

VOLUME 21(1), 2022 11

Date of publication MAR-30, 2022, date of current version DEC-14, 2021.

www.computingonline.net / computing@computingonline.net

Print ISSN 1727-6209

Online ISSN 2312-5381

DOI 10.47839/ijc.21.1.2512

Deep Neural Network with Adaptive

Parametric Rectified Linear Units and its

Fast Learning

YEVGENIY BODYANSKIY1, ANASTASIIA DEINEKO2,

VIKTORIA SKORIK1, FILIP BRODETSKYI3
1Control Systems Research Laboratory, National University of Radio Electronics, Nauky av. 14, Kharkiv, 61166, Kharkiv, Ukraine,

(e-mail: yevgeniy.bodyanskiy@nure.ua, viktoriia.skorik@nure.ua)
2Dept. of Artificial Intelligence, National University of Radio Electronics, Nauky av. 14, Kharkiv, 61166, Kharkiv, Ukraine,

(e-mail: anastasiia.deineko@nure.ua)
3 Dept. of Informatics, National University of Radio Electronics, Nauky av. 14, Kharkiv, 61166, Kharkiv, Ukraine,

(e-mail: filip.brodetskyi@nure.ua)

Corresponding author: Yevgeniy Bodyanskiy (e-mail: yevgeniy.bodyanskiy@nure.ua).

 ABSTRACT The adaptive parametric rectified linear unit (AdPReLU) as an activation function of the deep

neural network is proposed in the article. The main benefit of the proposed system is adjusted activation function

whose parameters are tuning parallel with synaptic weights in online mode. The algorithm of the simultaneous

learning of all neurons parameters with AdPReLU and the modified backpropagation procedure based on this

algorithm is introduced. The approach under consideration permits to reduce volume of the training data set and

increase tuning speed of the DNN with AdPReLU. The proposed approach could be applied in the deep

convolutional neural networks (CNN) in conditions of the small value of training data sets and additional

requirements for system performance. The main feature of DNN under consideration is possibility to tune not only

synaptic weights but the parameters of activation function too. The effectiveness of this approach is proved by

experimental modeling.

 KEYWORDS deep neural network; convolutional neural network; adaptive parametric rectified unit; activation

function.

I. INTRODUCTION

OR today the artificial neural networks (ANN) are

commonly used for solving different tasks arising in

Data Science, Data Mining, Big Data and others, first of all,

due to universal approximation properties and ability to learn

(tuning its synaptic weights and maybe its architecture)

during input data of arbitrary nature processing. Here, the

most widely used are multilayer perceptrons whose universal

approximation possibilities were proved in the frames of G.

Cybenko’s and K. Honrik’s theorems [1, 2]. The nodes of

these neural networks are elementary F. Rosenblatt’s

perceptrons with so-called squashing activation functions

that include well known 𝜎 −functions (sigmoidal functions),

tanh, Softsign, Satlin, arctan [3] and others.

Based on the multilayer perceptrons, so-called deep

neural networks (DNN) [4-9] were designed, that proved

their effectiveness in the tasks of image processing of

different nature, natural language processing, time series

analysis, including audio signals, etc. Despite their

undoubted advantages, these networks are not devoid of

some problems that arise, first of all, in the process of their

training. In the case of large volume data sets processing

deep neural networks suffer from the so-called vanishing-

exploding gradient effect that is connected with stopped

learning process in DNN. The vanishing-exploding gradient

effect first of all is connected with the shape of the squashing

functions that had led to the abandonment of their using.

F

 Yevgeniy Bodyanskiy et al. / International Journal of Computing, 21(1) 2022, 11-18

12 VOLUME 21(1), 2022

In such situations the most widespread activation

functions are ones from so-called rectified unit family [10]

which includes rectified linear units (ReLU), parametric

rectified linear units (PReLU), exponential linear units

(ELU) and other [5-13]. This is, as usual, piecewise

functions with fixed parameters that traditionally are selected

from empirical reasons. Their main advantage is that their

derivatives are constants, which simplifies the learning

process and permits to avoid the effect of vanishing-

exploding gradient. Their main disadvantage is that they do

not satisfy the requirements of the basic approximation

theorems [1, 2] and to achieve the required accuracy of the

piecewise linear approximation, DNN must contain in

architecture a large number of tuning parameters – synaptic

weights. This, in turn, increases the training time and the

required size of training data set.

In this regard the idea of learning-adaptation of piecewise

activation function was proposed. So, in [14] the “maxout”

activation function was introduced, in [15] – adaptive

piecewise linear units (APL), in [16] – S-shaped rectified

linear unit (SReLU), in [17] – adaptive blending units

(ABU). Parameters of these functions are tuned using the

gradient procedures (stochastic and regularized versions)

with constant learning rate independently of synaptic

weights tuning by error backpropagation. This approach can

improve the approximation properties of DNN, however, it

does not lead to speed increasing of the learning process. It

is possible to increase the speed of the learning process by

simultaneous adjusting the synaptic weights and parameters

of activation functions within a united tuning procedure

optimized by speed, taking into account the mutual influence

of the weights and functions parameters on each other.

In this regard, in this paper we propose, for DNN learning

the adaptive parametric linear activation function, whose

parameters are tuned simultaneously with synaptic weights,

and learning algorithms for both an individual neuron and

the network as a whole, optimized in the sense of speed and

reaching an extremum for the adopted learning criterion

(goal function).

II. LEARNING OF THE NEURON WITH ADAPTIVE

PARAMETRIC RECTIFIED LINEAR ACTIVATION

FUNCTION

As nodes of deep neural networks elementary

F. Rosenblatt’s perceptrons that realize nonlinear mapping in

the form:

�̂�𝑗(𝑘) = 𝜓𝑗 (𝜃𝑗0 +∑𝑤𝑗𝑖

𝑛

𝑖=1

𝑥𝑖(𝑘)) =

= 𝜓𝑗 (∑𝑤𝑗𝑖𝑥𝑖(𝑘)

𝑛

𝑖=0

) = 𝜓𝑖 (𝑤𝑗
𝑇𝑥(𝑘)) =

= 𝜓𝑗 (𝑢𝑗(𝑘))

are used, where �̂�𝑗(𝑘) – output signal of the j-th neuron at

discrete time k=1, 2,…, N,…, 𝜓𝑗(∙) – nonlinear activation

function of this neuron, 𝜃𝑗0 – bias (threshold), n – number of

neurons inputs, 𝑤𝑗𝑖 – tuned synaptic weight, 𝑥𝑖(𝑘) – input

signal on the i-th neuron input at k-th instant of time, 𝜃𝑗0 =

𝑤𝑗0, 𝑥(𝑘) = (1, 𝑥1(𝑘), … , 𝑥𝑛(𝑘))
𝑇

 – (𝑛 + 1) × 1 – vector of

the input signals, 𝑤𝑗 = (𝑤𝑗0 , 𝑤𝑗1, … , 𝑤𝑗𝑛)
𝑇
 – (𝑛 + 1) × 1 –

vector of the tuned synaptic weights, 𝑢𝑗(𝑘) – internal

activation signal.

The chosen of the nonlinear activation function 𝜓𝑗(∙) is

usually performed based on empirical considerations, but the

most popular is 𝜎 −function, considered by G. Cybenko

in [1]

�̂�𝑗(𝑘) = 𝜓𝑗 (𝑢𝑗(𝑘)) =

= (1 + 𝑒𝑥𝑝 (−𝛾𝑗𝑢𝑗(𝑘)))
−1

(1)

with derivation:

𝜓𝑗
′ (𝑢𝑗(𝑘)) = 𝛾𝑗�̂�𝑗(𝑘) (1 − �̂�𝑗(𝑘)), (2)

where 𝛾𝑗 − so called gain parameter, that describes the shape

of activation function and hyperbolic tangent function:

�̂�𝑗(𝑘) = 𝜓𝑗 (𝑢𝑗(𝑘)) = 𝑡𝑎𝑛ℎ𝛾𝑗𝑢𝑗(𝑘)
(3)

with derivation:

𝜓𝑗
′ (𝑢𝑗(𝑘)) = 𝛾𝑗 (1 − �̂�𝑗

2(𝑘)). (4)

Note that, if in the (1), (2) �̂�𝑗(𝑘) tends to 0 or 1, and in

the (3), (4) – to -1 or +1, the effect of the vanishing gradient

is arisen. The activation function of the rectified unit family

overcomes this effect and can be written as follows:

𝜓𝑗 (𝑢𝑗(𝑘)) = {
𝑢𝑗(𝑘) 𝑖𝑓 𝑢𝑗(𝑘) > 0,

𝑎𝑗𝑢𝑗(𝑘) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(5)

with derivation:

𝜓𝑗
′ (𝑢𝑗(𝑘)) = {

1 𝑖𝑓 𝑢𝑗(𝑘) > 0,

𝑎𝑗 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
,

where parameter 𝑎𝑗 is commonly chosen arbitrary. Note also,

that in the most popular ReLU 𝑎𝑗 = 0.

Natural generalization of the (5) is activation function as

follows:

𝜓𝑗 (𝑢𝑗(𝑘)) = {
𝑎𝑗
𝑅𝑢𝑗(𝑘) 𝑖𝑓 𝑢𝑗(𝑘) > 0,

𝑎𝑗
𝐿𝑢𝑗(𝑘) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(6)

with derivation:

Yevgeniy Bodyanskiy et al. / International Journal of Computing, 21(1) 2022, 11-18

VOLUME 21(1), 2022 13

𝜓′ (𝑢𝑗(𝑘)) = {
𝑎𝑗
𝑅 𝑖𝑓 𝑢𝑗(𝑘) > 0,

𝑎𝑗
𝐿 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

.

In this case, the question naturally arises: how to choose

parameters 𝑎𝑗
𝑅, 𝑎𝑗

𝐿 for each neuron or how to organize their

tuning-learning process. It is clear that in this situation for

each neuron should be tuned n+3 parameters instead of

traditional n+1 ones. As it is known, the standard F.

Rosenblatt’s perceptron is adjusted by 𝛿 −rule in the form

[3]:

𝑤𝑗𝑖(𝑘) = 𝑤𝑗𝑖(𝑘 − 1) + 𝜂(𝑘)𝛿𝑗(𝑘)𝑥𝑖(𝑘),

𝑖 = 0,1,2, … , 𝑛

(7)

or in the vector form:

𝑤𝑗(𝑘) = 𝑤𝑗(𝑘 − 1) + 𝜂(𝑘)𝛿𝑗(𝑘)𝑥(𝑘), (8)

where 𝜂(𝑘) – learning rate parameter, usually chosen

empirically and it is not changing in learning process,

𝛿𝑗(𝑘) = 𝜓𝑗
′ (𝑢𝑗(𝑘)) 𝑒𝑗(𝑘) − 𝛿 −error, 𝑒𝑗(𝑘) = 𝑦𝑗(𝑘) −

𝜓𝑗 (𝑢𝑗(𝑘)) − learning error, 𝑦𝑗(𝑘) − reference signal.

Because the learning algorithms (7), (8) contain the

derivation of the activation function, the choice of its

parameters significantly affects the rate of convergence of

this procedure.

For the convergence process improving for activation

function (3) in [18] along with the synaptic weights vector

𝑤𝑗(𝑘) it was proposed to tune gain parameter 𝛾𝑗(𝑘) with the

procedure:

{

𝛾𝑗(𝑘) = 𝛾𝑗(𝑘 − 1) +

+𝜂𝛾(𝑘)𝑒𝑗(𝑘) (1 − �̂�𝑗
2(𝑘)) 𝑢𝑗(𝑘),

𝑤𝑗(𝑘) = 𝑤𝑗(𝑘 − 1) + 𝜂𝑗(𝑘)𝑒𝑗(𝑘) ×

× (1 − �̂�𝑗
2(𝑘)) 𝑥(𝑘)

that is not protected from the vanishing gradient effect.

The neuron tuning process with activation function (6) in

the each discrete moment of time k was proposed to carry

out learning in the form of the two-step procedure [19].

Tuning of the parameters 𝑎𝑗
𝑅, 𝑎𝑗

𝐿 (in the next transformations

for simplifying the record indexes R and L are temporarily

dropped) and based on the adjusted parameters 𝑎𝑗(𝑘) – the

synaptic weights vectors are updated.

The tuning process of the parameters 𝑎𝑗(𝑘) is realized by

gradient procedure of quadratic learning criterion

minimization in the form:

𝑎𝑗(𝑘) = 𝑎𝑗(𝑘 − 1) + 𝜂𝑎(𝑘) ×

× (𝑦𝑗(𝑘) − 𝑎𝑗(𝑘 − 1)𝑢𝑗(𝑘)) 𝑢𝑗(𝑘) =

= 𝑎𝑗(𝑘 − 1) + 𝜂𝑎(𝑘) ×

× (𝑦𝑗(𝑘) − 𝑎𝑗(𝑘 − 1)𝑤𝑗
𝑇(𝑘 − 1)𝑥(𝑘)) ×

× 𝑤𝑗
𝑇(𝑘 − 1)𝑥(𝑘).

(9)

Thus, the neuron output signal is linearly depends on the

adjusted parameters 𝑎𝑗, the procedure (9) can be optimized

by the speed where in the optimal value of the learning rate

is given by expression:

𝜂𝑎(𝑘) = 𝑢𝑗
−2(𝑘),

i.e., returning to indexes R and L finally it could be rewritten:

{

𝑎𝑗
𝑅(𝑘) = 𝑎𝑗

𝑅(𝑘 − 1) +

+(𝑦𝑗(𝑘) − 𝑎𝑗
𝑅(𝑘 − 1)𝑢𝑗(𝑘)) ×

× 𝑢𝑗
−1(𝑘) 𝑖𝑓 𝑢𝑗(𝑘) > 0,

𝑎𝑗
𝐿(𝑘) = 𝑎𝑗

𝐿(𝑘 − 1) +

+(𝑦𝑗(𝑘) − 𝑎𝑗
𝐿(𝑘 − 1)𝑢𝑗(𝑘)) ×

𝑢𝑗
−1(𝑘) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 (10)

Next aposterior learning error after training 𝑎𝑗 is

introduced:

�̃�𝑗(𝑘) = 𝑦𝑗(𝑘) − 𝑎𝑗(𝑘)𝑤𝑗
𝑇(𝑘 − 1)𝑥(𝑘).

The gradient procedure of the synaptic weights tuning can be

written as follows:

𝑤𝑗(𝑘) = 𝑤𝑗(𝑘 − 1) + 𝜂(𝑘) =

= (𝑦𝑗(𝑘) − 𝑎𝑗(𝑘)𝑤𝑗
𝑇(𝑘 − 1)𝑥(𝑘)) =

= 𝑎𝑗(𝑘)𝑥(𝑘) = 𝑤𝑗(𝑘 − 1) +

+𝜂(𝑘) (𝑦𝑗(𝑘) − 𝑤𝑗
𝑇(𝑘 − 1)�̃�(𝑘)) �̃�(𝑘),

(11)

where

�̃�(𝑘) = 𝑎𝑗(𝑘)𝑥(𝑘).

Procedure (11) also can be optimized by speed, and

optimum value of 𝜂(𝑘) is determined by expression:

𝜂(𝑘) = ‖�̃�(𝑘)‖−2

and (11) at the same time takes the form:

𝑤𝑗(𝑘) = 𝑤𝑗(𝑘 − 1) + (𝑦𝑗(𝑘) −

−𝑤𝑗
𝑇(𝑘 − 1)�̃�(𝑘)) ‖�̃�(𝑘)‖−2�̃�(𝑘) = (12)

= 𝑤𝑗(𝑘 − 1) + �̃�𝑗(𝑘)�̃�
+𝑇(𝑘),

where (∙)+ − symbol of matrix pseudoinversion.

It is easy to see, that (12) is optimal by speed one-step

adaptive learning algorithm proposed by Kaczmarz-

Widrow-Hoff [20-23]. Because procedures (10), (12) are

affected by exploding gradient, its regularized version could

be taken into consideration:

 Yevgeniy Bodyanskiy et al. / International Journal of Computing, 21(1) 2022, 11-18

14 VOLUME 21(1), 2022

{

 𝑎𝑗(𝑘) = 𝑎𝑗(𝑘 − 1) + (𝛼 + 𝑢𝑗

2(𝑘))
−1

(𝑦𝑗(𝑘) − 𝑎𝑗(𝑘 − 1)𝑢𝑗(𝑘)) 𝑢(𝑘),

𝑤𝑗(𝑘) = 𝑤𝑗(𝑘)(𝑘 − 1) + (𝛼 + ‖�̃�(𝑘)‖
2)−1

(𝑦𝑗(𝑘) − 𝑤𝑗
𝑇(𝑘 − 1)�̃�(𝑘))�̃�(𝑘)

, (13)

where 𝛼 > 0 – momentum term that is in fact additive form

of Kaczmarz’s algorithm.

Thus, algorithm (10-13) provides maximal speed of

convergence and does not suffer from the vanishing-

exploiding gradient. In situation when processing signals are

disturbed by noise of arbitrary nature, additional filtering

properties could be given to the learning algorithm (12). In

this situation the synaptic weights learning procedure takes

the form [23]:

𝑤𝑗(𝑘) = 𝑤𝑗(𝑘 − 1) + 𝑟
−1(𝑘)�̃�𝑗(𝑘)�̃�(𝑘) =

= 𝑤𝑗(𝑘 − 1) +

+(𝛽𝑟(𝑘 − 1) + ‖�̃�(𝑘)‖2)−1�̃�𝑗(𝑘)�̃�(𝑘),

where 0 ≤ 𝛽 ≤ 1 − forgetting factor that is the same as (12)

when 𝛽 = 0 and, with the algorithm of stochastic

approximation of Goodwin-Ramadge-Caines [24] at 𝛽 = 1.

Then, finally, the learning procedure of a single neuron – F.

Rosenblatt’s perseptron with adaptive rectified linear

activation function can be written in the form:

{

 𝑎𝑗

𝑅(𝑘) = 𝑎𝑗
𝑅(𝑘 − 1) + (𝑟𝑎

𝑅(𝑘))
−1
×

× (𝑦𝑗(𝑘) − 𝑎𝑗
𝑅(𝑘 − 1)𝑢𝑗(𝑘)) 𝑢𝑗(𝑘),

𝑟𝑎
𝑅(𝑘) = 𝛽𝑟𝑎

𝑅(𝑘 − 1) + 𝑢𝑗
2(𝑘),

𝑤𝑗(𝑘) = 𝑤𝑗(𝑘 − 1) + (𝑟
𝑅(𝑘))

−1
×

× (𝑦𝑗(𝑘) − 𝑎𝑗
𝑅(𝑘)𝑤𝑗

𝑇(𝑘 − 1)𝑥(𝑘)) 𝑎𝑗
𝑅(𝑘)𝑥(𝑘),

𝑟𝑅(𝑘) = 𝛽𝑟𝑅(𝑘 − 1) + (𝑎𝑗
𝑅(𝑘))

2
‖𝑥(𝑘)‖2

 (14)

if 𝑤𝑗
𝑇(𝑘 − 1)𝑥(𝑘) > 0, and

{

 𝑎𝑗

𝐿(𝑘) = 𝑎𝑗
𝐿(𝑘 − 1) + (𝑟𝑎

𝐿(𝑘))
−1
×

× (𝑦𝑗(𝑘) − 𝑎𝑗
𝐿(𝑘 − 1)𝑢𝑗(𝑘)) 𝑢𝑗(𝑘),

𝑟𝑎
𝐿(𝑘) = 𝛽𝑟𝑎

𝐿(𝑘 − 1) + 𝑢𝑗
2(𝑘),

𝑤𝑗(𝑘) = 𝑤𝑗(𝑘 − 1) + (𝑟
𝐿(𝑘))

−1
×

× (𝑦𝑗(𝑘) − 𝑎𝑗
𝐿(𝑘)𝑤𝑗

𝑇(𝑘 − 1)𝑥(𝑘)) 𝑎𝑗
𝐿(𝑘)𝑥(𝑘),

𝑟𝐿(𝑘) = 𝛽𝑟𝐿(𝑘 − 1) + (𝑎𝑗
𝐿(𝑘))

2
‖𝑥(𝑘)‖2

 (15)

otherwise.

Let us note that all described procedures are in fact the

gradient optimization algorithms, providing maximum speed

of the learning process and possessing by filtering properties.

III. LEARNING OF THE MULTILAYER NEURAL

NETWORK BASED ON ADAPTIVE PARAMETRIC

RECTIFIED LINEAR UNITS

Let us consider the learning process of the multilayer neural

network that contains n inputs, m outputs and Q layers. In

this network first hidden layer contains n1 neurons, q-th layer

– nq neurons and output layer – m neurons respectively.

Indexes R and L are omitted again and learning rates

parameters determined as in the (14), (15). The output

signals of the q-th hidden layer (q=1,2,…, Q) are designated

𝑜𝑗
[𝑞](𝑘), 𝑗 = 1,2, … , 𝑛𝑞 , and its input signals −𝑜𝑗

[𝑞−1](𝑘)

respectively.

For the neural network learning procedure standard error

backpropagation is used, and on the each learning step for

every network neuron firstly parameters 𝑎𝑗
[𝑞]

 are specified,

next based on them – synaptic weights 𝑤𝑗
𝑎 for all neurons in

all network layers are specified. Then for Q-th output

network layer, on the input of which signals 𝑜𝑖
[𝑄−1](𝑘),

i=1,2,…, 𝑛𝑞−1 are fed, could be used learning procedure

(14), (15) written in the form:

{

 𝑎𝑗

[𝑄](𝑘) = 𝑎𝑗
[𝑄](𝑘) + 𝜂𝑎

[𝑄](𝑘)𝑒𝑗(𝑘) ×

× 𝑢𝑗
[𝑄](𝑘), 𝑗 = 1,2, … , 𝑛𝑄 = 𝑚,

𝛿𝑗
[𝑄](𝑘) = (𝜓𝑗

[𝑄] (𝑢𝑗
[𝑄](𝑘)))

′

×

× 𝑒𝑗(𝑘) = 𝑎𝑗
[𝑄](𝑘)𝑒𝑗(𝑘),

𝑤𝑗𝑖
[𝑄](𝑘) = 𝑤𝑗𝑖

[𝑄](𝑘 − 1) + 𝜂[𝑄](𝑘)𝛿𝑗
[𝑄](𝑘)𝑜𝑖

[𝑄−1](𝑘),

𝑖 = 0,1,2, … , 𝑛𝑄−1

or introducing notations:

{
∆𝑎𝑗

[𝑄](𝑘) = 𝑎𝑗
[𝑄](𝑘) − 𝑎𝑗

[𝑄](𝑘 − 1),

∆𝑤𝑗𝑖
[𝑄](𝑘) = 𝑤𝑗𝑖

[𝑄](𝑘) − 𝑤𝑗𝑖
[𝑄](𝑘 − 1),

{

 ∆𝑎𝑗

[𝑄](𝑘) = 𝜂𝑎
[𝑄](𝑘)𝑒𝑗(𝑘)𝑢𝑗

[𝑄](𝑘),

𝛿𝑗
[𝑄](𝑘) = (𝜓𝑗

[𝑄] (𝑢𝑗
[𝑄](𝑘)))

′

×

× 𝑒𝑗(𝑘) = 𝑎𝑗
[𝑄](𝑘)𝑒𝑗(𝑘),

∆𝑤𝑗𝑖
[𝑄](𝑘) = 𝜂[𝑄](𝑘)𝛿𝑗

[𝑄](𝑘)𝑜𝑖
[𝑄−1](𝑘).

The (Q-1)-th hidden layer is tuned according to the

relations:

Yevgeniy Bodyanskiy et al. / International Journal of Computing, 21(1) 2022, 11-18

VOLUME 21(1), 2022 15

{

 ∆𝑎𝑗

[𝑄−1](𝑘) = 𝜂𝑎
[𝑄−1](𝑘) ×

× (∑𝛿𝑖
[𝑄]

𝑛𝑄

𝑖=0

(𝑘)𝑤𝑖𝑗
[𝑄](𝑘))𝑢𝑗

[𝑄](𝑘),

𝛿𝑗
[𝑄](𝑘) = 𝑎𝑗

[𝑄−1](𝑘)∑𝛿𝑖
[𝑄]

𝑛𝑄

𝑖=0

(𝑘)𝑤𝑖𝑗
[𝑄](𝑘),

∆𝑤𝑗𝑖
[𝑄](𝑘) = 𝜂[𝑄−1](𝑘)𝛿𝑗

[𝑄−1](𝑘)𝑜𝑖
[𝑄−2](𝑘),

the q-th hidden layer:

{

 ∆𝑎𝑗

[𝑞](𝑘) = 𝜂𝑎
[𝑞](𝑘) ×

× (∑ 𝛿𝑖
[𝑞+1]

𝑛𝑞+1

𝑖=0

(𝑘)𝑤𝑖𝑗
[𝑞+1](𝑘))𝑢𝑗

[𝑞](𝑘),

𝛿𝑗
[𝑞](𝑘) = 𝑎𝑗

[𝑞](𝑘) ∑ 𝛿𝑖
[𝑞+1]

𝑛𝑞+1

𝑖=0

(𝑘)𝑤𝑖𝑗
[𝑞+1](𝑘),

∆𝑤𝑗𝑖
[𝑞](𝑘) = 𝜂[𝑞](𝑘)𝛿𝑗

[𝑞](𝑘)𝑜𝑖
[𝑞−1](𝑘)

and, finally, the first network layer:

{

 ∆𝑎𝑗

[1](𝑘) = 𝜂𝑎
[1](𝑘) ×

× (∑𝛿𝑖
[2]

𝑛2

𝑖=0

(𝑘)𝑤𝑖𝑗
[2](𝑘))𝑢𝑗

[1](𝑘),

𝛿𝑗
[1](𝑘) = 𝑎𝑗

[1](𝑘)∑𝛿𝑖
[2]

𝑛2

𝑖=0

(𝑘)𝑤𝑖𝑗
[2](𝑘),

∆𝑤𝑗𝑖
[1](𝑘) = 𝜂[1](𝑘)𝛿𝑗

[1](𝑘)𝑥𝑖(𝑘),

𝑥0(𝑘) = 1.

Proposed relations differ from the standard error

backpropagation procedure, that in the learning process not

only synaptic weights are tuned, but also the activation

functions parameters. Moreover, calculated by a special way

values of the learning rate parameters obtained for the tuning

process high speed permit to decrease total learning time of

the deep neural network.

IV. EXPERIMENTAL MODELING

For the evaluation of the proposed deep neural network with

adaptive parametric rectified linear units data set “Carvana”

was taken from Kaggle platform. This data set was proposed

by Carvana company for segmentation task in 2017. Carvana

data set includes 318 images of cars visualization in the 16-

th different views (angles). Every image has 1918x1280

pixels resolution. All data set consists of the 5088 marked

images and every segmentation mask includes two classes:

background and foreground. All experiments were realized

in the TensorFlow 2.4.0.

Examples of the images and their masks are

demonstrated Fig. 1. As a prototype of the deep neural

network U-Net network was used. Before network training

data preprocessing was made all input images had been

resized (256, 256, 3), random regularization for image tint

that should be in the interval [0; 0,5], horizontal images

rotation on the central axes with probability equal to 0,5 and

rescale (1/255) also were made.

Figure 1. Examples of the images and their masks

Adjusted parameters of U-Net base modal with standard

ReLU and Adaptive ReLU are shown in Table 1. The second

part of Table 1 shows only adjusted parameters for the

Adaptive ReLU, first part is similar for standard ReLU and

Adaptive ReLU.

Table 1. Adjusted parameters of the standard ReLU

and Adaptive ReLU

Parameters of the U-Net base model with standard ReLU

The loss function Dice loss + Binary Cross-
Entropy

Numbers of epoch 10

Starter earning rate parameter (lr) 0.001

Parameters for the Adaptive ReLU

lr_forgetting factor (𝛽) 0, 0.3, 0.6, 0.9 (different for
each experiment)

The initial 𝑎𝑗
𝑅 0.5

The initial 𝑎𝑗
𝐿 0.05

The internal activation signal 𝑢𝑗
2 was normalized by l2-

normalization with respect to all elements of the tensor,

otherwise values of parameters 𝑟𝑎
𝑅, 𝑟𝑎

𝐿 became very big, that

 Yevgeniy Bodyanskiy et al. / International Journal of Computing, 21(1) 2022, 11-18

16 VOLUME 21(1), 2022

led to exploding of the weights coefficients. Then, the mean

value of the internal activation signal 𝑢𝑗
2 was used to

calculate the new learning rate.

The graphic of the train loss function is demonstrated in

Fig. 2 and in Fig. 3 the validation loss function graphic is

shown.

Figure 2. The train loss function graphic

Figure 3. The validation loss function graphic

Visualization of the train dice coefficient is demonstrated

in Fig. 4 and in Fig. 5 the validation dice coefficient is

shown.

Figure 4. The train dice coefficient

Figure 5. The validation dice coefficient

As can be seen in the graphs in Fig. 3 and Fig. 5 the

metric on the validation dataset pulls, that indicates a

small number of learning epochs. In Table 2 numerical

results of train and validation dice coefficients are

presented for base U-net model and for U-Net with

adaptive ReLU activation function. In Fig. 6 angles

changing of the adaptive ReLU are presented.

Table 2. Numerical results of train and validation dice

coefficients

Model Train dice

coefficient

Validation dice

coefficient

Base Model 0.9886 0.9909

Adaptive ReLu (β=0) 0.9927 0.9928

Adaptive ReLu (β=0.3) 0.9923 0.9918

Adaptive ReLu (β=0.6) 0.9912 0.9917

Adaptive ReLu (β=0.9) 0.9931 0.9914

Figure 6. Changing the angles of Adaptive ReLU

Experimental results show that with the same accuracy of

solving the problem under consideration, parameters

adaptation of the Adaptive ReLU activation function can

reduce the learning rate by approximately 10 %, while the

smaller is value of the forgetting factor \beta, the faster is the

neural network tuning, i.e., the learning algorithm

approaches the speed-optimal Kaczmarz-Widrow-Hoff

procedure.

Segmentation results using the model based on the U-net

deep neural network with standard ReLU activation function

are presented in Fig. 7. And finally, in Fig. 8, Fig. 9, Fig. 10

and Fig. 11 the U-Net neural network with Adaptive ReLU

activation function are shown. Fig. 8 demonstrates using

adaptive ReLU with forgetting factor 0.9, Fig. 9

demonstrates using adaptive ReLU with forgetting factor

0.6, Fig. 10 demonstrates using adaptive ReLU with

forgetting factor 0.3 and Fig. 11 demonstrates using adaptive

ReLU with forgetting factor 0.

Figure 7. Segmentation results by base model

Yevgeniy Bodyanskiy et al. / International Journal of Computing, 21(1) 2022, 11-18

VOLUME 21(1), 2022 17

Figure 8. U-Net neural network with Adaptive ReLU

activation function with forgetting factor 0.9

Figure 9. U-Net neural network with Adaptive ReLU

activation function with forgetting factor 0.6

Figure 10. U-Net neural network with Adaptive ReLU

activation function with forgetting factor 0.3

Figure 11. U-Net neural network with Adaptive ReLU

activation function with forgetting factor 0

The experimental modeling has proved theoretical

researches and shows that MLP with adaptive parametric

rectified linear units could be used in the CNN with

traditional fully connected layers.

V. CONCLUSION

The task of deep neural network training with adaptive

parametric rectified linear activation function, whose

parameters are adjusted simultaneously with synaptic

weights is considered in the paper. Adaptive optimal learning

algorithms for all network parameters with additional

filtering properties are introduced. Based on these

algorithms, the learning procedure based on the error

backpropagation that permits to reduce total learning time of

the neural network in general is proposed.

References
[1] G. Cybenko, “Approximation by superposition of a sigmoidal

function,” Math. Control Signals Systems, vol. 2, pp. 303-314, 1989,

https://doi.org/10.1007/BF02551274.

[2] K. Hornik, “Approximation capabilities of multilayer feedforward
networks,” Neural Networks, vol. 4, issue 2, pp. 251-257, 1994,

https://doi.org/10.1016/0893-6080(91)90009-T.

[3] A. Cichocki and R. Unbehauen, Neural Networks for Optimization
and Signal Processing, Wiley, Chichester, 1993, 536 p.

https://doi.org/10.1002/acs.4480080309.

[4] Y. LeCun, Y. Bengio and G. Hinton, “Deep learning,” Nature,

vol. 521, pp. 436-444, 2015, https://doi.org/10.1038/nature14539.

[5] J. Schmidhuber, “Deep learning in neural networks: An overview,”

Neural Networks, vol. 61, pp. 85-117, 2015,
https://doi.org/10.1016/j.neunet.2014.09.003.

[6] I. Goodfellow, Y. Bengio and A. Courville, Deep Learning, The MIT

Press, 2016.
[7] D. Graupe, Deep Learning Neural Networks: Design and Case

Studies, New Jersey: World Scientific, 2016.

https://doi.org/10.1142/10190.
[8] A. L. Caterini, D. E. Chang, Deep Neural Networks in a Mathematical

Framework, Cham: Springer, 2018, https://doi.org/10.1007/978-3-

319-75304-1.
[9] C. C. Aggarwal, Neural Networks and Deep Learning, Cham:

Springer, 2018, https://doi.org/10.1007/978-3-319-94463-0.

[10] B. Xu, N. Wang, T. Chen, M. Li, Empirical Evaluation of Rectified
Activations in Convolutional Network, arXiv preprint

arXiv:1505.00853, 2015.

[11] D.-A. Clevert, T. Unterthiner and S. Hochreiter, Fast and Accurate
Deep Network Learning by Exponential Linear Units (ELUs), arXiv

preprint arXiv:1511.07289, 2015.

[12] K. He, X. Zhang, S. Ren and J. Sun, “Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification,”

Proceedings of the IEEE International Conference on Computer

Vision (ICCV), Santiago, 2015, pp. 1026-1034,
https://doi.org/10.1109/ICCV.2015.123.

[13] K. He, X. Zhang, S. Ren and J. Sun, “Deep residual learning for image

recognition,” Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), Las Vegas, NV, 2016, pp.

770-778, https://doi.org/10.1109/CVPR.2016.90.

[14] I. Goodfellow, D. Warde-Farley, M. Mirza, A.Courville and Y.
Bengio, Maxout Networks, arXiv preprint arXiv:1302.4389, 2013.

[15] F. Agostinelli, M. Hoffman, P. Sadowski and P. Baldi, Learning

Activation Functions to Improve Deep Neural Networks, arXiv
preprint arXiv:1412.6830, 2015.

[16] X. Jin, Ch. Xu, J. Feng, Yu. Wei, J. Xiong and Sh. Yan, Deep Learning

with S-shaped Rectified Linear Activation Units, arXiv preprint
arXiv:1512.07030, 2015.

https://doi.org/10.1007/BF02551274
https://doi.org/10.1016/0893-6080(91)90009-T
https://doi.org/10.1002/acs.4480080309
https://doi.org/10.1038/nature14539
https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.1142/10190
https://doi.org/10.1007/978-3-319-75304-1
https://doi.org/10.1007/978-3-319-75304-1
https://doi.org/10.1007/978-3-319-94463-0
https://doi.org/10.1109/ICCV.2015.123
https://doi.org/10.1109/CVPR.2016.90
https://arxiv.org/search/cs?searchtype=author&query=Agostinelli%2C+F
https://arxiv.org/search/cs?searchtype=author&query=Hoffman%2C+M
https://arxiv.org/search/cs?searchtype=author&query=Sadowski%2C+P
https://arxiv.org/search/cs?searchtype=author&query=Baldi%2C+P
https://arxiv.org/search/cs?searchtype=author&query=Jin%2C+X
https://arxiv.org/search/cs?searchtype=author&query=Xu%2C+C
https://arxiv.org/search/cs?searchtype=author&query=Feng%2C+J
https://arxiv.org/search/cs?searchtype=author&query=Wei%2C+Y
https://arxiv.org/search/cs?searchtype=author&query=Xiong%2C+J
https://arxiv.org/search/cs?searchtype=author&query=Yan%2C+S

 Yevgeniy Bodyanskiy et al. / International Journal of Computing, 21(1) 2022, 11-18

18 VOLUME 21(1), 2022

[17] L.R. Sütfeld, F. Brieger, H. Finger, S. Füllhase and G. Pipa, Adaptive

Blending Units: Trainable Activation Functions for Deep Neural

Networks, arXiv preprint arXiv:1806.10064, 2018.
[18] J. K. Kruschke, J. R. Movellan, “Benefits of gain: Speeded learning

and minimal hidden layers in back-propagation networks,” IEEE

Transactions on Systems, Man, and Cybernetics, vol. 21, no. 1, pp.
273-280, 1991, https://doi.org/10.1109/21.101159.

[19] Y. Bodyanskiy, A. Deineko, I. Pliss and V. Slepanska, “Formal neuron

based on adaptive parametric rectified linear activation function and
its learning,” Proceedings of the 1st International Workshop on

Digital Content and Smart Multimedia “DCSMart 2019”, Lviv,

Ukraine, December 23-25, 2019, CEUR Workshop Proceedings
volume 2533, pp. 14-22.

[20] S. Kaczmarz, “Angenäherte Auslösung von Systemen linearer

Gleichungen,” Bull. Internat. Acad. Polon.Sci., Lettres A, pp. 355-357,
1937. (in German)

[21] S. Kaczmarz, “Approximate solution of systems of linear equations,”

International Journal of Control, vol. 57, issue 6, pp. 1269-1271,
1993, https://doi.org/10.1080/00207179308934446.

[22] B. Widrow, M. Hoff, “Adaptive Switching Circuits,” IRE WESCON

Convention Record, New York, IRE, Part 4, 1959, pp. 96-104.
https://doi.org/10.21236/AD0241531.

[23] P. Otto, Y. Bodyanskiy and V. Kolodyazhniy, “A new learning

algorithm for a forecasting neuro-fuzzy network,” Integrated
Computer-Aided Engineering, vol. 10, no. 4, pp. 399-409, 2003.

https://doi.org/10.3233/ICA-2003-10409.

[24] G. C. Goodwin, P. J. Ramadge and P. E. Caines, “A globally
convergent adaptive predictor,” Automatica, vol. 17, issue 1, pp. 135-

140, 1981. https://doi.org/10.1016/0005-1098(81)90089-3.

YEVGENIY BODYANSKIY, Profes–

sor at the Department of Artificial

Intelligence, Scientific Head at the

Control Systems Research

Laboratory (CSRL), Kharkiv

University of Radio Electronic,

Member of the specialized scientific

council, Member of STC, IEEE

Senior Member, Doctor of Technical

Sciences, Professor. Scientific

interests: Hybrid systems of

Computational Intelligence, Data
Stream Mining, Big Data, Deep Learning, Evolving Systems.

ANASTASIIA DEINEKO, Associated

Professor of AI Department,

Candidate of Technical Sciences,

Senior Scientist Researcher at the

CSRL, Kharkiv University of Radio

Electronic. Scientific interests:

Hybrid systems of Computational

Intelligence, Data Stream Mining,

Big Data, Deep Learning, Evolving

Systems.

VIKTORIA SKORIK, Student,

Artificial Intelligence Department,

Kharkiv University of Radio

Electronics. Scientific interests:

Hybrid systems of Computational

Intelligence, Data Stream Mining,

Big Data, Deep Learning, Evolving

Systems.

FILIP BRODETSKYI, Ph.D. Student,

Assistant of Informatics Depart–

ment, Kharkiv University of Radio

Electronics. Scientific interests:

Computer Vision, Signal

Processing, Pattern Recognition,

Texture Analysis, Systems and

Applications.

https://arxiv.org/search/cs?searchtype=author&query=S%C3%BCtfeld%2C+L+R
https://arxiv.org/search/cs?searchtype=author&query=Brieger%2C+F
https://arxiv.org/search/cs?searchtype=author&query=Finger%2C+H
https://arxiv.org/search/cs?searchtype=author&query=F%C3%BCllhase%2C+S
https://arxiv.org/search/cs?searchtype=author&query=Pipa%2C+G
https://doi.org/10.1109/21.101159
https://doi.org/10.1080/00207179308934446
https://www.bibsonomy.org/person/12ace34c5debd5abc08e714f8ff1030b3/author/1
https://doi.org/10.21236/AD0241531
https://doi.org/10.3233/ICA-2003-10409
https://doi.org/10.1016/0005-1098(81)90089-3

