
N. E. Vera-Parra, D. A. López-Sarmiento, C. A. Rojas-Quintero / International Journal of Computing, 19(4) 2020, 525-532

 525

HETEROGENEOUS COMPUTING TO ACCELERATE THE SEARCH OF
SUPER K-MERS BASED ON MINIMIZERS

Nelson Enrique Vera-Parra, Danilo Alfonso López-Sarmiento,

Cristian Alejandro Rojas-Quintero

Francisco José de Caldas District University, Bogotá, Colombia

neverap@udistrital.edu.co, dalopezs@udistrital.edu.co, carojasq@correo.udistrital.edu.co,

http://gicoge.udistrital.edu.co/

Paper history:

Received 12 May 2020
Received in revised form 25 August 2020

Accepted 17 October 2020

Available online 30 December 2020

Keywords:

Heterogeneous computing;

K-mers processing;

OpenCL;
Parallel programming;

Search and distribution of super k-mers.

Abstract: The k-mers processing techniques based on partitioning of the data set

on the disk using minimizer-type seeds have led to a significant reduction in

memory requirements; however, it has added processes (search and distribution

of super k-mers) that can be intensive given the large volume of data. This paper

presents a massive parallel processing model in order to enable the efficient use

of heterogeneous computation to accelerate the search of super k-mers based on

seeds (minimizers or signatures). The model includes three main contributions: a

new data structure called CISK for representing the super k-mers, their

minimizers and two massive parallelization patterns in an indexed and compact

way: one for obtaining the canonical m-mers of a set of reads and another for

searching for super k-mers based on minimizers. The model was implemented

through two OpenCL kernels. The evaluation of the kernels shows favorable

results in terms of execution times and memory requirements to use the model

for constructing heterogeneous solutions with simultaneous execution (workload

distribution), which perform co-processing using the current search methods of

super k -mers on the CPU and the methods presented herein on GPU. The model

implementation code is available in the repository:

https://github.com/BioinfUD/K-mersCL.

Copyright © Research Institute for Intelligent Computer Systems, 2020.

All rights reserved.

1. INTRODUCTION

The search of super k-mers of a genomic read is a

task that demands finding the seed (canonical

minimizer or signature) of each possible k-mer and

compare them with each other in order to identify

those contiguous k-mers that have the same

minimizer [1]. This search becomes an intensive

task when it must be performed for millions of reads

due to the high number of processes and the large

amount of both input and output data. Due to the

independence of processes between reads, the search

for super k-mers is a highly suitable task to be

accelerated by simultaneous heterogeneous

processing: the workload is partitioned to be

processed simultaneously between the CPU and the

GPU(s), either through a static, dynamic [2], or

hybrid distribution [3]. However, for this type of

processing to be carried out efficiently it is

necessary to overcome the following challenge: the

search for super k-mers is a process that has a very

high and unpredictable memory requirement when it

is massively parallelized because the space required

depends on the data generated but not on the input

data. The memory occupied by the super k-mers of a

read depends on the sequence (it varies from read to

read) and is much greater than the space occupied by

the read due to redundancy. This prevents the search

of super k-mers from running efficiently on many-

core platforms such as GPUs where the memory is

limited and the cost of data transfer between the

levels of the memory hierarchy is very high.

This paper proposes a massive model of parallel

processing for the search of super k-mers that allows

the memory requirements and the execution times to

be adequate to develop efficient heterogeneous

solutions with simultaneous CPU-GPUs execution.

The following section provides a background to the

computing@computingonline.net

www.computingonline.net

Print ISSN 1727-6209

On-line ISSN 2312-5381

International Journal of Computing

N. E. Vera-Parra, D. A. López-Sarmiento, C. A. Rojas-Quintero / International Journal of Computing, 19(4) 2020, 525-532

 526

thematic framework of the problem, in section 3 the

components that constitute the massive parallel

processing model are presented: a heterogeneous

processing model, an efficient data structure and 2

parallelization patterns; finally, the results are

presented and analyzed, conclusions are drawn and

future works are proposed.

2. BACKGROUND

2.1 WHAT ARE MINIMIZERS?

Minimizers were initially proposed as a

technique to reduce storage requirements in

biological sequence comparison processes [4, 5],

through the strategy of reducing the redundancy

presented by the “seed-and-extend” technique [6].

As of 2013, the minimizers ventured into k-mers

treatment tasks in de-novo assembly processes: (a)

k-mers counters [7] KMC2 and KMC3 [8] and

MSPKmerCounter [9], (b) graph builder

MSPGraphBuilder [10], (c) graphs compactors

[11,12], and (d) assembler EPGA2 [13]. A

minimizer of a k-mer is the sub-sequence of length

m (m-mer, where m < k); when comparing all

possible m-mers of that k-mer, this minimizer

presents the lowest value according to a criterion of

comparison, which is usually the lexicographic

weight.

According to the previous definition, the

minimizer of a k-mer is a unique sub-sequence, and

those k-mers that are contiguous in a read are very

likely to present the same minimizer. For this reason

they can be considered “seeds” and used as a

partitioning criterion and as a data structure (super

k-mers: merging contiguous k-mers with the same

minimizers).

2.2 WHAT DO THE MINIMIZERS
CONTRIBUTE TO THE PROCESSING OF
K-MERS?

Minimizer are used to face the two challenges of

processing k-mers: the high volume of data due to

redundancy and the impossibility or difficulty of

partitioning treatment [7].

Figure 1 – Super k-mers. Data structure for reducing

redundancy

Data structure to reduce redundancy:

Minimizers are used to define data structures where

not all the k-mers of a read are stored, but those that

are contiguous and have the same minimizer are

merged [14]. The product of this fusion is sub-

sequences called super k-mers [8]. Fig. 1 shows how

to go from 7 k-mers (112 bases) to 2 super k-mers

(37 bases).

Criterion for partition of the data set: Although

the merger of k-mers in super k-mers reduces

redundancy, when dealing with said super k-mers it

is very likely that the process needs to obtain all its

k-mers; this would demand the same memory as if

all the k-mers of the readings of the data set had

been obtained and stored initially. For this reason,

minimizers are also used as a criterion to divide the

data set by creating partitions (files on disk) that

contain all the super k-mers that have the same

minimizer, so that these files can be stored on

memory and process separately by ensuring that the

same k-mer will not exist in a different partition and

that all contiguous k-mers that have the same

minimizers will be in the same partition (see Fig. 2).

Figure 2 – Minimizer. Criterion for partition of the

data set

2.3 WHAT ARE THE CANONICAL
MINIMIZERS?

The partitioning technique is performed to

execute a type of processing that takes into account

the reverse complement of the sequences and sub-

sequences [15, 16]. The minimizer criterion could

not be applied as explained above, because a k-mer

could remain in one partition and its reverse

complement in another. To solve this, a small

modification is made to the selection criterion of the

minimizer in such a way that the one with the lowest

lexicographic weight is chosen, but in this case not

only the m-mers but also its reverse complements

are included.

2.4 WHAT ARE THE SIGNATURES?

If the criterion for selecting the minimizers is

exclusively the lexicographic weight of the m-mers,

the sizes of each of the partitions will depend

N. E. Vera-Parra, D. A. López-Sarmiento, C. A. Rojas-Quintero / International Journal of Computing, 19(4) 2020, 525-532

 527

directly on the frequency of occurrence of the

minimizers. This means that they are defined by the

trends in the biological sequences. For example,

minimizers with several As can be very common,

while minimizers with several Ts can be very rare.

This could lead to non-uniform distributions that

generate large and small files that do not optimize

the use of memory. In order to achieve more

homogeneous distributions, the authors of the k-

mers counting tools KMC 2 and KMC 3 proposed a

canonical minimizer alternative where some of them

are vetoed according to specific characteristics.

Therefore, those allowed minimizers have not so

different frequencies of occurrence. Allowed

minimizers are those that meet the following

characteristics: they do not start with AAA or ACA

and do not contain AA anywhere (except at the

start).

3. MATERIAL AND METHODS

3.1 HETEROGENEOUS PROCESSING
MODEL

This model is supported in three pillars: (1) a data

structure called CISK (Compact-Indexed Super k-

mers representation) for representing the super k-

mers and their seeds in a compact and indexed way,

so the identification process of super k-mers can be

carried out without performing the process of

explicit extraction of the super k-mers, and (2,3) two

massive parallelization algorithms for obtaining the

canonical m-mers and identifying the super k-mers

of a set of readings through the efficient use of

many-core devices. The purpose of the proposed

model and its three contributions is to facilitate the

development of simultaneous heterogeneous

solutions: current efficient search processes of super

k-mers executed in parallel on CPU, accelerated by

simultaneous co-processing on GPU(s) (see Fig. 3).

Figure 3 – Heterogeneous processing model with

simultaneous CPU-GPUs execution

3.2 CISK (COMPACT-INDEXED SUPER K-
MERS REPRESENTATION)

The model proposes a data structure for

representing the super k-mers and their minimizers

in an indexed and compact way, so they are detected

and stored in the GPU without extracting them

explicitly. Each super k-mer of a read is represented

by three data (minimizer, position of the super k-

mer, and length of the super k-mer minus k) that are

compacted in only 32 bits (see Fig. 4). The 7 least

significant bits are used to represent the number of

k-mers that are added to the initial k-mer to build the

super k-mer (the length of the super k-mer minus k),

so the maximum length of super k-mer is k + 2 ^ (7)

and the maximum k is 2 ^ 7 + m. The remaining 25

bits are shared to represent the seed (canonical

minimizer or signature) and the initial position of the

super k-mer within the read. The distribution of

these 25 bits is performed dynamically as a function

of m: the 2 * m most significant bits are reserved to

represent the seed and the rest are assigned to

represent the position of the super k-mer. In this way

the maximum read length supported is 2 ^ (25 - 2 *

m) + k - 1. For example, with m = 4 the length of the

reads can be up to 131,072 + k - 1 (PacBio reads

[17, 18]), and with m = 9 it can be up to 128 + k

(typical short reads). Note: The use of small m

generates few partitions that could cause an

unbalanced distribution; in this case the use of

signatures is recommended in order to reduce this

problem.

Figure 4 – CISK. Compact-Indexed Super k-mers

representation

3.3 MASSIVE PARALLELIZATION
ALGORITHM: OBTAINING CANONICAL
M-MERS OF A SET OF READS

A canonical m-mer is the smallest between the

m-mer and its reverse complement taking its

lexicographic weight as a comparison value. The

conventional way to find these weights is by means

of its base-10 numerical representation. The decimal

values could be calculated in a relatively simple way

on an ideal many-core device (infinite physical

threads, unlimited memory, and non-latency) by

assigning a thread to compute each base. However,

an implementation of this form on a real device

N. E. Vera-Parra, D. A. López-Sarmiento, C. A. Rojas-Quintero / International Journal of Computing, 19(4) 2020, 525-532

 528

would lead to an over-access of each of the bases of

the read up to m-1 times, which would be

catastrophic for the operational intensity. In

addition, it would have overly fine granularity that

would be inefficient considering the way the threads

are executed. As a consequence, this model proposes

a new parallelization algorithm for obtaining the

canonical m-mers of a set of reads based on tiles

with hybrid granularity, in such a way that a massive

parallelism (m threads per tile) can be used to obtain

the first m-mer of each tile (by means of

conventional numerical conversion equations) and a

moderate parallelism (1 thread per tile) to obtain the

rest of m-mers by means of a roll strategy that

allows the reuse of the results, thereby avoiding

redundancy in the access to each element of the

input vector (see “kernels algorithms” in the

repository: https://github.com/BioinfUD/K-

mersCL).

3.4 MASSIVE PARALLELIZATION
ALGORITHM: SEARCH FOR SUPER K-
MERS BASED ON MINIMIZERS

The search process of the super k-mers of a read

demands the analysis of all its k-mers to identify

those that are contiguous and have the same

minimizer. This model proposes a sequential /

parallel strategy that significantly reduces the

number of k-mers to be analyzed and the number of

threads to be used: through a sequential process

(window by leaps) the zones that contain the

boundaries between two super k-mers are identified,

and through a parallel process these zones are

analyzed to accurately detect the boundaries

according to the minimizers (see Fig. 5).

Figure 5 – Sequential / parallel strategy. Search for

super k-mers using GPUs

If the zone has a reference minimizer, a pattern

that finds the closest lowest canonical m-mer using

atomic operations will be used; this pattern will be

the minimizer of the new super k-mer. If the zone

does not have a reference minimizer, a mixed and

adaptive reduction pattern will be used to find the

new minimizer. This pattern is mixed because it uses

a three-level tree structure, but its branches converge

through atomic operations, and it is adaptive because

the number of branches of the second level (to which

the initial elements converge) is adapted according

to the size of the zone. Then the number of elements

per block to be reduced in each level slightly varies

and has low levels (around 8). The atomic operations

therefore have high and homogeneous performance

in each of the tree levels [19].

It is possible that several elements of the zone

have the same minimum value. In that case, the one

with a greater position is selected in order to favor

the construction of more extensive super k-mers (see

“kernels algorithms” in the repository:

https://github.com/BioinfUD/K-mersCL).

3.5 IMPLEMENTATION AND
EVALUATION

The massive parallel processing model for the

search of super k-mers was implemented through

two OpenCL [20, 21] kernels, one for canonical

minimizers and the other for signatures. In order to

facilitate testing and evaluation of the kernels, a host

code was implemented using PyOpenCL [22, 23];

this code performs the complementary tasks to

search the super k-mers (load and numerical

conversion of reads and explicit extraction of super

k-mers). Both the kernels codes and the test host

code are available in the following repository:

https://github.com/BioinfUD/K-mersCL. (Note:

when using the kernels, the following restrictions

must be considered: (1) the kernels are not an

independent tool; they are designed to be part of a

heterogeneous solution. (2) The size of the data set

is limited according to the memory of the GPU. (3)

All the reads of the data set must have equal length).

The evaluation measures and compares the

execution times of the implementations of the model

(OpenCL Kernels) with similar processes executed

on CPU used in recognized k-mers counting tools

with the aim of determining if the model

does represent an alternative to parallel co-

processing (many-core) for building efficient

heterogeneous solutions with simultaneous CPU-

GPUs execution that integrate the current methods

on multi-core and the model of processing on many-

core proposed in this project.

Reference tools: The two seed-based k-mers

counting tools that show (in their publications) the

best performance in terms of processing time and

memory use were selected. For the canonical

minimizer kernel (kmercl-min) the

MSPKmerCounter tool was used, and for the

N. E. Vera-Parra, D. A. López-Sarmiento, C. A. Rojas-Quintero / International Journal of Computing, 19(4) 2020, 525-532

 529

signatures kernel (kmercl-sig) the KMC2 tool was

used. MSPKmerCounter is a disk-based approach, to

efficiently perform k-mer counting for large

genomes using a small amount of memory. It is

based on a novel technique called Minimum

Substring Partitioning (MSP). In [9] it is stated that

the experiment results on large real-life short reads

data sets demonstrate that MSPKmerCounter can

achieve better overall performance than state-of-the-

art k-mer counting approaches.

KMC2 uses a novel method (signature-based) for

k-mer counting, on large datasets at least twice faster

than the strongest competitors (Jellyfish 2 [24],

KMC 1 [25]), using about 12 GB (or less) of RAM

memory.

In order to exclusively measure the time that

MSPKmerCounter uses to perform the identification

of super k-mers (excluding disk reading / writing

times), a timer was introduced in Partition.java.

KMC was modified in such way that the timer did

not measure any reading / writing from/to disk. Time

was measured only for the process that identifies the

super k-mers by signatures; since this process can be

executed sequentially several times for each thread,

the times of each execution per thread were

accumulated and the resulting times for each thread

were averaged.

Data set: A data set consisting of 4 files

generated from short reads from the sequencing of

chromosome 23th of Homo sapiens was used. The

files vary in the number of reads (1.5 and 9 million

reads) and in their length (180 and 300 bases).

Computers: The evaluation was carried out on

two computers in order to measure the performance

of the model under the limitations of a desktop

computer (Intel(R) Core(TM) i7-4790 CPU @

3.60GHz, GeForce GTX 750Ti, 16GB DDR3, SSD

1TB, Ubuntu 16.04) and under the advantages of a

HPC - High Performance Computer (Intel(R)

Xeon(R) CPU E5-2697 v3 @ 2.60GHz, Nvidia k80,

128GB DDR3, SSD 480GB, CentOS 7.3), which are

part of the Centro de Cómputo de Alto Desempeño

de la Universidad Distrital (CECAD):

http://cecad.udistrital.edu.co/.

Configuration: The k-mers counter tools were

configured to run serially (1 thread) and in parallel

(4 threads) on CPU. For the kernels, indexed

processing spaces were configured as follows:

global space: two-dimensional space with a number

of rows equal to the reads that make up the set and a

number of columns equal to twice the number of m-

mers per k-mer; local space: one-dimensional space

(1 row) with a number of columns equal to those

assigned to the global space. Both the kernels and

the processes in the k-mers counting tools were

evaluated for typical lengths of k-mers (k = 51, k =

81) and m-mers (m = 5, m = 7).

For further information on the evaluation

(modifications of reference tools, data set, specific

commands, among others), please refer to:

https://github.com/BioinfUD/K-mersCL/blob/

master/README.md.

4. RESULTS

A processing model was obtained that efficiently

parallelizes the search of super k-mers (based on

either minimizers or signatures seeds) on many-core

architectures using two new algorithms of

parallelization that maximize the operational

intensity and a structure of data that substantially

reduces the memory requirement for the

representation of the output data (identification of

super k-mers). The model was implemented through

two OpenCL kernels, one for minimizer and one for

signatures. Figs. 6 and 7 show the results of the

evaluation made to the kernels in terms of execution

times; the execution times of the kernels are

represented with a bar that has two levels: the lower

level corresponds exclusively to the processing time

on the GPU and the upper level includes the transfer

times between the host and the GPU in both

directions).

The memory requirement for the search process

of super k-mers in series or in parallel with few

threads (on CPU) is very low considering that it is

not necessary to load the entire data set into

memory. The data is divided into small batches that

are sequentially loaded and processed. The search

for super k-mers on many-core platforms is the

opposite case as it is necessary to transfer to the

memory of the GPU and to process as much data as

possible in a single call to the kernel due to the high

cost of data transfer between the host and the GPU

in both directions. Figs. 8 and 9 show the results of

the evaluation; the memory requirements for the

processes of the reference tools are shown as

information and not with comparative purposes due

to the reasons outlined above.

Figure 6 – Execution time. Kernels vs. references tools

on the CECAD - HPC (RS: Read size; T: Threads;

Kernels times: Processing | Processing + Data

Transfer)

N. E. Vera-Parra, D. A. López-Sarmiento, C. A. Rojas-Quintero / International Journal of Computing, 19(4) 2020, 525-532

 530

Figure 7 – Execution time. Kernels vs references tools

on the desktop computer (RS: Read size; T: Threads;

Kernels times: Processing | Processing + Data

Transfer)

Figure 8 – Memory. Kernels and references tools on

the CECAD - HPC (RS: Read size; T: Threads)

Figure 9 – Memory. Kernels and references tools on

the desktop computer (RS: Read size; T: Threads)

5. DISCUSSION

The execution times of the kernels (including

data transfer times) were shorter than the times of

similar processes running serially (1 thread) on CPU

in both reference tools and for both computational

environments (for minimizer, the kernel was 19.33

times faster on average; for signature, the kernel was

1.78 times faster on average). When the reference

tools run in parallel (4 threads) on CPU, the

minimizer kernel is faster on both computers (6.19

times faster on average), while the signature kernel

is slower (on average, the reference tool was 1.6

times faster). The relation of execution times

between the kernels and the similar processes in the

reference tools remained practically constant for

both computing environments.

The memory requirement for both kernels

depends on the input data (roughly linear relation)

but not on the output data. The transient data and the

output data do not influence the memory

requirement; this means that efficient representation

and proper use of the hierarchical memory structure

of the GPU are performed. The memory requirement

for both cores is predictable, so an efficient

distribution of workload between the host and the

GPUs is possible.

6. CONCLUSIONS

Through two new massive parallelization

algorithms, focused on maximizing the operational

intensity through efficient access to the hierarchical

memory structure of the parallel device, and a new

data structure for representing the super k-mers of a

read in an indexed and compact way, it was possible

to obtain a processing model that efficiently solves

the search for super k-mers over many-core

architectures.

The implementation of the model through two

kernels OpenCL and its evaluation made it possible

to demonstrate that both the execution time

(including data transfer times host -- GPU -- host)

and the memory requirement are adequate to use the

model in the development of heterogeneous

solutions of simultaneous execution (distributed

work-load). The execution times of the kernels in the

majority of times were lower than the times used by

the current methods executed on CPU; this means

that the model is a good option of simultaneous

(multi-core / many-core) co-processing to accelerate

the current methods executed on CPU. The memory

requirement of the kernels was totally predictable

and slightly high since it depends exclusively on the

input data and not on the transient or output data, so

the model facilitates the efficient distribution of

workload between the CPU (current methods) and

the GPUs (methods proposed in this paper).

7. ACKNOWLEDGEMENTS

CIDC (Centro de Investigaciones y Desarrollo

Científico), CECAD (Centro de Cómputo de Alto

N. E. Vera-Parra, D. A. López-Sarmiento, C. A. Rojas-Quintero / International Journal of Computing, 19(4) 2020, 525-532

 531

Desempeño), GICOGE (Grupo Internacional de

Investigación en Informática, Comunicaciones y

Gestión del Conocimiento) - Universidad Distrital

Francisco José de Caldas.

8. FUNDING

This work has been supported by the CIDC

(Centro de Investigaciones y Desarrollo Científico

de la Universidad Distrital Francisco José de

Caldas).

9. REFERENCES

[1] H. Li, A. Ramachandran, and D. Chen, “GPU

acceleration of advanced k-mer counting for

computational genomics,” Proceedings of the

2018 IEEE 29th International Conference on

Application-specific Systems, Architectures and

Processors (ASAP), 2018, pp. 183-186.

[2] T. Richert, “Management of distributed

dynamic data with algorithmic skeletons,”

Parallel Computing, 2000, pp. 375-382.

https://www.worldscientific.com/doi/abs/10.11

42/9781848160170_0044

[3] F. Wrede and S. Ernsting, “Simultaneous CPU–

GPU execution of data parallel algorithmic

skeletons,” International Journal of Parallel

Programming, vol. 46, no. 1, pp. 42–61, Apr.

2017.

[4] M. Roberts, W. Hayes, B. R. Hunt, S. M.

Mount, and J. A. Yorke, “Reducing storage

requirements for biological sequence

comparison,” Bioinformatics, vol. 20, no. 18,

pp. 3363–3369, 2004.

[5] G. Marçais, D. Pellow, D. Bork, Y. Orenstein,

R. Shamir, and C. Kingsford, “Improving the

performance of minimizers and winnowing

schemes,” Bioinformatics, vol. 33, no. 14, pp.

i110–i117, Dec. 2017.

[6] S. Altschul, “Gapped BLAST and PSI-BLAST:

a new generation of protein database search

programs,” Nucleic Acids Research, vol. 25,

no. 17, pp. 3389–3402, Jan. 1997.

[7] N. Pérez, M. Gutierrez, and N. Vera,

“Computational performance assessment of k-

mer counting algorithms,” Journal of

Computational Biology, vol. 23, no. 4, pp. 248–

255, 2016.

[8] M. Kokot, M. Długosz, and S. Deorowicz,

“KMC 3: counting and manipulating k-mer

statistics,” Bioinformatics, vol. 33, no. 17, pp.

2759–2761, Apr. 2017.

[9] Y. Li, et al. MSPKmerCounter: a fast and

memory efficient approach for k-mer

counting. arXiv preprint arXiv:1505.06550,

2015.

[10] Y. Li, P. Kamousi, F. Han, S. Yang, X. Yan,

and S. Suri, “Memory efficient minimum

substring partitioning,” Proceedings of the

VLDB Endowment, vol. 6, no. 3, pp. 169–180,

Jan. 2013.

[11] R. Chikhi, A. Limasset, and P. Medvedev,

“Compacting de Bruijn graphs from sequencing

data quickly and in low memory,”

Bioinformatics, vol. 32, no. 12, pp. i201–i208,

2016.

[12] C. Marchet, M. Kerbiriou, and A. Limasset,

“Indexing De Bruijn graphs with minimizers,”

Nov. 2019. https://www.biorxiv.org/content/

10.1101/546309v2

[13] J. Luo, J. Wang, W. Li, Z. Zhang, F. X. Wu, M.

Li, & Y. Pan, “EPGA2: memory-efficient de

novo assembler,” Bioinformatics, vol. 31, no.

24, pp. 3988-3990, 2015.

[14] S. Deorowicz, “FQSqueezer: k-mer-based

compression of sequencing data,” Scientific

Reports, vol. 10, 578, 2020.

https://doi.org/10.1038/s41598-020-57452-6

[15] S. Deorowicz, A. Debudaj-Grabysz, and S.

Grabowski, “Disk-based k-mer counting on a

PC,” BMC Bioinformatics, vol. 14, no. 1, 2013.

[16] M. Erbert, S. Rechner, and M. Müller-

Hannemann, “Gerbil: a fast and memory-

efficient k-mer counter with GPU-support,”

Algorithms for Molecular Biology, vol. 12, no.

1, 2017.

[17] Y. Ono, K. Asai, and M. Hamada, “PBSIM:

PacBio reads simulator—toward accurate

genome assembly,” Bioinformatics, vol. 29, no.

1, pp. 119–121, Apr. 2012.

[18] A. Rhoads and K. F. Au, “PacBio Sequencing

and Its Applications,” Genomics, Proteomics &

Bioinformatics, vol. 13, no. 5, pp. 278–289,

2015.

[19] V. Alessandrini, “Atomic types and

operations,” Shared Memory Application

Programming, pp. 167–190, 2016.

[20] J. E. Stone, D. Gohara, and G. Shi, “OpenCL:

A parallel programming standard for

heterogeneous computing systems,” Computing

in Science & Engineering, vol. 12, no. 3, pp.

66–73, 2010.

[21] N. Vera, C. Rojas and J. Pérez, OpenCL

Práctico, first ed., Editorial UD, Bogotá, 2019,

314 p.

[22] A. Klöckner, N. Pinto, Y. Lee, B. Catanzaro, P.

Ivanov, and A. Fasih, “PyCUDA and

PyOpenCL: A scripting-based approach to

GPU run-time code generation,” Parallel

Computing, vol. 38, no. 3, pp. 157–174, 2012.

[23] A. Klöckner, N. Pinto, B. Catanzaro, Y. Lee, P.

Ivanov, and A. Fasih, “GPU scripting and code

N. E. Vera-Parra, D. A. López-Sarmiento, C. A. Rojas-Quintero / International Journal of Computing, 19(4) 2020, 525-532

 532

generation with PyCUDA,” GPU Computing

Gems Jade Edition, pp. 373–385, 2012.

[24] G. Marçais, C. Kingsford, “A fast, lock-free

approach for efficient parallel counting of

occurrences of k-mers,” Bioinformatics, vol.

27, no 6, pp. 764-770, 2011.

[25] S. Deorowicz, A. Debudaj-Grabysz, S.

Grabowsky, “Disk-based k-mer counting on a

PC,” BMC Bioinformatics, vol. 14, no. 1, p.

160, 2013.

Nelson Enrique Vera-Parra,
Electronic Engineer from
Surcolombiana University,
Masters in Information Sciences
and Communication from Uni-
versidad Distrital Francisco José
de Caldas and PhD in Engineer-

ing from the same university. Professor at the
Faculty of Engineering of the Universidad Distrital
Francisco José de Caldas.

Danilo Alfonso López-
Sarmiento, Electronic Engineer
from Pamplona University,
Masters in Teleinformatic from
Universidad Distrital Francisco
José de Caldas and PhD in
Engineering from the same

university. Professor at the Faculty of Engineering of
the Universidad Distrital Francisco José de Caldas.

Cristian Alejandro Rojas-
Quintero, Systems Engineer
and Magister in Software
engineering from Universidad
Distrital Francisco José de
Caldas. Bioinformatics develop-
per for the agreement between
the CECAD (Center for High

Performance Computing of the Universidad Distrital
Francisco José de Caldas) and IGUN (Institute of
Genetics at the Universidad Nacional de Colombia).

