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Abstract: A common challenge facing emergency services, particularly in 

response to fires and/or earthquakes, is the location and subsequent extraction of 

people from hazardous buildings in a timely manner. This usually requires 

emergency service workers to enter the building and put their own lives at risk, 

even when there may be no people to extract. However, given recent advances in 

autonomous robotics, drones are expected to help humans in tasks such as search 

and rescue, and similar tasks, where coverage and time are key parameters. The 

aim is to complete a comprehensive search of the environment as quickly as 

feasible. Using multiple drones rather than a single drone can reduce search time, 

although performance can be poor if the searching is non-coordinated. Therefore, 

partitioning a terrain is important in order to effectively distribute the drone 

search work so that good coverage can be achieved in a reasonable amount of 

time and redundant searching is eliminated. In this paper a novel Square Based 

Terrain Partitioning (SBTP) algorithm is presented using a genetic algorithm to 

partition a known environment into multiple domains in a multi-robot 

exploration system. In addition, a second genetic algorithm is presented to 

allocate the domain search workload such that, given a certain number of drones, 

the overall search time is minimized.  

Copyright © Research Institute for Intelligent Computer Systems, 2020.  

All rights reserved. 

 

 

Effective task allocation is important when 
attempting to achieve high utilization in multi-robot 
exploration systems [1, 2]. In this process a group of 
robots collaborate to complete some complex task 
with better performance than using a single robot1 or 
drone. The purpose of the task assignment is to 
minimize the task completion time whilst 
maximizing the search utilization of each robot.  

[3] proposed a task assignment method based on 
social-welfare for multi-robot systems, the aim being 
to achieve the task completion and minimize 
resource consumption proportion to an acceptable 
amount. Zhang and Xie [4] put forward an adaptive 
task assignment method for multiple mobile robots 
based on swarm intelligence to perform cooperative 
tasks in unknown dynamic environments. A 

 
1 In this research we freely interchange the terms drones, robots and 

vehicles. All of these terms refer to the same thing. Typically we use 

terminology that is consistent with the relevant state-of-the-art and in the 
given context. 

hierarchical architecture was applied to each robot. 
An alternative method based on a Genetic Algorithm 
(GA) was used for real-time task assignment of 
Multi-Unmanned Combat Aerial Vehicle in 
uncertain environments [5]. Irfan Younas et al. [6] 
also proposed a method based on GA for task 
assignment problems. In their approach, a group of 
collaborating agents work as a team to complete the 
tasks assigned to them. 

In [1] the authors use a GA to solve a multi-robot 
task assignment problem. In their method the overall 
search area is divided into subareas and the authors 
assume that the size of the subarea assigned to each 
robot is the same and equal. However, the authors do 
not describe the area partitioning technique. Wei 
Sun et al. [7] propose a solution for the multi-robot 
task assignment in an environment with obstacles. 
The solution combines the A* algorithm with a 
genetic algorithm. The A* algorithm is used to find 
an optimal path whereas the GA is used to solve the 
task assignment problem. In [8] the authors 
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introduce a Balanced Partitioned Surveillance Task 
(BPS) for multi-robot systems. Indeed, there are 
many methods to solve multi-robot task assignment 
problems, such as task assignment for robots with a 
limited communication range [9], vacancy chain 
scheduling for multi-robot task allocation [10], and 
clustering-based algorithms for multi-vehicle tasks 
[11]. For example, even multi-robot task allocation 
for cleaning public spaces has been put forward [12]. 
The aim is to allocate a group of robots to each 
cleaning zone based on status of the robot and the 
environment [12]. Also, dynamic task allocation is 
necessary process for proper management of the 
swarm in a robotic swarm systems. It allows the 
robotic swarm to do multiple tasks in such a way 
that a pre-defined proportion of execution of those 
tasks is achieved [13]. However, although there are 
many methods for solving Multi-Robot Task 
Assignment (MRTA) problems, every method has 
its own limitations. Different problems lend 
themselves to different partitioning and allocation 
schemes. 

We propose a scheduling task allocation 
mechanism using GA that allocates one or more 
search domains to specific drones in a way that, 
given a certain number of drones, the overall 
average search time is minimized. To achieve this 
the given terrain needs to be partitioned into discrete 
search domains. 

A challenging task in the field of mobile robotics 
is the efficient exploration of environments. Multi-
robot exploration algorithms often rely on 
occupancy grids [14]. However, if these 
environments are very large, search performance can 
be poor. Conversely, polygonal representations do 
not have this limitation [14]. Partitioning of an 
unknown terrain into a number of regions equal to 
the number of available robots has been proposed 
using K-means clustering with an occupancy grid 
representation [14]. According to [15], an unknown 
area is partitioned into multiple sub-regions and each 
different region is assigned to a number of available 
robots. In [15], the author uses a circle partitioning 
method. The aim is to explore the environment as 
quickly as possible. Furthermore, the coordinated 
use of multiple cleaning robots has been considered 
by many researchers (e.g., [16-18]). In [16] the 
authors employ an area partitioning method using a 
balloon model to divide the cleaning area into a 
number of equal-size subareas, each one assigned to 
a specific robot. However, they do not consider the 
shapes and locations of obstacles. In [17] an 
extended partitioning method considers identifying 
dirty areas in the environment. However, once again, 
they do not consider obstacles. As an alternative, in 
[14], the authors use a Voronoi space partitioning 
algorithm to partition an obstacles free space. 
However, no information is provided on the 
partitioning process when obstacles are present. On 
the other hand, a circle partitioning method, based 

on available robots, where obstacles occupy the 
search space is presented in [15]. 

In this paper, a novel SBTP algorithm is 
implemented using the GA to partition a known 
environment into multiple sub-regions for multi-
robot exploration. The aim is to achieve good search 
coverage in a reasonable amount of time with a 
given number of drones. The SBTP algorithm can 
partition any sized known rectangular terrain/space 
with or without obstacles. 

The remainder of the paper is organized as 

follows. In the Section 2, the Square Based Terrain 

Partitioning (SBTP) algorithm is proposed to 

partition a known environment. In Section 3 an 

efficient GA-based scheme is proposed for 

allocating drones to these search partitions. 

Experimental results and analysis are presented in 

Section 4. Finally, in Section 5, conclusions and 

future work are discussed. 

 

2. TERRAIN PARTITIONING INTO 
DISCRETE DOMAINS 

In this section, a novel SBTP algorithm is 

presented using a GA to partition known 

environments with and without fixed obstacles (such 

as walls) into multiple sub-regions for multi-robot 

exploration. By known environments we mean, the 

floor-plan is available ahead of exploration. The GA 

mechanism is explained in Section II [19]. 
With this approach, we first select the number of 

domains. The algorithm then selects valid search 
origin points for each domain (i.e. x, y coordinates 
that do not correspond to walls, water, or other 
illegal terrain) and evaluates their potential using a 
GA.  The algorithm expands the domain from this 
origin(s) by checking whether the location ((x+i, y) 
OR (x-i, y)) valid or not. Initially xmax & xmin = x 
and i = 1. If either location (x+i, y) OR (x-i, y) is 
valid then the algorithm will mark those grid-squares 
(x, y) as belonging to the domain and set xmax = x+i 
or xmin = x-i. The index i is then incremented. The 
process continues in parallel for each domain until 
an obstacle or another domain is encountered. If 
both of the location (x+i, y) and (x-i, y) is not valid 
then the algorithm resets the index, i=1, and 
commences checking the row[(xmax, y+i) to (xmin, 
y+i)] and row[(xmax, y-i) to (xmin, y-i)] whether 
these rows are valid or not. This takes place 
asymmetrically, expanding the row[(xmax, y+i) to 
(xmin, y+i)] OR row[(xmax, y-i) to (xmin, y-i)] 
whilst valid until obstacle(s) or other domains are 
encountered. As the expansion takes place, the grid-
squares (x,y) of valid row(s) are marked and the 
index, i, is incremented. When both of the row 
expansion processes cease, i.e. because row[(xmax, 
y+i) to (xmin, y+i)] and row[(xmax, y-i) to (xmin, y-
i)] are not valid then the algorithm will stop the 
partitioning process for the domain(s) concerned. 
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The algorithm completes when all the domains have 
been expanded to their fullest extent [19]. 

As normal with GA schemes, multiple guesses 
are evaluated and refined to obtain a better 
partitioning of the terrain with or without 
obstacle(s). With this scheme 100% coverage is 
possible, but not always in a terrain that contains 
obstacle(s). In addition, the area of different domains 
can be unbalanced as the algorithm will discontinue 
expanding a specific domain when other domains or 
obstacles are encountered [19]. 

The SBTP algorithm flow chart is presented in 
Fig. 1. 

 

 

Figure 1 – Square based terrain partitioning 

algorithm flow chart 

 
Fig. 2, provides an example of a typical 50x50 

floor plan containing free space (white areas) and 
obstacles (black areas). The given floor-plan is 
partitioned using the partitioning-algorithm as 
described in the flow chart of Fig. 1. 

 

 

Figure 2 – Typical 50x50 floor-plan (before partition) 

 
Fig. 3 gives an example of the SBTP algorithm 

results where each colour indicates an individual 
domain. The simulation is run for 100 generations, 
using 100 chromosomes, 10% elite, 30% kill with a 
crossover and mutation rate of 50% & 30% 
respectively. 

 

Figure 3 – Typical 50x50 floor-plan after partition into 

discrete domains using SBTP algorithm where each 

colour indicates distinct domains 

 
In Fig. 3, we can see the area of different 

domains is somewhat unbalanced because the SBTP 
algorithm expands the partition asymmetrically. As a 
result, it will stop expanding domain partitions when 
domains encounter each other, to prevent 
overlapping, or if obstacles prevent further growth. 

 

3. DOMAIN EXPLORATION WORK 
ALLOCATION MECHANISM 

The concept of a Genetic Algorithm (GA) was 
first proposed by John Holland [20]. A GA is a 
search heuristic that is used to generate solutions for 
optimization and search problems. It commences its 
search with a set of random solutions (represented 
by chromosomes), called a population, usually 
coded into binary string structures. Solutions from 
one population are used to create a new population. 
The new solutions are called the offspring, which are 
selected according their fitness; the more suitable 
they are, the more chances they have to survive and 
reproduce. A flow chart for a traditional GA is 
presented in [1]. 

In this section, we describe a GA to allocate tasks 
between drones in a multi-robot exploration system. 
The purpose of this algorithm is to allocate search 
domains to drones so that, a given certain number of 
drones, the overall search time is minimized whilst 
maximizing the utilization of each drone. We 
assume M≥N; where M denotes maximum number 
of domains and N indicates the total number of 
drones. Therefore, the task scheduling assignment 
mechanism is implemented in such way that one or 
more drones will search separate multiple domains. 
The proposed GA differs from traditional GAs in its 
fitness function. 

 

3.1. CHROMOSOME ENCODING 

Genetic algorithms process chromosomes, each 
chromosome comprising a set of alleles. The group 
of chromosomes used in one generation (i.e. an 
iteration of an experiment) is referred to as the 
population. Each chromosome represents a possible 
solution to a problem and can be encoded in a 
number of ways when designing the experiment. In 
this paper value encoding is used where each and 
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every chromosome is a set of some values, i.e., we 
construct a chromosome as an array of x,y domain 
(D1…Dn) origin coordinates and allocate a drone to 
each of ‘n’ domain as shown in Table 1. 

Table 1. Chromosome encoding structure 

 Number of 

Domains  
D1 D2 D3 ... Dn 

Ci  Drone numbers  R1 R2 R2 ... Rn 

For example, we partition a 20x20 terrain/floor-
plan into 4 discrete domains using the SBTP 
algorithm shown in Fig. 1 and obtain the domains: 

D1(x,y) = (1,1…5,5)  

D2(x,y) = (1,7…9,9)  

D3(x,y) = (6,10…10,6)  

D4(x,y) = (6,1…10,5)  

 
Suppose we have 3 drones (R1, R2 & R3) to 

allocate the search work to for these domains. Then 
one possible chromosome encoding (C1) for each 
domain is represented in Table 2. 

Table 2. An example of chromosome encoding 

 Number of Domains  D1 D2 D3 D4 

C1  Drone numbers  R3 R1 R3 R2 

 

3.2. FITNESS FUNCTION 

The fitness function simply takes a candidate 
solution to the problem as input and produces a 
score based on how fit the solution is in respect to 
the problem under consideration. In this paper, the 
objective is to allocate the domain searching work in 
such way that the overall average search time is 
minimized given a specific number of drones. 
Therefore, the fitness function is designed as 
follows: 

 
Rn = αcount(Di);    n = {1,2,3. . . N}, i = {1,2,3. . . M}, (1) 

 
where Rn represents the count of occurrences of nth 
drone/robot that is allocated to the ith domain 
according to the chromosome encoding. N and M 
denote the total number of drones and total number 
of domains, respectively. Di represents the ith domain 
and αcount is a method that returns the sum of the 
domains that are allocated to nth drone. 

Suppose, we have 4 drones (R1, R2, R3, & R4) and 
7 domains (D1, D2, D3, D4, D5, D6, & D7). One 
possible chromosome encoding (C1) for each domain 
is: 

Table 3. Example of a possible chromosome encoding 

to calculate the fitness function 
 

Number of 

Domains 
D

1
 D

2
 D

3
 D

4
 D

5
 D

6
 D

7
 

C
1
 Drone  

numbers 
R

4
 R

2
 R

1
 R

3
 R

2
 R

3
 R

4
 

 

From Table 3, we obtain the following result 
using eq. (1): 

R1 = αcount (D3) = 1 

R2 = αcount (D2 + D5) = 2  

R3 = αcount (D4 + D6) = 2    

R4 = αcount (D1 + D7) = 2 

 
Separate from the actual domain allocation given 

by any specific chromosome, we employ eq. (2) 
iteratively to calculate what should be a balanced 
distribution of the domain exploration work among 
the drone(s). More precisely, suppose we have 4 
domains (D1, D2, D3 and D4) and 2 drones (R1 and 
R2), then the domain allocation for R1 and R2 should 
be 2 and 2, respectively. 
 

µj = ⌈
(M−µj−1−µj−2−⋯−µ0)

(N−(j−1))
⌉,                 (2) 

 
where j ={1,2,3...N} & µ0 = 0. µj, M and N represent 
a count of the jth domain exploration workload areas, 
total number of domains and total number of robots, 
respectively. Thus, if we have 3 drones the iterative 
form of the eq. (2) becomes: 

 

Step 1: µ1 = ⌈
(M−µ0)

(N)
⌉                        (3) 

Step 2: µ2 = ⌈
(M−µ1−µ0)

(N−1)
⌉                   (4) 

Step 3: µ3 = ⌈
(M−µ2−µ1−µ0)

(N−2)
⌉                  (5) 

 

where µ1, µ2, and µ3 denote the domain exploration 
workload areas: 1, 2 and 3, respectively. In the case 
of the scenario related to the chromosome shown in 
Table 3, we have N = 4 and M = 7. Therefore, from 
eq. (2) we obtain the domain searching workload 
areas as: µ1 = 2, µ2 = 2, µ3 = 2 and µ4 = 1. 

We then perform a comparison between each 

given chromosome domain allocation encoding and 

the analytical balanced domain assignment from eq. 

(1) & (2). Eq. (6) is formulated to check the 

equivalency of the domain count allocated to the nth 

drone with the set of jth domain searching workload 

area count according to the chromosomes encoding 

that has been calculated by using eq. (1) and (2). 

 
Rn ≡ {µ1,µ2,µ3, … µj};  n = {1,2,3. . . N}, j = {1,2,3 … N} (6) 

 
Basically, we are conducting a logically 

equivalency test between eq. (1) and (2), i.e. a count 
of the areas allocated to each drone in the 
chromosome with a count of the balanced areas 
calculated theoretically. 

For instance, from eq. (1) and (2), we obtain:  
R1 = 1, R2 = 2, R3 = 2, R4 = 2 and  
µ1 = 2, µ2 = 2, µ3 = 2, µ4 = 1.  
 
Hence, from eq. (6) we get: R1 ≡ {µ1,µ2,µ3,µ4} = 

true because R1 is matched or paired with µ4. µ4 is 
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then removed from the candidates set and the 
process repeats. Thus for the next iteration we 
compare R2 ≡ {µ1,µ2,µ3}. A match is found with µ1. 
Similarly, R3 and R4 are matched with µ2 and µ3, 
respectively. 

Subsequently, in eq. (7) we check the logical 
AND with the output of the Rn comparison that has 
been calculated using eq. (6). If eq. (7) is logically 
true, we determine that the domain exploration 
workload, µj is fully matched among the drones 
according to the chromosome encoding and we will 
progress to eq. (8). Otherwise, the system will reject 
that chromosome encoding by assigning it the 
highest fitness (F1) value, where a low score is 
preferable. 

 

(R1AND R2 AND … AND Rn) = True        (7) 

 
Only if eq. (7) is true, then the total transit time 

between the domains for all the drones, Tβ, is 
calculated as follows:  
 

Tβ = ∑ (Ti),N
i=1                             (8) 

 

where Ti indicates the transit time of the ith drones. 
From eq. (8), the first fitness term, F1 is: 

 

      F1 = Tβ                                   (9) 

 

Let, Aф = ∑ size(Di)
M
i=1 ,                (10) 

 
where Di, denotes the individual domain D1, D2, & 
Dm and Aф total area of the domains and size is a 
method that returns the total domain’s area. 

 

From (8) and (10), the second fitness term, F2 is: 

F2 = (
  Aф

N
) + Tβ,                    (11) 

where N represents the maximum number of drones. 
A dynamic path finding algorithm A* is used to 

calculate the Tβ for each drone. The A* algorithm 
calculates transit between any points within the two 
domains in order to obtain the shortest transit path 
between them. 

The fitness term F1 is used for drone searching 
work assignment in an obstacle and obstacle-free 
environment whereas F2 is used to evaluate how the 
average search time varies in terms of the number of 
drones for the resultant best F1 task allocation. The 
lowest F1 value means the drone searching work 
allocation is adjacent for the total number of drones 
and the lowest F2 value indicates the least average 
exploration time for that resultant best F1 domain 
searching allocation. 
 

 

3.3. GENETIC OPERATORS 

Three genetic operators: selection, crossover and 
mutation are mainly used in GA. Initially; a random 
population is created to form a chromosome pool of 
n chromosomes. The fitness of each chromosome in 
the population is evaluated and unless the stopping 
criteria are met (i.e. a sufficiently superior solution 
has been found) the fit chromosomes are used to 
create new offspring chromosomes. There are 
several existing methods to select the best 
chromosomes, such as [21]. In this paper, rank 
selection is used with elitist selection to ensure good 
solutions are retained until better alternatives are 
found. 

For the crossover, ‘single point’ crossover is used 
and for the mutation we just randomly alter allele 
values (i.e. x,y coordinates). In ‘single point’ 
crossover, one chromosome is selected to crossover 
with a second parent chromosome. For example, 
Table 4, shows the process before crossover. Here, 
two chromosomes (C1, C2) containing (X, Y) 
coordinates for four domains (D1, D2, D3, and D4) 
are shown. A new child chromosome Cnew is created 
by performing single point crossover with 
chromosomes C1 and C2. The crossover point is 
randomly selected. In this instance it is from Domain 
2 (D2) onwards as shown in Table 5. 

Table 4. The process of single point crossover (before) 

 Coordinates D1 D2 D3 D4 

C1 
X 2 5 10 9 

Y 7 8 15 14 

C2 
X 15 9 12 7 

Y 20 1 14 18 

Table 5. The process of single point crossover (after) 

 Coordinates D1 D2 D3 D4 

Cnew 
X 2 9 12 7 

Y 7 1 14 18 

 

4. RESULTS AND ANALYSIS 

In this section, some experiments are carried out 
to demonstrate the efficacy and feasibility of the 
proposed method for multi-robot exploration and 
work assignment in a known environment. 

The purpose of the experiment shown in Fig. 4 is 

to determine how the coverage varies with the 

number of domains. In this section, the GA-based 

SBTP algorithm is used to achieve the efficient 

coverage. The given terrain (shown in Fig. 2) is 

partitioned into 10 domains (shown in Fig. 3). The 

simulation is run for 100 generations, 100 

chromosomes, 10% elite, 30% kill, with the 

crossover and mutation rate of 50% and 30%, 

respectively. The simulation is repeated 5 times with 

computer producing different random number 
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generator seeds and the average percentage coverage 

is shown in Table 6. 

Table 6. Coverage (%) versus number of domain(s) in 

an environment with and without obstacles 

Number of 

domain(s) 
Free space 

(%) 
Obstacles Space 

(%) 
D1 100 49.40 
D2 100 71.80 
D3 100 88.60 
D4 100 99.40 
D5 100 99.64 
D6 100 99.68 
D7 100 99.76 
D8 100 99.86 
D9 100 99.96 

D10 100 100 
 

 

Figure 4 – Coverage (%) versus number of domain(s) 

in an environment with and without obstacles 

 

In Fig. 4, D1 to D10 represent the domains (1, 

2…10) and the coverage is calculated using eq. (4) 

in Section II [19]. With 95% Confidence Intervals, 

we can see the exploration coverage gradually 

increases as the number of domains grow in a terrain 

that contains obstacles. However, in a free space 

environment (terrain does not contain obstacles), the 

exploration coverage is always 100% for the any 

number of domain(s) even in single generation of 

the chromosome population. 

 

4.1. DRONE EXPLORATION WORK 
ASSIGNMENT IN ENVIRONMENT WITH 
AND WITHOUT OBSTACLES 

In this subsection, a GA-based method is used to 
assign the domain searching work in a simple known 
environment with and without obstacles. When 
completing the task, the drones need to avoid 
colliding with obstacles.   The given terrain (shown 
in Fig. 2a & 2b) is partitioned into 10 discrete 
domains (shown in Fig. 3a & 3b) and the maximum 
number of drones is 4. The simulation parameters 
for this experiment are: 200 generations, 100 
chromosomes, 10% elite, 30% kill with a crossover 
and mutation rate of 50% & 30%, respectively. The 
results are shown in Figs. 5a, 5b, 6a and 6b. 

4.1.1. ROUGHLY EQUAL, NON-
ADJACENT TASK ALLOCATION 

In this subsection a GA-based mechanism 
explained in Section III [19] is used to allocate the 
domain exploration work among the drones. Here 
the task allocation is roughly equal, meaning the 
workload (x-y coordinates) is almost equal but not 
necessarily adjacent domains when assigned to 
specific drones. Details of the roughly equal task 
allocation are provided in Section III(B) [19]. The 
experiment is run for the partitioned floor-plan 
shown in Figs. 3a & 3b and the fitness performance 
is calculated using eq. (6) in Section III [19].  The 
A* dynamic path finding algorithm is used for drone 
inter-domain movements. 

 

 

Figure 5a – Roughly equal, non-adjacent domain 

searching work assignment among drones (R1, R2, R3 

& R4) in a free space environment 

 

 

Figure 5b – Roughly equal, non-adjacent domain 

searching work assignment among drones (R1, R2, R3 

& R4) in an environment containing obstacles (black 

areas) 

a: Domain searching work 

assigned to drone R1.

b: Domain searching work 

assigned to drones R1 & R2.

c: Domain searching work 

assigned to drones R1, R2 & R3.

d: Domain searching work 

assigned to drones R1, R2, R3 & R4.

a: Domain searching work 

assigned to drone R1.

b: Domain searching work 

assigned to drones R1 & R2.

c: Domain searching work 

assigned to drones R1, R2 & R3.

d: Domain searching work 

assigned to drones R1, R2, R3 & R4.
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Figs. 5a & 5b show the domain searching work 
assignment for different numbers of drones in a 
known simple environment with and without 
obstacles. The numbers (1-4) in Figs. 5a & 5b (a-d) 
denote drone 1 (R1), drone 2 (R2), drone 3 (R3) & 
drone 4 (R4), respectively. Basically this is an 
indication of which drone will search which domain. 
As we can see from Figs. 5a & 5b, the workload is 
roughly equal, meaning the area of the total 
partitioned domains are roughly equally distributed 
among the drones but they are not necessarily 
adjacent. 

 

4.1.2. ADJACENT TASK ALLOCATION 

In this subsection a GA method (explained in 
Section 3) is used for domain searching work 
allocation to drones. Here the fitness function 
(explained in Subsection 3.2) is designed in such a 
way that the task allocation to drones comprises 
adjacent domain allocations that are balanced. 
Adjacent and balanced task allocation means that if 
there are 4 domains and 2 drones, then each drone 
will be allocated to explore the closest 2 domains 
that are adjacent to them. The experiment is run for 
the partitioned floor-plan shown in Figs. 3a & 3b 
and the fitness performance is calculated using eq. 
(9). The A* dynamic path finding algorithm is used 
for inter-domain drone movements. 

Figs. 6a & 6b show the domain searching work 
assignment for different numbers of drones in an 
environment with and without obstacles. The 
numbers (1-4) denote drone 1 (R1), drone 2 (R2), 
drone 3 (R3) & drone 4 (R4), respectively, in Figs. 6a 
& 6b (a-d). As we can see from Figs. 6a and 6b the 
domain searching work assignment for each drone is 
adjacent and the domain allocation is balanced. 
However, as expected, the workload is slightly 
imbalanced when the number of domains is not 
wholly divisible by the number of drones. 

 

 

Figure 6a – Adjacent domain searching work 

assignment among drones (R1, R2, R3 & R4) in a free 

space environment 

 

Figure 6b – Adjacent domain searching work 

assignment among drones (R1, R2, R3 & R4) in an 

environment containing obstacles (black areas). 

 

4.2. TASK ALLOCATION PERFORMANCE 
IN A FREE SPACE ENVIRONMENT 

In this subsection, a performance comparison is 
conducted in an obstacle-free environment based on 
two task allocation methods: roughly equal, non-
adjacent and adjacent task allocation, as shown in 
Figs. 5a & 6a. We can see from Fig. 5a, the 
workload is roughly equal, meaning the area of the 
total partitioned domain workload among the drones 
is distributed fairly equally but the allocation of the 
domains is not necessarily adjacent for each drone. 
On the other hand, we can see from Fig. 6a, the 
work assignment for each drone is adjacent and 
domain allocation is balanced as well. Suppose, if 
there are 8 domains and 2 drones; then the domain 
allocation for each drone will be the closest 4 
domains that are adjacent to them. In addition, Table 
7 gives a comparison of the average search time 
between the two domain searching allocation 
mechanisms shown in Fig. 5a in Subsection 4.1.1 & 
in Fig. 6a in Subsection 4.1.2 for different numbers 
of drones. In Fig. 7, we can see that the overall 
domain searching time is reduced when the number 
of drones increases. 

 

Table 7.   Comparison of average search time between 

the non-adjacent and adjacent task allocation for 

different numbers of drones in an obstacle-free 

environment 

Number of 

drone(s) 
Average search time (seconds)  

 Task allocation 

non-adjacent 
Task allocation 

adjacent 
 1 2556.70  2556.70  
 2  1323.5  1295.20 
 3  917.60  869 
 4  709.70  652.10 

a: Domain searching work 

assigned to drone R1.

b: Domain searching work 

assigned to drones R1 & R2.

c: Domain searching work 

assigned to drones R1, R2 & R3.

d: Domain searching work 

assigned to drones R1, R2, R3 & R4.

a: Domain searching work 

assigned to drone R1.

b: Domain searching work 

assigned to drones R1 & R2.

c: Domain searching work 

assigned to drones R1, R2 & R3.

d: Domain searching work 

assigned to drones R1, R2, R3 & R4.
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Figure 7 – Number of drones versus average search 

time in a free space environment. The experiment is 

repeated 10 times, based on the drone searching work 

allocation shown in Figs. 5a & 6a, with different 

random number generator seeds. The fitness 

performance is assessed using eq. (9) [19] and eq. (11) 

for the non-adjacent and adjacent task allocation 

respectively. With the 95% CIs, we can see the 

average domain exploration time is reduced as the 

number of drones increases, assuming, the exploration 

of 1 grid-square equals 1 time-unit (1second). 

 

In Fig. 7, we can see when the task allocation is 

adjacent, the overall domain searching time is less 

than when the task allocation is non-adjacent for a 

given number of drones due to the reduced inter-

domain transit time. 

 

4.3. TASK ALLOCATION PERFORMANCE 

IN ENVIRONMENT WITH OBSTACLES 

In this subsection, a performance comparison is 

conducted in an environment with obstacles based 

on two task allocation methods: roughly equal, non-

adjacent and adjacent task allocation as shown in 

Figs. 5b & 6b. We can see from Figs. 5b and 6b, the 

workload is non-adjacent and adjacent for each 

drone, respectively. In addition, we can see from 

Fig. 5b & 6b, that 4 drones can complete the whole 

domain exploration task in approximately 705.70 

and 631.50 seconds, respectively (shown in Table 8) 

without colliding with the obstacles. 

 

Table 8. Comparison of average search time between 

non-adjacent and adjacent task allocation for different 

numbers of drones in an environment with obstacles 

Number of 

drone(s) 
Average search time (seconds)  

 Task allocation 

non-adjacent 
Task allocation 

adjacent 
 1 2502.70  2502.70  
 2  1291.80  1278.30 
 3  904.30  857.80 
 4  705.70  631.50 

 

Figure 8 - Number of drones versus average search 

time in an environment with obstacles. The 

experiment is repeated 10 times, based on the drone 

searching work allocation shown in Figs. 5b & 6b, 

with different random number generator seeds. The 

fitness performance is evaluated using eq. (9) [19] and 

eq. (11) for the non-adjacent and adjacent task 

allocation respectively. With the 95% CIs, we can see 

the average domain exploration time is reduced as the 

number of drones increases, assuming, the exploration 

of 1 grid-square equals 1 time-unit (1second). 

 
If we compare Figs. 5b & 6b we can see the 

drones can finish the domain exploration work in 
less time when task allocation is adjacent (shown in 
Fig. 8) among the drones (R1, R2, R3 & R4). 

 

4.4. TASK ALLOCATION ALOGORITHM 
PERFORMANCE IN AN ENVIRONMENT 
WITH AND WITHOUT OBSTACLES  

In this subsection, the performance of the GA 
method explained in Section 3, is tested. The 
experiment is run for 1, 5, 10, 20, 30, 40 and 50 
generations with the simulation parameters; 50 
chromosomes, 10% elite, 30% kill and the crossover 
and mutation rate of 50% and 30%, respectively. 
According to the fitness function shown in eq. (9), 
the best adjacent task allocation is found in a free 
space environment, as shown in Fig. 6a and an 
obstacles space shown in Fig. 6b. However, the F1 
values vary depending upon the drone inter-domain 
movement. This is due to where a drone is within 
one domain when it commences its transit to the 
next domain. In Fig. 9a, we can see that the best 
adjacent task assignment is found within 10 
generations in an obstacle free environment for 2 
robots and within 30 generations for 3 and 4 robots. 
On the other hand, in an environment with obstacles, 
as shown in Fig. 9b, we can see the finest solution is 
found for 2 robots in 30 generations. However, for 3 
and 4 robots, the best solution is found within 30 and 
40 generations, respectively. Overall, we can see, 
based on both scenarios, the GA converges to the 
best solution very quickly in a free space 
environment compared to one with obstacles 
environment. 
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a: Free space. 

b: Obstacles. 

Figure 9 - No. of generations vs fitness function (F1) in 

(a) Free space, and (b) Obstacles space. Here task 

allocation algorithm performance is checked based on 

drone searching work assignment shown in Figs. 6a & 

6b. We can see the best solution is found within 10 to 

40 generations in both scenarios; free space and 

obstacles space. 

 

5. CONCLUSION AND FUTURE WORK 

In this paper, a novel Square-Based Terrain 

Partitioning (SBTP) scheme employing a Genetic 

Algorithm (GA) is used to partition known 

environments into multiple sub-areas in a multi-

robot exploration system where N robots are 

employed to survey a given area with some static 

obstacles. Also, a GA has been presented to solve 

Multi-Robot Task Assignment (MRTA) problems 

where one or more drones search multiple domains 

in such a way that for the given number of drones 

the overall search time is minimized. In applied GA, 

an appropriate fitness function is provided based on 

traditional GAs. 

As shown in Section III [19] and Section 3 of this 

paper, we can see the terrain exploration coverage is 

increased for increasing number of domains. In 

addition, the utilization of each robot is increased by 

taking into account the transit time between domains 

within the F2 fitness function, which can reduce the 

overall search time. However, the new fitness 

function explained in eq. (1-9) in Subsection 3.2 

performs better than the fitness function described in 

eq. (5-6) in Section III(B) [19]. In both scenarios 

(terrain with and without obstacles), the overall 

domain searching time is effectively reduced when 

domain exploration work is adjacent compared to 

the non-adjacent work allocation for a given number 

of drones due to the reduced inter-domain transit 

time. 

In the future work, the communication continuity 

constraint will be incorporated. This means that 

drones can no longer search independently but must 

regulate/coordinate their actions to remain in contact 

with each other, as shown in Fig. 10. 

 

 

Figure 10 – An example snapshot of future work 

surveying operation. 

 

A group of drones with sensors are sent into a 

hostile enclosed space typically comprising a 

number of rooms and corridors containing various 

obstacles. The drones must spread out to survey the 

terrain (In some instances the terrain is completely 

unknown; however, we initially focus on scenarios 

where a floor-plan is available) in a timely manner. 

However, they are required to remain in contact with 

each other to relay data and ensure the group 

functions as a single orchestrated unit. At various 

strategic points some of the drones may assume the 

role of a relay station whilst others actually perform 

the surveying. If the group becomes partitioned, 

remedial steps are taken to promptly re-establish 

contact. 
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