense (128) +
LSTM (64)

52624 259..386 17.44 0.09 3.82

Dense (256) +
LSTM (64)

87568 185..395 16.75 0.11 5.67

Dense (128) +
LSTM (128)

135824 220..326 14.69 0.08 2.02

Dense (256) +
LSTM (128)

203536 117..207 12.91 0.07 3.46

Dense (192) +
LSTM (192)

302032 200..299 17.79 0.08 1.63

Dense (256) +
LSTM (256)

533776 169..249 21.54 0.10 1.44

Viktor Rovinskyi et al. / International Journal of Computing, 24(4) 2025, 802-813

VOLUME 24(4), 2025 809

Table 2. Results of Neural Network Training Experiments
(3 or 4 hidden layers)

Configuration Total
trainable

para-
meters

Number of
epochs to

achieve the
target

accuracy

Average
training

time,
sec

Reached MAE

prede-
fined

other

Dense (64) +
Dense(64) +
LSTM (64)

39312 152..310 12.60 0.09 8.74

Dense (256) +
Dense(128) +
LSTM (64)

87696 120..224 10.85 0.10 18.55

Dense (128) +
Dense(128) +
LSTM (128)

152336 135..207 10.50 0.10 4.31

Dense (256) +
Dense(256) +
LSTM (128)

269328 117..133 10.89 0.08 5.22

Dense (128) +
Dense(128) +
LSTM (256)

417040 120..145 14.89 0.08 3.22

Dense (256) +
Dense(256) +
LSTM (256)

599568 107..173 16.05 0.09 2.61

Dense (64) +
Dense(64) +
LSTM (64) +
LSTM (64)

72336 135..734 17.61 0.08 13.25

Dense (128) +
Dense(128) +
LSTM (128)

+ LSTM(128)

283920 90..631 14.01 0.10 9.15

Dense (256) +
Dense(256) +
LSTM (128)

+ LSTM(128)

400912 113..348 19.09 0.08 16.05

A total of 31 different configurations were analyzed. For

neural networks with a homogeneous structure (one or two
dense or one LSTM layer), the training time turned out to be
significantly longer, especially for structures with only one
dense layer. Increasing the number of neurons in such
architectures allows reducing the training time only up to a
certain limit; beyond this point, as the number of parameters
increases, the training time starts to grow instead. This is
illustrated in Fig. 8, which shows the dependence of training
time on the total number of trainable network parameters. This
pattern is also valid for mixed architectures, as shown in Fig. 9.

The notation "N1-N2-N3" in Figs. 8 and 9 represents the
network structure, where N1 is the number of neurons in the
first dense layer, N2 is the number of neurons in the second
dense layer, and N3 is the number of units in the LSTM layer
(e.g., 512-0-0 denotes a structure with one dense layer
containing 512 neurons, 1024-1024-0 represents a structure
with two dense layers, each containing 1024 neurons, and 0-0-
160 represents a structure with a single LSTM layer with 160
units). As in tables above, output dense layer of 16 neurons is
the same for all structures and is not mentioned in labels.

Most architectures with a single LSTM layer, even with a
small number of units, provide significantly better performance
than purely dense architectures with a comparable number of
parameters. However, mixed architectures proved to be the
most efficient overall (see Fig. 9).

Using two dense layers before the LSTM layer leads to a
slightly shorter training time than for one dense layer, but
further increasing the number of layers does not lead to an
improvement in training time, as shown in the last three rows
of Table 2, which present results for architectures with two

dense and two LSTM layers.

Figure 8. Average training time for homogeneous layer
structures

Figure 9. Average training time for mixed layer structures

The best-performing configurations were those with two
dense layers and one LSTM layer, containing 128 or 256
neurons in the dense layers and 128 units in the LSTM layer,
achieving 100% accuracy very quickly (average training time
was about 11 sec). These configurations demonstrated high

 Viktor Rovinskyi et al. / International Journal of Computing, 24(4) 2025, 802-813

810 VOLUME 24(4), 2025

stability and are considered optimal for the problem under
consideration.

Experiments also showed that for the best configurations
with 128 units in LSTM layer (labeled as “128-128-128” and
“256-256-128” in Fig.9), the output layer size can be increased
up to 36 neurons with only a slight increase in training time
(Fig.10).

Figure 10. Average training time vs output layer size

This allows for memorizing longer bytecode sequences for
each 16-byte input block and reduces the total size of activation
data. For example, a bytecode sequence of length 108 can be
produced using three neural network decoding blocks, each one
with 16-byte input, two dense layers of 128 neurons, one LSTM
layer of 128 units and output dense layer of 36 units, having
156916 trainable parameters per network, or 470748
parameters in total, or about 1.8 Mbytes of activation data.

B. ANALYSIS OF OUTPUT DISTRIBUTION PATTERNS
Analyzing the statistical behavior of output data generated from
random input sequences with varying probability distributions
provides insight into the method's security. If the attackers can
decompile the code and reveal the network structure but does
not have access to the valid activation code for the hardware
data, their possible actions include neural network coefficients
analysis and output distribution analysis. Ideally, network
outputs should look like random noise for any input except of
valid activation code, and neural network weights should not
be correlated neither with the activation code nor the
predefined output.

Fig. 11 shows the output distribution for a network with two
dense and one LSTM layer (marked as “128-128-128” in
previous section) with 36 output neurons that was obtained by
feeding 10000 random input sequences to the network inputs
and averaging output values (normalized to range [0,256) and
rounded to integer) for all outputs. The input values had
uniform (Fig. 11, a), truncated normal with standard deviation
of 64 (Fig. 11, b), and beta distributions (Fig 11, c, d).

The output distribution is not uniform, but is unimodal,
symmetrical in most cases and has sufficiently high entropy of
7.84…7.94, which is quite close to the entropy of the
corresponding uniform distribution (8).

For asymmetrical beta input distribution, the output
distribution is also slightly asymmetric, but skewness is very
small: only 0.02 for a=2, b=5 and 0.04 for a=5, b=2.

a)

b)

c)

d)

Figure 11. Output data distributions

Experiments with various activation functions in the output
layer (tanh, linear, ReLU, and sigmoid with custom scaling)
showed that the choice of activation function had little impact
on the shape of the output distribution.

IV. COMPARISON WITH EXISTING PROTECTION
METHODS
To assess the effectiveness of the proposed neural network–
based protection method, it is compared with the main software
protection techniques currently in use: classical white-box
cryptography, virtualization-based obfuscation, and server-side
license verification. Their key characteristics are summarized
in Table 3.

Viktor Rovinskyi et al. / International Journal of Computing, 24(4) 2025, 802-813

VOLUME 24(4), 2025 811

Table 3. Comparison with existing approaches

Method Resistance to
Analysis

Hard-
ware

Binding

Transpa-
rency of

Key
Represen-

tation

Static Dyna-
mic

AES / DES
White-Box
Implemen-

tations

High Medi-
um

Optional Explicit
(key tables
or encoded
constants)

Virtualization
/ Obfuscation

High High No Explicit in
bytecode

form
Server-Side

License
Verification

Medi-
um

High Yes Hidden on
server

Proposed
Neural-

Network-
Based

Method

Very
High

High Yes Implicitly
distributed
in network

weights

Classical white-box cryptographic systems rely on

statically encoded key tables or algebraic transformations.
Although efficient in execution, such structures may be
vulnerable once the lookup data are reconstructed from
memory, revealing partial or full key information.

Virtualization-based obfuscation provides stronger defense
against static analysis by converting protected code into virtual
instructions executed by a custom interpreter. This makes
reverse engineering considerably more difficult but still allows
potential runtime tracing or emulation attacks that can
gradually reconstruct program logic.

Server-assisted license verification adds remote control of
activation and ensures that core validation routines are hidden
from the client side. However, its security depends on
continuous network availability and the integrity of
communication channels; spoofing or imitation of server
responses can undermine its reliability.

In contrast, the proposed neural network-based method
eliminates explicit key representation altogether. The mapping
between input identifiers and the generated bytecode is
encoded implicitly within the network’s parameters, forming a
distributed structure that cannot be directly extracted or
reconstructed. This provides a very high level of static
resistance and strong defense against dynamic and differential
attacks. The approach also ensures individualization, since
each model is trained using a unique combination of user and
hardware identifiers.

Modern protection frameworks such as Themida [29],
Safengine [30], and Enigma Protector [31] rely primarily on
deterministic code transformation, static bytecode
virtualization, or anti-debugging mechanisms. While effective,
these methods depend on predefined transformation rules that
can, in principle, be analyzed and emulated. The proposed
neural network-based system extends this paradigm by
introducing non-deterministic, learned transformations that
generate unique activation models for every user, thus making
automated cracking, model replication, or parameter inference
practically infeasible.

What principally distinguishes the proposed approach from
traditional virtualization-based protection is the encryption
(obfuscation) phase itself. In our system, this stage corresponds
to training the neural network, whereas in classical white-box
and virtualization frameworks it is the deterministic code-
generation step. Therefore, the following analysis focuses

specifically on this phase – the computational effort and
memory footprint required to produce or transform the
protected code.

In early table-based white-box implementations such as [2],
the authors already reported that their AES variant was
“significantly larger and slower” than the standard algorithm.
Later evaluations, including [32], measured this difference by
evaluating several white-box AES variants in terms of
execution time per 128-bit block and memory usage. Their
results indicate that conventional AES is several orders of
magnitude faster, while white-box realizations occupy
hundreds of kilobytes to gigabytes and require tens of
microseconds per block. For example, the optimized method in
[32] reaches about 27.9 µs per block with roughly 0.6 MB of
code, whereas larger parameter sets easily exceed hundreds of
MB. Because AES is symmetric, encryption and decryption
show nearly identical timings in those systems.

On the other hand, the proposed neural-network approach
exhibits a fundamentally different performance profile. The
encryption phase (training) occurs once during model
registration and is not repeated during runtime. The decryption
phase (inference) is extremely lightweight, involving only a
forward pass through the network without large lookup tables;
its complexity scales with the number of parameters rather than
with memory accesses. Typical model sizes remain within a
few hundred kilobytes – comparable to or smaller than recent
compact white-box schemes such as WAS [33], which reports
about 128 KB memory usage at similar space-hardness levels.

Overall, the proposed method provides protection within a
memory footprint characteristic of compact white-box AES
implementations while avoiding their extensive table lookups
and deterministic structure. This results in predictable and
memory-efficient runtime performance, comparable to
compact white-box AES implementations, while maintaining
higher structural diversity and resistance to code extraction.

V. CONCLUSIONS
Protecting software against unauthorized use and malicious
activities requires a comprehensive approach involving both
hardware and software mechanisms. The proposed scheme
ensures robustness against attacks by leveraging obfuscation,
encryption, and the intrinsic variability of neural network-
based bytecode generation. Each step in the activation and
verification process introduces layers of complexity that
significantly hinder unauthorized access or replication of the
protected code.

The method binds the activation process to the user-specific
information and unique hardware identifiers of the target
machine, ensuring that the activation code and resulting
bytecode are inherently tied to the specific environment. This
prevents the use of a valid activation code on a different
machine. The random initialization of the network's parameters
ensures that the activation code is unpredictable and difficult to
replicate or reverse-engineer. Even if an attacker gains access
to one valid activation code, the neural network's
pseudorandom behavior and variability in output for other
inputs prevent the attacker from generalizing the result to other
environments or generating usable codes for unauthorized
installations. The virtual machine's role in interpreting the
bytecode adds an additional layer of abstraction and security,
as the bytecode must be executed in a specific and controlled
manner to achieve successful program operation. Finally, the

 Viktor Rovinskyi et al. / International Journal of Computing, 24(4) 2025, 802-813

812 VOLUME 24(4), 2025

continuous re-verification of the activation code during the
program's lifecycle ensures that even if an attacker temporarily
bypasses protection, their access is limited to the immediate
session. Each subsequent verification follows the same
rigorous process, making persistent unauthorized access
impractical.

This layered security approach, combining hardware-
specific binding, neural network variability, and unique
bytecode generation, ensures that the proposed method remains
resilient against common attack vectors and significantly raises
the barriers for potential adversaries.

References

[1] C. Collberg, C. Thomborson, D. Low, A Taxonomy of Obfuscating
Transformations, Technical Report, University of Auckland, 1997, 36 p.

[2] S. Chow, P. Eisen, H. Johnson, P.C.V. Oorschot, “White-box
cryptography and an AES implementation,” Selected Areas in
Cryptography, vol. 2595, Springer, Berlin, Heidelberg, 2003, pp. 250–
270. https://doi.org/10.1007/3-540-36492-7_17

[3] R. Rolles, “Unpacking virtualization obfuscators,” WOOT'09:
Proceedings of the 3rd USENIX Conference on Offensive Technologies,
Montreal, Canada, August 10–14, 2009. Available at:
https://www.usenix.org/legacy/event/woot09/tech/full_papers/rolles.pdf

[4] S. Schrittwieser, S. Katzenbeisser, J. Kinder, G. Merzdovnik, E. Weippl,
“Protecting software through obfuscation: Can it keep pace with progress
in code analysis?” ACM Computing Surveys, vol. 49, issue 1, article 4,
pp.1-37, 2016. https://doi.org/10.1145/2886012

[5] H. Fang, Y. Wu, S. Wang, Y. Huang, “Multi-stage binary code
obfuscation using improved virtual machine,” Proceedings of the
International Conference on Information Security, Xi'an, China, October
26-29, 2011, pp. 168–181. https://doi.org/10.1007/978-3-642-24861-
0_12

[6] I. Meraouche, S. Dutta, H. Tan, K. Sakurai, “Neural networks-based
cryptography: A survey,” IEEE Access, vol. 9, pp. 124727–124740, 2021.
https://doi.org/10.1109/ACCESS.2021.3109635

[7] A. El-Zoghabi, A.H. Yassin, H.H. Hussien, “Survey report on
cryptography based on neural network,” International Journal of
Emerging Technology and Advanced Engineering, vol. 3, issue 12, pp.
456–462, 2013.

[8] C.K. Chan, C.K. Chan, L.P. Lee, L.M. Cheng, “Encryption system based
on neural network,” in: R. Steinmetz, J. Dittman, M. Steinebach (Eds.),
Communications and Multimedia Security Issues of the New Century,
Springer, 2001, pp. 117–122. https://doi.org/10.1007/978-0-387-35413-
2_10

[9] D. Guo, L.M. Cheng, L.L. Cheng, “A new symmetric probabilistic
encryption scheme based on chaotic attractors of neural networks,”
Applied Intelligence, vol. 10, pp. 71–84, 1999.
https://doi.org/10.1023/A:1008337631906

[10] N. Liu, D. Guo, “Security analysis of public-key encryption scheme
based on neural networks and its implementation,” Proceedings of the
2006 IEEE International Conference on Computational Intelligence and
Security, Guangzhou, China, November 3-6, 2006, pp. 1327–1330.
https://doi.org/10.1109/ICCIAS.2006.295274

[11] Y. Fu, J. Fu, J. Wei, Encryption and decryption using deep neural
network, in: J.-L. Kim (Ed.) Machine Learning and Artificial
Intelligence, IOS Press, 2023, pp. 9–15. Available at:
https://ebooks.iospress.nl/doi/10.3233/FAIA230762

[12] K. Kumar, S. Tanwar, and S. Kumar, “MANC: A masked autoencoder
neural cryptography based encryption scheme for CT scan images,”
MethodsX, vol. 12, p. 102738, 2024.
https://doi.org/10.1016/j.mex.2024.102738

[13] A. Radhakrishnan, M. Belkin, and C. Uhler, “Overparameterized neural
networks implement associative memory,” Proceedings of the National
Academy of Sciences, vol. 117, no. 44, pp. 27162-27170, 2020.
https://doi.org/10.1073/pnas.2005013117

[14] H. He, Y. Shang, X. Yang, Y. Di, J. Lin, Y. Zhu, W. Zheng, J. Zhao, M.
Ji, L. Dong, and N. Deng, “Constructing an associative memory system
using spiking neural network,” Frontiers in Neuroscience, vol. 13, article
650, pp.1-15, 2019. https://doi.org/10.3389/fnins.2019.00650

[15] Y. Tay, V. Tran, M. Dehghani, J. Ni, D. Bahri, H. Mehta, Z. Qin, K. Hui,
Z. Zhao, J. Gupta, and T. Schuster, “Transformer memory as a
differentiable search index,” Advances in Neural Information Processing
Systems, vol. 35, pp. 21831-21843, 2022.

[16] I. Kanter, W. Kinzel, “Neural cryptography,” Proceedings of the 9th
International Conference on Neural Information Processing, Singapore,
November 18-22, 2002, vol.3, pp.1351-1354

[17] T. Godhavari, N. Alamelu, R. Soundararajan, “Cryptography using
neural network,” Proceedings of the Annual IEEE India Conference -
Indicon, Chennai, India, 11–13 December 2005.

[18] S. Jeong, C. Park, D. Hong, C. Seo, and N. Jho, “Neural cryptography
based on generalized tree parity machine for real‐life systems,” Security
and Communication Networks, article ID 6680782, pp. 1-12, 2021.
https://doi.org/10.1155/2021/6680782

[19] M. Abadi, D.G. Andersen, “Learning to protect communications with
adversarial neural cryptography,” arXiv:1610.06918 [cs.CR], pp. 1–15,
2016. https://doi.org/10.48550/arXiv.1610.06918

[20] E.A. Hagras, S. Aldosary, H. Khaled, and T.M. Hassan, “Authenticated
public key elliptic curve based on deep convolutional neural network for
cybersecurity image encryption application,” Sensors, vol. 23, issue 14,
p. 6589, 2023. https://doi.org/10.3390/s23146589

[21] M.C. Wøien, F.O. Catak, M. Kuzlu, and U., Cali, “Neural networks meet
elliptic curve cryptography: A novel approach to secure communication,”
arXiv:2407.08831 [cs.CR], pp.1-8, 2024.
https://doi.org/10.48550/arXiv.2407.08831

[22] E. Volna, M. Kotyrba, V. Kocian, M. Janosek, “Cryptography based on
neural network,” Proceedings of the 26th European Conference on
Modeling and Simulation, Koblenz, Germany, May 29 – June 1, 2012,
pp. 386–391. https://doi.org/10.7148/2012-0386-0391

[23] R.R. Al-Nima, L. Muhanad, S.Q. Hassan, “Data encryption using
backpropagation neural network,” IRAQI Academic Scientific Journals,
vol. 15, no. 2, pp. 112–117, 2009.

[24] R.A. Zitar, H. Hussain, “Mirroring neural network approach for
encryption/decryption of data,” ICIC Express Letters, vol. 13, no. 12, pp.
1057–1064, 2019.

[25] K. Shihab, “A backpropagation neural network for computer network
security,” Journal of Computer Science, vol. 2, no. 9, pp. 710–715, 2006.
https://doi.org/10.3844/jcssp.2006.710.715

[26] R.K. Munkulu, V. Gnanam, “Neural network-based decryption for
random encryption algorithms,” Proceedings of the 2009 3rd
International Conference on Anti-counterfeiting, Security, and
Identification in Communication, Hong Kong, China, 20-22 August,
IEEE, 2009, pp. 603–605.
https://doi.org/10.1109/ICASID.2009.5277002

[27] I.C. Lin, H.H. Ou, and M.S. Hwang, “A user authentication system using
back-propagation network,” Neural Computing & Applications, vol. 14,
pp. 243-249, 2005. https://doi.org/10.1007/s00521-004-0460-x

[28] G. Van Houdt, C. Mosquera, G. Nápoles, “A review on the long short-
term memory model,” Artificial Intelligence Review, vol. 53, no. 8, pp.
5929–5955, 2020. https://doi.org/10.1007/s10462-020-09838-1

[29] Themida - Advanced Windows software protection system. [Online].
Available at: https://www.oreans.com/Themida.php

[30] SafeEngine overview. [Online]. Available at:
https://www.safengine.com/en-us/features/overview

[31] Enigma Protector - Software Licensing and Protection System. [Online].
Available at: https://enigmaprotector.com/en/about.html

[32] A. Battistello, L. Castelnovi, T. Chabrier, “Enhanced encodings for
white-box designs,” Proceedings of the International Conference on
Smart Card Research and Advanced Applications. Cham: Springer
International Publishing, 2021. https://doi.org/10.1007/978-3-030-
97348-3_14

[33] Y. Yang, Y. Zhai, H. Dong, Y. Zhang, “WAS: improved white-box
cryptographic algorithm over AS iteration,” Cybersecurity, vol. 6, issue
1, p. 56, 2023. https://doi.org/10.1186/s42400-023-00192-7

Victor ROVINSKYI received a
specialist diploma in radio
engineering from the Lviv Polytechnic
University in 1996. He obtained a PhD
degree from the Ivano-Frankivsk
National Technical University of Oil
and Gas in 2004. He is an associate
professor at the Department of
Computer Science and Information

Systems at the Vasyl Stefanyk Precarpathian National
University. His research interests include information
protection technologies, automation and robotics, and digital
signal processing for professional audio.

Viktor Rovinskyi et al. / International Journal of Computing, 24(4) 2025, 802-813

VOLUME 24(4), 2025 813

Olga Yevchuk received an engineering
degree in 1999 and PhD degree in 2005
from Ivano-Frankivsk National
Technical University of Oil and Gas.
She worked in this university till 2023
and now is a software engineer at
Softjourn Ukraine. Her research
interests include machine learning,
digital signal processing and oil
equipment diagnostics.

Yuri STRILECKYI received an
engineering degree in 1995 from
Ivano-Frankivsk National Technical
University of Oil and Gas. He defended
his PhD dissertation in 1999 and his
doctoral dissertation in 2018. Since
2022, he has been a professor at the
Department of Information and
Telecommunication Technologies and

Systems at the same university. His research interests include
digital signal processing, microprocessor systems, embedded
technologies, robotics, and methods for assessing the technical
condition of structures. He is the author of over 100 scientific
publications and a co-author of eight patents. He actively
participates in the development of high-tech industrial
automation systems and the Internet of Things. He teaches
courses in electronics, microprocessor technology, and data
processing.

